电磁场理论发展史(DOC 6页)

合集下载

电磁场理论发展简史

电磁场理论发展简史

电磁场理论发展简史
电磁场理论发展简史
1888年,德 国的物理学家 赫兹首次用人 工的方法产生 了电磁波。
电磁场理论发展简史
电磁场理论发展简史
电磁场理论的创立过程: ① 观察现象——好奇心; ② 提出问题——洞察力; ③ 猜测答案——猜想、假设、想象力; ④ 设计实验测量——实践、动手能力; ⑤ 归纳寻找关系、发现规律——物理描述; ⑥ 形成定理、定律(需要引进新的物理量或模
电磁场理论发展简史
2、磁学(Magnetism) 希腊人在Magnasia岛上发现该岛的石块吸引牧羊鞭,所 以磁学命名为Magnetism 天然“石块”吸引铁钉现象:这种“石块”对铁有吸引 力,在铁钉附件放此“石块”铁钉就扑向石块 ,好的慈 母对婴儿的吸引一样。
“石块” ← 铁钉 慈母 ← 婴儿 这石块取名为“慈石”,后衍化为“磁石”。
型,找出新的内容,正确表述)——数学描述 ; ⑦ 考察成立条件、适用范围、精度、理论地 位及现代含义等——数学描述; ⑧ 创造新应用——好玩24、利益驱动
什么是电磁场?
电磁场理论的研究对象: 电荷、电流产生电场、磁场的规律;电场和磁场的
电磁场理论的地位
自然界存在四种基本力,即强力、电磁力、弱力和引力 。力既是相互作用。
所有四种力都有“电磁”和“磁场”
电磁场理论的地位
麦克斯韦方程组
静电学
静磁学
其他 学科 参数 输入
非时变: 0
t
电路 理论
电磁波
几何光学
d
传输线理论 条件:d ~
长线理论
基尔霍夫定律 d
电磁场理论发展简史
电磁理论发展史参考资料
/electromagnetism

电磁场与电磁波学科发展历程

电磁场与电磁波学科发展历程

电磁场与电磁波学科发展历程一.早期的电磁学研究早期的电磁学研究比较零散,下面按照时间顺序将主要事件列出如下: 1650年,德国物理学家格里凯在对静电研究的基础上,制造了第一台摩擦起电机。

1720年,格雷研究了电的传导现象,发现了导体与绝缘体的区别,同时也发现了静电感应现象。

1733年,杜菲经过实验区分出两种电荷,称为松脂电和玻璃电,即现在的负电和正电。

他还总结出静电相互作用的基本特征,同性排斥,异性相吸。

1745年,荷兰莱顿大学的穆欣布罗克和德国的克莱斯特发明了一种能存储电荷的装置-莱顿瓶,它和起电机一样,意义重大,为电的实验研究提供了基本的实验工具。

1752年,美国科学家富兰克林对放电现象进行了研究,他冒着生命危险进行了著名的风筝实验,发明了避雷针。

1777年,法国物理学家库仑通过研究毛发和金属丝的扭转弹性而发明了扭秤。

1785-1786年,他用这种扭秤测量了电荷之间的作用力,并且从牛顿的万有引力规律得到启发,用类比的方法得到了电荷相互作用力与距离的平反成反比的规律,后来被称为库仑定律在早期的电磁学研究中,还值得提到的一个科学家是大家都已经在中学物理课本中学过的欧姆定律的创立者-欧姆。

欧姆,1787年3月16日生于德国埃尔兰根城,父亲是锁匠。

父亲自学了数学和物理方面的知识,并教给少年时期的欧姆,唤起了欧姆对科学的兴趣。

16岁时他进入埃尔兰根大学研究数学、物理与哲学,由于经济困难,中途缀学,到1813年才完成博士学业。

欧姆是一个很有天才和科学抱负的人,他长期担任中学教师,由于缺少资料和仪器,给他的研究工作带来不少困难,但他在孤独与困难的环境中始终坚持不懈地进行科学研究,自己动手制作仪器。

