插补的基本概念、脉冲增量插补与数据采样插补的特点和区别、逐点比较法的基本原理、直线插补和圆弧插补
逐点比较法的概念基本原理及特点【最新精选】
逐点比较法的概念基本原理及特点早期数控机床广泛采用的方法,又称代数法、醉步伐,适用于开环系统。
1.插补原理及特点原理:每次仅向一个坐标轴输出一个进给脉冲,而每走一步都要通过偏差函数计算,判断偏差点的瞬时坐标同规定加工轨迹之间的偏差,然后决定下一步的进给方向。
每个插补循环由偏差判别、进给、偏差函数计算和终点判别四个步骤组成。
逐点比较法可以实现直线插补、圆弧插补及其它曲安插补。
特点:运算直观,插补误差不大于一个脉冲当量,脉冲输出均匀,调节方便。
逐点比较法直线插补(1)偏差函数构造对于第一象限直线OA上任一点(X,Y):X/Y = Xe/Ye若刀具加工点为Pi(X i,Y i),则该点的偏差函数F i可表示为若F i= 0,表示加工点位于直线上;若F i> 0,表示加工点位于直线上方;若F i< 0,表示加工点位于直线下方。
(2)偏差函数字的递推计算采用偏差函数的递推式(迭代式)既由前一点计算后一点Fi =Yi Xe -XiYe若F i>=0,规定向+X 方向走一步Xi+1 = Xi +1Fi+1 = XeYi –Ye(Xi +1)=Fi –Ye若F i<0,规定+Y 方向走一步,则有Yi+1 = Yi +1Fi+1 = Xe(Yi +1)-YeXi =Fi +Xe(3)终点判别直线插补的终点判别可采用三种方法。
1)判断插补或进给的总步数:;2)分别判断各坐标轴的进给步数;3)仅判断进给步数较多的坐标轴的进给步数。
(4)逐点比较法直线插补举例对于第一象限直线OA,终点坐标Xe=6 ,Ye=4,插补从直线起点O开始,故F0=0 。
终点判别是判断进给总步数N=6+4=10,将其存入终点判别计数器中,每进给一步减1,若N=0,则停止插补。
逐点比较法圆弧插补3.逐点比较法圆弧插补(1)偏差函数任意加工点P i(X i,Y i),偏差函数F i可表示为若F i=0,表示加工点位于圆上;若F i>0,表示加工点位于圆外;若F i<0,表示加工点位于圆内(2)偏差函数的递推计算1)逆圆插补若F≥0,规定向-X方向走一步若F i<0,规定向+Y方向走一步2)顺圆插补若F i≥0,规定向-Y方向走一步若F i<0,规定向+y方向走一步(3)终点判别1)判断插补或进给的总步数:⎩⎨⎧+-=-+-=-=++12)1(122211iiiiiiiXFRYXFXX⎩⎨⎧++=-++=+=++12)1(122211iiiiiiiYFRYXFYY⎩⎨⎧+-=--+=-=++12)1(122211iiiiiiiYFRYXFYY⎩⎨⎧++=-++=+=++12)1(122211iiiiiiiXFRYXFXXbabaYYXXN-+-=baxXXN-=bayYYN-=2) 分别判断各坐标轴的进给步数;(4)逐点比较法圆弧插补举例对于第一象限圆弧AB ,起点A (4,0),终点B (0,4)4.逐点比较法的速度分析fN V L式中:L —直线长度;V —刀具进给速度;N —插补循环数;f —插补脉冲的频率。
数控技术第3章插补原理
5. 运算举例(第Ⅰ 象限逆圆弧) 运算举例( 象限逆圆弧) 加工圆弧AE 起点(4,3) AE, (4,3), 终点(0,5) E=(4-0)+(5加工圆弧AE,起点(4,3), 终点(0,5) ,E=(4-0)+(53)=6 插补过程演示
三.逐点比较法的进给速度 逐点比较法的进给速度
逐点比较法除能插补直线和圆弧之外,还能插补椭圆、 逐点比较法除能插补直线和圆弧之外,还能插补椭圆、 抛物线和双曲线等二次曲线。此法进给速度平稳, 抛物线和双曲线等二次曲线。此法进给速度平稳, 精度较高。在两坐标联动机床中应用普遍. 精度较高。在两坐标联动机床中应用普遍. 对于某一坐标而言, 对于某一坐标而言,进给脉冲的频率就决定了进给速 度 :
插补是数控系统最重要的功能; 插补是数控系统最重要的功能; 插补实际是数据密集化的过程; 插补实际是数据密集化的过程; 插补必须是实时的; 插补必须是实时的; 插补运算速度直接影响系统的控制速度; 插补运算速度直接影响系统的控制速度; 插补计算精度影响到整个数控系统的精度。 插补计算精度影响到整个数控系统的精度。 插补器按数学模型分类,可分为一次插补器、 插补器按数学模型分类,可分为一次插补器、二次插补器及高 次曲线插补器; 次曲线插补器; 根据插补所采用的原理和计算方法不同, 根据插补所采用的原理和计算方法不同,分为软件插补和硬件 插补。目前大多采用软件插补或软硬件结合插补。 插补。目前大多采用软件插补或软硬件结合插补。 根据插补原理可分为:脉冲增量插补和数字采样插补。 根据插补原理可分为:脉冲增量插补和数字采样插补。
脉冲当量: 脉冲当量:每一个脉冲使执行件按指令要求方向移动的直线 距离,称为脉冲当量, 表示。一般0.01mm 0.001mm。 0.01mm~ 距离,称为脉冲当量,用δ表示。一般0.01mm~0.001mm。 脉冲当量越小, 脉冲当量越小,则机床精度越高
