导数的应用习题课

合集下载

高等数学 第三章中值定理与导数的应用习题课

高等数学 第三章中值定理与导数的应用习题课

(5) (1 + x )α = 1 + αx +
α (α − 1)
2!
x2 + L+
α (α − 1)L (α − n + 1)
n!
x n + o( x n )
Ⅲ 导数的应用
一、函数的极值与单调性
1.函数极值的定义 . x ∈ U ( x0 , δ ), f ( x ) ≤ f ( x0 ), f ( x0 )为极大值. 为极大值.
0 ∞ 其它型: 其它型: ⋅ ∞ , ∞ − ∞ , 0 , 1 , ∞ , 转化为 “ ”型或“ ” 型 0 型或“ 型或 0 ∞
0 ∞ 0
二、泰勒公式
1.泰勒公式 .
如果函数在含有一点的开区间内具有直到(n+1)阶导数 阶导数 如果函数在含有一点的开区间内具有直到 f ′′( x0 ) f ( n) ( x0 ) 2 f ( x) = f ( x0 ) + f ′( x0 )( x − x0 ) + ( x − x0 ) + L+ ( x − x0 )n + Rn ( x) 2! n! ( n +1) f (ξ ) Rn ( x ) = ( x − x0 ) n+1 拉格朗日型余项 ( n + 1)!
x ∈ U ( x 0 , δ ), f ( x ) ≥ f ( x0 ), f ( x0 )为极小值 .
o

2.函数的驻点 .
f ′( x 0 ) = 0 则 x 0为 f ( x ) 的驻点。 的驻点。
3.函数的单调区间的判别 .
函数在[a,b]上连续 在(a,b)内可导 上连续,在 内可导. 函数在 上连续 内可导

5.2导数的运算习题课

5.2导数的运算习题课
an
数列
的前n项和为S n _________.
n 1
解答
1. ′ = 3 2 − 2
= ′
=1
=3−2=1
= 450
题型七 切线问题
解答
2. ′ = −1 1 − −
= −1 1 − − = − + 1 −1
习题
1.若函数 y f ( x) 在区间 ( a, b) 内可导,且 x0 ( a, b) 则 lim
h 0

f ( x0 h) f ( x0 h)
的值为
h

'
B. 2 f ( x0 )
'
A. f ( x0 )
'
2.若 f ( x0 ) 3 ,则 lim
h 0
A. 3
x
x
x ln 2


















f
x

sin
x
,
f
x

f
x
,
f
x

f
x
,



f
x

f
2. 若 0
, 则
1
0
2
1
n 1
n x , n N
f 2005 x
题型四 基本函数的求导公式
解答
1.
C

3

+
1 ′

=1−
1
2
错误
= 3 ln 3 错误

2021_2022学年高中数学第三章导数应用习题课_导数的综合应用课件北师大版选修2_2

2021_2022学年高中数学第三章导数应用习题课_导数的综合应用课件北师大版选修2_2
习题课——导数的综合应用
课标阐释
1.利用导数研究函数的单调
性、极值,以及连续函数在区
间[a,b]上的最大(小)值.
2.利用导数研究不等式恒成
立问题及含有参数的最值问
题的解法
思维脉络
知识梳理
1.求可导函数y=f(x)的单调区间
求可导函数y=f(x)单调区间的步骤是:
(1)求f'(x);
(2)解不等式f'(x)>0(或f'(x)<0);
∪(0,1].
探究一
探究二
探究三
探究二 含参数的最值问题
【例2】 已知函数f(x)=(4x2+4ax+a2) ,其中a<0.
(1)当a=-4时,求f(x)的递增区间;
(2)若f(x)在区间[1,4]上的最小值为8,求a的值.
分析(1)将a=-4代入,令f'(x)>0得递增区间;(2)先求导,求出单调区间,

③当-2>4,即 a<-8 时,f(x)在[1,4]上的最小值可能在 x=1 或 x=4 处取
得,而 f(1)=8 时没有符合题意的 a 值,由 f(4)=2(64+16a+a2)=8 得
a=-10 或 a=-6(舍去),当 a=-10 时,f(x)在(1,4)上是减少的,f(x)在[1,4]
上的最小值为 8.故 a=-10.
范围是(
)
1
A.a≤-8
C.a≤0
1
B.-8≤a<0
1
D.a≤- 或 a=0
8
解析:由题意知函数 f(x)的定义域为
1
-22 ++1
(0,+∞),f'(x)=-2ax+1=

高等数学习题课(3)中值定理与导数的应用

高等数学习题课(3)中值定理与导数的应用
高等数学习题课
(3)
中值定理与导数的应用
第二课 中值定理与导数应用
I. 目的要求 ⒈ 理解罗尔定理、拉格朗日定理,了解柯西定理; 会用中值定理解决诸如方程根的存在性、不等 式证明等问题; ⒉ 了解泰勒定理的条件、结论及余项,掌握函数 ex , sinx, cosx, ln(1+x), (1+x)α的麦克劳 林公式; ⒊ 熟练掌握用洛必达法则求不定型极限的方法; ⒋ 熟练掌握求函数单调区间、极值、凹凸区间、 拐点的方法,并会用其证明一些相关问题。
证:由条件易知F (x)在 [1,2]上满足罗尔定理条件, 则 (1,2),使 F(1) 0 又 F(x) 2(x 1) f (x) (x 1)2 f (x) 在 [1,1]上连续,在(1,1)内可导,且 F(1) F(1) 0 由罗尔定理, (1, 1) (1, 2) 使 F() 0 #
(a 0)有极值,试证:曲线y f (x) 在点(a, f (a))处的
切线经过坐标原点。 证:曲线 y f (x) 在 (a, f (a)) 处的切线方程为
y f (a) f (a)(x a)
即 y f (a)x [ f (a) a f (a)]
由条件 (x) 在 x a 点有极值,且易知(x)在 x a 点可导
x
2
分析:只需证明 sin x x 0 3 cos x
证:令
f
(x)
sin x 3 cos x
x
sin
1
x cos 3
x
x
,显见
f
(0)
0;
f
(x)
cos
2 3
x
1 sin
2
x
4
cos 3
x