欧姆对导线中的电流进行了研究。

他从傅立叶发现的热传导规律受到启发,导热杆中两点间的热流正比于这两点间的温度差。

因而欧姆认为,电流现象与此相似,猜想导线中两点之间的电流也许正比于它们之间的某种驱动力,即现在所称的电动势,并且花了很大的精力在这方面进行研究。

电磁学的发展

电磁学的发展
安培 (1775-1836)
3.6 安培奠定电动力学基础
麦克斯韦对安培的评价: • “安培借以建立电流之间机械作用定律的实验研究,是科学
上最辉煌的成就之一” 。“整个的理论和实验看来似乎是从 这位‘电学中的牛顿 ’的头脑中跳出来的并且已经成熟和完 全装备完了的,它在形式上是完整的,在准确性方面是无懈 可击的,并且它汇总成为一个必将永远是电动力学的基本公 式的关系式,由之可以导出一切现象。”
• 1660年左右,德国科学家格里凯(1602~1686)发 明摩擦起电机(带有转动轴的硫磺球)。
• 1729年,英国的格雷(1670~1736),引入导体 概念
• 1733年,法国的杜菲(1698~1739)发现绝缘的 金属也可以通过摩擦的办法起电,认为所有的物 体都可以摩擦起电。
对磁现象的研究---“小地球”实验:
• 出 生 :1745 年 2 月 18 日 米兰公国科莫
• 逝 世 :1827 年 3 月 5 日 ( 82 岁 ) 伦巴第-威尼斯王国科 莫ห้องสมุดไป่ตู้
• 职业:物理学家
目前已知的全球第一个电池
• Drawing of Alessandro Volta's voltaic pile, invented in 1800, the first electric battery. It was built of many individual cells, each consisting of a disk of copper and a disk of zinc or silver separated by a disk of cloth soaked in acid or brine. A 23 cell pile like this would have produced around 36 volts. Alterations: removed caption

电磁场与电磁波的历史与发展

电磁场与电磁波的历史与发展

电磁场与电磁波的历史与发展一、历史的前奏静磁现象和静电现象:公元前6、7世纪发现了磁石吸铁、磁石指南以及摩擦生电等现象。

1600年英国医生吉尔伯特发表了《论磁、磁体和地球作为一个巨大的磁体》的论文。

使磁学从经验转变为科学。

书中他也记载了电学方面的研究。

静电现象的研究要困难得多,因为一直没有找到恰当的方式来产生稳定的静电和对静电进行测量。

只有等到发明了摩擦起电机,才有可能对电现象进行系统的研究,这时人类才开始对电有初步认识。

1785年库仑公布了用扭秤实验得到电力的平方反比定律,使电学和磁学进入了定量研究的阶段。

1780年,伽伐尼发现动物电,1800年伏打发明电堆,使稳恒电流的产生有了可能,电学由静电走向动电,导致1820年奥斯特发现电流的磁效应。

于是,电学与磁学彼此隔绝的情况有了突破,开始了电磁学的新阶段。

19世纪二、三十年代成了电磁学大发展的时期。

首先对电磁作用力进行研究的是法国科学家安培,他在得知奥斯特发现之后,重复了奥斯特的实验,提出了右手定则,并用电流绕地球内部流动解释地磁的起因。

接着他研究了载流导线之间的相互作用,建立了电流元之间的相互作用规律——安培定律。

与此同时,比奥 沙伐定律也得到发现。

英国物理学家法拉第对电磁学的贡献尤为突出。

1831年发现电磁感应现象,进一步证实了电现象与磁现象的统一性。

法拉第坚信电磁的近距作用,认为物质之间的电力和磁力都需要由媒介传递,媒介就是电场和磁场。

电流磁效应的发现,使电流的测量成为可能。

1826年欧姆(Georg Simon Ohm,1784—1854)因而确定了电路的基本规律——欧姆定律。

及至1865年,麦克斯韦把法拉第的电磁近距作用思想和安培开创的电动力学规律结合在一起,用一套方程组概括电磁规律,建立了电磁场理论,预测了光的电磁性质,终于实现了物理学史上第二次理论大综合。

