历年湖南省怀化市中考数学试题(含答案)
2023年湖南省怀化市中考数学真题(解析版)
怀化市2023年初中学业水平考试试卷数学温馨提示:1.本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分150分.2.请你将姓名、准考证号等相关信息按要求填涂在答题卡上.3.请你在答题卡上作答,答在本试题卷上无效.一、选择题(每小题4分,共40分;每小题的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上)1. 下列四个实数中,最小的数是( )A. 5- B. 0 C. 12 D. 【答案】A【解析】【分析】先根据实数的大小比较法则比较数的大小,再求出最小的数即可.【详解】1502-<<<Q \最小的数是:5-故选:A .【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则是解此题的关键.2. 2023年4月12日21时,正在运行的中国大科学装置“人造太阳”——世界首个全超导托卡马克东方超环(EAST )装置取得重大成果,在第122254次实验中成功实现了403秒稳态长脉冲高约束模式等离子体运行,创造了托卡马克装置高约束模式运行新的世界纪录.数据122254用科学记数法表示为( )A. 412.225410´ B. 41.2225410´ C. 51.2225410´ D. 60.12225410´【答案】C【解析】【分析】科学记数法的表示形式为10n a ´的形式,其中110a £<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:数据122254用科学记数法表示为51.2225410´,故选:C .【点睛】本题考查的知识点是科学记数法—表示较绝对值较大的数.把一个大于等于10的数写成科学记数法10n a ´的形式时,将小数点放到左边第一个不为0的数位后作为a ,把整数位数减1作为n ,从而确定它的科学记数法形式.3. 下列计算正确的是( )A. 235a a a ×= B. 623a a a ¸= C. ()2329ab a b = D. 523a a -=【答案】A【解析】【分析】根据同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方、合并同类项分别计算后,即可得到答案.【详解】解:A .235a a a ×=,故选项正确,符合题意;B .624a a a ¸=,故选项错误,不符合题意;C .()2326ab a b =,故选项错误,不符合题意;D .523a a a -=,故选项错误,不符合题意.故选:A .【点睛】此题考查了同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方、合并同类项,熟练掌握运算法则是解题的关键.4. 剪纸又称刻纸,是中国最古老的民间艺术之一,它是以纸为加工对象,以剪刀(或刻刀)为工具进行创作的艺术.民间剪纸往往通过谐音、象征、寓意等手法提炼、概括自然形态,构成美丽的图案.下列剪纸中,既是轴对称图形,又是中心对称图形的是( )A B. C. D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A 、不是轴对称图形,是中心对称图形,故A 选项不合题意;B 、是轴对称图形,不是中心对称图形,故B 选项不合题意..C 、既是轴对称图形又是中心对称图形,故C 选项符合题意;D 、是轴对称图形,不是中心对称图形,故D 选项不合题意.故选:C .【点睛】本题主要考查了轴对称图形和中心对称图形,解题关键在于能够熟练掌握轴对称图形和中心对称图形的定义.5. 在平面直角坐标系中,点(2,3)P -关于x 轴对称的点P ¢的坐标是( )A. (2,3)-- B. (2,3)- C. (2,3)- D. (2,3)【答案】D【解析】【分析】根据关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数,即可求解.【详解】解:点(2,3)P -关于x 轴对称的点P ¢的坐标是(2,3),故选:D .【点睛】本题考查了关于x 轴对称的两个点的坐标特征,熟练掌握关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数是解题的关键.6. 如图,平移直线AB 至CD ,直线AB ,CD 被直线EF 所截,160Ð=°,则2Ð的度数为( )A. 30°B. 60°C. 100°D. 120°【答案】B【解析】【分析】根据平移可得AB CD ∥,根据平行线的性质以及对顶角相等,即可求解.【详解】解:如图所示,∵平移直线AB 至CD∴AB CD ∥,160Ð=°,的∴13Ð=Ð,又∵23ÐÐ=,∴2160Ð=Ð=°,故选:B .【点睛】本题考查了平移的性质,平行线的性质,对顶角相等,熟练掌握平行线的性质是解题的关键.7. 某县“三独”比赛独唱项目中,5名同学的得分分别是:9.6,9.2,9.6,9.7,9.4.关于这组数据,下列说法正确的是( )A. 众数是9.6B. 中位数是9.5C. 平均数是9.4D. 方差是0.3【答案】A【解析】【分析】先把5个数据按从小到大的顺序排列,而后用中位数,众数,平均数和方差的定义及计算方法逐一判断.【详解】解:5个数按从小到大的顺序排列9.2,9.4,9.6,9.6,9.7,A 、9.6出现次数最多,众数是9.6,故正确,符合题意;B 、中位数是9.6,故不正确,不符合题意;C 、平均数是()19.2+9.4+9.62+9.7=9.55´,故不正确,不符合题意;D 、方差是()()()()222219.29.5+9.49.5+29.69.5+9.79.5=0.0325éù´----ëû,故不正确,不符合题意.故选:A .【点睛】本题考查了中位数,众数,平均数和方差,熟练掌握这些定义及计算方法是解决此类问题的关键.8. 下列说法错误的是( )A. 成语“水中捞月”表示的事件是不可能事件B. 一元二次方程230x x ++=有两个相等的实数根C. 任意多边形的外角和等于360°D. 三角形三条中线的交点叫作三角形的重心【答案】B【解析】【分析】根据不可能事件、根的判别式、多边形的外角和以及三角形的重心的定义分别进行判断即可.【详解】解:A 、成语“水中捞月”表示的事件是不可能事件,故此选项不符合题意;B 、21413110D =-´´=-<,则一元二次方程230x x ++=没有实数根,故此选项符合题意;C 、任意多边形的外角和等于360°,故此选项不符合题意;D 、三角形三条中线的交点叫作三角形的重心,故此选项不符合题意;故选:B .【点睛】本题考查不可能事件、根的判别式、多边形的外角和以及三角形的重心的定义,熟练掌握有关知识点是解题的关键.9. 已知压力(N)F 、压强()Pa P 与受力面积()2m S 之间有如下关系式:F PS =.当F 为定值时,下图中大致表示压强P 与受力面积S 之间函数关系的是( )A. B. C.D.【答案】D【解析】【分析】根据反比例函数的定义,即可得到答案.【详解】解:根据题意得:F P S=,∴当物体的压力F 为定值时,该物体的压强P 与受力面积S 的函数关系式是:F P S =,则函数图象是双曲线,同时自变量是正数.故选:D .【点睛】本题主要考查反比例函数,掌握F P S =以及反比例函数定义,是解题的关键.10. 如图,反比例函数(0)k y k x=>的图象与过点(1,0)-的直线AB 相交于A 、B 两点.已知点A 的坐标为(1,3),点C 为x 轴上任意一点.如果9ABC S =V ,那么点C 的坐标为()的A. (3,0)- B. (5,0) C. (3,0)-或(5,0) D. (3,0)或(5,0)-【答案】D【解析】【分析】反比例函数(0)k y k x=>的图象过点(1,3),可得3y x =,进而求得直线AB 的解析式为3322y x =+,得出B 点的坐标,设(),0C c ,根据1313922ABC S c æö=´+´+=ç÷èøV ,解方程即可求解.【详解】解:∵反比例函数(0)k y k x =>的图象过点(1,3)∴133k =´=∴3y x=设直线AB 的解析式为y mx n =+,∴30m n m n =+ìí=-+î,解得:3232m n ì=ïïíï=ïî,∴直线AB 的解析式为3322y x =+,联立33223y x y xì=+ïïíï=ïî,解得:13x y =ìí=î或232x y =-ìïí=-ïî,∴32,2B æö--ç÷èø,设(),0C c ,∵1313922ABC S c æö=´+´+=ç÷èøV ,解得:3c =或5c =-,∴C 的坐标为(3,0)或(5,0)-,故选:D .【点睛】本题考查了一次函数与反比例数交点问题,待定系数法求解析式,求得点B 的坐标是解题的关键.二、填空题(每小题4分,共24分;请将答案直接填写在答题卡的相应位置上)11. 有意义,则x 的取值范围是__________.【答案】9x ³【解析】【分析】根据二次根式有意义的条件得出90x -³,即可求解.有意义,∴90x -³,解得:9x ³,故答案为:9x ³.【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.12. 分解因式:2242a a -+=_____.【答案】()221a -【解析】【详解】解:先提取公因式2后继续应用完全平方公式分解即可:原式()()2222121a a a =-+=-,故答案为:()221a -.13. 已知关于x 的一元二次方程220x mx +-=的一个根为1-,则m 的值为__________,另一个根为__________.【答案】①. 1- ②. 2【解析】【分析】将=1x -代入原方程,解得m ,根据一元二次方程根与系数的关系,得出122x x ´=-,即可求解.【详解】解:∵关于x 一元二次方程220x mx +-=的一个根为1-,∴120m --=解得:1m =-,设原方程的另一个根为2x ,则12·2x x =-,∵11x =-∴22x =故答案为:12-,.【点睛】本题考查了一元二次方程根的定义,一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.14. 定义新运算:(,)(,)a b c d ac bd ×=+,其中a ,b ,c ,d 为实数.例如:(1,2)(3,4)132411×=´+´=.如果(2,3)(3,1)3x ×-=,那么x =__________.【答案】1【解析】【分析】根据新定义列出一元一次方程,解方程即可求解.【详解】解:∵(2,3)(3,1)3x ×-=∴()23313x ´+´-=即66x =解得:1x =故答案为:1.【点睛】本题考查了新定义运算,解一元一次方程,根据题意列出方程解题的关键.15. 如图,点P 是正方形ABCD 的对角线AC 上的一点,PE AD ^于点E ,3PE =.则点P 到直线AB 的距离为__________.的【答案】3【解析】【分析】过点P 作PQ AB ^于Q ,证明四边形四边形AEPQ 是正方形,即可求解.【详解】解:如图所示,过点P 作PQ AB ^于Q ,∵点P 是正方形ABCD 的对角线AC 上的一点,PE AD ^于点E∴四边形AEPQ 是矩形,45EAP Ð=°∴AEP △是等腰直角三角形,∴AE EP=∴四边形AEPQ 是正方形,∴3PQ EP ==,即点P 到直线AB 的距离为3故答案为:3.【点睛】本题考查了正方形的性质与判定,点到直线的距离,熟练掌握正方形的性质与判定是解题的关键.16. 在平面直角坐标系中,AOB V 为等边三角形,点A 的坐标为()1,0.把AOB V 按如图所示的方式放置,并将AOB V 进行变换:第一次变换将AOB V 绕着原点O 顺时针旋转60°,同时边长扩大为AOB V 边长的2倍,得到11A OB △;第二次旋转将11A OB △绕着原点O 顺时针旋转60°,同时边长扩大为11A OB △,边长的2倍,得到22A OB △,….依次类推,得到20332033A OB V ,则20232033A OB △的边长为__________,点2023A 的坐标为__________.【答案】①. 20232 ②. ()202220222,2【解析】【分析】根据旋转角度为60°,可知每旋转6次后点A 又回到x 轴的正半轴上,故点2023A 在第四象限,且202320232OA =,即可求解.【详解】解:∵AOB V 为等边三角形,点A 的坐标为()1,0,∴1OA =,∵每次旋转角度为60°,∴6次旋转360°,第一次旋转后,1A 在第四象限,12OA =,第二次旋转后,2A 在第三象限,222OA =,第三次旋转后,3A 在x 轴负半轴,332OA =,第四次旋转后,4A 在第二象限,442OA =,第五次旋转后,5A 在第一象限,552OA =,第六次旋转后,6A 在x 轴正半轴,662OA =,……如此循环,每旋转6次,点A 的对应点又回到x 轴正半轴,∵202363371¸=L ,点2023A 在第四象限,且202320232OA =,如图,过点2023A 作2023A H x ^轴于H ,在2023Rt OHA V 中,202360HOA Ð=°,∴202320232022202320231cos 2cos60222OH OA HOA =×Ð=´°=´=,20232022202320232023sin 22A H OA HOA =×Ð==,∴点2023A 的坐标为()202220222,2.故答案为:20232,()202220222,2.【点睛】本题考查图形的旋转,解直角三角形的应用.熟练掌握图形旋转的性质,根据旋转角度找到点的坐标规律是解题的关键.三、解答题(本大题共8小题,共86分)17. 计算:()1012sin 451(1)3-æö-+-°---ç÷èø【答案】4【解析】【分析】先计算负整数指数幂、算术平方根、零指数幂、减法运算,再进行加减混合运算即可.【详解】解:()1012sin 451(1)3-æö-++°---ç÷èø23311=+-++4=【点睛】此题考查了实数混合运算,熟练掌握相关运算法则是解题的关键.18. 先化简234111a a a -æö+¸ç÷--èø,再从1-,0,1,2中选择一个适当的数作为a 的值代入求值.【答案】12a -,当1a =-时,原式为13-;当0a =时,原式为12-.【解析】【分析】本题先对要求的式子进行化简,再选取一个适当的数代入即可求出结果.【详解】解:234111a a a -æö+¸ç÷--èø()()2213111a a a a a a +--æö=+¸ç÷---èø()()21122a a a a a +-=×-+-12a =-,当a 取2-,1,2时分式没有意义,所以1a =-或0,当1a =-时,原式11123==---;当0a =时,原式11022==--.【点睛】本题考查分式的化简求值,解题时要注意先对括号里边进行通分,再约分化简.19. 如图,矩形ABCD 中,过对角线BD 的中点O 作BD 的垂线EF ,分别交AD ,BC 于点E ,F .(1)证明:BOF DOE ≌△△;(2)连接BE 、DF ,证明:四边形EBFD 是菱形.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据矩形的性质得出AD BC ∥,则12,34Ð=ÐÐ=Ð,根据O 是BD 的中点,可得BO DO =,即可证明()AAS BOF DOE ≌△△;(2)根据BOF DOE ≌△△可得ED BF =,进而可得四边形EBFD 是平行四边形,根据对角线互相垂直的四边形是菱形,即可得证.【小问1详解】证明:如图所示,∵四边形ABCD 是矩形,∴AD BC ∥,∴12,34Ð=ÐÐ=Ð,∵O 是BD 的中点,∴BO DO =,在BOF V 与DOE V 中1234BO DO Ð=ÐìïÐ=Ðíï=î,∴()AAS BOF DOE ≌△△;【小问2详解】∵BOF DOE≌△△∴ED BF =,又∵ED BF∥∴四边形EBFD 是平行四边形,∵EF BD^∴四边形EBFD 是菱形.【点睛】本题考查了矩形的性质,全等三角形的性质与判定,菱形的判定,熟练掌握特殊四边形的性质与判定是解题的关键.20. 为弘扬革命传统精神,清明期间,某校组织学生前往怀化市烈士陵园缅怀革命先烈.大家被革命烈士纪念碑的雄伟壮观震撼,想知道纪念碑的通高CD (碑顶到水平地面的距离),于是师生组成综合实践小组进行测量.他们在地面的A 点用测角仪测得碑顶D 的仰角为30°,在B 点处测得碑顶D 的仰角为60°,已知35m AB =,测角仪的高度是1.5m (A 、B 、C 在同一直线上),根据以上数据求烈士纪念碑的通高CD .1.732»,结果保留一位小数)【答案】烈士纪念碑的通高CD 约为31.8米【解析】【分析】根据题意,四边形,,AMNB NBCE AMEC 是矩形, 1.5CE =米,35MN AB ==米,根据三角形的外角的性质得出,30NMD MDN Ð=Ð=°,等角对等边得出35ND NM ==,进而解Rt DEN V ,求得DE ,最后根据CD DE CE =+,即可求解.【详解】解:依题意,四边形,,AMNB NBCE AMEC 是矩形, 1.5CE =米,35MN AB ==米,∵30,60DMN DNE Ð=°Ð=°∴30MDN DNE DMN Ð=Ð-Ð=°∴30NMD MDN Ð=Ð=°,∴35ND NM ==米,在Rt DEN V 中,sin DEDNE DNÐ=∴sin 603530.3DE DN =×°=»米∴ 1.530.331.8CD CE DE =+=+=米【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数关系是解题的关键.21. 近年,“青少年视力健康”受到社会的广泛关注.某校综合实践小组为了解该校学生的视力健康状况,从全校学生中随机抽取部分学生进行视力调查.根据调查结果和视力有关标准,绘制了两幅不完整的统计图.请根据图中信息解答下列问题:(1)所抽取的学生人数为__________;(2)补全条形统计图,并求出扇形统计图中“轻度近视”对应的扇形的圆心角的度数;(3)该校共有学生3000人,请估计该校学生中近视程度为“轻度近视”的人数.【答案】(1)200人(2)统计图见解析,126°(3)1050人【解析】【分析】(1)用“视力正常”的人数除以其人数占比即可求出抽取的学生人数;(2)先求出“中度近视”的人数,进而求出“轻度近视”的人数,由此补全统计图即可;再用360°乘以“轻度近视”的人数占比即可求出对应的圆心角度数;(3)用3000乘以样本中“轻度近视”的人数占比即可得到答案.【小问1详解】解:9045%200¸=人,∴所抽取的学生人数为200人,故答案为:200;【小问2详解】解:中度近视的人数为20015%30´=人,“轻度近视”对应的扇形的圆心角的度数为70360126200°´=° ∴高度近视的人数为20090703010---=人,补全统计图如下:【小问3详解】解:7030001050200´=人,∴估计该校学生中近视程度为“轻度近视”的人数为1050人.【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,用样本估计总体,正确读懂统计图是解题的关键.22. 如图,AB 是O e 的直径,点P 是O e 外一点,PA 与O e 相切于点A ,点C 为O e 上的一点.连接PC 、AC 、OC ,且PC PA =.(1)求证:PC 为O e 的切线;(2)延长PC 与AB 的延长线交于点D ,求证:PD OC PA OD ×=×;(3)若308CAB OD Ð=°=,,求阴影部分的面积.【答案】(1)见解析 (2)见解析(3)8π3-【解析】【分析】(1)连接PO ,证明V V ≌PAO PCO ,即可得证;(2)根据sin OCPAD OD PD ==,即可得证;(3)根据圆周角定理得出260COD CAB Ð=Ð=°,进而勾股定理求得CD ,根据OCD OBC S S S =-V 阴影扇形,即可求解.【小问1详解】证明:∵PA 是O e 的切线,∴90PAO Ð=°如图所示,连接POPAO V 与PCO △中,PA PCOA OCPO PO =ìï=íï=î在∴V V ≌PAO PCO ()SSS 90PCO PAO \Ð=Ð=°∵C 为O e 上的一点.∴PC 是O e 的切线;【小问2详解】∵PC 是O e 的切线;∴OC PD ^,∴sin OC PA D OD PD==∴PD OC PA OD×=×【小问3详解】解:∵ BCBC =,308CAB OD Ð=°=,∴260COD CAB Ð=Ð=°,∵OC PD^∴30D Ð=°,∴142OC OD ==∴CD =,∴2160π2360OCD OBC S S S CO CD CO =-=´´-´V 阴影扇形21144π26=´´-´π38=【点睛】本题考查了切线的性质与判定,圆周角定理,求含30度角的直角三角形的性质,勾股定理,求扇形面积,熟练掌握以上知识是解题的关键.23. 某中学组织学生研学,原计划租用可坐乘客45人的A 种客车若干辆,则有30人没有座位;若租用可坐乘客60人的B 种客车,则可少租6辆,且恰好坐满.(1)求原计划租用A 种客车多少辆?这次研学去了多少人?(2)若该校计划租用A 、B 两种客车共25辆,要求B 种客车不超过7辆,且每人都有座位,则有哪几种租车方案?(3)在(2)的条件下,若A 种客车租金为每辆220元,B 种客车租金每辆300元,应该怎样租车才最合算?【答案】(1)原计划租用A 种客车26辆,这次研学去了1200人(2)共有3种租车方案,方案一:租用A 种客车18辆,则租用B 种客车7辆;方案二:租用A 种客车19辆,则租用B 种客车6辆;方案三:租用A 种客车20辆,则租用B 种客车5辆,(3)租用A 种客车20辆,则租用B 种客车5辆才最合算【解析】【分析】(1)设原计划租用A 种客车x 辆,根据题意列出一元一次方程,解方程即可求解;(2)设租用A 种客车a 辆,则租用B 种客车()25a -辆,根据题意列出一元一次不等式组,解不等式组即可求解;(3)分别求得三种方案的费用,进而即可求解.【小问1详解】解:设原计划租用A 种客车x 辆,根据题意得,()4530606x x +=-,解得:26x =所以()602661200´-=(人)答:原计划租用A 种客车26辆,这次研学去了1200人;【小问2详解】解:设租用A 种客车a 辆,则租用B 种客车()25a -辆,根据题意,得()2574560251200a a a -£ìí+-³î解得:1820a ££,∵a 为正整数,则18,19,20a =,∴共有3种租车方案,方案一:租用A 种客车18辆,则租用B 种客车7辆,方案二:租用A 种客车19辆,则租用B 种客车6辆,方案三:租用A 种客车20辆,则租用B 种客车5辆,【小问3详解】∵A 种客车租金为每辆220元,B 种客车租金每辆300元,∴B 种客车越少,费用越低,方案一:租用A 种客车18辆,则租用B 种客车7辆,费用为1822073006060´+´=元,方案二:租用A 种客车19辆,则租用B 种客车6辆,费用为1922063005980´+´=元,方案三:租用A 种客车20辆,则租用B 种客车5辆,费用为2022053005900´+´=元,∴租用A 种客车20辆,则租用B 种客车5辆才最合算.【点睛】本题考查了一元一次方程的应用,一元一次不等式组的应用,根据题意列出一元一次方程与不等式组是解题的关键.24. 如图一所示,在平面直角坐标系中,抛物线28y ax bx =+-与x 轴交于(4,0)(2,0)A B -、两点,与y 轴交于点C .(1)求抛物线的函数表达式及顶点坐标;(2)点P 为第三象限内抛物线上一点,作直线AC ,连接PA 、PC ,求PAC △面积的最大值及此时点P 的坐标;(3)设直线135:4l y kx k =+-交抛物线于点M 、N ,求证:无论k 为何值,平行于x 轴的直线237:4l y =-上总存在一点E ,使得MEN Ð为直角.【答案】(1)228=+-y x x(2)PAC △面积的最大值为8,此时点P 的坐标为()2,8P --(3)见解析【解析】【分析】(1)待定系数法求解析式即可求解;(2)如图所示,过点P 作PD x ^轴于点D ,交AC 于点E ,得出直线AC 的解析式为28y x =--,设()2,28P m m m +-,则(),28E m m --,得出()224PE m =-++,当PE 取得最大值时,PAC △面积取得最大值,进而根据二次函数的性质即可求解;(3)设()11,M x y 、()22,N x y ,MN 的中点坐标为1212,22x x y y Q ++æöç÷èø,联立235428y kx k y x x ì=+-ïíï=+-î,消去y ,整理得:()23204x k x k +--+=,得出121232,4x x k x x k +=-=-+,则211351,224Q k k æö--ç÷èø,设Q 点到2l 的距离为QE ,则QE =22135371124422k k æö---=+ç÷èø,依题意,212352y y k +=-,()221212122y y x x x x -=-+-()()12122x x x x =-++()12k x x =-,得出()()2221212MN x x y y =-+-()221k =+,则21MN k =+,12MN QE =,E 点总在Q e 上,MN 为直径,且Q e 与237:4l y =-相切,即可得证.【小问1详解】解:将(4,0)(2,0)A B -、代入28y ax bx =+-,得164804280a b a b --=ìí+-=î,解得:12a b =ìí=î,∴抛物线解析式为:228=+-y x x ;【小问2详解】解:如图所示,过点P 作PD x ^轴于点D ,交AC 于点E ,由228=+-y x x ,令0x =,解得:8y =-,∴()0,8C -,设直线AC 的解析式为8y kx =-,将点()4,0A -代入得,480k --=,解得:2k =-,∴直线AC 的解析式为28y x =--,设()2,28P m m m +-,则(),28E m m --,∴()22828PE m m m =---+-24m m=--()224m =-++,当2m =-时,PE 的最大值为4∵114222PAC S PE OA PE PE =´=´´=△∴当PE 取得最大值时,PAC △面积取得最大值∴PAC △面积的最大值为248´=,此时2m =-,2284488m m +-=--=-∴()2,8P --【小问3详解】解:设()11,M x y 、()22,N x y ,MN 的中点坐标为1212,22x x y y Q ++æöç÷èø,联立235428y kx k y x x ì=+-ïíï=+-î,消去y ,整理得:()23204x k x k +--+=, ∴121232,4x x k x x k +=-=-+,∴12122x x k +=-,∴()()1212135135222424y y k x x k k k k +=++-=-+-213524k =-,∴211351,224Q k k æö--ç÷èø,设Q 点到2l 的距离为QE ,则QE =22135371124422k k æö---=+ç÷èø,∵()11,M x y 、()22,N x y ,∴212352y y k +=-,()221212122y y x x x x -=-+-()()12122x x x x =-++()12k x x =-∴()()2221212MN x x y y =-+-()()2221212x x k x x =-+-()()22121x x k =-+()()22121241x x x x k éù=+-+ëû()()222431k k k éù=-+-+ëû()()2211k k =++()221k =+∴21MN k =+,∴12MN QE =∴QM QN QE ==,∴E 点总在Q e 上,MN 为直径,且Q e 与237:4l y =-相切,∴MEN Ð为直角.∴无论k 为何值,平行于x 轴的直线237:4l y =-上总存在一点E ,使得MEN Ð为直角.【点睛】本题考查了二次函数的应用,一元二次方程根与系数的关系,切线的性质与判定,直角所对的弦是直径,熟练掌握以上知识是解题的关键.。