微分中值定理与导数的应用习题课(一)

微分中值定理与导数的应用习题课(一)

【例3】设 f ( x)在[0, a]上连续, 在 (0, a)内可导, 且 f (a) 0 . 证明存在一点 (0, a), 使 f ( ) f ( ) 0. 分析 从结论 f ( ) f ( ) 0 看等价于方程 x f ( x) f ( x) 0 有实根,但若利用零点定理,无法验证 f (0) f (a) 0,所以
证明: 设 F ( x) a0 x n a1 x n1 an1 x, 易知多项式函数F ( x)在[0, x0 ] 上连续且可导,由题设
F ( x0 ) 0 F (0).
由罗尔定理,存在 (0, x0 ), 使 F ( ) 0, 即 a0n n1 a1 (n 1) n2 an1 0, 这说明 就是方程 a0nx n1 a1 (n 1) x n2 an1 0 的一个小于 x 0的正根.
2
x 1)
分析 证明函数恒等式,主要是利用拉格朗日定理的推论:
如果函数 f ( x)在区间 I上的导数恒为零,那么 f ( x)在区间 I上是一个常数.
证明:设 f ( x) arcsin x arccos x,(1 x 1)
因 f ( x) 1 1 0,(1 x 1) 1 x2 1 x2
试证在(a,
b)内至少存在一点 ,
使 f (b)
f (a)
f ( ) ln b
a
成立.
分析
将所证等式变形为
f (b)
f (a)
f ( ) 或
ln b ln a 1
f (b) f (a) ln b ln a
f ( x)
ln x
,
x
可见,应对 f ( x)与 ln
x 在[a,
b]上应用
ln b ln a 1

最新-江苏省邳州市第二中学高中数学选修22教学课件:导数的应用习题课 精品

最新-江苏省邳州市第二中学高中数学选修22教学课件:导数的应用习题课 精品

为:S(x)=|AB||BC|=2x3-12x2+16x(0<x<2).
S( x) 6x2 24x 16.

S(
x)
0
,得x1
2
2
3 3
,
x2
2
2
3 3
.
x1 (0,2), 所以当 因此当点B为(2 2
x
3
2
,0)
23 3
时,S( x)max
32 9
3
.
时,矩形的最大面积是
32
3.
2
9
谢谢观看
演 练
在 x 2 x 1 都取得极值
3
a, 求 b的值及函数 f (x)
的单调区间
a 1 ,b 2 2
(, 2), (1, ) 3
( 2 ,1) 3
题 05福建
型 已知函数 f (x) x3 bx2 cx d
二 的图像过点 P(0, 2) 且在点 M (1, f (1))
2 ( x 1)3( x 3
0).

f
( x)
1 x
1 x2
(x
1)
2( x 1)2
( x 1)3
2x 1 x2 ,
令f (x) 0 ,结合x>0得x=1.
而0<x<1时, f (x) 0;x>1时,f (x) 0 ,所以x=1是f(x)的 极小值点.
所以当x=1时,f(x)取最小值f(1)=1.
导数的应用习题课
导数应用的知识网络结构图:
高考典型题
题型一
(06天津)已知函数 f (x) ax3 bx2 3x
在 x 1 处取得极值
求:(1) f (x) 的解析式 a 1,b 0

习题课(中值定理和导数的应用)

习题课(中值定理和导数的应用)

例10. 求
解法1 利用中值定理求极限
a a 原式 lim n ( ) 2 n n 1 n 1
2
1
a a ( 在 与 之间) n n 1
n2 a lim n n( n 1) 1 2
a
机动
目录
上页
下页
返回
结束
解法2 利用罗必塔法则
原式 lim
arctan a arctan b x x
机动 目录
x
f ( x)
下页 返回 结束
上页
arctan x ( x 0) . 例8. 证明 ln(1 x) 1 x 证: 设 ( x) (1 x) ln(1 x) arctan x , 则 (0) 0 1 ( x) 1 ln(1 x) 0 ( x 0) 2 1 x 故 x 0 时, (x) 单调增加 , 从而 ( x) (0) 0 arctan x 即 ln(1 x) ( x 0) 1 x 1 x ln(1 x) (0 x 1) 时, 如何设辅助 思考: 证明 1 x arcsin x 函数更好 ? 2 提示: ( x) (1 x) ln(1 x) 1 x arcsin x
二 课堂练习
1. 判断是非(共7个) 3. 计算题(共5个)
1. 掌握四个微分中值定理
罗尔中值定理:
[ 若 f ( x ) : (1)在闭区间a , b]上连续; (2)在开区间 a , b)内可导; (
(3) f (a)= f (b) ;
则至少存在一点 (a , b),使得
f ( ) 0 .
1 2
1 cos x 1 o 1 . 及时求出已定式的极限. 原式 lim 2 x 0 3 x 2 1 sin x lim 2 x 0 6 x 1 1 1 2 6 12