爱因斯坦在纪念麦克斯韦100周年的文集中写道:“自从牛顿奠定理论物理学的基础以来,物理学的公理基础的最伟大的变革,是由法拉第和麦克斯韦在电磁现象方面的工作所引起的”。

电磁场的发展

电磁场的发展

电磁场理论发展的历史回顾第一部分概述人类对电磁现象的认识经历了相当长的时间。

静电现象与磁现象很早就引起了人们的注意,公元前六七百年就发现了磁石吸铁,磁石指南和摩擦生电现象。

真正对电磁现象进行研究是从英国御医吉尔伯特开始,1600年他发表了《论磁,磁体和地球作为一个巨大的磁体》,开创了电磁现象研究的新纪元。

关于电和磁现象的系统研究,始于18世纪。

1750年米切尔提出磁极间的作用力服从平方反比定律。

1785年公布了用扭秤实验得到了电力的平方反比定律,即著名的库伦定律,使电磁学进入了定量研究的阶段。

1780年伽伐尼研究电对动物机体的作用,做了有名的伽伐尼实验,1800年伏打发明电堆,获得产生稳定电流的手段,这导致1820年奥斯特发现了电流的磁效应,使电磁学的研究从电磁分离跃至电磁相互联系的研究阶段,开始了电磁学的新纪元。

此后,19世纪二三十年代成了电磁学大发展的时期。

1831年法拉第发现了电磁感应现象,证实了电与磁的统一性,而麦克斯韦从理论上总结了法拉第的物理观念,用一套方程组概括实验上发现的电磁规律,建立了电磁场理论,并将光与电磁现象统一起来,为利用电和磁开辟了广阔前景,实现了物理学史上第三次大综合。