湖南省怀化市中考数学试题含答案解析()
湖南省怀化市中考数学试卷一、选择题(每小题4分,共40分;每小题的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上)1.(4分)(•怀化)某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是()A.﹣10℃B.10℃C.14℃D.﹣14℃2.(4分)(•怀化)下列计算正确的是()A.x2+x3=x5 B.(x3)3=x6 C.x•x2=x2 D.x(2x)2=4x33.(4分)(•怀化)体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数B.方差C.众数D.中位数4.(4分)(•怀化)下列不等式变形正确的是()A.由a>b得ac>bc B.由a>b得﹣2a>﹣2bC.由a>b得﹣a<﹣b D.由a>b得a﹣2<b﹣25.(4分)(•怀化)下列事件是必然事件的是()A.地球绕着太阳转B.抛一枚硬币,正面朝上C.明天会下雨D.打开电视,正在播放新闻6.(4分)(•怀化)一个多边形的内角和是360°,这个多边形是()A.三角形B.四边形C.六边形D.不能确定7.(4分)(•怀化)设x1,x2是方程x2+5x﹣3=0的两个根,则x12+x22的值是()A.19 B.25 C.31 D.308.(4分)(•怀化)下列各点中,在函数y=﹣图象上的是()A.(﹣2,4)B.(2,4)C.(﹣2,﹣4)D.(8,1)9.(4分)(•怀化)如图,甲、乙、丙图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是()A.仅有甲和乙相同B.仅有甲和丙相同C.仅有乙和丙相同D.甲、乙、丙都相同10.(4分)(•怀化)一次函数y=kx+b(k≠0)在平面直角坐标系内的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k<0,b<0 C.k<0,b>0 D.k>0,b<0二、填空题(每小题4分,共16分)11.(4分)(•怀化)二次函数y=x2+2x的顶点坐标为,对称轴是直线.12.(4分)(•甘南州)分解因式:ax2﹣ay2=.13.(4分)(•怀化)方程=0的解是.14.(4分)(•怀化)如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是.三、解答题(本大题共8小题,共64分)15.(8分)(•怀化)计算:.16.(8分)(•怀化)解不等式组:,并把它的解集在数轴上表示出来.17.(8分)(•怀化)已知:如图,在△ABC中,DE、DF是△ABC的中位线,连接EF、AD,其交点为O.求证:(1)△CDE≌△DBF;(2)OA=OD.18.(8分)(•怀化)小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1m,4.7m.请你算出小明1月份的跳远成绩以及每个月增加的距离.19.(8分)(•怀化)如图,在Rt△ABC中,∠ACB=90°,AC=1,AB=2(1)求作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)所作的圆中,求出劣弧的长l.20.(8分)(•怀化)甲乙两人玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,洗匀后甲从中任意抽取一张,记下数字后放回;又将卡片洗匀,乙也从中任意抽取一张,计算甲乙两人抽得的两个数字之积,如果积为奇数则甲胜,若积为偶数则乙胜.(1)用列表或画树状图等方法,列出甲乙两人抽得的数字之积所有可能出现的情况;(2)请判断该游戏对甲乙双方是否公平?并说明理由.21.(8分)(•怀化)如图,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE(1)求证:△ABC∽△CBD;(2)求证:直线DE是⊙O的切线.22.(8分)(•怀化)如图,已知Rt△ABC中,∠C=90°,AC=8,BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P,Q运动的时间为t秒.(1)在运动过程中,求P,Q两点间距离的最大值;(2)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式;(3)P,Q两点在运动过程中,是否存在时间t,使得△PQC为等腰三角形?若存在,求出此时的t 值;若不存在,请说明理由(≈2.24,结果保留一位小数)湖南省怀化市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分;每小题的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上)1.(4分)(•怀化)某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是()A.﹣10℃B.10℃C.14℃D.﹣14℃考点:有理数的减法.专题:应用题.分析:用最高气温减去最低气温,然后根据有理数的减法运算法则减去一个数等于加上这个数的相反数进行计算即可得解.解答:解:12﹣2=10℃.故选:B.点评:本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.2.(4分)(•怀化)下列计算正确的是()A.x2+x3=x5 B.(x3)3=x6 C.x•x2=x2 D.x(2x)2=4x3考点:单项式乘单项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、原式不能合并,错误;B、原式=x9,错误;C、原式=x3,错误;D、原式=4x3,正确,故选D点评:此题考查了单项式乘以单项式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.(4分)(•怀化)体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数B.方差C.众数D.中位数考点:统计量的选择.分析:根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生了5次短跑训练成绩的方差.解答:解:由于方差能反映数据的稳定性,需要比较这两名学生了5次短跑训练成绩的方差.故选B.点评:此题主要考查了方差,关键是掌握方差所表示的意义.4.(4分)(•怀化)下列不等式变形正确的是()A.由a>b得ac>bc B.由a>b得﹣2a>﹣2bC.由a>b得﹣a<﹣b D.由a>b得a﹣2<b﹣2考点:不等式的性质.分析:A:因为c的正负不确定,所以由a>b得ac>bc不正确,据此判断即可.B:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.C:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.D:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.解答:解:∵a>b,∴①c>0时,ac>bc;②c=0时,ac=bc;③c<0时,ac<bc,∴选项A不正确;∵a>b,∴﹣2a<﹣2b,∴选项B不正确;∵a>b,∴﹣a<﹣b,∴选项C正确;∵a>b,∴a﹣2>b﹣2,∴选项D不正确.故选:C.点评:此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.5.(4分)(•怀化)下列事件是必然事件的是()A.地球绕着太阳转B.抛一枚硬币,正面朝上C.明天会下雨D.打开电视,正在播放新闻考点:随机事件.分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件.解答:解:A、地球绕着太阳转是必然事件,故A符合题意;B、抛一枚硬币,正面朝上是随机事件,故B不符合题意;C、明天会下雨是随机事件,故C不符合题意;D、打开电视,正在播放新闻是随机事件,故D不符合题意;故选:A.点评:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.(4分)(•怀化)一个多边形的内角和是360°,这个多边形是()A.三角形B.四边形C.六边形D.不能确定考点:多边形内角与外角.分析:本题根据多边形的内角和定理和多边形的内角和等于360°,列出方程,解出即可.解答:解:设这个多边形的边数为n,则有(n﹣2)180°=360°,解得:n=4,故这个多边形是四边形.故选:B.点评:本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.7.(4分)(•怀化)设x1,x2是方程x2+5x﹣3=0的两个根,则x12+x22的值是()A.19 B.25 C.31 D.30考点:根与系数的关系.分析:根据一元二次方程的根与系数的关系,即可求得x1与x2的和与积,所求的代数式可以用两根的和与积表示出来,即可求解.解答:解:∵x1,x2是方程x2+5x﹣3=0的两个根,∴x1+x2=﹣5,x1x2=﹣3,∴x12+x22=(x1+x2)2﹣2x1x2=25+6=31.故选:C.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.8.(4分)(•怀化)下列各点中,在函数y=﹣图象上的是()A.(﹣2,4)B.(2,4)C.(﹣2,﹣4)D.(8,1)考点:反比例函数图象上点的坐标特征.分析:只需把所给点的横纵坐标相乘,结果是﹣8的,就在此函数图象上.解答:解:∵反比例函数y=﹣中,k=﹣8,∴只需把各点横纵坐标相乘,结果为﹣8的点在函数图象上,四个选项中只有A选项符合.故选A.点评:本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.9.(4分)(•怀化)如图,甲、乙、丙图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是()A.仅有甲和乙相同B.仅有甲和丙相同C.仅有乙和丙相同D.甲、乙、丙都相同考点:由三视图判断几何体;简单组合体的三视图.分析:由已知条件可知,甲的主视图有2列,每列小正方数形数目分别为2,2;乙的主视图有2列,每列小正方数形数目分别为2,1;丙的主视图有2列,每列小正方数形数目分别为2,2.据此可即可求解.解答:解:根据分析可知,甲的主视图有2列,每列小正方数形数目分别为2,2;乙的主视图有2列,每列小正方数形数目分别为2,1;丙的主视图有2列,每列小正方数形数目分别为2,2;则主视图相同的是甲和丙.故选:B.点评:本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.10.(4分)(•怀化)一次函数y=kx+b(k≠0)在平面直角坐标系内的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k<0,b<0 C.k<0,b>0 D.k>0,b<0考点:一次函数图象与系数的关系.分析:根据一次函数的图象与系数的关系进行解答即可.解答:解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0.故选C.点评:本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时图象在一、二、四象限.二、填空题(每小题4分,共16分)11.(4分)(•怀化)二次函数y=x2+2x的顶点坐标为(﹣1,﹣1),对称轴是直线x=﹣1.考点:二次函数的性质.分析:先把该二次函数化为顶点式的形式,再根据其顶点式进行解答即可.解答:解:∵y=x2+2x=(x+1)2﹣1,∴二次函数y=x2+4x的顶点坐标是:(﹣1,﹣1),对称轴是直线x=﹣1.故答案为:(﹣1,﹣1),x=﹣1.点评:此题主要考查了二次函数的性质和求抛物线的顶点坐标、对称轴的方法,熟练配方是解题关键.12.(4分)(•甘南州)分解因式:ax2﹣ay2=a(x+y)(x﹣y).考点:提公因式法与公式法的综合运用.分析:应先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).点评:本题主要考查提公因式法分解因式和平方差公式分解因式,需要注意分解因式一定要彻底.13.(4分)(•怀化)方程=0的解是x=﹣2.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2+2x﹣x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解.故答案为:x=﹣2.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.14.(4分)(•怀化)如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是90°.考点:全等三角形的判定与性质;正方形的性质.分析:根据全等三角形的判定与性质,可得∠ODA与∠BAE的关系,根据余角的性质,可得∠ODA 与∠OAD的关系,根据直角三角形的判定,可得答案.解答:解:由ABCD是正方形,得AD=AB,∠DAB=∠B=90°.在△ABE和△DAF中,∴△ABE≌△DAF,∴∠BAE=∠ADF.∵∠BAE+∠EAD=90°,∴∠OAD+∠ADO=90°,∴∠AOD=90°,故答案为:90°.点评:本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,余角的性质,直角三角形的判定.三、解答题(本大题共8小题,共64分)15.(8分)(•怀化)计算:.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用绝对值的代数意义化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,第四项利用零指数幂法则计算,最后一项利用算术平方根的定义计算即可得到结果.解答:解:原式=﹣1+4×﹣2﹣1+3=+1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.(8分)(•怀化)解不等式组:,并把它的解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.解答:解:由①得,x≤2,由②得,x>﹣1,故此不等式组的解集为:﹣1<x≤2.在数轴上表示为:点评:本题考查的是解一元一次不等式组,熟知“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则是解答此题的关键.17.(8分)(•怀化)已知:如图,在△ABC中,DE、DF是△ABC的中位线,连接EF、AD,其交点为O.求证:(1)△CDE≌△DBF;(2)OA=OD.考点:全等三角形的判定与性质;三角形中位线定理.专题:证明题.分析:(1)根据三角形中位线,可得DF与CE的关系,DB与DC的关系,根据SAS,可得答案;(2)根据三角形的中位线,可得DF与AE的关系,根据平行四边形的判定与性质,可得答案.解答:证明:(1)∵DE、DF是△ABC的中位线,∴DF=CE,DF∥CE,DB=DC.∵DF∥CE,∴∠C=∠BDF.在△CDE和△DBF中,∴△CDE≌△DBF (SAS);(2)∵DE、DF是△ABC的中位线,∴DF=AE,DF∥AE,∴四边形DEAF是平行四边形,∵EF与AD交于O点,∴AO=OD点评:本题考查了全等三角形的判定与性质,(1)利用了三角形中位线的性质,全等三角形的判定;(2)利用了三角形中位线的性质,平行四边的性的判定与性质.18.(8分)(•怀化)小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1m,4.7m.请你算出小明1月份的跳远成绩以及每个月增加的距离.考点:一元一次方程的应用.分析:设小明1月份的跳远成绩为xm,则5月份﹣2月份=3(2月份﹣1月份),据此列出方程并解答.解答:解:设小明1月份的跳远成绩为xm,则4.7﹣4.1=3(4.1﹣x),解得x=3.9.则每个月的增加距离是4.1﹣3.9=0.2(m).答:小明1月份的跳远成绩是3.9m,每个月增加的距离是0.2m.点评:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.19.(8分)(•怀化)如图,在Rt△ABC中,∠ACB=90°,AC=1,AB=2(1)求作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)所作的圆中,求出劣弧的长l.考点:作图—复杂作图;弧长的计算.分析:(1)使以O为圆心的圆经过A、B、C三点,即做三角形的外接圆,即是三条边的垂直平分线的交点;(2)由,∠ACB=90°,AC=1,AB=2,易得∠B=30°,∠A=60°,∠BOC=120°,由弧长计算公式得出结论.解答:解:(1)如图所示:(2)∵AC=1,AB=2,∴∠B=30°,∠A=60°,∴∠BOC=120°,∴l==点评:本题主要考查了三角形外接圆的做法,含30°直角三角形的性质及弧长的计算,数形结合,掌握直角三角形的性质是解答此题的关键.20.(8分)(•怀化)甲乙两人玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,洗匀后甲从中任意抽取一张,记下数字后放回;又将卡片洗匀,乙也从中任意抽取一张,计算甲乙两人抽得的两个数字之积,如果积为奇数则甲胜,若积为偶数则乙胜.(1)用列表或画树状图等方法,列出甲乙两人抽得的数字之积所有可能出现的情况;(2)请判断该游戏对甲乙双方是否公平?并说明理由.考点:游戏公平性;列表法与树状图法.专题:计算题.分析:(1)列表得出所有等可能的情况数,找出甲乙两人抽得的数字之积所有可能出现的情况即可;(2)分别求出甲乙两人获胜的概率,比较即可得到结果.解答:解:(1)列表如下:1 2 31 (1,1)(2,1)(3,1)2 (1,2)(2,2)(3,2)3 (1,3)(2,3)(3,3)所有等可能的情况有9种,分别为(1,1);(1,2);(1,3);(2,1);(2,2);(2,3);(3,1);(3,2);(3,3),则甲乙两人抽得的数字之积所有可能出现的情况有1,2,3,2,4,6,3,6,9,共9种;(2)该游戏对甲乙双方不公平,理由为:其中积为奇数的情况有4种,偶数有5种,∴P(甲)<P(乙),则该游戏对甲乙双方不公平.点评:此题考查了游戏的公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.21.(8分)(•怀化)如图,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE(1)求证:△ABC∽△CBD;(2)求证:直线DE是⊙O的切线.考点:切线的判定;相似三角形的判定与性质.分析:(1)根据AC为⊙O的直径,得出△BCD为Rt△,通过已知条件证明△BCD∽△BAC即可;(2)连结DO,如图,根据直角三角形斜边上的中线性质,由∠BDC=90°,E为BC的中点得到DE=CE=BE,则利用等腰三角形的性质得∠EDC=∠ECD,∠ODC=∠OCD,由于∠OCD+∠DCE=∠ACB=90°,所以∠EDC+∠ODC=90°,即∠EDO=90°,于是根据切线的判定定理即可得到DE与⊙O相切.解答:(1)证明:∵AC为⊙O的直径,∴∠ADC=90°,∴∠BDC=90°,又∵∠ACB=90°,∴∠ACB=∠BDC,又∵∠B=∠B,∴△BCD∽△BAC;(2)连结DO,如图,∵∠BDC=90°,E为BC的中点,∴DE=CE=BE,∴∠EDC=∠ECD,又∵OD=OC,∴∠ODC=∠OCD,而∠OCD+∠DCE=∠ACB=90°,∴∠EDC+∠ODC=90°,即∠EDO=90°,∴DE⊥OD,∴DE与⊙O相切.点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了直角三角形斜边上的中线性质和相似三角形的判定与性质.22.(8分)(•怀化)如图,已知Rt△ABC中,∠C=90°,AC=8,BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P,Q运动的时间为t秒.(1)在运动过程中,求P,Q两点间距离的最大值;(2)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式;(3)P,Q两点在运动过程中,是否存在时间t,使得△PQC为等腰三角形?若存在,求出此时的t 值;若不存在,请说明理由(≈2.24,结果保留一位小数)考点:相似形综合题.分析:(1)如图1,过Q作QE⊥AC于E,连接PQ,由△ABC∽△AQE,得到比例式,求得PE=,QE=,根据勾股定理得到PQ2=QE2+PE2,求出PQ=t,当Q与B重合时,PQ的值最大,于是得到当t=5时,PQ的最大值=3;(2)由三角形的面积公式即可求得;(3)存在,如图2,连接CQ,PQ,分三种情况①当CQ=CP时,②当PQ=CQ时,③当PQ=PC 时,列方程求解即可.解答:解:(1)如图1,过Q作QE⊥AC于E,连接PQ,∵∠C=90°,∴QE∥BC,∴△ABC∽△AQE,∴,∵AQ=2t,AP=t,∵∠C=90°,AC=8,BC=6,∴AB=10,∴,∴PE=,QE=,∴PQ2=QE2+PE2,∴PQ=t,当Q与B重合时,PQ的值最大,∴当t=5时,PQ的最大值=3;(2)如图1,△ABC被直线PQ扫过的面积=S△AQP,当Q在AB边上时,S=AP•QE=t•=,(0<t≤5)当Q在BC边上时,△ABC被直线PQ扫过的面积=S四边形ABQP,∴S四边形ABQP=S△ABC﹣S△PQC=×8×6﹣(8﹣t)•(16﹣2t)=﹣t2+16t﹣40,(5<t≤8);∴经过t秒的运动,△ABC被直线PQ扫过的面积S与时间t的函数关系式:S=或S=﹣t2+16t﹣40.(3)存在,如图2,连接CQ,PQ,由(1)知QE=,CE=AC﹣AE=8﹣,PQ=t,∴CQ====2,①当CQ=CP时,即:2=8﹣t,解得;t=,②当PQ=CQ时,即;t=2,解得:t=,t=(不合题意舍去),③当PQ=PC时,即t=8﹣t,解得:t=3﹣5≈1.7;综上所述:当t=,t=,t=1.7时,△PQC为等腰三角形.点评:本题考查了动点问题,相似三角形的判定和性质,三角形的面积,勾股定理,等腰三角形的性质,特别是(3)要分类讨论,不要漏解.。
2022年湖南省怀化市中考数学真题及答案
满意程度
频数(人)
频率
非常满意
50
0.5
满意
30
0.3
一般
a
c
不满意
b
0.05
合计
100
1
根据统计图表提供的信息,解答下列问题:
(1)a=,b=,c=;
(2)求扇形统计图中表示“一般”的扇形圆心角α的度数;
(3)根据调查情况,请你对各景点的服务提一至两条合理建议.