北师版高中数学选择性必修第二册课后习题 复习课 第2课时 导数及其应用

北师版高中数学选择性必修第二册课后习题 复习课 第2课时 导数及其应用

第2课时导数及其应用课后训练巩固提升1.若函数f(x)=α2-cos x,则f'(α)等于( ).A.sin αB.cos αC.2α+sin αD.2α-sin α2.函数y=f(x)的导函数y'=f'(x)的图象如图所示,则函数y=f(x)的图象可能是( ).(第2题)y'=f'(x)的图象与x轴交点的横坐标从左往右依次为x1,x2,x3(其中x1<0<x2<x3),由导函数y'=f'(x)的图象易得当x∈(-∞,x1)∪(x2,x3)时,f'(x)<0;当x∈(x1,x2)∪(x3,+∞)时,f'(x)>0,所以函数f(x)在(-∞,x1),(x2,x3)上单调递减,在(x1,x2),(x3,+∞)上单调递增,观察各选项,只有D选项符合.3.已知y=f(x)是定义在R上的函数,且f(1)=1,f'(x)>1,则f(x)>x的解集是( ).A.(0,1)B.(-1,0)∪(0,1)C.(1,+∞)D.(-∞,-1)∪(1,+∞)f(x)>x可化为f(x)-x>0.设g(x)=f(x)-x,则g'(x)=f'(x)-1,由题意知g'(x)=f'(x)-1>0,∴函数g(x)在R上单调递增.又g(1)=f(1)-1=0,∴g(x)>g(1),即f(x)-x>0的解集为(1,+∞).故选C.4.经过点(2,0)且与曲线y=1x相切的直线方程为 .解析:设切点坐标为x 0,1x 0,x 0≠0,则1x 0x 0-2=-1x 02,解得x 0=1,所以切点为(1,1),斜率为-1.故直线方程为x+y-2=0.5.若函数f(x)=ax 2-1x在区间(0,+∞)上单调递增,则实数a 的取值范围是 . 解析:f'(x)=ax-1x'=a+1x2,由题意得,a+1x2≥0对x ∈(0,+∞)恒成立,即a≥-1x2对x ∈(0,+∞)恒成立,所以a≥0.6.某罐头生产厂计划制造一种圆柱形的密封铁皮罐头盒,其表面积为定值S.若罐头盒的底面半径为r,则罐头盒的体积V 与r 的函数关系式为 ;当r= 时,罐头盒的体积最大.解析:由题意得,罐头盒的高h=S -2πr 22πr,则V=πr 2·S -2πr 22πr=12Sr-πr 30<r<√2πS 2π.V'=12S-3πr 2. 令V'=0,得r=√6πS6π,令V'>0,得0<r<√6πS6π,令V'<0,得√6πS 6π<r<√2πS2π,所以函数V=12Sr-πr 3在区间0,√6πS 6π上单调递增,在区间√6πS 6π,√2πS2π上单调递减. 故当r=√6πS6π时,V 最大.答案:V=12Sr-πr 30<r<√2πS 2π√6πS6π7.求下列函数的导数: (1)y=sin x-x+1; (2)y=-2e x ·x 3; (3)y=lnx x+1-2x .(2)y'=(-2e x ·x 3)'=(-2e x )'·x 3+(-2e x )·(x 3)'=-2e x x 3-6x 2e x . (3)y'=lnx x+1-2x '=lnx x+1'-(2x )'= 1x(x+1)-lnx (x+1)2-2xln2=1x−1x+1−lnx (x+1)2-2x ln2.8.设函数f(x)=aln x+12x+32x+1,其中a ∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y 轴. (1)求a 的值;(2)求函数f(x)的极值.因为f(x)=alnx+12x+32x+1,所以函数f(x)的定义域为(0,+∞),f'(x)=ax −12x2+32.由于曲线y=f(x)在点(1,f(1))处的切线垂直于y轴,故该切线的斜率为0,则f'(1)=a-12+32=0,解得a=-1.(2)由(1)知f(x)=-lnx+12x +32x+1(x>0),f'(x)=-1x−12x2+32=3x2-2x-12x2=(3x+1)(x-1)2x2.令f'(x)=0,解得x1=1,x2=-13(舍去).当x∈(0,1)时,f'(x)<0,函数f(x)在区间(0,1)上单调递减;当x∈(1,+∞)时,f'(x)>0,函数f(x)在区间(1,+∞)上单调递增.故函数f(x)在x=1处取得极小值f(1)=3,无极大值.1.已知函数f(x)=xln x,若f(x)在x0处的函数值与导数值之和等于1,则x0的值等于( ).A.1B.2C.±1D.ef(x)=xlnx,所以函数f(x)的定义域为(0,+∞),f'(x)=lnx+1,于是有x0lnx0+lnx0+1=1,解得x0=1或x0=-1(舍去),故选A.2.设函数f(x)=12x2-9ln x在区间[a-1,a+1]上单调递减,则实数a的取值范围是( ).A.(1,2]B.[4,+∞)C.(-∞,2]D.(0,3]f(x)的定义域为(0,+∞),且f'(x)=x-9x.又x>0,由f'(x)=x-9x≤0,得0<x≤3.因为函数f(x)在区间[a-1,a+1]上单调递减,所以{a-1>0,a+1≤3,解得1<a≤2.3.函数f(x)=xe x的图象为( ).f(x)=xe x ,所以f'(x)=1-xe x.当x<1时,f'(x)>0,函数f(x)=xe x在区间(-∞,1)上单调递增;当x>1时,f'(x)<0,函数f(x)=xe x在区间(1,+∞)上单调递减,只有选项A 中图象符合,故选A.4.若函数f(x)在区间(0,+∞)上可导,且满足f(x)>-xf'(x),则一定有( ). A.函数F(x)=f (x )x 在区间(0,+∞)上单调递增 B.函数F(x)=f (x )x 在区间(0,+∞)上单调递减C.函数G(x)=xf(x)在区间(0,+∞)上单调递增D.函数G(x)=xf(x)在区间(0,+∞)上单调递减则x>0时,G'(x)=xf'(x)+f(x)>0,故G(x)=xf(x)在区间(0,+∞)上单调递增,故选C.5.已知a ∈R,设函数f(x)={x 2-2ax +2a ,x ≤1,x -alnx ,x >1.若关于x 的不等式f(x)≥0在R 上恒成立,则a 的取值范围为( ). A.[0,1] B.[0,2] C.[0,e]D.[1,e]时,f(x)=x 2-2ax+2a≥0恒成立,且f(in =f(a)=2a-a 2≥0,解得0≤a<1. 综上,a≥0.当x>1时,由f(x)=x-alnx≥0恒成立,即a≤xlnx恒成立.设g(x)=xlnx,则g'(x)=lnx -1(lnx )2.令g'(x)=0,得x=e,且当1<x<e时,g'(x)<0,当x>e时,g'(in=g(e)=e,故a≤e.综上,a的取值范围是[0,e].6.已知函数y=f(x)在区间[0,3]上的图象如图所示,记k1=f'(1),k2=f'(2),k3=f(2)-f(1),则k1,k2,k3之间的大小关系为.(请用“>”连接)(第6题)k1=f'(1)与k2=f'(2)分别表示曲线在点A与点B处的切线的斜率,而k3=f(2)-f(1)=f(2)-f(1)表示直线AB的斜率,结合2-1图象知k1>k3>k2.>k21>k37.设t≠0,点P(t,0)是函数f(x)=x3+ax与g(x)=bx2+c的图象的一个公共点,两函数的图象在点P处有相同的切线.试用t表示实数a,b,c.f(x),g(x)的图象都过点(t,0),所以f(t)=0,即t3+at=0.因为t≠0,所以a=-t2.由g(t)=0,得bt2+c=0,即c=ab.又因为函数f(x),g(x)的图象在点(t,0)处有相同的切线,所以f'(t)=g'(t).而f'(x)=3x2+a,g'(x)=2bx,所以3t2+a=2bt.将a=-t2代入上式得b=t,从而c=ab=-t3.故a=-t2,b=t,c=-t3.8.设函数f(x)=ln x-a(x-1)e x,其中a∈R.(1)若a≤0,讨论f(x)的单调性;(2)若0<a<1e,求证:f(x)恰有两个零点.f(x)的定义域为(0,+∞),且f'(x)=1x -[ae x+a(x-1)e x]=1-ax2e xx.因为当a≤0时,1-ax2e x>0,从而f'(x)>0,所以函数f(x)在区间(0,+∞)上单调递增.(1)知,f'(x)=1-ax 2e xx. 设g(x)=1-ax2e x(x>0).因为g'(x)=-axe x(2+x),且0<a<1e,所以g'(x)<0,从而函数g(x)在区间(0,+∞)上单调递减.又g(1)=1-ae>0,且ln1a >1,g ln1a=1-a ln1a21a=1-ln1a2<0,所以方程g(x)=0在区间(0,+∞)上有唯一解,从而f'(x)=0在区间(0,+∞)上有唯一解,不妨设为x0,则1<x0<ln1a.当x∈(0,x0)时,f'(x)=g(x)x >g(x0)x=0,所以f(x)在区间(0,x0)上单调递增;当x∈(x0,+∞)时,f'(x)=g(x)x <g(x0)x=0,所以f(x)在区间(x0,+∞)上单调递减,因此x0是函数f(x)的极大值点,也是唯一的极值点.设h(x)=lnx-x+1(x>0),当x>1时,h'(x)=1x-1<0,则h(x)在区间(1,+∞)上单调递减,从而当x>1时,h(x)<h(1)=0,所以当x>1时,lnx<x-1.所以f ln1a =ln ln1a-a ln1a-1e ln1a=ln ln1a-ln1a+1=h ln1a<0,又因为f(x0)>f(1)=0,所以f(x)在区间(x0,+∞)上有唯一零点.又因为f(x)在区间(0,x0)上有唯一零点1,所以函数f(x)在区间(0,+∞)上恰有两个零点.。