第二部分电磁场的早期研究1. 中国古代的电磁学a) 对磁现象的认识。

公元前4世纪左右成书的《管子》中有“上有磁石者,其下有黄金”,这是关于磁的最早记载。

《吕氏春秋》中也曾写道“磁石召铁,或引之也”。

磁石可以指南的性质是我国人民的重大的发现。

北宋时期的政治家和科学家沈括,在《梦溪笔谈》中记有“方家以磁石磨针锋,则能指南”,此外,他还发现了地磁偏角。

b) 对于电现象的认识从雷电和摩擦起电现象开始的。

早在3000多年前的殷商时期,甲骨文中就有了“雷”及“电”的形声字。

王充在《论衡,雷虚篇》中写道:“云雨至则雷电击”,明确地提出云与雷电之间的关系。

《淮南子,坠行训》中提到:“阴阳相薄为雷,激扬为电”,即雷电是阴阳两气对立的产物。

电磁学的发展

电磁学的发展

1
发现电磁感应
1831年8月29日, 实验取得突破性进展
1831.10.28 第一台最原始的直流发电机
1831年11月24日, 法拉第向英国皇家学会做总结报告: 产生感应电流的情况分5类: 变化中的电流;变化中的磁场;运动的稳恒电流;运动 中的磁铁;运动中的导线
2 提出磁力线
一生最大的发现,是发现了法拉第。 ——戴维 我们把法拉第首先看作是科学家中最有成效最高尚的 典型。 ——麦克斯韦 铁匠的儿子法拉第,在青年时代的早期,作过装订工 人的学徒,临死时是所有科学学会的会员,是那时物 理学家公认的领袖。 ——斯托列托夫
盖里克
1663年,发明摩擦起电机。
硫磺球
(Otto von Guericke) 德国人(1602-1686)
格雷(英) 杜非(法)
1720年,发现导体与绝缘体的区别,发现导体的 静电感应现象 1733年,区分出两种电荷,称为松脂电和玻璃电, 发现同性相斥,异性相吸
冯克莱斯特(德)
于1745,1746几乎同时发明 马森布洛克(荷兰) 莱顿瓶
电磁学的发展史
第一节 电磁现象的早期认识
古代
西周(公元前1100-公元前771)青铜铭文就记载有“电” 字和“雷”字。 先秦:“阴阳相薄,感而为雷,激而为霆。霆,电也。” 古人将磁石称为慈石来形容磁石“以为母也,故能引其 子”的功能 公元前3世纪,古书<韩非子>就记载有司南
大约公元前6世纪,希腊人泰勒斯记述了磁石吸铁和摩 擦后的琥珀吸引轻小物体的现象 electricity 此词的起源即来自希腊文的“琥珀”
1856年在苏格兰阿伯丁的马里沙耳任自然哲学教授。1860年到伦敦国王学院 任自然哲学和天文学教授。1861年选为伦敦皇家学会会员。1865年春辞去教 职回到家乡系统地总结他的关于电磁学的研究成果,完成了电磁场理论的经 典巨著《论电和磁》。1871年受聘为剑桥大学新设立的卡文迪什试验物理学 教授,负责筹建著名的卡文迪什实验室,1874年建成后担任这个实验室的第 一任主任,直到1879年11月5日在剑桥逝世。

电磁场理论发展历史及其在现代科技中的应用

电磁场理论发展历史及其在现代科技中的应用

电磁场理论发展历史及其在现代科技中的应用摘要:电磁场理论在现代科技中有着广泛的应用。

现代电子技术如通讯、广播、导航、雷达、遥感、测控、嗲面子对抗、电子仪器和测量系统,都离不开电磁场的发射,控制、传播和接收;从工业自动化到地质勘测,从电力、交通等工业农业到医疗卫生等国民经济领域,几乎全都涉及到电磁场理论的应用。

不仅如此,电磁学一直是,将来仍是新兴科学的孕育点。

在本文中主要介绍电磁场理论发现和发展的历史以及在现代科技中的也应用。

关键词:电磁学电磁场理论现代科技对电磁场现象的研究是从十六世纪下半叶英国伊莉莎白女王的试医官吉尔伯特开始,然而他的研究方法很原始,基本上是定性地对现象的总结。

对电磁场的近代研究是从十八世纪的卡文迪许、库伦开始,他们开创了用测量仪器对电磁场现象做定量的规律,引起了电磁场从定性到定量的飞跃。

库仑定律的建立基于英国科学家卡文迪许在1772年做的一个一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。

库伦定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。

安培在假设了两个电流元之间的相互作用力沿着它们的连线之间的作用力正比于它们的长度和电流强度,而与它们之间的距离的平方成反比的公式,即提出了著名的安培环路定理。

基于这与牛顿万有引力定律十分类似,.泊松、.高斯等人仿照引力理论,对电磁现象也引入了各种场矢量,如电场强度、电通量密度(电位移矢量)、磁场强度、磁通密度等,并将这些量表示为空间坐标的函数。