22.如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.
2022年湖南省怀化市中考数学真题
一、选择题
1. 的相反数是( )
A. B.2C. D.
2.代数式 x, , ,x2﹣ , , 中,属于分式的有( )
A.2个B.3个C.4个D.5个
3.2022年3月11日,新华社发文总结2021年中国取得 科技成就,其中包括“奋斗者”号载人潜水器最深下潜至10909米.其中数据10909用科学记数法表示为( )
故选:D.
【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4.下列说法正确的是( )
A. 相等的角是对顶角
B. 对角线相等的四边形是矩形
C. 三角形的外心是它的三条角平分线的交点
D. 线段垂直平分线上的点到线段两端的距离相等
C. =2D. (x﹣y)2=x2﹣y2
6.下列一元二次方程有实数解的是( )
A. 2x2﹣x+1=0B.x2﹣2x+2=0C.x2+3x﹣2=0D.x2+2=0
初中毕业升学考试(湖南怀化卷)数学(解析版)(初三)中考真卷.doc
初中毕业升学考试(湖南怀化卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】(﹣2)2的平方根是()A.2 B.﹣2 C.±2 D.【答案】C.【解析】试题分析:因为(﹣2)2=4,根据平方根的定义可得4的平方根是±2.故答案选C.考点:平方根的定义.【题文】某校进行书法比赛,有39名同学参加预赛,只能有19名同学参加决赛,他们预赛的成绩各不相同,其中一名同学想知道自己能否进入决赛,不仅要了解自己的预赛成绩,还要了解这39名同学预赛成绩的()A.平均数 B.中位数 C.方差 D.众数【答案】B.【解析】试题分析:39个不同的成绩按从小到大排序后,中位数之前的共有19个数,所以只要知道自己的成绩和中位数就可以知道是否获奖了.故答案选B.考点:中位数.【题文】下列计算正确的是()A.(x+y)2=x2+y2B.(x﹣y)2=x2﹣2xy﹣y2C.(x+1)(x﹣1)=x2﹣1D.(x﹣1)2=x2﹣1【答案】C.【解析】试题分析:根据完全平方公式可得选项A,(x+y)2=x2+y2+2xy,故此选项错误;选项B,(x﹣y)2=x2﹣2xy+y2,故此选项错误;选项D,(x﹣1)2=x2﹣2x+1,故此选项错误;根据平方差公式可得选项C,(x+1)(x﹣1)=x2﹣1,故此选项正确;故答案选C.考点:完全平方公式;平方差公式.【题文】一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【答案】A.【解析】试题分析:已知a=1,b=﹣1,c=﹣1,可得△=b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5>0,所以方程有两个不相等的实数根,故答案选A.考点:根的判别式.【题文】如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A. PC=PDB. ∠CPD=∠DOPC. ∠CPO=∠DPOD. OC=OD【答案】B【解析】试题分析:已知OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,根据角平分线的性质可得PC=PD,A正确;在Rt△OCP与Rt△ODP中,OP=OP,PC=PD,由HL可判定△OCP≌△ODP,根据全等三角形的性质可得∠CPO=∠DPO,OC=OD,故C、D正确.不能得出∠CPD=∠DOP,故B错误.故答案选B.考点:角平分线的性质;全等三角形的判定及性质.【题文】不等式3(x﹣1)≤5﹣x的非负整数解有()A.1个 B.2个 C.3个 D.4个【答案】C.【解析】试题分析:解不等式得:3x﹣3≤5﹣x,4x≤8,x≤2,所以不等式的非负整数解有0、1、2这3个,故答案选C.考点:一元一次不等式组的整数解.【题文】二次函数y=x2+2x﹣3的开口方向、顶点坐标分别是()A.开口向上,顶点坐标为(﹣1,﹣4)B.开口向下,顶点坐标为(1,4)C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(﹣1,﹣4)【答案】A.【解析】试题分析:已知二次函数y=x2+2x﹣3的二次项系数为a=1>0,所以函数图象开口向上,又因y=x2+2x﹣3=(x+1)2﹣4,即可得顶点坐标为(﹣1,﹣4).故答案选A.考点:二次函数的性质.【题文】等腰三角形的两边长分别为4cm和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm或20cm【答案】C.【解析】试题分析:分当腰长为4cm或是腰长为8cm两种情况:①当腰长是4cm时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm不满足三角形的三边关系;当腰长是8cm时,三角形的三边是8cm,8cm,4cm,三角形的周长是20cm.故答案选C.考点:等腰三角形的性质;三角形三边关系.【题文】函数y=中,自变量x的取值范围是()A.x≥1 B.x>1 C.x≥1且x≠2 D.x≠2【答案】C.【解析】试题分析:根据分式的分母不为零、被开方数是非负数可得x﹣1≥0且x﹣2≠0,解得x≥1且x≠2.故答案选C.考点:函数自变量的取值范围.【题文】在Rt△ABC中,∠C=90°,sinA=,AC=6cm,则BC的长度为()A. 6cmB. 7cmC. 8cmD. 9cm【答案】C【解析】试题分析:已知sinA==,设BC=4x,AB=5x,又因AC2+BC2=AB2,即62+(4x)2=(5x)2,解得:x=2或x=﹣2(舍),所以BC=4x=8cm,故答案选C.考点:解直角三角形.【题文】已知扇形的半径为6cm,面积为10πcm2,则该扇形的弧长等于.【答案】cm.【解析】试题分析:已知扇形的半径为6cm,面积为10πcm2,设扇形的弧长为lcm,根据扇形的面积公式可得,解得cm.考点:扇形面积的计算.【题文】旋转不改变图形的和.【答案】形状,大小.【解析】试题分析:根据旋转的性质可得旋转不改变图形的形状和大小,只改变图形的位置.考点:旋转的性质.【题文】已知点P(3,﹣2)在反比例函数y=(k≠0)的图象上,则k=;在第四象限,函数值y随x的增大而.【答案】﹣6;增大.【解析】试题分析:已知点P(3,﹣2)在反比例函数y=(k≠0)的图象上,可得k=3×(﹣2)=﹣6.又因k=﹣6<0,所以反比例函数y=的图象在第二、四象限,且在每个象限内均单增,所以在第四象限,函数值y 随x的增大而增大.考点:反比例函数的性质;反比例函数图象上点的坐标特征.【题文】一个不透明的袋子,装了除颜色不同,其他没有任何区别的红色球3个,绿色球4个,黑色球7个,黄色球2个,从袋子中随机摸出一个球,摸到黑色球的概率是.【答案】.【解析】试题分析:已知红色球3个,绿色球4个,黑色球7个,黄色球2个,可得球的总数=3+4+7+2=16个,所以摸到黑色球的概率.考点:概率公式.【题文】计算:20160+2|1﹣sin30°|﹣()﹣1+.【答案】3.【解析】试题分析:先根据零指数幂、特殊角的三角函数值、绝对值、负整数指数幂和二次根式的化简方法依次计算后合并即可..试题解析:原式==1+2×|1﹣|﹣3+4=1+2×+1=1+1+1=3.考点:实数的运算.【题文】有若干只鸡和兔关在一个笼子里,从上面数,有30个头;从下面数,有84条腿,问笼中各有几只鸡和兔?【答案】笼子里鸡有18只,兔有12只.【解析】试题分析:设这个笼中的鸡有x只,兔有y只,根据“从上面数,有30个头;从下面数,有84条腿”列出方程组,解方程组即可.试题解析:设这个笼中的鸡有x只,兔有y只,根据题意得:,解得;答:笼子里鸡有18只,兔有12只.考点:二元一次方程组的应用.【题文】如图,已知AD=BC,AC=BD.(1)求证:△ADB≌△BCA;(2)OA与OB相等吗?若相等,请说明理由.【答案】(1)详见解析;(2)OA=OB,理由详见解析.【解析】试题分析:(1)根据SSS定理推出全等即可;(2)根据全等得出∠OAB=∠OBA,根据等角对等边即可得出OA=OB.试题解析:(1)证明:∵在△ADB和△BCA中,AD=BC,AB=BA,BD=AC,∴△ADB≌△BCA(SSS);(2)解:OA=OB,理由是:∵△ADB≌△BCA,∴∠ABD=∠BAC,∴OA=OB.考点:全等三角形的判定与性质;等腰三角形的判定【题文】已知一次函数y=2x+4(1)在如图所示的平面直角坐标系中,画出函数的图象;2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出:当y<0时,x的取值范围.【答案】(1)详见解析;(2)A(﹣2,0)B(0,4);(3)4;(4)x<﹣2.【解析】试题分析:(1)求得一次函数y=2x+4与x轴、y轴的交点坐标,利用两点确定一条直线就可以画出函数图象;(2)由(1)即可得结论;(3)通过交点坐标根据三角形的面积公式即可求出面积;(4)观察函数图象与x轴的交点就可以得出结论.试题解析:(1)当x=0时y=4,当y=0时,x=﹣2,则图象如图所示(2)由上题可知A(﹣2,0)B(0,4),(3)S△AOB=×2×4=4,(4)x<﹣2.考点:一次函数图象与系数的关系;一次函数的图象.【题文】如图,在Rt△ABC中,∠BAC=90°(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.【答案】(1)详见解析;(2)BC与⊙P相切,理由见解析.【解析】试题分析:(1)根据题目要求作出图形即可,如图所示;(2)BC与⊙P相切,理由为:过P作PD⊥BC,交BC于点P,利用角平分线定理得到PD=PA,而PA为圆P的半径,即可得BC与⊙P相切.试题解析:(1)如图所示,⊙P为所求的圆;(2)BC与⊙P相切,理由为:过P作PD⊥BC,交BC于点P,∵CP为∠ACB的平分线,且PA⊥AC,PD⊥CB,∴PD=PA,∵PA为⊙P的半径.∴BC与⊙P相切.考点:直线与圆的位置关系;尺规作图.【题文】甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.【答案】.【解析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得出现平局的情况,再利用概率公式求解即可.试题解析:(1)画树状图得:则共有9种等可能的结果;(2)∵出现平局的有3种情况,∴出现平局的概率为:.考点:列表法与树状图法.【题文】(8分)如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E 、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.【答案】(1)详见解析;(2)正方形EFGH的边长为cm,面积为cm2.【解析】试题分析:(1)根据EH∥BC即可证明△AEH∽△ABC;(2)如图设AD与EH交于点M,易证四边形EFDM是矩形,设正方形边长为x,由(1)知△AEH∽△ABC,根据相似三角形的性质可得得,代入数据列出方程即可解决问题.试题解析:(1)证明:∵四边形EFGH是正方形,∴EH∥BC,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC.(2)解:如图设AD与EH交于点M.∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM是矩形,∴EF=DM,设正方形EFGH的边长为x,∵△AEH∽△ABC,∴,∴,∴x=,∴正方形EFGH的边长为cm,面积为cm2.考点:相似三角形的判定与性质.【题文】如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣3,0)、B(5,0)、C(0,5)三点,O为坐标原点(1)求此抛物线的解析式;(2)若把抛物线y=ax2+bx+c(a≠0)向下平移个单位长度,再向右平移n(n>0)个单位长度得到新抛物线,若新抛物线的顶点M在△ABC内,求n的取值范围;(3)设点P在y轴上,且满足∠OPA+∠OCA=∠CBA,求CP的长.【答案】(1)y=﹣x2+x+5;(2)0<n<3;(3)PC的长为7或17.【解析】试题分析:(1)根据A、B、C三点的坐标,利用待定系数法可求得抛物线的解析式即可;(2)可先求得抛物线的顶点坐标,再利用坐标平移,可得平移后的坐标为(1+n,1),再由B、C两点的坐标可求得直线BC的解析式,可求得y=1时,对应的x的值,从而可求得n的取值范围;(3)当点P在y轴负半轴上和在y轴正半轴上两种情况,根据这两种情况分别求得PC的长即可.试题解析:(1)把A、B、C三点的坐标代入函数解析式可得,解得,∴抛物线解析式为y=﹣x2+x+5;(2)∵y=﹣x2+x+5,∴抛物线顶点坐标为(1,),∴当抛物线y=ax2+bx+c(a≠0)向下平移个单位长度,再向右平移n(n>0)个单位长度后,得到的新抛物线的顶点M坐标为(1+n,1),设直线BC解析式为y=kx+m,把B、C两点坐标代入可得,解得,∴直线BC的解析式为y=﹣x+5,令y=1,代入可得1=﹣x+5,解得x=4,∵新抛物线的顶点M在△ABC内,∴1+n<4,且n>0,解得0<n<3,即n的取值范围为0<n<3;(3)当点P在y轴负半轴上时,如图1,过P作PD⊥AC,交AC的延长线于点D,由题意可知OB=OC=5,∴∠CBA=45°,∴∠PAD=∠OPA+∠OCA=∠CBA=45°,∴AD=PD,在Rt△OAC中,OA=3,OC=5,可求得AC=,设PD=AD=m,则CD=AC+AD=+m,∵∠ACO=∠PCD,∠COA=∠PDC,∴△COA∽△CDP,∴,即,解得m=,PC=17;可求得PO=PC﹣OC=17﹣5=12,如图2,在y轴正半轴上截取OP′=OP=12,连接AP′,则∠OP′A=∠OPA,∴∠OP′A+∠OCA=∠OPA+∠OCA=∠CBA,∴P′也满足题目条件,此时P′C=OP′﹣OC=12﹣5=7,综上可知PC的长为7或17.考点:二次函数综合题.。
怀化历年中考数学试卷真题
怀化历年中考数学试卷真题1.第一题小明家里有100根铁丝,要用这些铁丝围成一个矩形花坛。
要求花坛的长是宽的3倍。
请问,这个矩形花坛的长和宽分别是多少?解析:设矩形花坛的宽为x,则长为3x。
根据题目可知,铁丝的总长度为100。
根据周长的公式,可以得到方程2x+2(3x)=100。
解方程可得x=10,因此矩形花坛的长为30,宽为10。
2.第二题甲乙两个点的连线经过坐标系中的点M(2,4),求甲点和乙点的坐标。
解析:设甲点的坐标为(x1, y1),乙点的坐标为(x2, y2)。
根据题目可知,甲点和乙点的连线经过点M(2,4),即满足直线方程2(x2-x1)=4(y2-y1)。
由此方程可以解出甲点和乙点的坐标。
3.第三题一块面积为36平方厘米的矩形木板,长是宽的3倍。
现要用这块木板制作一个无盖的长方体容器,请问容器的长、宽、高分别是多少?解析:设容器的宽为x,长为3x,则高为36/(3x*x)。
根据题目可得方程3x^2 = 12,解方程可得x=2。
因此容器的长为6,宽为2,高为3。
4.第四题中国队在一场篮球比赛中,三分球投中率为40%,两分球投中率为60%。
如果中国队投出3个三分球和5个两分球,请问总共得到多少分?解析:根据题目可知,每个三分球得到的分数为3分,每个两分球得到的分数为2分。
由此可计算得到总分为3*3 + 5*2 = 19分。
5.第五题某校学生参加了一次英语考试,成绩满分为120分。
考试结束后,学生们发现,如果每人多答对2道题,那么全体学生的平均成绩会提高3分。
请问这次考试一共有多少学生参加?解析:设参加考试的学生人数为x,由此可得方程120+3x = 120 +2(x+2)。
解方程可得x = 2,因此共有2个学生参加考试。
6.第六题一辆汽车以每小时60千米的速度行驶4小时,然后以每小时70千米的速度行驶2小时。
求这辆汽车的平均速度。
解析:根据题目可知,总路程等于两段行驶的距离之和,总时间等于两段行驶的时间之和。
湖南省怀化市中考数学试卷含答案和解析
2014 年湖南省怀化市中考数学试卷一、选择题(每题 3 分,共 24 分;每题的四个选项中只有一项为哪一项正确的,请将正确选项的代号填涂在答题卡的相应地点上)1.( 3 分)(2014?怀化)我国南海海疆面积为3500000km2,用科学记数法表示正确的选项是()A .×105cm2B.×106cm2C.×107 cm2 D .×108cm2 2.( 3 分)(2014?怀化)将向来角三角板与两边平行的纸条如图搁置.已知∠1=30°,则∠2的度数为()A .30°B.45°C. 50° D .60°3.( 3分)(2014?怀化)多项式ax2﹣4ax﹣12a 因式分解正确的选项是()A .a( x﹣ 6)( x+2 )B.a( x﹣ 3)( x+4 )C. a(x 2﹣ 4x﹣ 12) D .a( x+6 )(x ﹣2)4.( 3分)(2014?怀化)以下物体的主视图是圆的是()A .B.C. D .5.( 3 分)(2014?怀化)如图,已知等腰梯形ABCD 中, AD ∥ BC ,AB=DC , AC 与 BD 订交于点O,则以下判断不正确的选项是()A .△ ABC ≌△ DCB B.△ AOD ≌ △COB C.△ ABO ≌△ DCO D .△ ADB ≌ △ DAC6.( 3 分)(2014?怀化)不等式组的解集是()A .﹣ 1≤x<2B.x ≥﹣ 1C. x<2 D .﹣ 1<x ≤27.( 3 分)(2014?怀化)某中学随机检查了15 名学生,认识他们一周在校参加体育锻炼时间,列表以下:锻炼时间(小时)5678人数2652则这 15 名同学一周在校参加体育锻炼时间的中位数和众数分别是()A .6, 7B.7, 7C. 7,6 D .6, 68.( 3 分)(2014?怀化)已知一次函数y=kx+b 的图象如图,那么正比率函数y=kx 和反比率函数y=在同一坐标系中的图象大概是()A.B.C. D .二、填空题(每题 3 分,共 24 分;请将答案直接填写在答题卡的相应地点上)9.( 3 分)(2014?怀化)计算:(﹣ 1)2014=_________.10.(3 分)(2014?怀化)分解因式:2x2﹣8=_________.11.( 3 分)( 2014?怀化)如图, D 、 E 分别是△ ABC 的边 AB 、AC 上的中点,则 S△ADE:S△ABC= _________.12.(3 分)(2014?怀化)分式方程=的解为_________.A 处爬到B 地方走的直线距离AB=4米,此时,他离地面高度为h=2 米,则这13.(3 分)(2014?怀化)如图,小明爬一土坡,他从个土坡的坡角∠A= _________ °.14.(3 分)(2014?怀化)已知点 A (﹣ 2,4)在反比率函数y=(k≠0)的图象上,则k 的值为_________.15.(3 分)(2014?怀化)如图,在△ ABC 中,∠ A=30 °,∠B=50°,延伸 BC 到 D,则∠ACD= _________°.16.(3 分)(2014?怀化)某校九年级有560 名学生参加了市教育局举行的念书活动,现随机检查了70 名学生念书的数目,依据所得数据绘制了如图的条形统计图,请预计该校九年级学生在此次念书活动中共念书_________本.三、解答题(本大题共8 小题,共72 分)17.(6 分)(2014?怀化)计算:|﹣ 3|﹣﹣() 0+4sin45°.18.(6 分)(2014?怀化)设一次函数y=kx+b (k≠0)的图象经过 A ( 1,3)、B ( 0,﹣ 2)两点,试求k,b 的值.19.(10 分)( 2014?怀化)如图,在平行四边形ABCD 中,∠ B=∠ AFE , EA 是∠ BEF 的角均分线.求证:(1)△ ABE ≌△ AFE ;(2)∠ FAD= ∠ CDE .20.(10 分)( 2014?怀化)甲乙两名同学做摸球游戏,他们把三个分别标有1,2, 3 的大小和形状完整同样的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是 1 的概率;(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试剖析这个游戏能否公正?请说明原因.21.(10 分)( 2014?怀化)两个城镇 A 、B 与两条公路ME ,MF地点以下图,此中ME是东西方向的公路.现电信部门需在 C 处修建一座信号发射塔,要求发射塔到两个城镇 A 、 B 的距离一定相等,到两条公路ME , MF的距离也一定相等,且在∠ FME的内部(1)那么点 C 应选在哪处?请在图中,用尺规作图找出切合条件的点C.(不写已知、求作、作法,只保存作图印迹)(2)设AB的垂直均分线交ME于点N,且MN=2 (+1) km,在M处测得点 C 位于点M 的北偏东60°方向,在N 处测得点 C 位于点N 的北偏西45°方向,求点 C 到公路ME的距离.22.(10 分)( 2014?