1.2导数计算习题课

1.2导数计算习题课

第一章 1.2
导数及其应用 导数的计算 习题课
回顾与总结
1.常见函数的导数公式 常见函数的导数公式. 常见函数的导数公式
为常数) (C )′ = 0 (C 为常数) 为有理数) ( x n )′ = nx n−1 ( n 为有理数) (sin x )′ = cos x (cos x )′ = -sin x (a x )′ = a x ln a (a > 0,a ≠ 1) 特殊地 (e x )′ = e x 1 1 (log a x )′ = log a e = (a > 0, a ≠ 1) 且 x x ln a 1 特殊地 (ln x )′ = x
2 ∴k2 = y′ |x=3 = − . 3 因为k 所以两条切线互相垂直.从而命题成立 因为 1k2=-1,所以两条切线互相垂直 从而命题成立 所以两条切线互相垂直 从而命题成立.
9 8 − x2 9
利用上述方法可得圆锥曲线的切线方程如下: 利用上述方法可得圆锥曲线的切线方程如下 圆锥曲线的切线方程如下 (1)过圆 过圆(x-a)2+(y-b)2=r2上一点 0(x0,y0)的切线方程是 上一点P 的切线方程是: 过圆 的切线方程是 (x0-a)(x-a)+(y0-b)(y-b)=r2.
2 3 2 3
说明:在对法则的运用熟练后 就不必再写中间步骤 说明 在对法则的运用熟练后,就不必再写中间步骤 在对法则的运用熟练后 就不必再写中间步骤.
y′ = 4(1 + sin x) (1+ sin x) ⋅ x
2 3 2 ’
= 4(1 + sin2 x)3 ⋅ 2sin x ⋅ cos x = 4sin 2x ⋅ (1 + sin2 x)3 .