但是当时对这些量仅是为了描述方便而提出的数学手段,实际上认为电荷之间或电流之间的物理作用是超距作用。

直到M.法拉第,他认为场是真实的物理存在,电力或磁力是经过场中的力线逐步传递的,最终才作用到电荷或电流上。

他在1831年发现了著名的电磁感应定律,并用磁力线的模型对定律成功地进行了阐述,但是电磁感应定律的确认是在1851年,这一过程花了20年。

电磁场理论:从麦克斯韦到现代

电磁场理论:从麦克斯韦到现代

电磁场理论:从麦克斯韦到现代电磁场理论是物理学中的重要分支,它描述了电磁场的性质和行为。

从麦克斯韦提出电磁场方程组到现代电磁场理论的发展,我们见证了人类对电磁现象认识的不断深化和拓展。

本文将从麦克斯韦方程组的提出开始,逐步介绍电磁场理论的发展历程。

1. 麦克斯韦方程组的提出麦克斯韦方程组是电磁场理论的基础,它由麦克斯韦根据实验观测和理论推导提出。

麦克斯韦方程组包括四个方程:高斯定律、法拉第电磁感应定律、安培环路定律和麦克斯韦-安培定律。

这些方程描述了电场和磁场的生成、传播和相互作用。

2. 麦克斯韦方程组的物理意义麦克斯韦方程组揭示了电磁场的本质和规律。

高斯定律描述了电场的产生和分布,法拉第电磁感应定律说明了磁场的产生和变化,安培环路定律描述了磁场的传播和作用,麦克斯韦-安培定律则将电场和磁场联系在一起。

这些方程组成的理论框架为电磁现象的解释和应用提供了基础。

3. 麦克斯韦方程组的实验验证麦克斯韦方程组的提出并不仅仅是理论推导,它还需要通过实验验证。

许多科学家通过实验观测和测量,验证了麦克斯韦方程组的准确性和适用性。

例如,法拉第的电磁感应实验验证了法拉第电磁感应定律,奥斯特的磁场实验验证了安培环路定律。

这些实验证明了麦克斯韦方程组的正确性,并进一步巩固了电磁场理论的地位。

4. 电磁场理论的发展麦克斯韦方程组的提出奠定了电磁场理论的基础,但随着科学技术的进步和理论研究的深入,电磁场理论也在不断发展。

爱因斯坦的相对论将电磁场纳入了时空的统一框架,量子力学的发展使得我们对电磁场的微观行为有了更深入的认识。

现代电磁场理论已经超越了麦克斯韦方程组,涉及到更加复杂和深奥的领域,如量子电动力学和弦理论等。

5. 应用和意义电磁场理论的应用广泛而重要。

它不仅解释了电磁现象的本质,还为电磁波的传播、电磁感应、电磁辐射等提供了理论基础。

电磁场理论的发展也推动了科学技术的进步,如电磁波通信、电磁成像、电磁感应传感器等。

同时,电磁场理论也为其他学科的研究提供了重要的参考和支持,如光学、电子学、天文学等。

第1章 电磁学发展史

第1章 电磁学发展史

dx dy dz Ax Ay Az
图 1-1 矢量场的矢量线
例1-1 求数量场φ =(x+y)2-z通过点M(1, 0, 1)的
等值面方程。
的矢量线方程。 例1-2 求矢量场 A -ye x xe y
1.2 标量场的方向导数和梯度
1.2.1
图 1-2 方向导数的定义

er e e
A Ar er A e A e
第一章
1.1
1.2 1.3
矢量分析
场的概念
标量场的方向导数和梯度 矢量场的通量和散度
1.4
1.5 亥姆霍兹定理
1.1 场的概念
1.1.1 矢性函数
在二维空间或三维空间内的任一点 P, 它是 一个既存在大小(或称为模)又有方向特性的量, 故称为实数矢量,用黑体A表示,而白体A表示 A 的大小(即A 的模)。若在平时书写时,一般将矢 量写成 A形式。矢量一旦被赋予物理单位,便成 为具有物理意义的矢量。
电磁场理论
主要参考书目:
1.王家礼等主编《电磁场与电磁波》,西 安电子科技大学出版社。 2.谢处方主编《电磁场与电磁波》,高等 教育出版社。 3.冯慈璋主编《工程电磁场导论》,高等 教育出版社。
理论课学时(50学时)
1.矢量分析 2.静电场 3.恒定电流的电场和磁场 4.时变电磁场 5.平面电磁波 实验课学时 2学时 8 12 14 8 8 学时 学时 学时 学时 学时
电磁波的应用
• 60年代以后,卫星通讯使无线电通信进 入了一个新的发展时期。
• 1957年第一颗人造卫星上天至今, 航 天技术的飞速发展不仅给人类进步和文 明带来了巨大的影响,而且为人类从事 空间探测、 了解地球以外的无限宇宙 提供了行之有效的手段。迄今为止,已 发射的用于研究天文学目的的航天器有 300多种,观测波段几乎包括整个电磁 波谱。这些来自天外遥远星系的电磁波, 为人类传来了宇宙深处神密的信息。