第三章 数控插补原理
解:插补完这段直线刀具沿X和Y轴应走的总步数为 = x e + y e =5 + 3=8。 Y 刀具的运动轨迹如图 E(5,3) 3
2 1 O 1 2 3 4 5 X
第二节 基准脉冲插补
插补运算过程见表:
循环序号 偏差判别 F ≥0 坐标进给 +X 偏差计算 Fi+1=Fi-ye
教案 3
终点判别
m
Y
m(Xm,Ym) B(XB,YB)
+Y2
2 m-R
若Fm=0,表示动点在圆弧上;
若Fm>0,表示动点在圆弧外; 若Fm<0,表示动点在圆弧内。
Rm
R A(XA,YA)
第Ⅰ象限逆圆弧
X
第二节 基准脉冲插补
2)坐标进给
教案 3
与直线插补同理,坐标进给应使加工点逼近给定圆弧,规定如下: 当Fm≥0时,向-X方向进给一步; 当Fm<0时,向+Y方向进给一步。
教案 3
若Fi=0,表示动点在直线OE上,如P; 若Fi>0,表示动点在直线OE上方,如P′; 若Fi<0,表示动点在直线OE下方,如P″。
O
xi 第Ι象限直线
X
第二节 基准脉冲插补
2)坐标进给
教案 3
坐标进给应逼近给定直线方向,使偏差缩小的方向进给一步,由插补装 置发出一个进给脉冲控制向某一方向进给。
教案 3
直线线型 进给方向 偏差计算 直线线型
L1、L4 L2、L3 +X -X Fi+1=Fi-ye L1、L2 L3、L4
偏差计算
Fi+1=Fi+xe
注:表中L1、L2、L3、L4分别表示第Ⅰ、第Ⅱ、 第Ⅲ、第Ⅳ象限直线,偏差计算式中xe、ye均代 入坐标绝对值。
第5章 数控插补原理
3.时间分割法插补精度 直线插补时,轮廓步长与被加工直线重合,没有插 补误差。
圆弧插补时,轮廓步长作为弦线或割线对圆弧进行 逼近,存在半径误差。
Y A(Xe,Ye) l l △X β O l △Y
α
第5章 数控装置的轨迹控制原理
FT l er 8r 8r
2
2
式中 er——最大径向误差; r——圆弧半径。 圆弧插补时的半径误差er与圆弧半径r成反比,与插补周期T和进 给速度F 的平方成正比。 插补周期是固定的,该误差取决于进给速度和圆弧半径。 当加工圆弧半径确定后,为了使径向误差不超过允许值,对进给 速度有一个限制。 例如:当要求er≤1μ m,插补周期为T=8ms,则进给速度为:
第5章 数控装置的轨迹控制原理
5.2 脉冲增量插补
-------逐点比较法
插补原理:每次仅向一个坐标轴输 出一个进给脉冲,每走一步都要通 过偏差计算,判断偏差点的瞬时坐 标同规定加工轨迹之间的偏差,然 后决定下一步的进给方向。 每个插补循环由四个步骤组成。
Y P1 P2 B
A 0
P0(x,y)
X 终点到?
设刀具由A点移动到B点,A(Xi-1,Yi-1 )为圆弧上一插补 点, B(Xi,Yi)为下一插补点。AP为A点的切线,AB为本次插补的合成 进给量,AB=f。M为AB之中点。 通过计算可以求得下一插补点B点的坐标值
X i X i1 X
Yi Yi 1 Y
第5章 数控装置的轨迹控制原理
∑=5-1=4 ∑=4-1=3 ∑=3-1=2
9
10
F8>0
F9>0
-X
-X
F9=4-2×2+1=1,X9=2-1=1,Y9=5
数控机床插补原理
3.4.3.偏差计算 3.4.3.
进给一步后,计算新加工点与规定的 轮 廓的新偏差,为下一次偏差判别做准备, 根据偏差判别的结果给出计算方法. 当F≥0时,为F-Y,即沿+X方向走一步; 当F<0时,为F+X,即沿方+Y向走一步;
宋成伟
3.4.4.终点判别 3.4.4.
判断加工点是否到达终点,若已到 终点,则停止插补,否则再继续按此四 个节拍继续进行插补. 1.讨论累计步数∑的问题. 2.讨论终点坐标时所要完成的插补步数 的问题.
宋成伟
逐点比较法既可以实现直线 插补也可以实现圆弧等插补,它 的特点是运算直观,插补误差小 于一个脉冲当量,输出脉冲均匀 ,速度变化小,调节方便,因此 在两个坐标开环的CNC系统中应 用比较普遍.
宋成伟
该方法一般不用于多轴联动,应用范围 有一定限制.它的算法特点是: 3.2.1.1.每次插补的结果仅产生一个单 位的位移增量(一个脉冲当量),以一个 脉冲的方式输出给步进电机,采用以用折 线逼近曲线的思维方式.
宋成伟
3.2.3.3.该算法比脉冲增量插补算 法较为复杂,对计算机运算速度有 一定要求. 它主要用于交,直流伺服电机驱 动的闭环,半闭环CNC系统.也可 用于步进电动机开环系统.
宋成伟
3.4.直线插补计算 Y .
这种插补方法是以 阶梯折线来逼近直线和Ye 圆弧等曲线的,而阶梯 折线与规定的加工直线 或圆弧之间的最大误差 不超过一个脉冲当量,Ym 因此如果数控机床的脉 冲当量足够小,就能够 满足一定的加工精度的 0.0 要求.
宋成伟
使用数据采样插补的数控系统, 其位置伺服通过计算机及测量装置 构成闭环.计算机定时地对反馈回 路采样,采样的数据与插补程序所 产生的指令数据相比较,用其误差 信号输出去驱动伺服电动机.采样 周期一般为10ms左右.