导数的应用习题课课件

导数的应用习题课课件

例4: 如图,在二次函数f(x)=
4x-x2的图象与x轴所
y
围成的图形中有一个
内接矩形ABCD,求这
个矩形的最大面积.
解:设B(x,0)(0<x<2), 则
x
A(x, 4x-x2).
从而|AB|= 4x-x2,|BC|=2(2-x).故矩形ABCD的面积
为:S(x)=|AB||BC|=2x3-12x2+16x(0<x<2).
2
3
f ( )
3
33 8
,又f(0)=f(π)=0,[
f ( )]max
33 8
.
故当 x 3 , y
2
3 4
时,
( xy)max
33 8
.
例6:证明不等式: ln x 1 1 ( x 1)2 1 2 (1 x)3( x 0).
x2
3
证:设
f
(x)
ln
x
1 x
1 2
(x
1)2
解:函数的定义域为(,0) (0,1) (1,).
当x<0或x>1时, f (x) x x 1 2x2 2x 1 .
x 1 x x(x 1)
f ( x)
2x 1 x2( x 1)2
.
故当x<0时,
f (x) 0;当x>1时, f (x) 0.
当0<x<1时,
f (x)
2x2 2x 1 ,
设 x 1 cos , y 1 sin ,由x,y为正实数得: 0 .
xy
1
(1
2
cosBiblioteka ) s in.2
设 f ( ) 1 (1 cos )sin .

人教A版高中数学选择性必修第二册习题课导数的几何意义及其应用课件

人教A版高中数学选择性必修第二册习题课导数的几何意义及其应用课件
所以 f′(1)=ln 1+a+1=a+1=2,a=1.
[方法技巧]
一般已知曲线上一点P(x0,y0)的切线与已知直线的关系(平行或垂直),确定 该切线的斜率k,再求出函数的导函数,然后利用导数的几何意义得到k=f′(x0) =tan α,其中倾斜角α∈[0,π),根据范围进一步求得角α或有关参数的值.
数 f(x)的图象在点(0,1)处的切线斜率为-1,∴函数 f(x)的图象在点(0,f(0))处的
切线方程为 y=-x+1,即 x+y-1=0.故选 B.
答案:B
2.(2022·新课标Ⅱ卷)曲线 y=ln|x|过坐标原点的两条切线的方程为________, ________.
解析:先求当 x>0 时,曲线 y=ln x 过原点的切线方程,设切点为(x0,y0), 则由 y′=1x,得切线斜率为x10,又切线的斜率为xy00,所以x10=xy00,解得 y0=1, 代入 y=ln x,得 x0=e,所以切线斜率为1e,切线方程为 y=1ex.同理可求得当 x<0 时的切线方程为 y=-1ex.综上可知,两条切线方程为 y=1ex,y=-1ex.
答案:y=1ex y=-1ex
高频考点二|求切点坐标
[例2] 已知函数f(x)=xln x在点P(x0,f(x0))处的切线与直线x+y=0垂直, 则切点P(x0,f(x0))的坐标为________.
[解析] ∵f(x)=xln x,∴f′(x)=ln x+1,由题意得f′(x0)·(-1)=-1,即 f′(x0)=1,∴ln x0+1=1,ln x0=0,∴x0=1,∴f(x0)=0,即P(1,0).
2.若函数f(x)=ln x+ax存在与直线2x-y=0平行的切线,则实数a的取值范围是
()

人教A版高中数学选择性必修第二册习题课导数及其应用课件

人教A版高中数学选择性必修第二册习题课导数及其应用课件

[集训冲关]
1.函数f(x)=1+3x-x3
()
A.有极小值,无极大值
B.无极小值,有极大值
C.无极小值,无极大值
D.有极小值,有极大值
解析:f′(x)=-3x2+3,由f′(x)=0,得x=±1.当x∈(-1,1)时,f′(x)>0, ∴f(x)的单调递增区间为(-1,1);同理,f(x)的单调递减区间为(-∞,-1)和 (1,+∞),∴当x=-1时,函数有极小值-1,当x=1时,函数有极大值3, 故选D.
递减.
(2)证明:f(x)-g(x)=x2ex-1-x3=x2(ex-1-x). 设h(x)=ex-1-x,h′(x)=ex-1-1, 由h′(x)=0得x=1, 则当x<1时,h′(x)<0,即函数h(x)在(-∞,1)上单调递减; 当x>1时,h′(x)>0,即函数h(x)在(1,+∞)上单调递增. 因此,当x=1时,h(x)取最小值h(1)=0. 即对任意实数x都有h(x)≥0,又x2≥0, 所以f(x)-g(x)≥0, 故对任意实数x,恒有f(x)≥g(x).
[集训冲关]
1.函数 f(x)=2x2-ln x 的单调递增区间是
A.0,12
B.-12,0和12,+∞
C.12,+∞
D.-∞,-12和0,12
()
解析:由题意得 f′(x)=4x-1x=4x2x-1,且 x>0,由 f′(x)>0,即 4x2-1>0, 解得 x>12.故选 C.
答案:C
2.已知函数 f(x)=-12x2+2x-aex. (1)若 a=1,求 f(x)在 x=1 处的切线方程;
令 g′(x)=0,解得 x=3,列表如下:
故函数 g(x)在 x=3 处取得极小值,亦即最小值, 即 g(x)min=-e13,∴a≤-e13, 故实数 a 的取值范围是-∞,-e13.