怀化)如图, E 是长方形A BCD 的边 AB 上的点, EF⊥DE 交 BC 于点 F(1)求证:△ ADE ∽ △BEF ;(2)设 H 是 ED 上一点,以 EH 为直径作⊙ O,DF 与⊙ O 相切于点 G,若 DH=OH=3 ,求图中暗影部分的面积(结果保存到小数点后面第一位,≈,π≈).23.(10 分)( 2014?怀化)设 m 是不小于﹣ 1 的实数,使得对于x的方程x2+2(m﹣2)x+m2﹣ 3m+3=0 有两个不相等的实数根1,x 2.(1)若+=1 ,求的值;(2)求+﹣m2的最大值.24.( 10 分)( 2014?怀化)如图 1,在平面直角坐标系中, AB=OB=8 ,∠ ABO=90 °,∠yOC=45 °,射线 OC 以每秒 2 个单位长度的速度向右平行挪动,当射线 OC 经过点 B 时停止运动,设平行挪动 x 秒后,射线 OC 扫过 Rt△ABO 的面积为 y .(1)求 y 与 x 之间的函数关系式;(2)当 x=3 秒时,射线 OC 平行挪动到 O′C′,与 OA 订交于 G,如图 2,求经过 G,O, B 三点的抛物线的分析式;(3)现有一动点 P 在( 2)中的抛物线上,试问点 P 在运动过程中,能否存在三角形 POB 的面积 S=8 的状况?若存在,求出点 P 的坐标,若不存在,请说明原因.2014 年湖南省怀化市中考数学试卷参照答案与试题分析一、选择题(每题 3 分,共 24 分;每题的四个选项中只有一项为哪一项正确的,请将正确选项的代号填涂在答题卡的相应地点上)1.( 3 分)(2014?怀化)我国南海海疆面积为 3500000km 2,用科学记数法表示正确的选项是( )A .×105cm2B .×106cm 2C .×107cm 2D .×108cm 2考点 : 科学记数法 —表示较大的数.剖析: 科学记数法的表示形式为a ×10n 的形式,此中 1≤|a|< 10, n 为整数.确立 n 的值时,要看把原数变为 a 时, 小数点挪动了多少位, n 的绝对值与小数点挪动的位数同样.当原数绝对值>1 时, n 是正数;当原数的绝 对值< 1 时, n 是负数.×106.解答: 解:将 3500000 用科学记数法表示为:应选: B .a ×10n的形式,此中评论: 本题考察了科学记数法的表示方法.科学记数法的表示形式为1≤|a|< 10,n 为整数,表示时重点要正确确立 a 的值以及 n 的值.2.( 3 分)(2014?怀化)将向来角三角板与两边平行的纸条如图搁置.已知∠ 1=30°,则 ∠ 2 的度数为( )A .30°B . 45°C . 50°D .60°考点 : 平行线的性质. 专题 : 计算题.剖析: 依据平行线的性质得 ∠ 2=∠ 3,再依据互余获得 ∠ 1=60 °,因此 ∠ 2=60 °.解答: 解: ∵ a ∥ b ,∴ ∠ 2=∠ 3,∵ ∠ 1+∠ 3=90°,∴ ∠ 1=90°﹣ 30°=60°, ∴ ∠ 2=60°. 应选 D .评论: 本题考察了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.3.( 3 分)(2014?怀化)多项式 ax 2﹣ 4ax ﹣12a 因式分解正确的选项是()A .a ( x ﹣ 6)( x+2 )B . a ( x ﹣3)( x+4)C . a ( x 2﹣ 4x ﹣ 12)D .a ( x+6 )(x ﹣ 2)考点 : 因式分解 -十字相乘法等;因式分解 -提公因式法.剖析: 第一提取公因式 a ,从而利用十字相乘法分解因式得出即可.解答: 解: ax 2﹣ 4ax ﹣ 12a2=a( x ﹣ 4x﹣ 12)评论:本题主要考察了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题重点.4.( 3 分)(2014?怀化)以下物体的主视图是圆的是()A .B .C. D .考点:简单几何体的三视图.剖析:依据从正面看获得的图形是主视图,可得答案.解答:解:A、不过图是矩形,故 A 不切合题意;B 、主视图是三角形,故 B 不切合题意;C、主视图是圆,故 C 切合题意;D 、主视图是正方形,故 D 不切合题意;应选: C.评论:本题考察了简单组合体的三视图,从正面看获得的图形是主视图.5.( 3 分)(2014?怀化)如图,已知等腰梯形ABCD 中, AD ∥BC, AB=DC , AC 与 BD 订交于点O,则以下判断不正确的选项是()A .△ ABC ≌ △ DCB B .△ AOD ≌△ COB C.△ABO ≌△ DCO D .△ ADB ≌ △ DAC考点:等腰梯形的性质;全等三角形的判断.剖析:由等腰梯形ABCD 中,AD ∥BC,AB=DC ,可得∠ ABC= ∠ DCB ,∠ BAD= ∠ CDA ,易证得△ABC ≌ △DCB ,△ADB ≌△ DAC ;既而可证得∠ ABO= ∠DCO ,则可证得△ABO ≌ △ DCO .解答:解: A、∵等腰梯形 ABCD 中, AD ∥BC ,AB=DC ,∴ ∠ ABC= ∠ DCB ,在△ ABC 和△ DCB 中,,∴ △ ABC ≌ △ DCB ( SAS);故正确;B 、∵ AD ∥ BC ,∴ △ AOD ∽ △ COB ,∵BC> AD ,∴ △ AOD 不全等于△ COB ;故错误;C、∵ △ ABC ≌△ DCB ,∴ ∠ ACB= ∠ DBC ,∵ ∠ ABC= ∠ DCB ,∴ ∠ ABO= ∠ DCO ,在△ ABO 和△ DCO 中,,∴ △ ABO ≌ △ DCO ( AAS );故正确;D 、∵等腰梯形ABCD 中, AD ∥ BC, AB=DC ,∴ ∠ BAD= ∠ CDA ,在△ ADB 和△ DAC 中,,∴ △ ADB ≌ △ DAC ( SAS),故正确.应选 B .评论:本题考察了等腰三角形的性质以及全等三角形的判断与性质.本题难度适中,注意掌握数形联合思想的应用.6.( 3 分)(2014?怀化)不等式组的解集是()A .﹣ 1≤x< 2B . x≥﹣1C. x<2 D .﹣ 1< x≤2考点:解一元一次不等式组.剖析:分别求出各不等式的解集,再依据不等式组无解求出 a 的取值范围即可.解答:解:,由①得, 4x< 8, x<2,由②得, x≥﹣ 1,故不等式组的解集为﹣1≤x<2,应选 A .评论:本题考察的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的重点.7.( 3 分)(2014?怀化)某中学随机检查了15 名学生,认识他们一周在校参加体育锻炼时间,列表以下:锻炼时间(小时)5678人数2652则这 15 名同学一周在校参加体育锻炼时间的中位数和众数分别是()A .6, 7B . 7, 7C. 7,6 D .6, 6考点:众数;中位数.剖析:依据中位数和众数的定义分别进行解答即可.解答:解:∵共有 15个数,最中间的数是8 个数,∴这 15 名同学一周在校参加体育锻炼时间的中位数是6;6 出现的次数最多,出现了 6 次,则众数是 6;应选 D.评论:本题考察了中位数和众数,中位数是将一组数据从小到大(或从大到小)从头摆列后,最中间的那个数(最中间两个数的均匀数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.( 3 分)(2014?怀化)已知一次函数y=kx+b 的图象如图,那么正比率函数y=kx 和反比率函数y=在同一坐标系中的图象大概是()A .B .C .D .考点 : 反比率函数的图象;一次函数的图象;一次函数图象与系数的关系.剖析:依据一次函数图象能够确立 k 、b 的符号,依据 k 、b 的符号来判断正比率函数 y=kx 和反比率函数 y= 图象所在的象限.解答: 解:以下图, ∵ 一次函数 y=kx+b 的图象经过第一、三、四象限, ∴ k > 0,b < 0. ∴ 正比率函数 y=kx 的图象经过第一、三象限,反比率函数 y= 的图象经过第二、四象限.综上所述,切合条件的图象是应选: C .C 选项.评论: 本题主要考察了反比率函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵巧解题.二、填空题(每题 3 分,共 24 分;请将答案直接填写在答题卡的相应地点上)9.( 3 分)(2014?怀化)计算:(﹣ 1) 2014= 1 .考点 : 有理数的乘方.剖析: 依据(﹣ 1)的偶数次幂等于1 解答.解答: 解:(﹣ 1) 2014=1.故答案为: 1.评论: 本题考察了有理数的乘方,﹣1 的奇数次幂是﹣ 1,﹣ 1 的偶数次幂是 1.10.( 3 分)( 2014?怀化)分解因式:2x 2﹣ 8= 2( x+2 )( x ﹣ 2) .考点 : 提公因式法与公式法的综合运用.专题 : 惯例题型.剖析: 先提取公因式 2,再对余下的多项式利用平方差公式持续分解.解答: 解: 2x 2﹣ 82=2 ( x ﹣ 4)=2 ( x+2 )(x ﹣ 2).故答案为: 2( x+2 )( x﹣ 2).评论:本题考察了用提公因式法和公式法进行因式分解,一个多项式有公因式第一提取公因式,而后再用其余方法进行因式分解,同时因式分解要完全,直到不可以分解为止.11.(3 分)( 2014?怀化)如图, D 、 E 分别是△ABC 的边 AB 、AC 上的中点,则 S△ADE: S△ABC =1: 4 .考点:三角形中位线定理;相像三角形的判断与性质.剖析:依据三角形的中位线平行于第三边而且等于第三边的一半可得DE∥ BC 且 DE=BC,再求出△ADE 和△ABC 相像,依据相像三角形面积的比等于相像比的平方解答.解答:解:∵ D、 E 是边 AB 、 AC 上的中点,∴ DE 是△ ABC 的中位线,∴DE∥ BC 且 DE= BC ,∴△ ADE ∽ △ ABC ,∴S△ADE:S△ABC =(1: 2)2=1:4.故答案为: 1: 4.评论:本题考察了三角形的中位线平行于第三边而且等于第三边的一半,相像三角形的判断与性质,熟记定理与性质是解题的重点.12.( 3 分)( 2014?怀化)分式方程=的解为x=1.考点:解分式方程.专题:计算题.剖析:分式方程去分母转变为整式方程,求出整式方程的解获得x 的值,经查验即可获得分式方程的解.解答:解:去分母得:3x ﹣6=﹣ x﹣2,移项归并得:4x=4 ,解得: x=1,经查验 x=1 是分式方程的解.故答案为: x=1 .评论:本题考察认识分式方程,解分式方程的基本思想是“转变思想”,把分式方程转变为整式方程求解.解分式方程必定注意要验根.13.( 3 分)( 2014?怀化)如图,小明爬一土坡,他从 A 处爬到 B 地方走的直线距离AB=4 米,此时,他离地面高度为 h=2 米,则这个土坡的坡角∠ A=30°.考点:解直角三角形的应用-坡度坡角问题.剖析:直接利用正弦函数的定义求解即可.解答:解:由题意得:AB=4 米, BC=2 米,在 Rt△ ABC 中, sinA== =,故∠ A=30 °,故答案为: 30.评论:本题考察认识直角三角形的应用,切记正弦函数的定义是解答本题的重点.14.( 3 分)( 2014?怀化)已知点 A (﹣ 2, 4)在反比率函数 y=(k≠0)的图象上,则k 的值为﹣8.考点:反比率函数图象上点的坐标特色.剖析:直接把点 A (﹣ 2, 4)代入反比率函数y=(k≠0),求出k的值即可.解答:解:∵点 A (﹣ 2, 4)在反比率函数y=(k≠0)的图象上,∴4=,解得k=﹣8.故答案为:﹣8.评论:本题考察的是反比率函数图象上点的坐标特色,熟知反比率函数图象上各点的坐标必定合适此函数的分析式是解答本题的重点.15.( 3 分)( 2014?怀化)如图,在△ ABC中,∠ A=30°,∠ B=50°,延伸BC到D,则∠ ACD=80°.考点:三角形的外角性质.剖析:依据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵ ∠A=30°,∠B=50°,∴ ∠ ACD= ∠ A+ ∠ B=30 °+50 °=80°.故答案为: 80.评论:本题考察了三角形的一个外角等于与它不相邻的两个内角的和,熟记性质是解题的重点.16.( 3 分)( 2014?怀化)某校九年级有 560 名学生参加了市教育局举行的念书活动,现随机检查了的数目,依据所得数据绘制了如图的条形统计图,请预计该校九年级学生在此次念书活动中共念书70 名学生念书2040本.考点:用样本预计整体;条形统计图.剖析:利用条形统计图得出70 名同学一共借书的本数,从而得出该校九年级学生在此次念书活动中共念书籍数.解答:解:由题意得出:70 名同学一共借书:2×5+30 ×3+20 ×4+5×15=255(本),故该校九年级学生在此次念书活动中共念书:×255=2040 (本).故答案为: 2040.评论:本题主要考察了用样本预计整体以及条形统计图等知识,得出70 名同学一共借书的本数是解题重点.三、解答题(本大题共8 小题,共72 分)17.( 6 分)( 2014?怀化)计算:|﹣ 3|﹣﹣() 0+4sin45°.考点:实数的运算;零指数幂;特别角的三角函数值.专题:计算题.剖析:原式第一项利用绝对值的代数意义化简,第二项化为最简二次根式,第三项利用零指数幂法例计算,最后一项利用特别角的三角函数值计算即可获得结果.解答:解:原式 =3﹣ 2﹣1+4×=3﹣ 2﹣1+2=2.评论:本题考察了实数的运算,娴熟掌握运算法例是解本题的重点.18.( 6 分)( 2014?怀化)设一次函数 y=kx+b (k≠0)的图象经过 A ( 1,3)、 B( 0,﹣ 2)两点,试求k, b 的值.考点:待定系数法求一次函数分析式.专题:计算题.剖析:直接把 A 点和 B 点坐标代入 y=kx+b ,获得对于k 和 b 的方程组,而后解方程组即可.解答:解:把 A ( 1,3)、 B( 0,﹣ 2)代入 y=kx+b 得,解得,即 k, b 的值分别为 5,﹣ 2.评论:本题考察了待定系数法求一次函数分析式:( 1)先设出函数的一般形式,如求一次函数的分析式时,先设y=kx+b ;( 2)将自变量 x 的值及与它对应的函数值y 的值代入所设的分析式,获得对于待定系数的方程或方程组;( 3)解方程或方程组,求出待定系数的值,从而写出函数分析式.19.( 10 分)( 2014?怀化)如图,在平行四边形ABCD 中,∠B= ∠ AFE , EA 是∠ BEF 的角均分线.求证:(1)△ ABE ≌ △ AFE ;(2)∠ FAD= ∠ CDE.考点:平行四边形的性质;全等三角形的判断与性质.专题:证明题.剖析:(1)依据角均分线的性质可得∠ 1=∠2,再加上条件∠ B=∠ AFE,公共边AE ,可利用AAS 证明△ABE ≌ △AFE ;(2)第一证明 AF=CD ,再证明∠ B= ∠ AFE ,∠AFD= ∠ C 可证明△ AFD ≌△ DCE 从而获得∠FAD= ∠CDE .解答:证明:( 1)∵ EA 是∠BEF 的角均分线,∴ ∠ 1=∠ 2,在△ ABE 和△ AFE 中,,∴ △ ABE ≌△ AFE ( AAS );(2)∵ △ ABE ≌ △AFE ,∴AB=AF ,∵四边形 ABCD 平行四边形,∴AB=CD , AD ∥ CB , AB ∥ CD,∴AF=CD ,∠ ADF= ∠ DEC,∠ B+ ∠ C=180°,∵ ∠ B=∠ AFE ,∠AFE+ ∠ AFD=180 °,∴∠ AFD= ∠ C,在△ AFD 和△ DCE 中,,∴ △ AFD ≌ △ DCE (AAS ),∴ ∠ FAD= ∠ CDE .评论:本题主要考察了平行四边形的性质,以及全等三角形的判断与性质,重点是正确证明△AFD≌ △ DCE.20102014? 1 23放在一个不透明的口袋中.( 1)求从袋中随机摸出一球,标号是 1 的概率;(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试剖析这个游戏能否公正?请说明原因.考点:游戏公正性;概率公式;列表法与树状图法.剖析:(1)由把三个分别标有1,2,3 的大小和形状完整同样的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;(2)第一依据题意画出树状图,而后由树状图求得全部等可能的结果与甲胜,乙胜的状况,即可求得求概率,比较大小,即可知这个游戏能否公正.解答:解:(1)∵三个分别标有1,2, 3 的大小和形状完整同样的小球放在一个不透明的口袋中,∴从袋中随机摸出一球,标号是 1 的概率为:;(2)这个游戏不公正.画树状图得:∵ 共有数的有9 种等可能的结果,两次摸出的球的标号之和为偶数的有4 种状况,5 种状况,两次摸出的球的标号之和为奇∴P(甲胜) = , P(乙胜) = .∴P(甲胜)≠P(乙胜),∴这个游戏不公正.评论:本题考察的是游戏公正性的判断.判断游戏公正性就要计算每个事件的概率,概率相等就公正,不然就不公正.21.(10 分)( 2014?怀化)两个城镇 A、 B 与两条公路ME, MF 地点以下图,此中ME 是东西方向的公路.现电信部门需在 C 处修筑一座信号发射塔,要求发射塔到两个城镇 A 、 B 的距离一定相等,到两条公路ME ,MF 的距离也一定相等,且在∠ FME 的内部( 1)那么点 C 应选在哪处?请在图中,用尺规作图找出切合条件的点C.(不写已知、求作、作法,只保存作图痕迹)( 2)设 AB 的垂直均分线交ME 于点 N,且 MN=2 (+1) km ,在 M 处测得点 C 位于点 M 的北偏东60°方向,在 N 处测得点 C 位于点 N 的北偏西45°方向,求点C 到公路 ME 的距离.考点:解直角三角形的应用-方向角问题;作图—应用与设计作图.剖析:(1)到城镇A 、 B 距离相等的点在线段AB 的垂直均分线上,到两条公路距离相等的点在两条公路所夹角的角均分线上,分别作出垂直均分线与角均分线,它们的交点即为所求作的点C.(2)作 CD⊥ MN 于点 D,由题意得:∠ CMN=30 °,∠ CND=45 °,分别在 Rt △ CMD 中和 Rt△ CND 中,用CD 表示出 MD 和 ND 的长,从而求得CD 的长即可.解答:解:(1)答图如图:(2)作 CD⊥ MN 于点 D,由题意得:∠ CMN=30 °,∠CND=45 °,∵在 Rt△CMD 中,=tan∠ CMN ,∴ MD==;∵ 在Rt△CND中,=tan∠CNM ,∴ ND==CD ;∵ MN=2 (+1) km,+1) km,∴ MN=MD+DN=CD+CD=2 (解得: CD=2km .∴点 C 到公路 ME 的距离为2km .评论:本题考察认识直角三角形的应用及尺规作图,正确的作出图形是解答本题的重点,难度不大.22.( 10 分)( 2014?怀化)如图, E 是长方形 ABCD 的边 AB 上的点, EF⊥ DE 交 BC 于点 F(1)求证:△ ADE ∽ △ BEF;(2)设 H 是 ED 上一点,以 EH 为直径作⊙ O,DF 与⊙ O 相切于点 G,若 DH=OH=3 ,求图中暗影部分的面积(结果保存到小数点后边第一位,≈,π≈).考点:切线的性质;矩形的性质;扇形面积的计算;相像三角形的判断;特别角的三角函数值.专题:综合题.剖析:(1)由条件可证∠AED=∠EFB,从而可证△ ADE∽ △ BEF.(2)由 DF 与⊙O 相切, DH=OH=OG=3 可得∠ ODG=30 °,从而有∠ GOE=120 °,并可求出 DG、 EF 长,从而能够求出△ DGO 、△ DEF、扇形 OEG 的面积,从而能够求出图中暗影部分的面积.解答:(1)证明:∵ 四边形ABCD是矩形,∴ ∠ A= ∠ B=90 °.∵ EF ⊥ DE , ∴∠ DEF=90 °.∴ ∠ AED=90 °﹣ ∠ BEF= ∠EFB .∵ ∠ A= ∠ B ,∠ AED= ∠ EFB , ∴ △ ADE ∽ △ BEF .( 2)解: ∵ DF 与 ⊙ O 相切于点 G , ∴ OG ⊥ DG .∴ ∠DGO=90 °. ∵ DH=OH=OG ,∴ sin ∠ODG= = . ∴ ∠ ODG=30 °.∴ ∠ GOE=120 °.∴ S 扇形 OEG ==3π.在 Rt △ DGO 中,cos ∠ ODG= = = .∴ DG=3 .在 Rt △ DEF 中,tan ∠ EDF== =.∴ EF=3.∴ S △DEF =DE ?EF=×9×3=,S △DGO =DG ?GO=×3×3=.∴ S 暗影 =S △DEF ﹣ S △DGO ﹣S 扇形 OEG = ﹣﹣ 3π =.9﹣3π≈9×﹣3×≈∴ 图中暗影部分的面积约为.评论: 本题考察了矩形的性质、相像三角形的判断、切线的性质、特别角的三角函数值、扇形的面积等知识,考察了用割补法求不规则图形的面积.23.(10 分)( 2014?怀化)设 m 是不小于﹣ 1 的实数,使得对于 x 的方程 x 2+2( m ﹣ 2) x+m 2﹣3m+3=0 有两个不相等的实数根 1, x 2.( 1)若+ =1,求 的值;( 2)求+﹣ m 2的最大值.考点 : 根与系数的关系;根的鉴别式;二次函数的最值.剖析: ( 1)第一依据根的鉴别式求出m 的取值范围,利用根与系数的关系,求出切合条件的 m 的值;( 2)把利用根与系数的关系获得的关系式代入代数式,仔细化简, 联合 m 的取值范围求出代数式的最大值.解答: 解: ∵ 方程有两个不相等的实数根,∴ △ =b 2﹣ 4ac=4( m ﹣ 2) 2﹣ 4( m 2﹣ 3m+3 )=﹣ 4m+4> 0,∴ m < 1,联合题意知:﹣ 1≤m < 1.