电磁场的发展简史及其应用

电磁场的发展简史及其应用

• 2.电磁场理论的建立: 18世纪末期,德国哲学家谢林认为,宇宙是活 的,而不是僵死的。他认为电就是宇宙的活力,就 是宇宙的灵魂!而且,电、磁、光、热都是联系在 一起的! 奥斯特是谢林的信徒。他从1807年开始研究电 与磁的关系,至1820年,发现电流以力作用于小磁 针。
而后安培发现力、电流等相关元素的联系,并 建立大量的数学公式。比1.电磁场的早期理论研究: 电、磁现象是大自然中最重要的往来现象。也 很早就被科学家们注意并潜心观察!但由于科学技 术的落后,关于电、磁方面的知识始终停留在表面, 很长一段历史时期都没能发展! 但就是凭着科学家门不懈的努力,为电磁学打 下了良好基础,直至十九世纪,电、磁神秘的面纱 被慢慢揭开!
应用与发展
• 1887年,德国科学家赫兹用火花隙激励环状天线 接收,证实了麦克斯韦的电磁波存在预言!这一 重要实验导致了后来无线电报的发明,从此,也 开始了电磁场理论的应用发展的时代!
实际生活中对电磁场的应用
在国防的应用
展望
• 随着科技的进一步发展,人们对电磁学的认识以 及了解还会加深,会更对的将电磁学应用到我们 的日常生活中,给我们带来便捷!
• 谢谢大家!
再然后就是法拉力,1831年发现电磁感应现象, 进一步证实了电现象与磁现象的统一性。法拉第坚 信电磁的近距作用,认为物质之间的电力和磁力都 需要由媒介传递,媒介就是电场和磁场!

最后是麦克斯韦,总结了安培、法拉第等前 任的经验,创造性的提出位移电流的概念!其 理论中心思想为:变化的磁场可以激发涡旋电 场,变化的电场可以激发涡旋磁场;电场和磁 场不是彼此孤立的,它们相互联系、相互激发 组成一个统一的电磁场。麦克斯韦进一步将电 场和磁场的所有规律综合起来,建立了完整的 电磁场理论体系。

电磁场与电磁波发展史

电磁场与电磁波发展史
• 9. 1822年,法国科学家安培提出了安培环路定律,将奥斯 特的发现上升为理论。 • 10. 1825年,德国科学家欧姆得出了第一个电路定律:欧 姆定律。 • 11. 1831年,英国实验物理学家法拉第发现了电磁感应定 律 。并设计了世界上第一台感应发电机。
电磁场与电磁波
第 0章
电磁学漫谈
• 12、1840年,英国科学家焦耳提出了焦耳定律,揭示了电 磁现象的能量特性。 • 13、1848年 ,德国科学家基尔霍夫提出了基尔霍夫电路理 论,使电路理论趋于完善。 • 奥斯特的电生磁和法拉第的磁生电奠定了电磁学的基础。 • 14、 电磁学理论的完成者——英国的物理学家麦克斯韦 (1831—1879)。麦克斯韦方程组——用最完美的数学形 式表达了宏观电磁学的全部内容 。麦克斯韦从理论上预言 了电磁波的存在。
电磁场与电磁波
第 0章
电磁学漫谈
• 一、电磁学发展史
• 1. 最早的记载:公元前 600年左右 • 2. 1745年,荷兰莱顿大学教授马森布罗克制成了莱顿瓶, 可以将电荷储存起来,供电学实验使用,为电学研究打下
了基础。
• 3. 1752年7月,美国著名的科学家、文学家、政治家富兰
克林的风筝试验,证实了闪电式放电现象,从此拉开了人
击中房顶,会顺着龙舌引入地下,不会对房屋造成危险。 •6. 1771——1773年间,英国科学家卡文迪什进行了大量的 静电试验,证明在静电情况下,导体上的电荷只分布在导体 表面上。
电磁场与电磁波
第 0章
电磁学漫谈
• 7. 1785年,法国科学家库仑在实验规律的基础上,提出了 第一个电学定律:库仑定律。使电学研究走上了理论研究 的道路。 • 8. 1820年,由丹麦的科学家奥斯特在课堂上的一次试验中, 发现了电的磁效应,从此将电和磁联系在一起 。