《导数习题课》课件

《导数习题课》课件
详细描述
复合函数的导数是通过对中间变量求导,然后将结果代入到外层函数中求导得 到的。掌握复合函数的导数可以帮助我们解决一些复杂的函数问题,如求极值 、判断单调性等。
隐函数的导数
总结词
掌握隐函数的导数是解决隐函数问题 的关键。
详细描述
隐函数的导数是通过对等式两边同时 求导,然后解出对x的导数得到的。掌 握隐函数的导数可以帮助我们解决一 些涉及多个变量的问题,如求最值、 判断曲线的形状等。
THANKS
感谢观看
总结词
导数具有连续性、可加性、可乘性和链式法则等性质 。
详细描述
导数具有一系列重要的性质,包括连续性、可加性、可 乘性和链式法则等。连续性是指函数在某一点的导数等 于该点附近的极限值;可加性是指函数在两点之间的导 数等于两端点导数的和;可乘性是指函数与常数的乘积 的导数等于该常数与函数导数的乘积;链式法则是指复 合函数的导数等于复合函数内部函数的导数与外部函数 的导数的乘积。这些性质在研究函数的单调性、极值和 曲线的拐点等方面具有广泛应用。
导数与函数的最值的综合题
总结词
这类题目通常涉及到利用导 数研究函数的极值和最值,
解决最优化问题。
详细描述
这类题目要求熟练掌握导数 的计算方法和函数的极值判 定,能够利用导数研究函数 的极值和最值,解决最优化
问题。
示例
设函数$f(x) = x^{3} ax^{2} + bx$,若$f(x)$在$( - infty,0)$和$(2, + infty)$上 单调递增,在$(0,2)$上单调 递减,且$f(x)$在$x = 2$处 取得极小值,求$a,b$的值及 $f(x)$的最小值。
导数与函数的零点的综合题
总结词

人教A版高中数学选择性必修第二册精品课件 第5章 一元函数的导数及其应用 习题课——函数最值的应用

人教A版高中数学选择性必修第二册精品课件 第5章 一元函数的导数及其应用 习题课——函数最值的应用
在时,利用F(x)的单调性求最小值,证明F(x)min>0.
2.证明不等式:ex≥1+x.
证明:设函数f(x)=ex-1-x,则f'(x)=ex-1.
令f'(x)=0,得x=0.
当x>0时,f'(x)>0,函数f(x)在区间(0,+∞)内单调递增;
当x<0时,f'(x)<0,函数f(x)在区间(-∞,0)内单调递减.
+18x.
2
令V'=0,得x=0(舍去)或x=1.
根据V=-6x3+9x2的单调性,可知V=-6x3+9x2在x=1处取得极大值也是最大
值.
故当该长方体的长、宽、高分别为2 m,1 m,1.5 m时,体积最大,最大体积
为3 m3.
答案:(1)A (2)3 m3
【思考辨析】
判断下列说法是否正确,正确的在后面的括号里画“ ”,错误的画“×”.
证明:先证ln x<x(x>0).
设 f(x)=x-ln x(x>0),则
1
f'(x)=1
=
-1
.

令f'(x)=0,解得x=1.
当0<x<1时,f'(x)<0,函数f(x)在区间(0,1)内单调递减;
当x>1时,f'(x)>0,函数f(x)在区间(1,+∞)内单调递增.
所以当x=1时,函数f(x)有极小值,也是最小值,最小值为f(1)=1>0.
得m>1,
∴m的取值范围为(1,+∞).
探究三
导数在实际问题中的应用
【例3】 某商场销售某种商品的经验表明,该商品每日的销售量y(单位:

导数的基本公式及运算法则习题课

导数的基本公式及运算法则习题课

(3)令 u=lnx,则 y=lnu, ∴y′x=y′u·u′x =1u·1x=xl1nx. (4)令 u=2x2+1,则 y=eu, ∴y′x=y′u·u′x=eu·4x =4x·e2x2+1.
例2 求下列函数的导数. (1)y=(x2-4)2; (2)y=log2(2x2+3x+1); (3)y=esin(ax+b) 分析 先将复合函数分解,找出中间变量,然后按复合 函数求导公式y′=y′u·u′x进行求导.
gf((xx))f(x)g(xg)(x)f2(x)g(x)(g(x)0)
解 根据推论 1 可得 (3x4) = 3(x4) , (5cos x) = 5(cos x) ,又(x4) = 4x3,
(cos x) = - sin x,(ex) = ex,(1) = 0,
故f (x) = (3x4 - ex + 5cos x - 1) = (3x4) -(ex ) + (5cos x) - (1) = 12x3 - ex - 5sin x . f (0) = (12x3 - ex - 5sin x)|x=0 = - 1
公 式 6 : (e x ) ' e x ;
公 式 7 : (lo g a x ) '
1
(a 0 , 且 a 1);
x ln a
公 式 8 : (ln x ) ' 1 ; x
需要使用导数的运算法则求导:
f(x)g(x)f(x)g(x)
f(x)•g(x)f(x)g(x)f(x)g(x)
推论 1 (cu(x)) = cu (x) (c 为常数).
20XX
感谢观赏 求简单复合函数f(ax+b)的导数
求简单复合函数的导数,实质是运用整体思想,先把简单复

1.1-1.4导数及其应用习题课

1.1-1.4导数及其应用习题课
1 由于直线 x 2 y 3 0 的斜率为 ,且过点 (1,1) , 2
f (1) 1, 故 1 即 f '(1) 2 , b 1, a 1 2 b 2 ,
解得 a 1 , b 1 .
例题讲解
ln x 1 , 所以 (Ⅱ)由(Ⅰ)知 f(x)= x 1 x
当 a 2 时, x1 a,x2 a ,从而 f ( x ) 在 f ( x ) 的定义域内没有零点, 故 f ( x ) 无极值. 当a
2 时, x1 a , x2 a , f ( x ) 在 f ( x) 的定义域内有两个不同的零点,
由极值判别方法知 f ( x ) 在 x x1,x x2 取得极值. 综上, f ( x ) 存在极值时, a 的取值范围为 ( 2, ) .
在该区间上的最大值.
【思路点拨】 (1)要使 f ( x ) 在 ( 2 , ) 上存在单调递增区间,需 f ' (x) 在 ( 2 , )
3
3
上恒大于零,即得 a 的取值范围.(2)首先求出 f ( x ) 在 [1, 4] 上的最小值为 f(4), 从而求出 a 的值,进一步易求 f ( x ) 在该区间上的最大值为 f(2).
2 x 2 2ax 1 (Ⅱ) f ( x ) 的定义域为 (a, ) , f ( x) . xa
方程 2 x 2ax 1 0 的判别式 4a 8 .
2 2
(ⅰ)若 0 ,即 2 a (ⅱ)若 0 ,则 a
2 ,在 f ( x) 的定义域内 f ( x) 0 ,故 f ( x) 无极值.
a b 2 1 . (2)由f(α)=-1和f(β)=1可得: 2 a b 1