第四章 CNC的插补原理(1)
3.2 脉冲增量插补
运用范围:控制精度和进给速度较低,因此主要应 用于以步进电机为驱动装置的开环控制系统中。
ye=4, 用逐点比较法加工直线OE。 (要求:计算总步数,列表说明直线插补运算过程,并 绘制插补轨迹图)
一、逐点比较插补原理—圆弧插补
偏差计算(以第一象限逆圆为例)
设圆弧起点为A (xo,,yo), 终点为B (xe,ye),以圆心为
坐标圆点,设圆上任意一点为(xi,yi),圆上任一
点满足
Y
(xi2+yi2 )-(x2o+y2o)=0
如果成立插补结束
一、逐点比较插补原理—直线插补
初始化
置数 xe , ye, F=0 N = xe + ye
Y
F≥0? N
逐点比较直线插补 (第一象限)软件流程图
送一个+x 方向脉冲
偏差计算 F – ye → F
送一个+y 方向脉冲
偏差计算 F + xe → F
思考:
n → n-1
其余象限逐点比较直线插补软件流程图
A
✓ 若沿- x方向走一步 (xi+1= xi -1; yi+1= yi)
X
Fi+1 = (xi+12+yi+12 ) - (x2o+y2o) = Fi -2xi + 1
✓ 若沿+ y方向走一步 (xi+1= xi ; yi+1= yi+1)
3.1数控插补原理(2)逐点比较法
开始 初始化 Xe→X,Ye→Y 0→Fi ,N =|Xe|+|Ye|
Y 进给方向:+X
F≥0 N 进给方向: +Y
Fi- Ye → Fi+1
Fi+ Xe → Fi+1
N = N -1
N =0
N
Y 结束
继续
逐点比较法Ⅰ象限直线插补流程图
例题:设欲加工第一象限直线OE,起点为坐标原点,
终点坐标为Xe=4,Ye=3,用逐点比较法插补之,并画出
+Y F6 F5 2Y5 1 4
-X F7 F6 2X6 1 1
8
F7>0
-X
F8 F7 2X7 1 0
坐标计算
X0=4,Y0=0 X1=3,Y1=0 X2=3,Y2=1 X3=3,Y3=2 X4=3,Y4=3 X5=2,Y5=3 X6=2,Y6=4 X7=1,Y7=4
X8=0,Y8=4
Fi 0, 朝 x 增大方向, Fi1 Fi ye Fi 0, 朝 y 增大方向, Fi1 Fi xe
5.2 脉冲增量插补 其它象限插补流程:
3.逐点比较法Ⅰ象限逆圆插补
(1)基本原理
①偏差判别 关键:寻找偏差函数F(x,y)
当动点N(Xi,Yi)位于圆弧上时有下式成立
Y
E(XeYe) Nˊ
X i2 Yi2 Xe2 Ye2 R2
当动点N(Xi,Yi)在圆弧外侧时,有下式成立
X i2 Yi2 Xe2 Ye2 R2
当动点N(Xi,Yi)在圆弧内侧时,有下式成立
O
N(Xi,Yi) R
N〞 S(XSYS)
X
X i2 Yi2 Xe2 Ye2 R2
I象限逆圆与动点之间的关系
插补的基本概念脉冲增量插补与数据采样插补的特点和区别逐点比较法的基本原理直线插补和圆弧插补
插补的基本概念脉冲增量插补与数据采样插补的特点和区别逐点比较法的基本原理直线插补和圆弧插补
脉冲增量插补和数据采样插补是实现插补的两种不同方法。
脉冲增量插补是将连续的运动轨迹离散化,以一定的脉冲数来表示,通过控制脉冲信号的频率和方向来控制机床的运动方向和速度。
而数据采样插补则是将预先生成的轨迹数据存储在内存中,通过对数据进行采样来得到机床的控制指令。
脉冲增量插补的特点是运算简单,系统响应速度较快,适合于高速运动控制;但由于其离散化的特点,可能会引入累积误差。
数据采样插补的特点是能够精确控制机床的运动轨迹,减小累积误差,但需要占用较大的内存空间。
逐点比较法是一种用于校正控制系统误差的方法。
其基本原理是通过对实际运动轨迹数据和预期轨迹数据进行逐点比较,根据比较结果来调整机床的控制指令,使实际运动轨迹尽可能地与预期轨迹一致。
逐点比较法的关键是选择合适的比较误差补偿算法,以实现高效准确的校正。
直线插补是指在机床坐标系下,按照直线轨迹进行插补运动。
直线插补的计算相对简单,只需要对坐标进行线性插值即可。
圆弧插补是指在机床坐标系下,按照圆弧轨迹进行插补运动。
圆弧插补的计算相对复杂,需要考虑起点、终点和半径等参数,通过数学运算得出插补指令。
总之,插补是机床运动控制的基础,脉冲增量插补和数据采样插补是两种常见的实现方式,逐点比较法是一种用于校正误差的方法,直线插补和圆弧插补则是两种常见的插补方式。
逐点比较法的性能和数字积分法
的速度分量为Vx,Vy,
则有
Y
V Vx Vy k OE X e Ye
Vy V E(Xe,Ye)
(k为常数) (3-16)
各坐标轴的位移量为
Vx
X Vxdt kXedt
O
X
Y Vydt kYedt (3-17)
图3-19 DDA直线插补
数字积分法是求式(3-17)从 O到E区间的定积分。此积分值等 于由O到E的坐标增量,因积分是 从原点开始的,所以坐标增量即是 终点坐标。
1. 数字积分法直线插补 例子:
若要产生直线OE,其起点为坐标原点O, 终点坐标为E(7,4)。设寄存器和累加 器容量为1,将Xe=7,Ye=4分别分成8
段,每一段分别为7/8,4/8,将其存入
X和Y函数寄存器中。
第一个时钟脉冲来到时,累加器里 的值分别为7/8,4/8,因不大于累加器 容量,没有溢出脉冲。
停止插补。
例题
设欲加工第一象限直线OE,起点在原点,终点坐标Xe=5, Ye=4,试写出插补计算过程并绘制插补轨迹。
步数 偏差判别 坐标进给
偏差计算
终点判别
1 F0=0 2 F1<0 3 F2>0 4 F3<0 5 F4>0 6 F5<0 7 F6>0 8 F7<0 9 F8>0
F0=0
+X
F1.= F0 - Ye =0-4=-4
Ⅱ Ⅲ
-X -X
+Y -Y
Fm1 Fm Ye Fபைடு நூலகம்1 Fm Xe
Ⅳ