( 1) ∵ x 1+x 2=﹣ 2( m ﹣ 2), x 1x 2=m 2﹣ 3m+3∴+ = = =1解得: m 1=,m 2= (不合题意,舍去)∴= ﹣ 2.( 2)+﹣ m2=﹣ m 2=﹣ 2( m ﹣ 1)﹣ m 2=﹣( m+1) 2+3.当 m=﹣ 1 时,最大值为 3.△=b 2﹣ 4ac 来求出 m 的取值范围;解答本题的重点评论: 本题考察根与系数的关系,一元二次方程的根的鉴别式是熟知一元二次方程根与系数的关系:x 1+x 2=﹣, x 1x 2= .24.( 10 分)( 2014?怀化)如图1,在平面直角坐标系中, AB=OB=8 , ∠ABO=90 °,∠yOC=45 °,射线 OC 以每秒2 个单位长度的速度向右平行挪动,当射线 OC 经过点 B 时停止运动,设平行挪动x 秒后,射线 OC 扫过 Rt △ABO的面积为 y .( 1)求 y 与 x 之间的函数关系式;( 2)当 x=3 秒时,射线 OC 平行挪动到 O ′C ′,与 OA 订交于 G ,如图 2,求经过 G , O ,B 三点的抛物线的分析式;( 3)现有一动点 P 在( 2)中的抛物线上,试问点 P 在运动过程中,能否存在三角形 POB 的面积 S=8 的状况?若存在,求出点 P 的坐标,若不存在,请说明原因.考点 : 二次函数综合题.专题 : 压轴题.剖析: ( 1)判断出 △ABO 是等腰直角三角形,依据等腰直角三角形的性质可得 ∠ AOB=45 °,而后求出 AO ⊥CO ,再依据平移的性质可得 AO ⊥C ′O ′,从而判断出 △OO ′G 是等腰直角三角形,而后依据等腰直角三角形的性质列式整理即可得解;2( 2)求出 OO ′,再依据等腰直角三角形的性质求出点 G 的坐标, 而后设抛物线分析式为 y=ax +bx ,再把点B 、 G 的坐标代入,利用待定系数法求二次函数分析式解答;( 3)设点 P 到 x 轴的距离为 h ,利用三角形的面积公式求出 h ,再分点 P 在 x 轴上方和下方两种状况,利用抛物线分析式求解即可.解答: 解:( 1) ∵AB=OB , ∠ABO=90 °,∴ △ ABO 是等腰直角三角形, ∴ ∠ AOB=45 °, ∵ ∠ yOC=45 °,∴ ∠ AOC= ( 90°﹣ 45°) +45°=90°, ∴ AO ⊥ CO ,∵ C ′O ′是 CO 平移获得, ∴ AO ⊥ C ′O ′,∴ △ OO ′G 是等腰直角三角形,∵ 射线 OC 的速度是每秒 2 个单位长度,∴ OO ′=2x ,∴ y= ×( 2x ) 2=2x 2;( 2)当 x=3 秒时, OO ′=2×3=6 ,∵ ×6=3,∴ 点 G 的坐标为( 3, 3),设抛物线分析式为 y=ax 2+bx , 则,解得,2∴ 抛物线的分析式为 y= ﹣ x + x ;( 3)设点 P 到 x 轴的距离为 h ,则 S △POB = ×8h=8,湖南省怀化市中考数学试卷含答案和解析 21 / 21 解得 h=2 , 当点 P 在 x 轴上方时,﹣ x 2+ x=2 , 整理得, x 2﹣ 8x+10=0 , 解得 x 1=4﹣ , x 2=4+ , 此时,点 P 的坐标为( 4﹣ , 2)或( 4+ , 2); 当点 P 在 x 轴下方时,﹣ x 2 + x= ﹣ 2, 整理得, x 2﹣ 8x ﹣ 10=0, 解得 x 1=4﹣ , x 2 =4+ , 此时,点 P 的坐标为( 4﹣ ,﹣ 2)或( 4+ ,﹣ 2), 综上所述,点 P 的坐标为( 4﹣ , 2)或( 4+ ,2)或( 4﹣ ,﹣ 2)或( 4+ ,﹣ 2)时, △ POB 的面积 S=8. 评论: 本题是二次函数综合题型,主要利用了等腰直角三角形的判断与性质,待定系数法求二次函数分析式,三角形的面积,二次函数图象上点的坐标特色, ( 3)要注意分状况议论.。
2022年湖南省怀化市中考数学试卷(含答案)
2022年湖南省怀化市中考数学试卷一、选择题(每小题4分,共40分;每小题的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上).1.(4分)(2022•怀化)﹣的相反数是()A.B.2C.﹣D.﹣22.(4分)(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个3.(4分)(2022•怀化)2022年3月11日,新华社发文总结2021年中国取得的科技成就,其中包括“奋斗者”号载人潜水器最深下潜至10909米.其中数据10909用科学记数法表示为()A.10.909×102B.1.0909×103C.0.10909×104D.1.0909×1044.(4分)(2022•怀化)下列说法正确的是()A.相等的角是对顶角B.对角线相等的四边形是矩形C.三角形的外心是它的三条角平分线的交点D.线段垂直平分线上的点到线段两端的距离相等5.(4分)(2022•怀化)下列计算正确的是()A.(2a2)3=6a6B.a8÷a2=a4C.=2D.(x﹣y)2=x2﹣y26.(4分)(2022•怀化)下列一元二次方程有实数解的是()A.2x2﹣x+1=0B.x2﹣2x+2=0C.x2+3x﹣2=0D.x2+2=07.(4分)(2022•怀化)一个多边形的内角和为900°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形8.(4分)(2022•怀化)如图,△ABC沿BC方向平移后的像为△DEF,已知BC=5,EC =2,则平移的距离是()A.1B.2C.3D.49.(4分)(2022•怀化)从下列一组数﹣2,π,﹣,﹣0.12,0,﹣中随机抽取一个数,这个数是负数的概率为()A.B.C.D.10.(4分)(2022•怀化)如图,直线AB交x轴于点C,交反比例函数y=(a>1)的图象于A、B两点,过点B作BD⊥y轴,垂足为点D,若S△BCD=5,则a的值为()A.8B.9C.10D.11二、填空题(每小题4分,共24分;请将答案直接填写在答题卡的相应位置上)11.(4分)(2022•怀化)计算﹣=.12.(4分)(2022•怀化)因式分解:x2﹣x4=.13.(4分)(2022•怀化)已知点A(﹣2,b)与点B(a,3)关于原点对称,则a﹣b=.14.(4分)(2022•怀化)如图,△ABC中,点D、E分别是AB、AC的中点,若S△ADE=2,则S△ABC=.15.(4分)(2022•怀化)如图,AB与⊙O相切于点C,AO=3,⊙O的半径为2,则AC的长为.16.(4分)(2022•怀化)正偶数2,4,6,8,10,…,按如下规律排列,则第27行的第21个数是.三、解答题(本大题共8小题,共86分)17.(8分)(2022•怀化)计算:(3.14﹣π)0+|﹣1|+()﹣1﹣.18.(8分)(2022•怀化)解不等式组,并把解集在数轴上表示出来.19.(10分)(2022•怀化)某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A位于C村西南方向和B村南偏东60°方向上.C村在B村的正东方向且两村相距2.4km.有关部门计划在B、C两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明.(参考数据:≈1.73,≈1.41)20.(10分)(2022•怀化)如图,点A,B,C,D在⊙O上,=.求证:(1)AC=BD;(2)△ABE∽△DCE.21.(12分)(2022•怀化)电视剧《一代洪商》在中央电视台第八套播出后,怀化市各旅游景点知名度得到显著提高.为全面提高旅游服务质量,旅游管理部门随机抽取了100名游客进行满意度调查,并绘制成如下不完整的频数分布表和扇形统计图.频数分布表满意程度频数(人)频率非常满意500.5满意300.3一般a c不满意b0.05合计1001根据统计图表提供的信息,解答下列问题:(1)a=,b=,c=;(2)求扇形统计图中表示“一般”的扇形圆心角α的度数;(3)根据调查情况,请你对各景点的服务提一至两条合理建议.22.(12分)(2022•怀化)如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).23.(12分)(2022•怀化)去年防汛期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.(1)求每件雨衣和每双雨鞋各多少元?(2)为支持今年防汛工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)优惠销售.优惠方案为:若一次购买不超过5套,则每套打九折;若一次购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a套,购买费用为W元,请写出W关于a的函数关系式.(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?24.(14分)(2022•怀化)如图一所示,在平面直角坐标中,抛物线y=ax2+2x+c经过点A (﹣1,0)、B(3,0),与y轴交于点C,顶点为点D.在线段CB上方的抛物线上有一动点P,过点P作PE⊥BC于点E,作PF∥AB交BC于点F.(1)求抛物线和直线BC的函数表达式.(2)当△PEF的周长为最大值时,求点P的坐标和△PEF的周长.(3)若点G是抛物线上的一个动点,点M是抛物线对称轴上的一个动点,是否存在以C、B、G、M为顶点的四边形为平行四边形?若存在,求出点G的坐标,若不存在,请说明理由.2022年湖南省怀化市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分;每小题的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上).1.(4分)(2022•怀化)﹣的相反数是()A.B.2C.﹣D.﹣2【分析】根据相反数的定义:只有符号不同的两个数互为相反数即可得出答案.【解答】解:﹣的相反数是,故选:A.【点评】本题考查了相反数,掌握只有符号不同的两个数互为相反数是解题的关键.2.(4分)(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【分析】根据分式的定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式叫做分式判断即可.【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【点评】本题考查了分式的定义,掌握一般地,如果A,B表示两个整式,并且B中含有字母,那么式叫做分式是解题的关键,注意π是数字.3.(4分)(2022•怀化)2022年3月11日,新华社发文总结2021年中国取得的科技成就,其中包括“奋斗者”号载人潜水器最深下潜至10909米.其中数据10909用科学记数法表示为()A.10.909×102B.1.0909×103C.0.10909×104D.1.0909×104【分析】把比较大的数写成a×10n,其中1≤a<10,n为正整数即可得出答案.【解答】解:10909=1.0909×104,故选:D.【点评】本题考查了科学记数法﹣表示较大的数,掌握10的指数比原来的整数位数少1是解题的关键.4.(4分)(2022•怀化)下列说法正确的是()A.相等的角是对顶角B.对角线相等的四边形是矩形C.三角形的外心是它的三条角平分线的交点D.线段垂直平分线上的点到线段两端的距离相等【分析】根据对顶角的定义,矩形的判定,三角形的外心,线段垂直平分线的性质可得出答案.【解答】解:A、相等的角不一定是对顶角,故本选项说法错误,不符合题意;B、对角线相等的四边形不一定是矩形,故本选项说法错误,不符合题意;C、三角形的外心是它的三条边的垂直平分线的交点,故本选项说法错误,不符合题意;D、线段垂直平分线上的点到线段两端的距离相等,故本选项符合题意.故选:D.【点评】本题考查了矩形的判定,三角形的外心,线段垂直平分线的性质,熟练掌握相关定理以及性质进而判定出命题的正确性.5.(4分)(2022•怀化)下列计算正确的是()A.(2a2)3=6a6B.a8÷a2=a4C.=2D.(x﹣y)2=x2﹣y2【分析】直接利用积的乘方运算法则以及同底数幂的除法运算法则、二次根式的性质、完全平方公式分别计算,进而得出答案.【解答】解:A.(2a2)3=8a6,故此选项不合题意;B.a8÷a2=a6,故此选项不合题意;C.=2,故此选项符合题意;D.(x﹣y)2=x2﹣2xy+y2,故此选项不合题意;故选:C.【点评】此题主要考查了积的乘方运算以及同底数幂的除法运算、二次根式的性质、完全平方公式,正确掌握相关运算法则是解题关键.6.(4分)(2022•怀化)下列一元二次方程有实数解的是()A.2x2﹣x+1=0B.x2﹣2x+2=0C.x2+3x﹣2=0D.x2+2=0【分析】根据各方程的系数结合根的判别式Δ=b2﹣4ac,可求出各方程根的判别式Δ的值,取Δ≥0的选项即可得出结论.【解答】解:A.∵Δ=(﹣1)2﹣4×2×1=﹣7<0,∴方程2x2﹣x+1=0没有实数根;B.∵Δ=(﹣2)2﹣4×1×2=﹣4<0,∴方程x2﹣2x+2=0没有实数根;C.∵Δ=32﹣4×1×(﹣2)=17>0,∴方程x2+3x﹣2=0有两个不相等的实数根;D.∵Δ=02﹣4×1×2=﹣8<0,∴方程x2+2=0没有实数根.故选:C.【点评】本题考查了根的判别式,牢记“①当Δ>0时,方程有两个不相等的实数根;②当Δ=0时,方程有两个相等的实数根;③当Δ<0时,方程无实数根”是解题的关键.7.(4分)(2022•怀化)一个多边形的内角和为900°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形【分析】根据多边形的内角和公式:(n﹣2)•180°列出方程,解方程即可得出答案.【解答】解:设多边形的边数为n,(n﹣2)•180°=900°,解得:n=7.故选:A.【点评】本题考查了多边形的内角与外角,体现了方程思想,掌握多边形的内角和=(n ﹣2)•180°是解题的关键.8.(4分)(2022•怀化)如图,△ABC沿BC方向平移后的像为△DEF,已知BC=5,EC =2,则平移的距离是()A.1B.2C.3D.4【分析】利用平移的性质,找对应点,对应点间的距离就是平移的距离.【解答】解:点B平移后对应点是点E.∴线段BE就是平移距离,∵已知BC=5,EC=2,∴BE=BC﹣EC=5﹣2=3.故选:C.【点评】考查图形平移性质,关键找到平移前后的对应点.9.(4分)(2022•怀化)从下列一组数﹣2,π,﹣,﹣0.12,0,﹣中随机抽取一个数,这个数是负数的概率为()A.B.C.D.【分析】首先确定这组数据的负数的个数,然后再利用概率的公式求解即可.【解答】这组数据共有6个数,其中是负数的有﹣2,﹣,﹣0.12,﹣这4个,∴P(随机抽取一个数,这个数是负数)=.故选:B.【点评】本题主要考查随机事件概率的求法.10.(4分)(2022•怀化)如图,直线AB交x轴于点C,交反比例函数y=(a>1)的图象于A、B两点,过点B作BD⊥y轴,垂足为点D,若S△BCD=5,则a的值为()A.8B.9C.10D.11【分析】设点B的坐标为(a,),然后根据三角形面积公式列方程求解.【解答】解:设点B的坐标为(a,),∵S△BCD=5,且a>1,∴×a×=5,解得:a=11,经检验,a=11是原分式方程的解,故选:D.【点评】本题考查反比例函数与一次函数的交点问题,准确识图,理解反比例函数图象上点的坐标特征是解题关键.二、填空题(每小题4分,共24分;请将答案直接填写在答题卡的相应位置上)11.(4分)(2022•怀化)计算﹣=1.【分析】原式利用通分分式的减法法则计算,约分即可得到结果.【解答】解:原式===1.故答案为:1.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.12.(4分)(2022•怀化)因式分解:x2﹣x4=x2(1+x)(1﹣x).【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=x2(1﹣x2)=x2(1+x)(1﹣x).故答案为:x2(1+x)(1﹣x).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(4分)(2022•怀化)已知点A(﹣2,b)与点B(a,3)关于原点对称,则a﹣b=5.【分析】根据关于原点对称的点的坐标,可得答案.【解答】解:∵点A(﹣2,b)与点B(a,3)关于原点对称,∴a=2,b=﹣3,∴a﹣b=2+3=5,故答案为:5.【点评】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的坐标规律得出a,b是解题关键.14.(4分)(2022•怀化)如图,△ABC中,点D、E分别是AB、AC的中点,若S△ADE=2,则S△ABC=8.【分析】由中位线定理可得线段DE与BC的比,即可得出△ADE与△ABC的比,又已知△ADE的面积,进而即可得出△ABC的面积.【解答】解:∵D,E分别是AB,AC的中点,∴DE:BC=1:2,DE∥BC,∴△ADE∽△ABC,∴==,即,∴S△ABC=8.故答案为:8.【点评】本题主要考查了三角形的中位线定理以及相似三角形面积比与对应边之比的关系,证明△ADE∽△ABC是解题的关键.15.(4分)(2022•怀化)如图,AB与⊙O相切于点C,AO=3,⊙O的半径为2,则AC的长为.【分析】连接OC,根据切线的性质得到OC⊥AC,再根据勾股定理计算,得到答案.【解答】解:连接OC,∵AB与⊙O相切于点C,∴OC⊥AC,在Rt△AOC中,OC=2,OA=3,则AC===,故答案为:.【点评】本题考查的是切线的性质、勾股定理,掌握圆的切线垂直于过切点的半径是解题的关键.16.(4分)(2022•怀化)正偶数2,4,6,8,10,…,按如下规律排列,则第27行的第21个数是744.【分析】由图可以看出,每行数字的个数与行数是一致的,即第一行有1个数,第二行有2个数,第三行有3个数••第n行有n个数,则前n行共有个数,再根据偶数的特征确定第几行第几个数是几.【解答】解:由图可知,第一行有1个数,第二行有2个数,第三行有3个数,•第n行有n个数.∴前n行共有个数.∴前27行共有378个数,∴第27行第21个数是一共378个数中的第372个数.∵这些数都是正偶数,∴第372个数为372×2=744.故答案为:744.【点评】本题考查了数列的规律问题,解决这类问题的关键是先根据题目的已知条件找出其中的规律,再结合其他已知条件求解.三、解答题(本大题共8小题,共86分)17.(8分)(2022•怀化)计算:(3.14﹣π)0+|﹣1|+()﹣1﹣.【分析】根据零指数幂,绝对值,负整数指数幂,二次根式的化简计算即可.【解答】解:原式=1+﹣1+2﹣2=2﹣.【点评】本题考查了实数的运算,零指数幂,绝对值,负整数指数幂,考查学生的运算能力,掌握a0=1(a≠0),a﹣p=(a≠0)是解题的关键.18.(8分)(2022•怀化)解不等式组,并把解集在数轴上表示出来.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.【解答】解:,解不等式①,得:x>2,解不等式②,得:x≤3,∴原不等式组的解集是2<x≤3,其解集在数轴上表示如下:.【点评】本题考查解一元一次不等式组、在数轴上表示不等式的解集,解答本题的关键是明确解一元一次不等式的方法.19.(10分)(2022•怀化)某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A位于C村西南方向和B村南偏东60°方向上.C村在B村的正东方向且两村相距2.4km.有关部门计划在B、C两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明.(参考数据:≈1.73,≈1.41)【分析】过A点作AD⊥BC于D点,根据题意可得BD=AD,CD=AD,由BC=2400m 可得关于AD的方程,计算可求解AD的长,进而可求解.【解答】解:过A点作AD⊥BC于D点,由题意知:∠ABC=90°﹣60°=30°,∠ACD=45°,∴BD=AD,CD=AD,∵BC=2.4km=2400m,∴AD+AD=2400,解得:AD=1200(﹣1)≈876>800,故该公路不能穿过纪念园.【点评】本题主要考查解直角三角形的应用﹣方向角,构造直角三角形是解题的关键.20.(10分)(2022•怀化)如图,点A,B,C,D在⊙O上,=.求证:(1)AC=BD;(2)△ABE∽△DCE.【分析】(1)根据等式的性质可得:,再由圆心角,弧,弦的关系可得结论;(2)根据两角相等可证明两三角形相似.【解答】证明:(1)∵=,∴,∴AC=BD;(2)∵∠A=∠D,∠B=∠C,∴△ABE∽△DCE.【点评】本题考查了全等三角形的判定与性质,圆心角、弧、弦的关系.根据已知条件推知AC=BD是解题的难点.21.(12分)(2022•怀化)电视剧《一代洪商》在中央电视台第八套播出后,怀化市各旅游景点知名度得到显著提高.