新教材高中数学习题课二导数的几何意义及其应用新人教A版选择性必修第二册

新教材高中数学习题课二导数的几何意义及其应用新人教A版选择性必修第二册

习题课(二) 导数的几何意义及其应用一、选择题 1.曲线y =1-2x +2在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3 D .y =-2x -2解析:选A 因为y =1-2x +2=x x +2, 所以y ′=x +2-x x +22=2x +22,y ′| x =-1=2,所以曲线在点(-1,-1)处的切线的斜率为2,所以所求切线方程为y +1=2(x +1),即y =2x +1.2.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .12解析:选A 因为y ′=x 2-3x ,所以令y ′=12,解得x =3,即切点的横坐标为3.3.已知函数f (x )=x ln x +a 的图象在点(1,f (1))处的切线经过原点,则实数a 的值为( )A .1B .0 C.1eD .-1解析:选A ∵f (x )=x ln x +a ,∴f ′(x )=ln x +1, ∴f ′(1)=1,f (1)=a ,∴切线方程为y =x -1+a , ∴0=0-1+a ,解得a =1,故选A.4.若点P 是函数y =e x -e -x-3x ⎝ ⎛⎭⎪⎫-12≤x ≤12图象上任意一点,且在点P 处切线的倾斜角为α,则α的最小值是( )A.5π6 B .3π4C.π4D .π6解析:选B 由导数的几何意义,k =y ′=e x+e -x-3≥2e x ·e -x-3=-1,当且仅当x =0时等号成立.即tan α≥-1,α∈[0,π).又-12≤x ≤12,tan α=k <0,所以α的最小值是3π4,故选B.5.若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,+∞ B .⎣⎢⎡⎭⎪⎫-12,+∞C .(0,+∞)D .[0,+∞)解析:选D f ′(x )=1x +2ax =2ax 2+1x(x >0).根据题意有f ′(x )≥0(x >0)恒成立,所以2ax 2+1≥0(x >0)恒成立,即2a ≥-1x2(x >0)恒成立,所以a ≥0,故实数a 的取值范围为[0,+∞).6.意大利画家列奥纳多·达·芬奇(1452.4—1519.5)的画作《抱银貂的女人》中,女士脖颈上黑色珍珠项链与主人相互映衬,呈现出不一样的美与光泽,达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,项链所形成的曲线是什么?这就是著名的“悬链线问题”,后人给出了悬链线的函数解析式:f (x )=a cosh x a,其中a 为悬链线系数,cosh x 称为双曲余弦函数,其函数表达式为cosh x =e x +e -x 2,相应地双曲正弦函数的表达式为sinh x =e x -e-x2.若直线x =m 与双曲余弦函数C 1、双曲正弦函数C 2的图象分别相交于点A ,B ,曲线C 1在点A 处的切线l 1与曲线C 2在点B 处的切线l 2相交于点P ,则下列结论正确的为( )A .cosh(x -y )=cosh x cosh y -sinh x sinh yB .y =sinh x cosh x 是偶函数C .(cosh x )′=sinh xD .若△PAB 是以A 为直角顶点的直角三角形,则实数m =0解析:选ACD cosh x cosh y -sinh x sinh y =e x+e -x2·e y +e -y 2-e x -e -x 2·e y -e -y2=ex -y+e -x +y2=cosh(x -y ),A 正确;y =sinh x cosh x =e 2x -e-2x4,记h (x )=e 2x -e-2x4,则h (-x )=e -2x-e 2x4=-h (x ),h (x )为奇函数,即y =sinh x cosh x 是奇函数,B 错误;⎝ ⎛⎭⎪⎫e x+e -x2′=e x-e-x2,即(cosh x )′=sinh x ,C 正确;对于D ,因为AB ⊥x 轴,因此若△PAB 是以A为直角顶点的直角三角形,则k PA =0,由k PA =e m -e-m2=0,解得m =0,D 正确.二、填空题7.若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =________.解析:依题意得,f ′(x )=-a sin x ,g ′(x )=2x +b ,f ′(0)=g ′(0),即-a sin 0=2×0+b ,得b =0.又m =f (0)=g (0),即m =a =1,因此a +b =1.答案:18.若曲线y =ln(x +a )的一条切线为y =e x +b ,其中a ,b 为正实数,则a +eb +2的取值范围为________.解析:由y =ln(x +a ),得y ′=1x +a. 设切点为(x 0,y 0),则有⎩⎪⎨⎪⎧1x 0+a=e ,ln x 0+a =e x 0+b ⇒b =a e -2.∵b >0,∴a >2e ,∴a +e b +2=a +1a≥2,当且仅当a =1时等号成立. 答案:[2,+∞)9.设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则点P 的坐标为________.解析:y ′=e x ,则曲线y =e x在点(0,1)处的切线的斜率为1,又曲线y =1x(x >0)上点P处的切线与曲线y =e x在点(0,1)处的切线垂直,所以曲线y =1x(x >0)在点P 处的切线的斜率为-1.设P (a ,b ),则曲线y =1x(x >0)上点P 处的切线的斜率为y ′|x =a =-a -2=-1,可得a =1,又P (a ,b )在y =1x上,所以b =1,故P (1,1).答案:(1,1) 三、解答题 10.已知函数f (x )=a ln x x +1+bx,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y -3=0,求a ,b 的值.解:f ′(x )=a ⎝⎛⎭⎪⎫x +1x -ln x x +12-bx2.