+X
-Y
不同象限直线的逐点比较插补
二、圆弧插补 1.偏差计算公式
因为
Rm2
X
2 m
Ym2
取
什么是插补
什么是插补一、插补的概念在数控机床中,刀具不能严格地按照要求加工的曲线运动,只能用折线轨迹逼近所要加工的曲线。
插补(interpolation)定义:机床数控系统依照一定方法确定刀具运动轨迹的过程。
也可以说,已知曲线上的某些数据,按照某种算法计算已知点之间的中间点的方法,也称为“数据点的密化”。
数控装置向各坐标提供相互协调的进给脉冲,伺服系统根据进给脉冲驱动机床各坐标轴运动。
数控装置的关键问题:根据控制指令和数据进行脉冲数目分配的运算(即插补计算),产生机床各坐标的进给脉冲。
插补计算就是数控装置根据输入的基本数据,通过计算,把工件轮廓的形状描述出来,边计算边根据计算结果向各坐标发出进给脉冲,对应每个脉冲,机床在响应的坐标方向上移动一个脉冲当量的距离,从而将工件加工出所需要轮廓的形状。
插补的实质:在一个线段的起点和终点之间进行数据点的密化。
插补工作可由硬件逻辑电路或执行软件程序来完成,在CNC系统中,插补工作一般由软件完成,软件插补结构简单、灵活易变、可靠性好。
二、插补方法的分类目前普遍应用的两类插补方法为基准脉冲插补和数据采样插补。
1.基准脉冲插补(行程标量插补或脉冲增量插补)特点:每次插补结束,数控装置向每个运动坐标输出基准脉冲序列,每插补运算一次,最多给每一轴一个进给脉冲。
每个脉冲代表了最小位移,脉冲序列的频率代表了坐标运动速度,而脉冲的数量表示移动量。
每发出一个脉冲,工作台移动一个基本长度单位,也叫脉冲当量,脉冲当量是脉冲分配的基本单位。
该方法仅适用于一些中等精度或中等速度要求的计算机数控系统主要的脉冲增量插补方法:数字脉冲乘法器插补法逐点比较法数字积分法矢量判别法比较积分法最小偏差法目标点跟踪法单步追踪法直接函数法加密判别和双判别插补法2. 数字采样插补(数据增量插补)数据采样插补又称时间增量插补,这类算法插补结果输出的不是脉冲,而是标准二进制数。
根据程编进给速度,把轮廓曲线按插补周期将其分割为一系列微小直线段,然后将这些微小直线段对应的位置增量数据进行输出,以控制伺服系统实现坐标轴的进给。
插补原理概述
2.1 插 补 原 理
2. 逐点比较法圆弧插补
在圆弧加工过程中,要描述刀具位置与被加工圆弧之间关系,可用动
点到圆心距离大小来反映。见图2-8,设圆弧圆心在坐标原点,己知圆弧
起点 A(X,a ,终Ya )点 ,B(X圆b,弧Yb )半径为R。加工点可能在三种情况出现,圆弧 上、圆弧外、圆弧内。
①当动点 P(X位,Y)于圆弧上时有
②若 F ,0 表明动点在圆内,应向+X向进给,计算出新一点的偏差。
如此走一步,算一步,直至终点。
由于偏差计算公式中有平方值计算,下面采用递推公式给予简化。对
第(一Xi象1,Y且i限1) 顺圆,X,i+1 =FXi,,i ³Yi动则+01 =点新Yi点-1的Pi偏应( X差向i , 值-YYi )为向进给,新的动点坐标为
②若点在直线上,则有 X eY - XYe > 0
③若点在直线下方,则有 X eY - XYe = 0
X
Y
e
-
XY e
<
0
因此,可以构造函数偏差为
F = X Y - XY
(2-2)
e
e
2.1 插 补 原 理
对于第一象限直线,其偏差符号与进给方向之间的关系为:
①F=0时,表示动点在OE上,如点P,可向+X向进给,也可向+Y方向进
7
F6 0
+X
F7 F6 Ye 0 0
由直线插补例子看出,在起点和终点处,刀具都在直线上。通过逐点比较法,控
制刀具走出一条尽量接近零件轮廓直线的轨迹,当脉冲当量很小时,刀具走出的折
线非常接近直线轨迹,逼近误差的大小与脉Байду номын сангаас当量的大小直接相关。
1--插补的基本概念、脉冲增量插补与数据采样插补的特点和区别、逐点比较法的基本原理、直线插补和圆弧插补
数据采样插补算法 根据数控加工程序所要求的进给速度 按照插补周期的大小, 数控加工程序所要求的进给速度, 插补周期的大小 根据数控加工程序所要求的进给速度,按照插补周期的大小,先将零件轮 廓曲线分割为一系列首尾相接的微小直线段 首尾相接的微小直线段, 廓曲线分割为一系列首尾相接的微小直线段,然后输出这些微小直线段所对应 位置增量数据,控制伺服系统实现坐标轴进给。 的位置增量数据,控制伺服系统实现坐标轴进给。 采用数据采样插补算法时,每调用一次插补程序,数控系统就计算出本插 采用数据采样插补算法时,每调用一次插补程序,数控系统就计算出本插 补周期内各个坐标轴的位置增量以及各个坐标轴的目标位置 以及各个坐标轴的目标位置。 补周期内各个坐标轴的位置增量以及各个坐标轴的目标位置。 伺服位置控制软件将把插补计算求得的坐标轴位置与采样获得的坐标 随后伺服位置控制软件 随后伺服位置控制软件将把插补计算求得的坐标轴位置与采样获得的坐标 轴实际位置进行比较求得位置跟踪误差,然后根据当前位置误差计算出坐标轴 轴实际位置进行比较求得位置跟踪误差,然后根据当前位置误差计算出坐标轴 当前位置误差 的进给速度并输出给驱动装置,从而驱动移动部件向减小误差的方向运动。 的进给速度并输出给驱动装置,从而驱动移动部件向减小误差的方向运动。
(2)数控机床的运动特点 在数控机床中,刀具的基本运动单位 脉冲当量, 基本运动单位是 ① 在数控机床中,刀具的基本运动单位是脉冲当量,刀具沿各个坐标轴方 向的位移的大小只能是脉冲当量的整数倍 脉冲当量的整数倍。 向的位移的大小只能是脉冲当量的整数倍。 因此,数控机床的运动空间被被离散化为一个网格区域 网格区域, 因此,数控机床的运动空间被被离散化为一个网格区域,网格大小为一个 脉冲当量,刀具只能运动到网格节点的位置。 脉冲当量,刀具只能运动到网格节点的位置。 如下图所示。 如下图所示。