为全面提高旅游服务质量,旅游管理部门随机抽取了100名游客进行满意度调查,并绘制成如下不完整的频数分布表和扇形统计图.频数分布表满意程度频数(人)频率非常满意500.5满意300.3一般a c不满意b0.05合计1001根据统计图表提供的信息,解答下列问题:(1)a=15,b=5,c=0.15;(2)求扇形统计图中表示“一般”的扇形圆心角α的度数;(3)根据调查情况,请你对各景点的服务提一至两条合理建议.【分析】(1)用样本容量乘“不满意”的频率求出b,进而求出a、c的值;(2)用360°乘“一般”的频率即可;(3)根据频数分布表的数据提出建议即可.【解答】解:(1)由题意得,b=100×0.05=5,a=100﹣50﹣30﹣5=15,c=1﹣0.5﹣0.3﹣0.05=0.15,故答案为:15;5;0.15;(2)扇形统计图中表示“一般”的扇形圆心角α的度数为360°×0.15=54°;(3)在调查数据中,还有约20%的游客对服务态度表示“一般”或“不满意”,说明旅游质量还有待提高.(答案不唯一).【点评】此题考查了频数(率)分布直方图,中位数,以及用样本估计总体,弄清题意是解本题的关键.22.(12分)(2022•怀化)如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).【分析】(1)过点M作MQ∥BC,交AC于点Q,根据等边三角形的性质以及平行线的性质可得∠AMQ=∠AQM=∠A=60°,可得△AMQ是等边三角形,易证△QMP≌△CNP(AAS),即可得证;(2)根据等边三角形的性质可知AH=HQ,根据全等三角形的性质可知QP=PC,即可表示出HP的长.【解答】(1)证明:过点M作MQ∥BC,交AC于点Q,如图所示:在等边△ABC中,∠A=∠B=∠ACB=60°,∵MQ∥BC,∴∠AMQ=∠B=60°,∠AQM=∠ACB=60°,∠QMP=∠N,∴△AMQ是等边三角形,∴AM=QM,∵AM=CN,∴QM=CN,在△QMP和△CNP中,,∴△QMP≌△CNP(AAS),∴MP=NP;(2)解:∵△AMQ是等边三角形,且MH⊥AC,∴AH=HQ,∵△QMP≌△CNP,∴QP=CP,∴PH=HQ+QP=AC,∵AB=a,AB=AC,∴PH=a.【点评】本题考查了等边三角形的性质和判定,全等三角形的判定和性质,平行线的性质等,熟练掌握全等三角形的判定方法是解题的关键.23.(12分)(2022•怀化)去年防汛期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.(1)求每件雨衣和每双雨鞋各多少元?(2)为支持今年防汛工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)优惠销售.优惠方案为:若一次购买不超过5套,则每套打九折;若一次购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a套,购买费用为W元,请写出W关于a的函数关系式.(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?【分析】(1)设每件雨衣x元,则每双雨鞋(x﹣5)元,根据购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双)列出方程并解答;(2)根据题意求出a的取值范围,并求出w与a的关系式解答即可;(3)根据题意列出不等式并解答.【解答】解:(1)设每件雨衣x元,则每双雨鞋(x﹣5)元,根据题意,得,解得x=40,经检验x=40是所列方程的根,并符合题意.所以x﹣5=35,答:每件雨衣40元,则每双雨鞋35元;(2)由题意知,一套雨衣雨鞋的单价为:(40+35)×(1﹣20%)=60(元),当购买a套雨衣和雨鞋a≤5时,费用为w=0.9x60a=54a;当购买a套雨衣和雨鞋a>5时,费用为w=0.9×60×5+(a﹣5)×60×0.8=48a+30,∴W关于a的函数关系式为:w=;(3)由题意得:48a+30≤320,解得a≤,答:最多可购买6套.【点评】本题考查了分式方程的应用和一元一次不等式的应用,分析题意,找到关键描述语,找到合适的数量关系是解决问题的关键.24.(14分)(2022•怀化)如图一所示,在平面直角坐标中,抛物线y=ax2+2x+c经过点A (﹣1,0)、B(3,0),与y轴交于点C,顶点为点D.在线段CB上方的抛物线上有一动点P,过点P作PE⊥BC于点E,作PF∥AB交BC于点F.(1)求抛物线和直线BC的函数表达式.(2)当△PEF的周长为最大值时,求点P的坐标和△PEF的周长.(3)若点G是抛物线上的一个动点,点M是抛物线对称轴上的一个动点,是否存在以C、B、G、M为顶点的四边形为平行四边形?若存在,求出点G的坐标,若不存在,请说明理由.【分析】(1)利用待定系数法,把问题转化为方程组,求出a,c的值,设BC的解析式为y=kx+b,把B,C两点坐标代入求出k,b即可;(2)如图一中,连接PC,OP,PB.设P(m,﹣m2+2m+3),证明△PEF是等腰直角三角形,求出PE的最大值,可得结论;(3)存在.如图二中,设M(1,t),G(m,﹣m2+2m+3).分两种情形:CB为平行四边形的边,CB为平行四边形的对角线,分别构建方程求解.【解答】解:(1)∵抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),∴,解得,∴抛物线的解析式为y=﹣x2+2x+3,令x=0,可得y=3,∴C(0,3),设直线BC的解析式为y=kx+b,则,∴,∴直线BC的解析式为y=﹣x+3;(2)如图一中,连接PC,OP,PB.设P(m,﹣m2+2m+3),∵B(3,0),C(0,3),∴OB=OC=3,∴∠OBC=45°,∵PF∥AB,∴∠PFE=∠OBC=45°,∵PE⊥BC,∴△PEF是等腰直角三角形,∴PE的值最大时,△PEF的周长最大,∵S△PBC=S△POB+S△POC﹣S△OBC=×3×(﹣m2+2m+3)+×3×m﹣×3×3=﹣m2+m=﹣(m﹣)2+,∵﹣<0,∴m=时,△PBC的面积最大,面积的最大值为,此时PE的值最大,∵×3×PE=,∴PE=,∴△PEF的周长的最大值=++=+,此时P(,);(3)存在.理由:如图二中,设M(1,t),G(m,﹣m2+2m+3).当BC为平行四边形的边时,则有|1﹣m|=3,解得m=﹣2或4,∴G(﹣2,﹣5)或(4,﹣5),当BC为平行四边形的对角线时,(1+m)=(0+3),∴m=2,∴G(2,3),综上所述,满足条件的点G的坐标为(﹣2,5)或(4,﹣5)或(2,3).【点评】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,平行四边形的判定和性质等知识,解题的关键是学会利用参数解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
2023湖南省怀化市数学中考真题及答案
2023年湖南省怀化市中考数学试卷一、选择题(每小题4分,共40分;每小题的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上)1.(4分)下列四个实数中,最小的数是( )A.﹣5B.0C.D.2.(4分)2023年4月12日21时,正在运行的中国大科学装置“人造太阳”——世界首个全超导托卡马克东方超环(EAST)装置取得重大成果,在第122254次实验中成功实现了403秒稳态长脉冲高约束模式等离子体运行,创造了托卡马克装置高约束模式运行新的世界纪录.数据122254用科学记数法表示为( )A.12.2254×104B.1.22254×104C.1.22254×105D.0.122254×1063.(4分)下列计算正确的是( )A.a2•a3=a5B.a6÷a2=a3C.(ab3)2=a2b9D.5a﹣2a=34.(4分)剪纸又称刻纸,是中国最古老的民间艺术之一,它是以纸为加工对象,以剪刀(或刻刀)为工具进行创作的艺术.民间剪纸往往通过谐音、象征、寓意等手法提炼、概括自然形态,构成美丽的图案.下列剪纸中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.5.(4分)在平面直角坐标系中,点P(2,﹣3)关于x轴对称的点P′的坐标是( )A.(﹣2,﹣3)B.(﹣2,3)C.(2,﹣3)D.(2,3)6.(4分)如图,平移直线AB至CD,直线AB,CD被直线EF所截,∠1=60°,则∠2的度数为( )A.30°B.60°C.100°D.120°7.(4分)某县“三独”比赛独唱项目中,5名同学的得分分别是:9.6,9.2,9.6,9.7,9.4.关于这组数据,下列说法正确的是( )A.众数是9.6B.中位数是9.5C.平均数是9.4D.方差是0.38.(4分)下列说法错误的是( )A.成语“水中捞月”表示的事件是不可能事件B.一元二次方程x2+x+3=0有两个相等的实数根C.任意多边形的外角和等于360°D.三角形三条中线的交点叫作三角形的重心9.(4分)已知压力F(N)、压强p(Pa)与受力面积S(m2)之间有如下关系式:F=pS .当F为定值时,如图中大致表示压强p与受力面积S之间函数关系的是( )A.B.C.D.10.(4分)如图,反比例函数y=(k>0)的图象与过点(﹣1,0)的直线AB相交于A 、B两点.已知点A的坐标为(1,3),点C为x轴上任意一点.如果S△ABC=9,那么点C的坐标为( )A.(﹣3,0)B.(5,0)C.(﹣3,0)或(5,0)D.(3,0)或(﹣5,0)二、填空题(每小题4分,共24分;请将答案直接填写在答题卡的相应位置上)11.(4分)要使代数式有意义,则x的取值范围是 .12.(4分)分解因式:2x2﹣4x+2= .13.(4分)已知关于x的一元二次方程x2+mx﹣2=0的一个根为﹣1,则m的值为 ,另一个根为 .14.(4分)定义新运算:(a,b)•(c,d)=ac+bd,其中a,b,c,d为实数.例如:(1,2)•(3,4)=1×3+2×4=11.如果(2x,3)•(3,﹣1)=3,那么x= .15.(4分)如图,点P是正方形ABCD的对角线AC上的一点,PE⊥AD于点E,PE=3.则点P到直线AB的距离为 .16.(4分)在平面直角坐标系中,△AOB为等边三角形,点A的坐标为(1,0).把△A0B 按如图所示的方式放置,并将△AOB进行变换:第一次变换将△AOB绕着原点O顺时针旋转60°,同时边长扩大为△AOB边长的2倍,得到△A1OB1;第二次旋转将△A1OB1绕着原点O顺时针旋转60°,同时边长扩大为△A1OB1边长的2倍,得到△A2OB2,….依次类推,得到△A2033OB2033,则△A2023OB2033的边长为 ,点A2023的坐标为 .三、解答题(本大题共8小题,共86分)17.(8分)计算:|﹣2|+()﹣1﹣+(sin45°﹣1)0﹣(﹣1).18.(8分)先化简(1+)÷,再从﹣1,0,1,2中选择一个适当的数作为a的值代入求值.19.(10分)如图,矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.(1)证明:△BOF≌△DOE;(2)连接BE、DF,证明:四边形EBFD是菱形.20.(10分)为弘扬革命传统精神,清明期间,某校组织学生前往怀化市烈士陵园缅怀革命先烈.大家被革命烈士纪念碑的雄伟壮观震撼,想知道纪念碑的通高CD(碑顶到水平地面的距离),于是师生组成综合实践小组进行测量.他们在地面的A点用测角仪测得碑顶D的仰角为30°,在B点处测得碑顶D的仰角为60°,已知AB=35m,测角仪的高度是1.5m(A、B、C在同一直线上),根据以上数据求烈士纪念碑的通高CD.(≈1.732,结果保留一位小数)21.(12分)近年,“青少年视力健康”受到社会的广泛关注.某校综合实践小组为了解该校学生的视力健康状况,从全校学生中随机抽取部分学生进行视力调查.根据调查结果和视力有关标准,绘制了两幅不完整的统计图.请根据图中信息解答下列问题:(1)所抽取的学生人数为 ;(2)补全条形统计图,并求出扇形统计图中“轻度近视”对应的扇形的圆心角的度数;(3)该校共有学生3000人,请估计该校学生中近视程度为“轻度近视”的人数.22.(12分)如图,AB是⊙O的直径,点P是⊙O外一点,PA与⊙O相切于点A,点C 为⊙O上的一点.连接PC、AC、OC,且PC=PA.(1)求证:PC为⊙O的切线;(2)延长PC与AB的延长线交于点D,求证:PD•OC=PA•OD;(3)若∠CAB=30°,OD=8,求阴影部分的面积.23.(12分)某中学组织学生研学,原计划租用可坐乘客45人的A种客车若干辆,则有30人没有座位;若租用可坐乘客60人的B种客车,则可少租6辆,且恰好坐满.(1)求原计划租用A种客车多少辆?这次研学去了多少人?(2)若该校计划租用A、B两种客车共25辆,要求B种客车不超过7辆,且每人都有座位,则有哪几种租车方案?(3)在(2)的条件下,若A种客车租金为每辆220元,B种客车租金每辆300元,应该怎样租车才最合算?24.(14分)如图一所示,在平面直角坐标系中,抛物线y=ax2+bx﹣8与x轴交于A(﹣4,0)、B(2,0)两点,与y轴交于点C.(1)求抛物线的函数表达式及顶点坐标;(2)点P为第三象限内抛物线上一点,作直线AC,连接PA、PC,求△PAC面积的最大值及此时点P的坐标;(3)设直线l1:y=kx+k﹣交抛物线于点M、N,求证:无论k为何值,平行于x轴的直线l2:y=﹣上总存在一点E,使得∠MEN为直角.2023年湖南省怀化市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分;每小题的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上)1.(4分)下列四个实数中,最小的数是( )A.﹣5B.0C.D.【分析】正数>0>负数;一个正数越大,其算术平方根越大;据此进行判断即可.【解答】解:∵1<2,∴<,即1<,则<,那么﹣5<0<<,则最小的数为:﹣5,故选:A.【点评】本题考查实数的大小比较,此为基础且重要知识点,必须熟练掌握.2.(4分)2023年4月12日21时,正在运行的中国大科学装置“人造太阳”——世界首个全超导托卡马克东方超环(EAST)装置取得重大成果,在第122254次实验中成功实现了403秒稳态长脉冲高约束模式等离子体运行,创造了托卡马克装置高约束模式运行新的世界纪录.数据122254用科学记数法表示为( )A.12.2254×104B.1.22254×104C.1.22254×105D.0.122254×106【分析】将一个数表示为a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解答】解:122254=1.22254×105,故选:C.【点评】本题考查科学记数法表示较大的数,科学记数法是基础且重要知识点,必须熟练掌握.3.(4分)下列计算正确的是( )A.a2•a3=a5B.a6÷a2=a3C.(ab3)2=a2b9D.5a﹣2a=3【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、合并同类项法则,分别判断得出答案.【解答】解:A.a2•a3=a5,故此选项符合题意;B.a6÷a2=a4,故此选项不合题意;C.(ab3)2=a2b6,故此选项不合题意;D.5a﹣2a=3a,故此选项不合题意.故选:A.【点评】此题主要考查了同底数幂的乘除运算以及积的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.4.(4分)剪纸又称刻纸,是中国最古老的民间艺术之一,它是以纸为加工对象,以剪刀(或刻刀)为工具进行创作的艺术.民间剪纸往往通过谐音、象征、寓意等手法提炼、概括自然形态,构成美丽的图案.下列剪纸中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可.【解答】解:A.原图是中心对称图形,不是轴对称图形,不符合题意;B.原图是轴对称图形,不是中心对称图形,不符合题意;C.原图既是中心对称图形,又是轴对称图形,符合题意;D.原图是轴对称图形,不是中心对称图形,不符合题意;故选:C.【点评】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.5.(4分)在平面直角坐标系中,点P(2,﹣3)关于x轴对称的点P′的坐标是( )A.(﹣2,﹣3)B.(﹣2,3)C.(2,﹣3)D.(2,3)【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:点P(2,﹣3)关于x轴对称的点P′的坐标是(2,3).故选:D.【点评】此题主要考查了关于x轴对称点的性质,正确掌握关于x轴对称点的坐标特点是解题关键.6.(4分)如图,平移直线AB至CD,直线AB,CD被直线EF所截,∠1=60°,则∠2的度数为( )A.30°B.60°C.100°D.120°【分析】根据平移直线AB至CD,可得AB∥CD,所以∠BMF=∠2,根据对顶角相等得∠BMF=∠1=60°,所以∠2=60°.【解答】解:如图,∵平移直线AB至CD,∴AB∥CD,∴∠BMF=∠2,∵∠BMF=∠1=60°,∴∠2=60°.故选:B.【点评】本题考查了平移的性质和平行线的性质,解决本题的关键是掌握平移的性质和平行线的性质.7.(4分)某县“三独”比赛独唱项目中,5名同学的得分分别是:9.6,9.2,9.6,9.7,9.4.关于这组数据,下列说法正确的是( )A.众数是9.6B.中位数是9.5C.平均数是9.4D.方差是0.3【分析】根据方差、中位数、众数及平均数的定义,结合数据进行分析即可.【解答】解:在这组数据中,9.6出现的次数最多,故众数是9.6,故选项A符合题意;把这组数据从小到大排列,排在中间的数是9.6,故中位数是9.6,故选项B不符合题意;平均数是=9.5,故选项C不符合题意;方差是:[2×(9.6﹣9.5)2+(9.2﹣9.5)2+(9.7﹣9.5)2+(9.4﹣9.5)2]=0.032,故选项D不符合题意.故选:A.【点评】本题考查的是算术平均数,方差,中位数、众数的概念,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,一组数据中出现次数最多的数据叫做众数.8.(4分)下列说法错误的是( )A.成语“水中捞月”表示的事件是不可能事件B.一元二次方程x2+x+3=0有两个相等的实数根C.任意多边形的外角和等于360°D.三角形三条中线的交点叫作三角形的重心【分析】根据随机事件的定义可以判断A;根据根的判别式可以判断B;根据任意多边形的外角和都是360°可以判断C;根据三角形重心的定义可以判断D.【解答】解:成语“水中捞月”表示的事件是不可能事件,故选项A正确,不符合题意;∵一元二次方程x2+x+3=0,∴Δ=12﹣4×1×3=﹣11<0,∴一元二次方程x2+x+3=0无实数根,故选项B错误,符合题意;任意多边形的外角和等于360°,故选项C正确,不符合题意;三角形三条中线的交点叫作三角形的重心,故选项D正确,不符合题意;故选:B.【点评】本题考查三角形的重心、根的判别式、多边形的外角和、随机事件,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.9.(4分)已知压力F(N)、压强p(Pa)与受力面积S(m2)之间有如下关系式:F=pS .当F为定值时,如图中大致表示压强p与受力面积S之间函数关系的是( )A.B.C.D.【分析】根据函数的解析式判断函数的图形即可.【解答】解:∵压力F(N)、压强p(Pa)与受力面积S(m2)之间有如下关系式:F=pS.∴当F为定值时,压强p与受力面积S之间函数关系是反比例函数,故选:D.【点评】此题主要考查了反比例的应用,关键是会判断函数图象.10.(4分)如图,反比例函数y=(k>0)的图象与过点(﹣1,0)的直线AB相交于A 、B两点.已知点A的坐标为(1,3),点C为x轴上任意一点.如果S△ABC=9,那么点C的坐标为( )A.(﹣3,0)B.(5,0)C.(﹣3,0)或(5,0)D.(3,0)或(﹣5,0)【分析】利用待定系数法求得两函数的解析式,然后解析式联立成方程组,解方程组求得点B的坐标,根据S△ACD+S△BCD=S△ABC=9,求得CD的长度,进而即可求得点C 的坐标.【解答】解:把点A(1,3)代入y=(k>0)得,3=,∴k=3,∴反比例函数为y=,设直线AB为y=ax+b,代入点D(﹣1,0),A(1,3)得,解得,∴直线AB为y=x+,解,得或,∴B(﹣2,﹣),∵S△ABC=9,∴S△ACD+S△BCD=,∴CD=4,∴点C的坐标为(﹣5,0)或(3,0).故选:D.【点评】本题是反比例函数与一次函数的交点问题,考查了待定系数法求函数的解析式,反比例函数与一次函数的交点的求法,三角形面积,熟练掌握待定系数法是解题的关键.二、填空题(每小题4分,共24分;请将答案直接填写在答题卡的相应位置上)11.(4分)要使代数式有意义,则x的取值范围是 x≥9 .【分析】根据代数式有意义,可得x﹣9≥0,进一步求解即可.【解答】解:∵代数式有意义,∴x﹣9≥0,∴x≥9,故答案为:x≥9.