因为直线x +2y -3=0的斜率为-12,且过点(1,1),所以f (1)=1,f ′(1)=-12,即b =1,a 2-b =-12,解得a =1,b =1.11.已知函数f (x )=x ,g (x )=a ln x ,a ∈R.若曲线y =f (x )与曲线y =g (x )相交且在交点处有相同的切线,求a 的值及该切线的方程.解:f ′(x )=12x ,g ′(x )=ax (x >0),设两曲线的交点为P (x 0,y 0),则⎩⎪⎨⎪⎧x 0=a ln x 0,12x 0=ax 0,解得a =e 2,x 0=e 2,所以两条曲线交点的坐标为(e 2,e). 切线的斜率为k =f ′(e 2)=12e, 所以切线的方程为y -e =12e (x -e 2),即x -2e y +e 2=0.12.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R ,求曲线y =f (x )在点(1,f (1))处的切线方程.解:因为f (x )=x 3+ax 2+bx +1, 所以f ′(x )=3x 2+2ax +b . 令x =1,得f ′(1)=3+2a +b , 又f ′(1)=2a ,则3+2a +b =2a , 解得b =-3.令x =2得f ′(2)=12+4a +b , 又f ′(2)=-b , 所以12+4a +b =-b , 解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3, 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1),即6x +2y -1=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数的应用习题课(5月8日)
教学目标 掌握导数的几何意义,会求多项式函数的单调区间、极值、最值
教学重点 多项式函数的单调区间、极值、最值的求法
教学难点 多项式函数极值点的求法、多项式函数最值的应用
一、课前预习
1.设函数)(x f y =在某个区间内有导数,如果在这个区间内____,则)(x f y =是这个区间内的_____;如果在这个区间内___,则)(x f y =是这个区间内的_____.
2.设函数)(x f y =在0x x =及其附近有定义,如果)(0x f 的值比0x 附近所有各点的值都大(小),则称)(0x f 是函数)(x f y =的一个______.
3.如果)(x f y =在某个区间内有导数,则可以这样求它的极值:
(1)求导数_____; (2)求方程________的根(可能极值点);
(3)如果在根的左侧附近为_,右侧附近为_,则函数)(x f y =在这个根处取得极_值;
如果在根的左侧附近为_,右侧附近为_,则函数)(x f y =在这个根处取得极_值.
4.设)(x f y =是定义在[a ,b]上的函数,)(x f y =在(a ,b)内有导数,可以这样求最值:
(1)求出函数在(a ,b)内的可能极值点(即方程0)(/=x f 在(a ,b)内的根n x x x ,,,21Λ);
(2)比较函数值)(a f ,)(b f 与)(,),(),(21n x f x f x f Λ,其中最大的一个为最大值,最
小的一个为最小值.
二、举例
例1.确定函数31292)(23-+-=x x x x f 的单调区间.
例2.设一质点的运动速度是31574
3)(234++-=
t t t t v ,问:从t =0到t =10这段时间内,运动速度的改变情况怎样?
例3.求函数4931)(3+-=
x x x f 的极值.
例4.设函数x bx ax x f ++=232
131)(在1x =1与2x =2处取得极值,试确定a 和b 的值,并问此时函数在1x 与2x 处是取极大值还是极小值?
例5.求函数593)(3
+-=x x x f 在[-2,2]上的最大值和最小值.
例6.矩形横梁的强度与它断面的高的平方与宽的积成正比例,要将直径为d 的圆木锯成强
度最大的横梁,断面的宽和高应为多少?
例7.求内接于抛物线21x y -=与x 轴所围图形内的最大矩形的面积.
例8.某种产品的总成本C (单位:万元)是产量x (单位:万件)的函数:
3202.004.06100)(x x x x C +-+=,试问:当生产水平为x =10万件时,从降低单位成本角度看,继续提高产量是否得当?
三、巩固练习
1.若函数)(x f 在区间[a ,b]内恒有0)(/<x f ,则此函数在[a ,b]上的最小值是____
2.曲线12
13141234+--+=x x x x y 的极值点是______________ 3.设函数a ax ax ax x f ---=23)()(在x =1处取得极大值-2,则a =____.
4.求下列函数的单调区间:
(1)1123223+-+=x x x y (2))2()1(2
++=x x y
5.求下列函数的极值:
(1)642+-=x x y , (2)59323+--=x x x y ,[-4,4]
6.求下列函数的最值:
(1)642+-=x x y ,[-3,10] (2)233x x y -=,[-1,4]
7.设某企业每季度生产某个产品q 个单位时,总成本函数为cq bq aq q C +-=2
3)(,(其中a >0,b >0,c >0),求:(1)使平均成本最小的产量(2)最小平均成本及相应的边际成本.
8.一个企业生产某种产品,每批生产q 单位时的总成本为q q C +=3)((单位:百元),可
得的总收入为26)(q q q R -=(单位:百元),问:每批生产该产品多少单位时,能使利润最大?最大利润是多少?
9.在曲线)0,0(12≥≥-=y x x y 上找一点(00,y x ),过此点作一切线,与x 轴、y 轴构成
一个三角形,问:0x 为何值时,此三角形面积最小?
10.已知生产某种彩色电视机的总成本函数为73108102.2)(⨯+⨯=q q C ,通过市场调查,
可以预计这种彩电的年需求量为p q 50101.35-⨯=,其中p (单位:元)是彩电售价,q (单位:台)是需求量. 试求使利润最大的销售量和销售价格.。

相关文档
最新文档