插补与刀补计算原理
Xi|、坐标|Yi|、总步数Σ=+|Ye-Ys|在内存中均占用三个字节,
并且F采用补码形式,其余数据采用绝对值或正数,地址分配 情况如表3-6所示。
14603C
表3-6 第Ⅰ象限逆圆插补参数地址分配表
14603C
(三)插补实例
例3-4设将要加工的零件轮廓为第Ⅰ象限逆圆,如图3-9所示, 圆心在坐标原点,起点为S(4,3),终点为E(0,5),试用逐点比
4。该圆弧插补运算过程如表3-11所示,插补轨迹如图3-25的折
线所示。
14603C
表3-11 DDA圆弧插补运算过程
14603C
四、数字积分法插补的象限处理
表3-12 DDA法插补不同象限直线和圆弧情况
14603C
五、提高数字积分法插补质量的措施
(一)合成进给速度 (二)进给速度均匀化的措施
14603C
(三)插补实例
例3-6设有第Ⅰ象限逆圆弧,如图3-25所示,起点为S(4,0),终 点为E(0,4),且寄存器位数N=3。试用DDA法对该圆弧进行插
补,并画出插补轨迹。
解 插补开始时,被积函数寄存器初值分别为 JVX=Ys=0,J
VY=Xs=4,终点判别寄存器JΣX=|Xe-Xs|=4,JΣY=|Ye-Ys|=
图3-17 合成进给速度 与轴速度的关系
14603C
四、逐点比较法合成进给速度
图3-18 合成进给速度变化曲线
14603C
第三节 数字积分法 一、数字积分法基本原理 二、数字积分法直线插补
三、数字积分法圆弧插补
四、数字积分法插补的象限处理 五、提高数字积分法插补质量的措施
14603C
一、数字积分法基本原理
→NR2→NR3→NR4→NR1→…;顺圆过象限的转换顺序是:SR1→
脉冲增量插补
第二节 逐点比较法
二、逐点比较法第一象限逆圆弧插补 1、基本原理 、
图3-7
刀具与圆弧之间的位置关系
第二节 逐点比较法
二、逐点比较法第一象限逆圆弧插补 例3-2
割法” 割法”插补。
第一节 概述
二、数据采样插补 加工轮廓的精度和插补周期有关系,插补周期 越长,输出的微小直线段的长度就越长,拟合 的轮廓误差就越大。 微小直线段的分割过程是粗插补,后续进一步 的密化是精插补。粗插补是由软件实现,大多 采用高级语言,精用 : 两坐标的数控机床 , 如数控线切割机床 、 应用: 两坐标的数控机床, 如数控线切割机床、 数控车床等。 数控车床等。
第二节 逐点比较法
一、逐点比较法第一象限直线插补 1、基本原理 、
逼近程度与脉 冲当量大小相 关
图3-2 刀具与直线之 间的位置关系
图3-3
直线插补轨迹
第二节 逐点比较法
第一节 概述
一、脉冲增量插补 属于这类插补算法: 数字脉冲乘法器 、 逐 属于这类插补算法 :
点比较法 、 数字积分法 以及一些相应的算
法等。 法等。
应用 : 比较适合于中等精度 ( 如 0.01mm) 应用: 比较适合于中等精度( )
和中等速度( 系统中。 和中等速度(1~3m/min)CNC系统中。 ) 系统中
第二节 逐点比较法
图3-10
不同象限直线进给
第二节 逐点比较法
例3:试用逐点比较法对直线 起点O :试用逐点比较法对直线OA , 起点 (0,0),终点 (-3,7)进行插补计算, ) 终点A( )进行插补计算, 并画出刀具插补轨迹。 并画出刀具插补轨迹。 例4:加工第三象限直线 ,起点坐标为 :加工第三象限直线AB,起点坐标为A (-1,-1),终点坐标为 (-5,-6), , ) 终点坐标为B( , ) 试用逐点比较法插补该直线, 并画出插补 试用逐点比较法插补该直线 , 轨迹。 轨迹。
数控技术 第三章 插补原理
一.逐点比较法直线插补算法
⑴判别函数及判别条件 如图所示,对XY平面第一象限直线段进 行插补。直线段起点位于坐标原点O,终点位 于A(Xe,Ye)。设点P(Xi,Yi)为任一动点。 若P点在直线OA上,则: Y XeYi – XiYe = 0 A (X Y ) 若P点在直线OA上方,则: F>0 P (X Y ) XeYi – XiYe > 0 若P点在直线OA下方,则: F<0 XeYi – XiYe < 0 X
2013-8-13
Y E(Xe,Ye) ) O X
15
四个象限直线的偏差符号和插补进给方向如下图所示, 用L1、L2、L3、L4分别表示第Ⅰ、Ⅱ、Ⅲ、Ⅳ象限的直线。 为适用于四个象限直线插补,插补运算时用∣X∣, ∣Y∣代替X,Y,偏差符号确定可将其转化到第一象限, 动点与直线的位置关系按第一象限判别方式进行判别。
2013-8-13
4
脉冲增量插补法比较适用于步进电机作 为驱动电机的系统。有下列常见的几种:
( 1 )数字脉冲乘法器 ( 2 )逐点比较方法 ( 3 )数字积分方法 ( 4 )比较积分方法 (5)最小偏差方法 ( 6 )直接函数方法
2013-8-13
5
(二)数字增量(数据采样)插补算法
1.数字增量插补的特点 数字增量插补也称数据采样插补,它为时间标量插 补,这类插补算法的特点是插补运算分两步完成:第 一步是粗插补:计算出插补周期内各坐标轴的增量值。 第二步是精插补:根据采样得到的实际位置增量值, 计算跟随误差,得到速度指令,输出给伺服系统,通 常称为精插补。这种方法比较适用于伺服电机作为驱 动电机的系统 ⑴粗插补 它是在给定起点和终点的曲线之间插入若干个点, 即用若干条微小直线段来逼近给定的曲线,这些微小 直线段的长度ΔL相等且与给定的进给速度有关。由于 粗插补在每个插补周期内之计算一次,因此每一微小 直线段的长度ΔL与进给速度F和插补周期T的关系如下: ΔL=FT。粗插补在每个插补周期内计算出坐标位置增 量值。
数控技术-第3讲-插补原理
xi2 y 2 j
2 2 x0 y0
F>0
2 2 圆弧外 xi2 y 2 x y j 0 0
圆弧内
xi2 y 2 j