【点评】本题考查了二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.12.(4分)分解因式:2x2﹣4x+2= 2(x﹣1)2 .【分析】先提取公因数2,再利用完全平方公式进行二次分解.a2±2ab+b2=(a±b)2.【解答】解:2x2﹣4x+2,=2(x2﹣2x+1),=2(x﹣1)2.【点评】本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式.13.(4分)已知关于x的一元二次方程x2+mx﹣2=0的一个根为﹣1,则m的值为 ﹣1 ,另一个根为 2 .【分析】将x=﹣1代入原方程,可得出关于m的一元一次方程,解之即可得出m的值,再结合两根之积等于﹣2,即可求出方程的另一个根.【解答】解:将x=﹣1代入原方程可得1﹣m﹣2=0,解得:m=﹣1,∵方程的两根之积为=﹣2,∴方程的另一个根为﹣2÷(﹣1)=2.故答案为:﹣1,2.【点评】本题考查了根与系数的关系以及一元二次方程的解,牢记“两根之和等于﹣,两根之积等于”是解题的关键.14.(4分)定义新运算:(a,b)•(c,d)=ac+bd,其中a,b,c,d为实数.例如:(1,2)•(3,4)=1×3+2×4=11.如果(2x,3)•(3,﹣1)=3,那么x= 1 .【分析】直接利用运算公式将原式变形,进而计算得出答案.【解答】解:(2x,3)•(3,﹣1)=3,6x﹣3=3,解得:x=1.故答案为:1.【点评】此题主要考查了实数的运算,正确将原式变形是解题关键.15.(4分)如图,点P是正方形ABCD的对角线AC上的一点,PE⊥AD于点E,PE=3.则点P到直线AB的距离为 3 .【分析】过点P作PF⊥AB于点F,根据正方形的性质易得△AEP为等腰直角三角形,AE =PE=3,再根据有三个角为直角,且邻边相等的四边形为正方形证明四边形AFPE为正方形,以此即可求解.【解答】解:过点P作PF⊥AB于点F,∵四边形ABCD为正方形,∴AB=BC=CD=AD,∠DAB=∠B=∠BCD=∠D=90°,∴∠PAE=45°,∴△AEP为等腰直角三角形,AE=PE=3,∵PE⊥AD,PF⊥AB,∴∠FAE=∠AEP=∠AFP=90°,又∵AE=PE,∴四边形AFPE为正方形,∴AE=PF=3,∴点P到直线AB的距离为3.故答案为:3.【点评】本题主要考查正方形的判定与性质、等腰直角三角形的判定与性质,熟练掌握正方形的判定与性质是解题关键.16.(4分)在平面直角坐标系中,△AOB为等边三角形,点A的坐标为(1,0).把△A0B 按如图所示的方式放置,并将△AOB进行变换:第一次变换将△AOB绕着原点O顺时针旋转60°,同时边长扩大为△AOB边长的2倍,得到△A1OB1;第二次旋转将△A1OB1绕着原点O顺时针旋转60°,同时边长扩大为△A1OB1边长的2倍,得到△A2OB2,….依次类推,得到△A2033OB2033,则△A2023OB2033的边长为 22023 ,点A2023的坐标为 (22022,22022) .【分析】利用等边三角形的性质,探究规律后,利用规律解决问题.【解答】解:由题意OA=1=20,OA1=2=21,OA2=4=22,OA3=8=23,…OA n=2n,∴△A2023OB2033的边长为22023,∵2023÷6=372…1,∴A2023与A1都在第四象限,坐标为(22022,22022•).故答案为:22023,(22022,22022).【点评】本题考查相似三角形的性质,规律型﹣点的坐标等知识,解题的关键是学会探究规律的方法,属于中考常考题型.三、解答题(本大题共8小题,共86分)17.(8分)计算:|﹣2|+()﹣1﹣+(sin45°﹣1)0﹣(﹣1).【分析】直接利用负整数指数幂的性质以及零指数幂的性质、二次根式的性质、绝对值的性质分别化简,进而得出答案.【解答】解:原式=2+3﹣3+1+1=4.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.18.(8分)先化简(1+)÷,再从﹣1,0,1,2中选择一个适当的数作为a的值代入求值.【分析】直接利用分式的混合运算法则化简,进而把已知数据代入得出答案.【解答】解:原式=•=•=,当a=1或2时,分式无意义,故当a=﹣1时,原式=﹣,当a=0时,原式=﹣.【点评】此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.19.(10分)如图,矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.(1)证明:△BOF≌△DOE;(2)连接BE、DF,证明:四边形EBFD是菱形.【分析】(1)根据矩形的对边平行得到AD∥BC,于是有∠EDO=∠FBO,根据点O 是BD的中点得出DO=BO,结合对顶角相等利用ASA可证得△BOF和△DOE全等;(2)由(1)△BOF≌△DOE可得BF=DE,结合DE∥BF,可得四边形EBFD是平行四边形,再根据对角线互相垂直的平行四边形是菱形即可得证.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠EDO=∠FBO,∵点O是BD的中点,∴DO=BO,又∵∠EOD=∠FOB,∴△BOF≌△DOE(ASA);(2)证明:由(1)已证△BOF≌△DOE,∴BF=DE,∵四边形ABCD是矩形,∴AD∥BC,即DE∥BF,∴四边形EBFD是平行四边形,∵EF⊥BD,∴四边形EBFD是菱形.【点评】本题考查了矩形的性质,菱形的判定,三角形全等的判定与性质,熟练掌握这些图形的性质是解题的关键.20.(10分)为弘扬革命传统精神,清明期间,某校组织学生前往怀化市烈士陵园缅怀革命先烈.大家被革命烈士纪念碑的雄伟壮观震撼,想知道纪念碑的通高CD(碑顶到水平地面的距离),于是师生组成综合实践小组进行测量.他们在地面的A点用测角仪测得碑顶D的仰角为30°,在B点处测得碑顶D的仰角为60°,已知AB=35m,测角仪的高度是1.5m(A、B、C在同一直线上),根据以上数据求烈士纪念碑的通高CD.(≈1.732,结果保留一位小数)【分析】根据题意可得AM=BN=CE=1.5m,AB=MN=35m,∠DEM=90°,∠DNE=60°,∠DME=30°,先利用三角形的外角性质可得∠DMN=∠MDN=30°,从而可得DN=MN=35m,然后在Rt△DNE中,利用锐角三角函数的定义求出DE的长,即可得的答案.【解答】解:由题意得:AM=BN=CE=1.5m,AB=MN=35m,∠DEM=90°,∠DNE =60°,∠DME=30°,∵∠DNE是△DMN的外角,∴∠MND=∠DNE﹣∠DMN=30°,∴∠DMN=∠MDN=30°,∴DN=MN=35m,在Rt△DNE中,DE=DN•sin60°=35×=(m),∴DC=DE+CE=+1.5≈+1.5≈31.8(m).答:烈士纪念碑的通高CD约为31.8m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解题的关键.21.(12分)近年,“青少年视力健康”受到社会的广泛关注.某校综合实践小组为了解该校学生的视力健康状况,从全校学生中随机抽取部分学生进行视力调查.根据调查结果和视力有关标准,绘制了两幅不完整的统计图.请根据图中信息解答下列问题:(1)所抽取的学生人数为 200 ;(2)补全条形统计图,并求出扇形统计图中“轻度近视”对应的扇形的圆心角的度数;(3)该校共有学生3000人,请估计该校学生中近视程度为“轻度近视”的人数.【分析】(1)由“视力正常人数及其所占百分比可得总人数;(2)用(1)的结论乘15%可得“中度近视”的人数,进而得出“高度近视”的人数,再补全条形统计图;用360°乘“轻度近视”所占比例可得扇形统计图中“轻度近视”对应的扇形的圆心角的度数;(3)用3000乘样本中“轻度近视”所占比例可得答案.【解答】解:(1)所抽取的学生人数为:90÷45%=200.故答案为:200;(2)样本中“中度近视”的人数为:200×15%=30(人),“高度近视”的人数为:200﹣90﹣70﹣30=10(人),补全条形统计图如下:扇形统计图中“轻度近视”对应的扇形的圆心角的度数为:360°×=126°;(3)3000×=1050(人),答:估计该校学生中近视程度为“轻度近视”的人数约1050人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(12分)如图,AB是⊙O的直径,点P是⊙O外一点,PA与⊙O相切于点A,点C 为⊙O上的一点.连接PC、AC、OC,且PC=PA.(1)求证:PC为⊙O的切线;(2)延长PC与AB的延长线交于点D,求证:PD•OC=PA•OD;(3)若∠CAB=30°,OD=8,求阴影部分的面积.【分析】(1)先由切线的性质得∠PAO=90°,然后依据“SSS”判定△POC和△POA 全等,从而得∠PCO=∠PAO=90°,据此即可得出结论;(2)由∠DCO=∠DAP=90°,∠ODC=∠PDA可判定△ODC和△PDA相似,进而根据相似三角形的性质可得出结论;(3)连接BC,过点C作CE⊥OB于点E,先证△OCB为等边三角形,再设OE=a,则OA=OB=OC=2a,,在Rt△CDE和在Rt△DOC中,由勾股定理得CD2=CE2+DE2=OD2﹣OC2,由此可求出a的值,进而得⊙O的半径为4,然后根据S阴影=S △DOC﹣S扇形BOC即可得出答案.【解答】(1)证明:∵AB为⊙O的直径,PA为⊙O的切线,∴PA⊥OA,即:∠PAO=90°,∵点C在⊙O上,∴OC=OA,在△POC和△POA中,,∴△POC≌△POA(SSS),∴∠PCO=∠PAO=90°,即:PC⊥OC,又OC为⊙O的半径,∴PC为⊙O的切线.(2)证明:由(1)可知:OC⊥PD,∴∠DCO=∠DAP=90°,又∠ODC=∠PDA,∴△ODC∽△PDA,∴,即:PD•OC=PA•OD.(3)解:连接BC,过点C作CE⊥OB于点E,∵∠CAB=30°,∴∠COB=60°,又OC=OB,∴△OCB为等边三角形,∵CE⊥OB,∴OE=BE,设OE=a,显然a≠0,则OA=OB=OC=2a,在Rt△OCE中,OE=a,OC=2a,由勾股定理得:,∵OD=8,∴DE=OD﹣OE=8﹣a,在Rt△CDE中,,DE=8﹣a,由勾股定理得:,在Rt△DOC中,OC=2a,OD=8,由勾股定理得:CD2=OD2﹣OC2=82﹣(2a)2,,整理得:a2﹣2a=0,∵a≠0,∴a=2,∴OC=2a=4,,∴,又∵,∴.【点评】此题主要考查了切线的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,扇形面积的计算,勾股定理的应用等知识点,解答此题的关键是熟练掌握全等三角形、相似三角形的判定方法,理解切线垂直于过且点的半径;过半径的外端垂直于半径的直线是圆的切线;难点是在解答(3)时,设置适当的未知数,利用勾股定理构造方程求出圆的半径.23.(12分)某中学组织学生研学,原计划租用可坐乘客45人的A种客车若干辆,则有30人没有座位;若租用可坐乘客60人的B种客车,则可少租6辆,且恰好坐满.(1)求原计划租用A种客车多少辆?这次研学去了多少人?(2)若该校计划租用A、B两种客车共25辆,要求B种客车不超过7辆,且每人都有座位,则有哪几种租车方案?(3)在(2)的条件下,若A种客车租金为每辆220元,B种客车租金每辆300元,应该怎样租车才最合算?【分析】(1)设原计划租用A种客车x辆,则这次研学去了(45x+30)人,根据这次去研学的人数不变,可得出关于x的一元一次方程,解之即可得出结论;(2)设租用B种客车y辆,则租用A种客车(25﹣y)辆,根据“租用的25辆客车可乘坐人数不少于1200人,且租用的B种客车不超过7辆”,可得出关于y的一元一次不等式组,解之可得出y的取值范围,再结合y为正整数,即可得出各租车方案;(3)利用总租金=每辆A种客车的租金×租用A种客车的辆数+每辆B种客车的租金×租用B种客车的辆数,可分别求出各选择各方案所需总租金,比较后,即可得出结论.【解答】解:(1)设原计划租用A种客车x辆,则这次研学去了(45x+30)人,根据题意得:45x+30=60(x﹣6),解得:x=26,∴45x+30=45×26+30=1200.答:原计划租用A种客车26辆,这次研学去了1200人;(2)设租用B种客车y辆,则租用A种客车(25﹣y)辆,根据题意得:,解得:5≤y≤7,又∵y为正整数,∴y可以为5,6,7,∴该学校共有3种租车方案,方案1:租用5辆B种客车,20辆A种客车;方案2:租用6辆B种客车,19辆A种客车;方案3:租用7辆B种客车,18辆A种客车;(3)选择方案1的总租金为300×5+220×20=5900(元);选择方案2的总租金为300×6+220×19=5980(元);选择方案3的总租金为300×7+220×18=6060(元).∵5900<5980<6060,∴租用5辆B种客车,20辆A种客车最合算.【点评】本题考查了一元一次不等式组的应用、一元一次方程的应用以及有理数的混合运算,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次方程,(3)根据各数量之间的关系,求出选择各方案所需总租金.24.(14分)如图一所示,在平面直角坐标系中,抛物线y=ax2+bx﹣8与x轴交于A(﹣4,0)、B(2,0)两点,与y轴交于点C.(1)求抛物线的函数表达式及顶点坐标;(2)点P为第三象限内抛物线上一点,作直线AC,连接PA、PC,求△PAC面积的最大值及此时点P的坐标;(3)设直线l1:y=kx+k﹣交抛物线于点M、N,求证:无论k为何值,平行于x轴的直线l2:y=﹣上总存在一点E,使得∠MEN为直角.【分析】(1)运用待定系数法,将A(﹣4,0)、B(2,0)代入y=ax2+bx﹣8,即可求得抛物线的函数表达式,再利用配方法或顶点坐标公式即可求得抛物线的顶点坐标;(2)运用待定系数法可得直线AC的解析式为y=﹣2x﹣8,设P(t,t2+2t﹣8),过点P 作PF∥y轴,交AC于点F,则F(t,﹣2t﹣8),进而可得S△PAC=S△PAF+S△PCF=2(﹣t2﹣4t)=﹣2(t+2)2+8,运用二次函数的性质即可求得答案;(3)由直线l1:y=kx+k﹣交抛物线于点M、N,可得x2+(2﹣k)x+﹣k=0,利用根与系数关系可得x M+x N=k﹣2,x M x N=﹣k,利用两点间距离公式可得MN2=(x M﹣x N)2+(y M﹣y N)2=(1+k2)2,设MN的中点为O′,过点O′作O′E⊥直线l2,垂足为E,O′E=MN,以MN为直径的⊙O′一定经过点E,所以∠MEN=90°,即证得结论.【解答】(1)解:∵抛物线y=ax2+bx﹣8与x轴交于A(﹣4,0)、B(2,0)两点,∴,解得:,∴抛物线的函数表达式为y=x2+2x﹣8,∵y=x2+2x﹣8=(x+1)2﹣9,∴抛物线的顶点坐标为(﹣1,﹣9);(2)解:∵抛物线y=x2+2x﹣8与y轴交于点C,∴C(0,﹣8),设直线AC的解析式为y=mx+n,则,解得:,∴直线AC的解析式为y=﹣2x﹣8,设P(t,t2+2t﹣8),过点P作PF∥y轴,交AC于点F,如图,则F(t,﹣2t﹣8),∴PF=﹣2t﹣8﹣(t2+2t﹣8)=﹣t2﹣4t,∴S△PAC=S△PAF+S△PCF=PF•(t+4)+PF•(﹣t)=2PF=2(﹣t2﹣4t)=﹣2(t+2)2+8,∵﹣2<0,∴当t=﹣2时,S△PAC的最大值为8,此时点P(﹣2,﹣8);(3)证明:∵直线l1:y=kx+k﹣交抛物线于点M、N,∴x2+2x﹣8=kx+k﹣,整理得:x2+(2﹣k)x+﹣k=0,∴x M+x N=k﹣2,x M x N=﹣k,∵y M=kx M+k﹣,y N=kx N+k﹣,∴y M﹣y N=k(x M﹣x N),∴MN2=(x M﹣x N)2+(y M﹣y N)2=(1+k2)(x M﹣x N)2=(1+k2)[(x M+x N)2﹣4x M x N]=(1+k2)[(k﹣2)2﹣4(﹣k)]=(1+k2)2,∵设MN的中点为O′,∴O′(,k2﹣),过点O′作O′E⊥直线l2:y=﹣,垂足为E,如图,∴E(,﹣),∴O′E=k2﹣﹣(﹣)=(1+k2),∴O′E=MN,∴以MN为直径的⊙O′一定经过点E,∴∠MEN=90°,∴在直线l2:y=﹣上总存在一点E,使得∠MEN为直角.【点评】本题是二次函数综合题,考查了待定系数法求函数解析式,二次函数的图象和性质,一元二次方程根与系数关系,圆的性质,圆周角定理等,解题关键是证得O′E=MN,得出以MN为直径的⊙O′一定经过点E.。
2020年湖南省怀化市中考数学试卷(解析版)
2020年湖南省怀化市中考数学试卷一、选择题(每小题的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上)1.下列数中,是无理数的是()A.3- B.0 C.13 D.【答案】D【分析】根据无理数的三种形式求解即可。
【详解】解:-3,0,13是有理数,是无理数。
故选:D 。
本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数。
2.下列运算正确的是()A.235a a a += B.624a a a ÷= C.333(2)6ab a b = D.236a a a ⋅=【答案】B【分析】分别根据合并同类项的法则、同底数幂的除法法则、积的乘方与同底数幂的乘法法则计算各项,进而可得答案。
【详解】解:A 、2a 与3a 不是同类项,不能合并,所以本选项计算错误,不符合题意;B 、624a a a ÷=,所以本选项计算正确,符合题意;C 、()33333286ab a b a b ≠=,所以本选项计算错误,不符合题意;D 、2356a a a a ⋅=≠,所以本选项计算错误,不符合题意,故选:B 。
本题考查了合并同类项、同底数幂的除法和乘法以及积的乘方等运算法则,属于基本题型,熟练掌握上述基础知识是关键。
3.《三国演义》《红楼梦》《水浒传》《西游记》是我国古典长篇小说四大名著.其中2016年光明日报出版社出版的《红楼梦》有350万字,则“350万”用科学记数法表示为()A.63.510⨯ B.70.3510⨯ C.23.510⨯ D.435010⨯【答案】A【分析】科学记数法的形式是:10n a ⨯,其中1a ≤<10,n 为整数.所以 3.5a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数。
本题小数点往左移动到3的后面,所以n =6。
【详解】解:350万424635010 3.51010 3.510.=⨯=⨯⨯=⨯故选A 。
怀化市中考数学试题及答案讲解
怀化市中考数学试题及答案讲解一、选择题1. 在一个整数集合中,找出能被5整除的所有数,结果是()A. 1, 2, 3, 4, 5B. 5, 10, 15, 20, 25C. 2, 4, 6, 8, 10D. 10, 20, 30, 40, 50答案:B解析:能被5整除的数,即5的倍数,可以通过逐个检查数与5的余数为0来确定。
从选项中可知,B选项中的所有数都能满足被5整除的条件。
2. 若 m 是一个正整数,那么当2m + 1是奇数时,m 必定是()A. 奇数B. 偶数C. 任意整数D. 不能确定答案:A解析:根据题目条件得知2m + 1是奇数,而奇数减去1后会得到偶数,即2m是偶数。
而偶数是2的倍数,那么m只能是奇数。
3. 已知长度为6cm的线段分成了两段,两段长度之比为3:2,则较长线段的长度为()A. 2cmB. 3cmC. 4cmD. 5cm答案:D解析:设较长线段长度为3x,则较短线段长度为2x。
根据题目条件得知3x + 2x = 6cm,解方程得5x = 6cm,所以x = 6/5。
因此较长线段长度为3x = 3 * 6/5 = 18/5 = 3.6cm。
二、填空题1. 已知(3x + 4)² = 49,则x的值为____。
答案:1解析:根据等式可得3x + 4 = ±√49,即3x + 4 = ±7。
解方程得x = (7-4)/3 = 1 或 x = (-7-4)/3 = -11/3。
因为题目要求填入的是整数,所以x = 1。
2. 黄铜的密度是8.4g/cm³,一个黄铜块的质量是80g,那么这个黄铜块体积是____cm³。
答案:9.52解析:由密度的定义可知,密度 = 质量/体积。
设黄铜块体积为V,则根据题目条件 8.4g/cm³ = 80g/V,解方程得V = 80g / 8.4g/cm³ = 9.52 cm³。
怀化中考数学试题及答案
怀化中考数学试题及答案第一部分:选择题(共20题,每小题4分,共80分)1. 计算:(5a^2−7 +2a^2+3a−8)−(7a-6−3a^2−2a+7)答案:−4a^2 + 5a - 222. 方程a^2−2aa+5a^2=0有两个互倾直线,则a的取值范围是?答案:a<03. Δaaa是边长为2的等边三角形,M、N分别是AB、AC的中点,连接CM与BN,用s表示△MBN三个点的面积.(1)求△MBN的周长;(2)求△MBN与△ABC的面积比s:△ABC。
答案:(1)2+a;(2)s:△ABC=3:104. 在平面直角坐标系中,函数a(a)=2a^2−2aa+a与a轴交于两个点M、N.如果MN的中点的坐标是(1, 1),则a与b的值分别是?答案:a = 1, b = −15. 若3a^2−aa+1=0有实数根x_1=a_2,求a的取值范围。
答案:a ≤ 66. 在△ABC中,AC=BC=a,D为BC的中点,连接AD并延长到B点,使得BD=DE.若∠BDA=60∘,求∠ABC的大小。
7. 方程a^2−(a+2)a+a=0无解,则a的取值范围是?答案:a < -48. 已知等差数列{aa}的前n项和为S_n=\frac{3n^2+1}{n+1},则该等差数列的通项公式为?答案:a_a=\frac{1}{2}(2n+1)9. 在折线图中,标出了2016年至2019年某城市某景区四年来的游客数量(单位:千人/年)数据。
已知,2016年和2017年的游客数量之比为15:13,2018年和2019年的游客数量之比为11:17。
问2017年和2018年的游客数量之比为?答案:13:1110. 在平面直角坐标系中,直线a=−a将第一象限分成两部分,若点(a,−a^2)在第一部分中,那么点(a^2, 2a)在第几象限?答案:第四象限11. 在△ABC中,角A的对边是a,角C的对边是c,设tana=4/3,tanB=c/a,则角B的大小为?答案:60°12. 函数f(x)=kx+2△ABC(AB=AC)中,点D为AB延长线的一点,且AD=AC,则函数满足f(k)=_______与f(x)=1有且仅有一个公共点。
2022年湖南怀化中考数学试题及答案详解
2022年湖南怀化中考数学试题及答案详解(试题部分)一、选择题(每小题4分,共40分;每小题的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上) 1. -12的相反数是 ( )A.12B.2C.-12 D.-22. 代数式25x ,1π,2x 2+4,x 2-23,1x ,x+1x+2中,属于分式的有 ( )A.2个B.3个C.4个D.5个3. 2022年3月11日,新华社发文总结2021年中国取得的科技成就,其中包括“奋斗者”号载人潜水器最深下潜至10 909米。
其中数据10 909用科学记数法表示为 ( )A.10.909×102B.1.090 9×103C.0.109 09×104D.1.090 9×1044. 下列说法正确的是 ( )A.相等的角是对顶角B.对角线相等的四边形是矩形C.三角形的外心是它的三条角平分线的交点D.线段垂直平分线上的点到线段两端的距离相等 5. 下列计算正确的是 ( )A.(2a 2)3=6a 6B.a 8÷a 2=a 4C.√(−2)2=2D.(x -y )2=x 2-y 26. 下列一元二次方程有实数解的是 ( )A.2x 2-x +1=0B.x 2-2x +2=0C.x 2+3x -2=0D.x 2+2=07. 一个多边形的内角和为900°,则这个多边形是 ( )A.七边形B.八边形C.九边形D.十边形8. 如图,△ABC 沿BC 方向平移后的像为△DEF ,已知BC =5,EC =2,则平移的距离是 ( )A.1B.2C.3D.49. 从下列一组数-2,π,-12,-0.12,0,-√5中随机抽取一个数,这个数是负数的概率为 ( )A.56B.23C.12D.1310. 如图,直线AB 交x 轴于点C ,交反比例函数y =a−1x(a >1)的图象于A 、B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为 ( )A.8B.9C.10D.11二、填空题(每小题4分,共24分;请将答案直接填写在答题卡的相应位置上) 11. 计算x+5x+2-3x+2= . 12. 因式分解:x 2-x 4= .13. 已知点A (-2,b )与点B (a ,3)关于原点对称,则a -b = . 14. 如图,△ABC 中,点D 、E 分别是AB 、AC 的中点,若S △ADE =2,则S △ABC = .15. 如图,AB 与☉O 相切于点C ,AO =3,☉O 的半径为2,则AC 的长为 .16. 正偶数2,4,6,8,10,…按如下规律排列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年湖南省怀化市中考数学试卷一、选择题:每小题4分,共40分1.(﹣2)2的平方根是()A.2 B.﹣2 C.±2 D.2.某校进行书法比赛,有39名同学参加预赛,只能有19名同学参加决赛,他们预赛的成绩各不相同,其中一名同学想知道自己能否进入决赛,不仅要了解自己的预赛成绩,还要了解这39名同学预赛成绩的()A.平均数B.中位数C.方差D.众数3.下列计算正确的是()A.(x+y)2=x2+y2B.(x﹣y)2=x2﹣2xy﹣y2C.(x+1)(x﹣1)=x2﹣1 D.(x﹣1)2=x2﹣14.一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根5.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD6.不等式3(x﹣1)≤5﹣x的非负整数解有()A.1个B.2个C.3个D.4个7.二次函数y=x2+2x﹣3的开口方向、顶点坐标分别是()A.开口向上,顶点坐标为(﹣1,﹣4)B.开口向下,顶点坐标为(1,4)C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(﹣1,﹣4)8.等腰三角形的两边长分别为4cm和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm或20cm9.函数y=中,自变量x的取值范围是()A.x≥1 B.x>1 C.x≥1且x≠2 D.x≠210.在Rt△ABC中,∠C=90°,sinA=,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm二、填空题:本大题共4小题,每小题4分,共16分11.已知扇形的半径为6cm,面积为10πcm2,则该扇形的弧长等于.12.旋转不改变图形的和.13.已知点P(3,﹣2)在反比例函数y=(k≠0)的图象上,则k=;在第四象限,函数值y随x的增大而.14.一个不透明的袋子,装了除颜色不同,其他没有任何区别的红色球3个,绿色球4个,黑色球7个,黄色球2个,从袋子中随机摸出一个球,摸到黑色球的概率是.三、解答题:本大题共8小题,每小题8分,共64分15.计算:20160+2|1﹣sin30°|﹣()﹣1+.16.有若干只鸡和兔关在一个笼子里,从上面数,有30个头;从下面数,有84条腿,问笼中各有几只鸡和兔?17.如图,已知AD=BC,AC=BD.(1)求证:△ADB≌△BCA;(2)OA与OB相等吗?若相等,请说明理由.18.已知一次函数y=2x+4(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出:当y<0时,x的取值范围.19.如图,在Rt△ABC中,∠BAC=90°(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.20.甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.21.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.22.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣3,0)、B(5,0)、C (0,5)三点,O为坐标原点(1)求此抛物线的解析式;(2)若把抛物线y=ax2+bx+c(a≠0)向下平移个单位长度,再向右平移n(n>0)个单位长度得到新抛物线,若新抛物线的顶点M在△ABC内,求n 的取值范围;(3)设点P在y轴上,且满足∠OPA+∠OCA=∠CBA,求CP的长.2016年湖南省怀化市中考数学试卷参考答案与试题解析一、选择题:每小题4分,共40分1.(﹣2)2的平方根是()A.2 B.﹣2 C.±2 D.【考点】平方根.【分析】直接利用有理数的乘方化简,进而利用平方根的定义得出答案.【解答】解:∵(﹣2)2=4,∴4的平方根是:±2.故选:C.2.某校进行书法比赛,有39名同学参加预赛,只能有19名同学参加决赛,他们预赛的成绩各不相同,其中一名同学想知道自己能否进入决赛,不仅要了解自己的预赛成绩,还要了解这39名同学预赛成绩的()A.平均数B.中位数C.方差D.众数【考点】统计量的选择.【分析】由于比赛取前19名参加决赛,共有39名选手参加,根据中位数的意义分析即可.【解答】解:39个不同的成绩按从小到大排序后,中位数及中位数之后的共有19个数,故只要知道自己的成绩和中位数就可以知道是否获奖了.故选B.3.下列计算正确的是()A.(x+y)2=x2+y2B.(x﹣y)2=x2﹣2xy﹣y2C.(x+1)(x﹣1)=x2﹣1 D.(x﹣1)2=x2﹣1【考点】平方差公式;完全平方公式.【分析】直接利用完全平方公式以及平方差公式分别计算得出答案.【解答】解:A、(x+y)2=x2+y2+2xy,故此选项错误;B、(x﹣y)2=x2﹣2xy+y2,故此选项错误;C、(x+1)(x﹣1)=x2﹣1,正确;D、(x﹣1)2=x2﹣2x+1,故此选项错误;故选:C.4.一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【分析】先求出△的值,再判断出其符号即可.【解答】解:∵a=1,b=﹣1,c=﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5>0,∴方程有两个不相等的实数根,故选:A.5.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.【分析】先根据角平分线的性质得出PC=PD,再利用HL证明△OCP≌△ODP,根据全等三角形的性质得出∠CPO=∠DPO,OC=OD.【解答】解:∵OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,∴PC=PD,故A正确;在Rt△OCP与Rt△ODP中,,∴△OCP≌△ODP,∴∠CPO=∠DPO,OC=OD,故C、D正确.不能得出∠CPD=∠DOP,故B错误.故选B.6.不等式3(x﹣1)≤5﹣x的非负整数解有()A.1个B.2个C.3个D.4个【考点】一元一次不等式的整数解.【分析】根据解不等式得基本步骤依次去括号、移项、合并同类项求得不等式的解集,在解集内找到非负整数即可.【解答】解:去括号,得:3x﹣3≤5﹣x,移项、合并,得:4x≤8,系数化为1,得:x≤2,∴不等式的非负整数解有0、1、2这3个,故选:C.7.二次函数y=x2+2x﹣3的开口方向、顶点坐标分别是()A.开口向上,顶点坐标为(﹣1,﹣4)B.开口向下,顶点坐标为(1,4)C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(﹣1,﹣4)【考点】二次函数的性质.【分析】根据a>0确定出二次函数开口向上,再将函数解析式整理成顶点式形式,然后写出顶点坐标.【解答】解:∵二次函数y=x2+2x﹣3的二次项系数为a=1>0,∴函数图象开口向上,∵y=x2+2x﹣3=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4).故选A.8.等腰三角形的两边长分别为4cm和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm或20cm【考点】等腰三角形的性质;三角形三边关系.【分析】根据等腰三角形的性质,本题要分情况讨论.当腰长为4cm或是腰长为8cm两种情况.【解答】解:等腰三角形的两边长分别为4cm和8cm,当腰长是4cm时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm不满足三角形的三边关系;当腰长是8cm时,三角形的三边是8cm,8cm,4cm,三角形的周长是20cm.故选C.9.函数y=中,自变量x的取值范围是()A.x≥1 B.x>1 C.x≥1且x≠2 D.x≠2【考点】函数自变量的取值范围.【分析】根据分式的分母不为零、被开方数是非负数来求x的取值范围.【解答】解:依题意得:x﹣1≥0且x﹣2≠0,解得x≥1且x≠2.故选:C.10.在Rt△ABC中,∠C=90°,sinA=,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm【考点】解直角三角形.【分析】根据三角函数的定义求得BC和AB的比值,设出BC、AB,然后利用勾股定理即可求解.【解答】解:∵sinA==,∴设BC=4x,AB=5x,又∵AC2+BC2=AB2,∴62+(4x)2=(5x)2,解得:x=2或x=﹣2(舍),则BC=4x=8cm,故选:C.二、填空题:本大题共4小题,每小题4分,共16分11.已知扇形的半径为6cm,面积为10πcm2,则该扇形的弧长等于cm.【考点】扇形面积的计算;弧长的计算.【分析】设扇形的弧长为lcm,再由扇形的面积公式即可得出结论.【解答】解:设扇形的弧长为lcm,∵扇形的半径为6cm,面积为10πcm2,∴l×6=10π,解得l=cm.故答案为:cm.12.旋转不改变图形的形状和大小.【考点】旋转的性质.【分析】根据旋转的性质(旋转不改变图形的大小与形状,只改变图形的位置.也就是旋转前后图形全等,对应点与旋转中心所连线段间的夹角为旋转角)即可得出答案.【解答】解:旋转不改变图形的形状和大小,只改变图形的位置,故答案为:形状,大小.13.已知点P(3,﹣2)在反比例函数y=(k≠0)的图象上,则k=﹣6;在第四象限,函数值y随x的增大而增大.【考点】反比例函数的性质;反比例函数图象上点的坐标特征.【分析】由点的坐标结合反比例函数图象上点的坐标特征可求出k值,根据k值结合反比例函数的性质即可得出其函数图象在每个象限内的增减性,由此即可得出结论.【解答】解:∵点P(3,﹣2)在反比例函数y=(k≠0)的图象上,∴k=3×(﹣2)=﹣6.∵k=﹣6<0,∴反比例函数y=的图象在第二、四象限,且在每个象限内均单增,∴在第四象限,函数值y随x的增大而增大.故答案为:﹣6;增大.14.一个不透明的袋子,装了除颜色不同,其他没有任何区别的红色球3个,绿色球4个,黑色球7个,黄色球2个,从袋子中随机摸出一个球,摸到黑色球的概率是.【考点】概率公式.【分析】先求出球的总数,再根据概率公式即可得出结论.【解答】解:∵红色球3个,绿色球4个,黑色球7个,黄色球2个,∴球的总数=3+4+7+2=16,∴摸到黑色球的概率=.故答案为:.三、解答题:本大题共8小题,每小题8分,共64分15.计算:20160+2|1﹣sin30°|﹣()﹣1+.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】根据实数的运算顺序,首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式20160+2|1﹣sin30°|﹣()﹣1+的值是多少即可.【解答】解:20160+2|1﹣sin30°|﹣()﹣1+=1+2×|1﹣|﹣3+4=1+2×+1=1+1+1=3.16.有若干只鸡和兔关在一个笼子里,从上面数,有30个头;从下面数,有84条腿,问笼中各有几只鸡和兔?【考点】二元一次方程组的应用.【分析】设这个笼中的鸡有x只,兔有y只,根据“从上面数,有30个头;从下面数,有84条腿”列出方程组,解方程组即可.【解答】解:设这个笼中的鸡有x只,兔有y只,根据题意得:,解得;;答:笼子里鸡有18只,兔有12只.17.如图,已知AD=BC,AC=BD.(1)求证:△ADB≌△BCA;(2)OA与OB相等吗?若相等,请说明理由.【考点】全等三角形的判定与性质;等腰三角形的判定.【分析】(1)根据SSS定理推出全等即可;(2)根据全等得出∠OAB=∠OBA,根据等角对等边得出即可.【解答】(1)证明:∵在△ADB和△BCA中,,∴△ADB≌△BCA(SSS);(2)解:OA=OB,理由是:∵△ADB≌△BCA,∴∠ABD=∠BAC,∴OA=OB.18.已知一次函数y=2x+4(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出:当y<0时,x的取值范围.【考点】一次函数图象与系数的关系;一次函数的图象.【分析】(1)利用两点法就可以画出函数图象;(2)利用函数解析式分别代入x=0与y=0的情况就可以求出交点坐标;(3)通过交点坐标就能求出面积;(4)观察函数图象与x轴的交点就可以得出结论.【解答】解:(1)当x=0时y=4,当y=0时,x=﹣2,则图象如图所示(2)由上题可知A(﹣2,0)B(0,4),(3)S△AOB=×2×4=4,(4)x<﹣2.19.如图,在Rt△ABC中,∠BAC=90°(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.【考点】直线与圆的位置关系;作图—复杂作图.【分析】(1)根据题意作出图形,如图所示;(2)BC与⊙P相切,理由为:过P作PD⊥BC,交BC于点P,利用角平分线定理得到PD=PA,而PA为圆P的半径,即可得证.【解答】解:(1)如图所示,⊙P为所求的圆;(2)BC与⊙P相切,理由为:过P作PD⊥BC,交BC于点P,∵CP为∠ACB的平分线,且PA⊥AC,PD⊥CB,∴PD=PA,∵PA为⊙P的半径.∴BC与⊙P相切.20.甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得出现平局的情况,再利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则共有9种等可能的结果;(2)∵出现平局的有3种情况,∴出现平局的概率为:=.21.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.【考点】相似三角形的判定与性质;正方形的性质.【分析】(1)根据EH∥BC即可证明.(2)如图设AD与EH交于点M,首先证明四边形EFDM是矩形,设正方形边长为x,再利用△AEH∽△ABC,得=,列出方程即可解决问题.【解答】(1)证明:∵四边形EFGH是正方形,∴EH∥BC,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC.(2)解:如图设AD与EH交于点M.∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM是矩形,∴EF=DM,设正方形EFGH的边长为x,∵△AEH∽△ABC,∴=,∴=,∴x=,∴正方形EFGH的边长为cm,面积为cm2.22.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣3,0)、B(5,0)、C (0,5)三点,O为坐标原点(1)求此抛物线的解析式;(2)若把抛物线y=ax2+bx+c(a≠0)向下平移个单位长度,再向右平移n(n>0)个单位长度得到新抛物线,若新抛物线的顶点M在△ABC内,求n 的取值范围;(3)设点P在y轴上,且满足∠OPA+∠OCA=∠CBA,求CP的长.【考点】二次函数综合题.【分析】(1)根据A、B、C三点的坐标,利用待定系数法可求得抛物线的解析式;(2)可先求得抛物线的顶点坐标,再利用坐标平移,可得平移后的坐标为(1+n,1),再由B、C两点的坐标可求得直线BC的解析式,可求得y=1时,对应的x的值,从而可求得n的取值范围;(3)当点P在y轴负半轴上时,过P作PD⊥AC,交AC的延长线于点D,根据条件可知∠PAD=45°,设PD=DA=m,由△COA∽△CDP,可求出m和PC 的长,此时可求得PO=12,利用等腰三角形的性质,可知当P点在y轴正半轴上时,则有OP=12,从而可求得PC=5.【解答】解:(1)把A、B、C三点的坐标代入函数解析式可得,解得,∴抛物线解析式为y=﹣x2+x+5;(2)∵y=﹣x2+x+5,∴抛物线顶点坐标为(1,),∴当抛物线y=ax2+bx+c(a≠0)向下平移个单位长度,再向右平移n(n>0)个单位长度后,得到的新抛物线的顶点M坐标为(1+n,1),设直线BC解析式为y=kx+m,把B、C两点坐标代入可得,解得,∴直线BC的解析式为y=﹣x+5,令y=1,代入可得1=﹣x+5,解得x=4,∵新抛物线的顶点M在△ABC内,∴1+n<4,且n>0,解得0<n<3,即n的取值范围为0<n<3;(3)当点P在y轴负半轴上时,如图1,过P作PD⊥AC,交AC的延长线于点D,由题意可知OB=OC=5,∴∠CBA=45°,∴∠PAD=∠OPA+∠OCA=∠CBA=45°,∴AD=PD,在Rt△OAC中,OA=3,OC=5,可求得AC=,设PD=AD=m,则CD=AC+AD=+m,∵∠ACO=∠PCD,∠COA=∠PDC,∴△COA∽△CDP,∴==,即==,由=可求得m=,∴=,解得PC=17;可求得PO=PC﹣OC=17﹣5=12,如图2,在y轴正半轴上截取OP′=OP=12,连接AP′,则∠OP′A=∠OPA,∴∠OP′A+∠OCA=∠OPA+∠OCA=∠CBA,∴P′也满足题目条件,此时P′C=OP′﹣OC=12﹣5=7,综上可知PC的长为7或17.。