2 2 x0 y0
o
F<0
P(x0,y0)
x
0点在圆弧上 2 2 偏差判别函数 Fij ( xi2 x0 ) ( y2 y j 0 ) 0点在圆弧外 0点在圆弧内
44
6.数字积分法
数字积分器具有运算速度快、脉冲分配 均匀、易于实现多坐标联动,进行空间直线 插补及描给平面各种函数曲线的特点。其缺 点是速度调节不便,插补精度需要采取一定
措施才能满足要求。
ห้องสมุดไป่ตู้
45
6.数字积分法
函数 y = f (t) ,从时刻 t=0 到 t 求函数 y = f (t) 积 分可用如下积分公式计算:
35
5.插逐点比较法
1)逐点比较法直线插补的象限处理:
A2 (Xe ,Ye )
Y
F 0
F 0
A1 ( X e , Y e )
F 0
F 0
F 0
F 0 F 0
F 0
F 0
O
F 0
F 0
X
F 0
F 0 F 0
F 0 F 0
A3 ( X e ,Ye )
A4 ( X e ,Ye )
插补(Interpolation):数控装置依据 编程时的有限数据,按照一定计算方 法,用基本线型(直线、圆弧等)拟合出 所需要轮廓轨迹。边计算边根据计算 结果向各坐标发出进给指令。
机床导轨是互相垂直的,并且单个导轨只能走直 线,因此,加工平面斜线、曲线时就需要两个导轨 按照一定的一一对应关系协调进给;若要求加工曲 面时就需要三个或三个以上导轨协调进给。
1--插补的基本概念、脉冲增量插补与数据采样插补的特点和区别、逐点比较法的基本原理、直线插补和圆弧插补
F<0
O X
综合上述讨论,有如下结论。 ① 偏差值 Fi = XeYi - XiYe ② 当 Fi ≥ 0 时,动点在直线上,或在直线上方区域,应该向 +X 方向进 给一步; ③ 当 Fi < 0 时,动点在直线下方区域,应该向 +Y 方向进给一步。
据此可设计出逐点比较法直线插补的计算流程如下。
插补模块
目标 位置
当前 位置 误差 实际 位置
调整运算
进给 速度
驱动装置 测量元件
工作台
位置控制软件
综上所述,各类插补算法都存在着速度与精度之间的矛盾。为解决这个 问题,人们提出了以下几种方案。 ① 软件/硬件相配合的两级插补方案 在这种方案中,插补任务分成两步完成: 首先,使用插补软件(采用数据采样法)将零件轮廓按插补周期(10~ 20ms)分割成若干个微小直线段,这个过程称为粗插补。 随后,使用硬件插补器对粗插补输出的微小直线段做进一步的细分插补, 形成一簇单位脉冲输出,这个过程称为精插补。 ② 多个CPU的分布式处理方案 首先,将数控系统的全部功能划分为几个子功能模块,每个子功能模块 配置一个独立的CPU来完成其相应功能,然后通过系统软件来协调各个CPU之 间的工作。
开始 偏差计算 Y F>0 E(Xe,Ye)
偏差判别
坐标进给
到达终点? Y 结束 N O
F<0
X
偏差值的迭代计算公式 通过以上讨论,逐点比较法直线插补的偏差值计算公式为 Fi = XeYi – XiYe
该式有一个缺点:需要做乘法运算。对于硬件插补器或者使用汇编语言的 软件插补器,这将产生一定的困难。
② 投影法 在插补处理开始之前,先确定直线轮廓终点坐标绝对值中较大的那根轴, 并求出该轴运动的总步数,然后存放在总步长计数器∑ 中。 ∑=max(|Xe|, |Ye|) 在插补过程中,每进行一次插补计算,如果终点坐标绝对值较大的那根坐 标轴进给一步,则计数器∑做减1操作。当计数器∑内容减到零时,表示刀具 在终点坐标绝对值较大的那根坐标轴方向上已经走了规定的步数,应该已经抵 达直线轮廓的终点,系统停止插补计算。 ③ 终点坐标法 在插补处理开始之前,先设置两个步长计数器∑1 和∑2 ,分别用来存放 刀具在两个坐标轴方向上应该走的总步数: ∑1 = |Xe|, ∑2 = |Ye| 在插补过程中,每进行一次插补计算,如果X方向进给一步,则计数器∑1 做减1操作;如果Y方向进给一步,则计数器∑2做减1操作。当两个步长计数器 都为零时,表示刀具已经抵达直线轮廓的终点,系统停止插补计算。
第四部分插补原理与速度控制-
⑷插补步骤
逐点比较法的直线插补过程,每走一步要进行以下四 个步骤,具体如下:
①偏差判别 根据偏差值确定刀具相对加工直线的位置。
②坐标进给 根据偏差判别的结果,决定控制沿哪个坐标 进给一步,以接近直线。
②当F<0时,应该向+Y方向发一脉冲,使刀具向+Y方 向前进一步,以接近该直线。
③当F=0时,既可以向+X方向发一脉冲,也可以向+Y 方向前进一步。但通常将F=0和F>0做同样的处理,既 都向+X方向发一脉冲。
⑶迭代法偏差函数F的推导 为了减少计算量,通常采用迭代法计算偏差函数F:即每
走一步,新加工点的偏差用前一点的偏差递推出来。
(二)数字增量(数据采样)插补算法
1.数字增量插补的特点
数字增量插补也称数据采样插补,它为时间标量 插补,这类插补算法的特点是插补运算分两步完成: 第一步是粗插补:计算出插补周期内各坐标轴的增量 值。第二步是精插补:根据采样得到的实际位置增量 值,计算跟随误差,得到速度指令,输出给伺服系统, 通常称为精插补。
P (Xi,Yi)
若P点在直线OA下方,则: XeYi – XiYe < 0
F<0
X
定义F= XeYi – XiYe偏差函数,则可得到如下结论: 当F=0时,加工点P落在直线上;
当F>0时,加工点P落在直线上方;
当F<0时,加工点P落在直线下方;
⑵进给方向判别
①当F>0时,应该向+X方向发一脉冲,使刀具向+X方 向前进一步,以接近该直线。
数控技术教学课件——数控(2)
由于插补方法的重要性,不少学者都致力于插补方法的研 究,使之不断有新的、更有效的插补方法应用于CNC系统,目 前常用的各种插补算法大致分为两类:脉冲增量插补(行程标 量插补) 和数字增量插补(时间标量插补、数据采样插补)。
2021/6/10
机械工程学院
第五章 数控装置的轨迹控制原理
2、评价插补算法的指标
2021/6/10
机械工程学院
第五章 数控装置的轨迹控制原理
(2)圆弧插补算法(内接弦线法)
第一象限顺圆,A、B为相邻两插补点。弦AB长ΔL,进给 速度F,插补周期T,则: ΔL=FT。(长轴:位置增量值大的轴)
X i 2 1 Y i 2 1 ( X i X i 1 ) 2 ( Y i Y i 1 ) 2 R 2
2021/6/10
机械工程学院
第五章 数控装置的轨迹控制原理
2、数字积分法插补原理
数字积分法又称数字微分分析法DDA(Digital Differential Analyzer)。数字积分法具有运算速度快、脉冲分配均匀、易于 实现多坐标联动及描绘平面各种函数曲线的特点,应用比较广 泛。其缺点是速度调节不便,插补精度需要采用一定措施才能 满足要求。
第五章 数控装置的轨迹控制原理
在采用这类插补算法的CNC系统中,插补周期是一个很 重要的参数,下面我们首先 进行插补周期进行讨论,然后以 时间分割插补法为例,具体介绍直线、圆弧的插补原理。
1、插补周期的选择
(1)插补周期与精度、速度的关系 在直线插补时,这类插补算法是用小直
线段逼近直线,它不会产生逼近误差。在曲 线插补(如圆弧)中,当用内接弦线逼近曲 线时,其逼近误差为δ,它插补周期T、进 给速度F以及与该曲线在该处的曲率半径ρ 的关系为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开始 偏差判别
坐标进给
偏差计算 到达终点? Y 结束 N
一、逐点比较法Ⅰ象限直线插补 Y 位置偏差计算 设有第一象限直线OE,起点O为坐标系原点, 终点为E(Xe,Ye),坐标系中各点坐标的单位 为脉冲当量数。 假设在直线OE附近有一个动点N(Xi,Yi), 则该点相对于轮廓OE的位置偏差,可以用轮廓终 点E的位矢和动点N的位矢与X轴的夹角正切差来 O 表示。即
E(Xe,Ye)
N(Xi,Yi) X
Yi Ye Xi Xe
使用一个正数XeXi乘以该式,最后得
Fi X eYi X iYe
(3-1)
很显然,偏差值Fi的符号反映了动点N相对于直线OE的位置偏离情况。 ① Fi = 0 时,动点N在直线上; ② Fi ≻ 0 时,动点N在直线的上方区域; ③ Fi ≺ 0 时,动点N在直线的下方区域。
开始 偏差计算 Y F>0 E(Xe,Ye)
偏差判别
坐标进给
到达终点? Y 结束 N O
F<0
X
偏差值的迭代计算公式 通过以上讨论,逐点比较法直线插补的偏差值计算公式为 Fi = XeYi – XiYe
该式有一个缺点:需要做乘法运算。对于硬件插补器或者使用汇编语言的 软件插补器,这将产生一定的困难。
插补模块
目标 位置
当前 位置 误差 实际 位置
调整运算
进给 速度
驱动装置 测量元件
工作台
位置控制软件
综上所述,各类插补算法都存在着速度与精度之间的矛盾。为解决这个 问题,人们提出了以下几种方案。 ① 软件/硬件相配合的两级插补方案 在这种方案中,插补任务分成两步完成: 首先,使用插补软件(采用数据采样法)将零件轮廓按插补周期(10~ 20ms)分割成若干个微小直线段,这个过程称为粗插补。 随后,使用硬件插补器对粗插补输出的微小直线段做进一步的细分插补, 形成一簇单位脉冲输出,这个过程称为精插补。 ② 多个CPU的分布式处理方案 首先,将数控系统的全部功能划分为几个子功能模块,每个子功能模块 配置一个独立的CPU来完成其相应功能,然后通过系统软件来协调各个CPU之 间的工作。
a0 a1 a2 a3 a4 a5 a6 a7 a0 a1 a2 a3 a4 a5 a6 a7 a8 a9
(a)
(b)
(4)有关插补问题的几点说明
① 插补运算可以采用数控系统硬件或数控系统软件来完成。 硬件插补器:速度快,但缺乏柔性,调整和修改都困难。 软件插补器:速度慢,但柔性高,调整和修改都很方便。 早期硬件数控系统:采用由数字逻辑电路组成的硬件插补器; CNC系统:采用软件插补器,或软件、硬件相结合的插补方式。
刀具进给 逐点比较法刀具进给方向的选择原则: ① 平行于某个坐标轴; ② 减小动点相对于零件轮廓的位置偏差。 根据这个原则可以判断出直线插补的刀具进给方向为: ① 当动点在直线上方区域时, 应 +X 方向进给一步; ② 当动点在直线下方区域时,应 +Y 方向进给一步; ③ 动点在直线上时, 既可以+X方向也可以+Y方向进给一步,在此约定 取+X方向。
③ 采用单台高性能微型计算机方案
第二节 逐点比较法 逐点比较法的基本原理 在刀具运动过程中,不断比较刀具与零件轮廓之间的相对位置,并根据 比较结果使刀具平行于坐标轴向减小偏差的方向进给。 逐点比较法的特点 ① 可以实现直线插补和圆弧插补; ② 每次插补运算后,只有一个坐标轴方向有进给; ③ 插补误差不超过一个脉冲当量; ④ 运算简单直观,输出脉冲均匀。 缺点:不容易实现两坐标以上的联动插补。 在两坐标联动的数控机床中应用比较普遍。
Y E(Xe,Ye)
F>0
F<0 O X
终点判别 确定刀具是否已经抵达直线终点。如果到了终点,则停止插补计算;否 则继续循环处理插补计算。常用的终点判别方法有以下三种。 ① 总步长法 在插补处理开始之前,先设置一个总步长计数器∑,其初值为: ∑=|Xe|+ |Ye| 其中, |Xe|:在X轴方向上刀具应该走的总步数; |Ye|:在Y轴方向上刀具应该走的总步数; ∑ :整个插补过程中,刀具应该走的总步数。 在插补过程中,每进行一次插补计算,无论哪根坐标轴进给一步,计数 器∑都做一次减1操作。当计数器∑内容减到零时,表示刀具已经走了规定的 步数,应该已经抵达直线轮廓的终点,系统停止插补计算。
② 投影法 在插补处理开始之前,先确定直线轮廓终点坐标绝对值中较大的那根轴, 并求出该轴运动的总步数,然后存放在总步长计数器∑ 中。 ∑=max(|Xe|, |Ye|) 在插补过程中,每进行一次插补计算,如果终点坐标绝对值较大的那根坐 标轴进给一步,则计数器∑做减1操作。当计数器∑内容减到零时,表示刀具 在终点坐标绝对值较大的那根坐标轴方向上已经走了规定的步数,应该已经抵 达直线轮廓的终点,系统停止插补计算。 ③ 终点坐标法 在插补处理开始之前,先设置两个步长计数器∑1 和∑2 ,分别用来存放 刀具在两个坐标轴方向上应该走的总步数: ∑1 = |Xe|, ∑2 = |Ye| 在插补过程中,每进行一次插补计算,如果X方向进给一步,则计数器∑1 做减1操作;如果Y方向进给一步,则计数器∑2做减1操作。当两个步长计数器 都为零时,表示刀具已经抵达直线轮廓的终点,系统停止插补计算。
插补运算处理
产生刀具坐标移动的实际控制信号
插补模块是数控系统软件中的一个及其重要的功能模块,其算法选择将 直接影响到数控系统的运动精度、运动速度和加工能力等。
(2)数控机床的运动特点 ① 在数控机床中,刀具的基本运动单位是脉冲当量,刀具沿各个坐标轴方 向的位移的大小只能是脉冲当量的整数倍。 因此,数控机床的运动空间被被离散化为一个网格区域,网格大小为一个 脉冲当量,刀具只能运动到网格节点的位置。 如下图所示。
为简化偏差值Fi的计算,通常采用迭代公式,即根据当前点的偏差值推算 出下一点的偏差值。 根据这个思想,对上述偏差值计算公式进行离散处理,最后有如下结论。
① 当 Fi ≥ 0 时,动点在直线上 或 在直线上方区域 向 +X 方向进给一步 新位置的偏差计算公式为: Fi+1 = Fi – Ye ② 当 Fi < 0时,动点在直线下方区域 向 +Y 方向进给一步 新位置的偏差计算公式为: Fi+1 = Fi + Xe ③ 开始加工直线轮廓时,刀具总是处在直线轮廓的起点位置。因此偏差 值的初始值 F0 = 0
(5)插补算法分类 脉冲增量插补算法 通过向各个运动轴分配驱动脉冲来控制机床坐标轴相互协调运动,从而加工出一 定轮廓形状的算法。 特点: ① 每次插补运算后,在一个坐标轴方向(X、Y或Z) ,最多产生一个单位脉冲 形式的步进电机控制信号,使该坐标轴最多产生一个单位的行程增量。 每个单位脉冲所对应的坐标轴位移量称为脉冲当量,一般用δ或BLU来表示。 ② 脉冲当量是脉冲分配的基本单位,它决定了数控系统的加工精度。 普通数控机床: δ = 0.01mm; 精密数控机床: δ = 0.005mm 、 0.0025mm 或0.001mm; ③ 算法比较简单,通常只需要几次加法操作和移位操作就可以完成插补运算,因 此容易用硬件来实现。 ④ 插补误差 < δ;输出脉冲频率的上限取决于插补程序所用的时间。因此该算法 适合于中等精度( δ = 0.01mm )和中等速度(1~4m/min)的机床数控系统。
② 在数控机床的加工过程中,刀具只能以折线的形式去逼近需要被加工的 曲线轮廓,其实际运动轨迹是由一系列微小直线段所组成的折线,而不是光滑 的曲线,如下图所示。
a0
a1 a2 a3 a4 a5 a6 a7
a0
a1
a2 a3 a4 a5 a6 a7 a8 a9
(a)
(b)
(3)插补定义 在机床运动过程中,为了实现轮廓控制,数控系统必须根据零件轮廓 的曲线形式和进给速度的要求 ,实时计算出介于轮廓起点和终点之间的所 有折线端点的坐标(a1、a2、a3、…、),这种实时运算操作就是插补运 算。
当前 位置 误差 实际 位置
插补模块
目标 位置
调整运算
进给 速度
驱动装置 测量元件
工作台
位置控制软件
特点: ① 每次插补运算的结果不再是某坐标轴方向上的一个脉冲,而是与各坐标 轴位置增量相对应的几个数字量。此类算法适用于以直流伺服电机或交流伺服 电机作为驱动元件的闭环或半闭环数控系统。 ② 数据采样插补程序的运行时间已不再是限制加工速度的主要因素。加工 速度的上限取决于插补精度要求以及伺服系统的动态响应特性。
数据采样插补算法 根据数控加工程序所要求的进给速度,按照插补周期的大小,先将零件轮 廓曲线分割为一系列首尾相接的微小直线段,然后输出这些微小直线段所对应 的位置增量数据,控制伺服系统实现坐标轴进给。 采用数据采样插补算法时,每调用一次插补程序,数控系统就计算出本插 补周期内各个坐标轴的位置增量以及各个坐标轴的目标位置。 随后伺服位置控制软件将把插补计算求得的坐标轴位置与采样获得的坐标 轴实际位置进行比较求得位置跟踪误差,然后根据当前位置误差计算出坐标轴 的进给速度并输出给驱动装置,从而驱动移动部件向减小误差的方向运动。
② 直线和圆弧是构成零件轮廓的基本线型,所以绝大多数数控系统都 具有直线插补和圆弧插补功能。 本课程将重点介绍直线插补和圆弧插补的计算方法。
③ 插补运算速度是影响刀具进给速度的重要因素。为减少插补运算时 间,在插补运算过程中,应该尽量避免三角函数、乘、除以及开方等复杂运 算。因此插补运算一般都采用迭代算法。 ④ 插补运算速度直接影响数控系统的运行速度;插补运算精度又直接 影响数控系统的运行精度。 插补速度和插补精度之间是相互制约、互相矛盾的,因此只能折中选择。
逐点比较法的工作过程 逐点比较法插补过程的每一步都要经过以下四 个工作节拍。 ① 偏差判别 根据偏差值的符号,判别当前刀具相对于零件 轮廓的位置偏差。 ② 坐标进给 根据偏差判别的结果,控制相应的坐标轴进给 一步,使刀具向零件轮廓靠拢。 ③ 偏差计算 刀具进给一步后,针对新的刀具位置,计算新 的偏差值。 ④ 终点判别 刀具进给一步后,需要判别刀具是否已经到达 零件轮廓的终点。 如果已经到达终点,则停止插补过程; 如果未到达终点,则返回到第①步,重复上述 四个节拍。