经典电磁场理论发展简史

经典电磁场理论发展简史

电磁场理论发展史——著名实验和相关科学家纲要:一、定性研究1、吉尔伯特的研究2、富兰克林二、定量研究1、反平方定律的提出2、电流磁效应的发现3、电磁感应定律及楞次定律4、麦克斯韦方程5、电磁波的发现三、小结、定性研究1、吉尔伯特的研究他发现不仅摩擦过的琥珀有吸引轻小物体的性质,而且一系列其他物体如金刚石、水晶、硫磺、明矾等也有这种性质,他把这种性质称为电性,他是第一个用“电力”、“电吸引”、“磁极”等术语的人。

吉尔伯特把电现象和磁现象进行比较,发现它们具有以下几个截然不同的性质:1.磁性是磁体本身具有的,而电性是需要用摩擦的方法产生;2.磁性有两种——吸引和排斥,而电性仅仅有吸引(吉尔伯特不知道有排斥);3.磁石只对可以磁化的物质才有力的作用,而带电体可以吸引任何轻小物体;4.磁体之间的作用不受中间的纸片、亚麻布等物体的影响,而带电体之间的作用要受到中间这些物质的影响。

当带电体浸在水中,电力的作用可以消失,而磁体的磁力在水中不会消失;5.磁力是一种定向力,而电力是一种移动力。

2、富兰克林的研究富兰克林(公元1706一1790)原来是费城的印刷商,他通过书本和科学上的来往获得了丰富知识,他利用莱顿瓶做出的第一项重要工作,是根据莱顿瓶内外两种电荷的相消性,在杜菲的“玻璃电”和“树脂电”的基础上提出正电和负电的概念。

富兰克林所做的第二项重要工作是统一了天电和地电。

、定量研究1、反平方定律的提出1750年前后,彼得堡科学院院士埃皮努斯在实验中发现;当发生相互作用的电荷之间的距离缩短时,两者之间的吸引力和排斥力便增加。

1766年富兰克林写信给他在德国的一位朋友普利斯特利(公元1733一1804),介绍了他在实验中发现在金属杯中的软木球完全不受金属杯电性的影响的现象。

他请普利斯特利给予验证。

英国科学家卡文迪许在1772年做了一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。

电磁场理论的发展史

电磁场理论的发展史

电磁场理论的发展史引言载法拉弟发现电磁感应现象的那一年,英国诞生了一位伟大的科学家——麦克斯韦,他因创立电磁场理论而成为十九世纪最伟大的物理学家.麦克斯韦创立电磁场理论系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。

一、历史的前奏在麦克斯韦往常,解释电磁相互作用有两种相互对立的观点.一种是超距作用学说.即在研究两个电荷之间相互作用力时,忽略中介空间的作用,电荷会超越空间距离而互相作用,库仑、韦伯、安培等人都是主张用超距作用学说来解释电磁相互作用的.这种学说当时拥有数学基础.另一种是媒递作用学说.认为空间有一种能传递电力的媒质(称作以太)存在,电荷间通过媒质互相作用.法拉弟通过实验揭露了空间媒质的重要作用,他认为在空间媒质中充满了电力线,即通过场来传递,但媒递作用学说还没有数学基础,不易被人同意.也使其进展受到了阻碍.麦克斯韦功绩就在于建立了电磁场理论并促进了它的进展.他中学时曾在数学与诗歌比赛中获第一名,这显示了他的数学才华与丰富的想象力方面的潜力.他年轻时曾读过法拉弟的《电学实验研究》,对法拉弟的物理思想(如电力线与场的思想)十分推崇,同时也发现了它的弱点.麦克斯韦对电磁相互作用的超距观点早就表示“不能同意即时传播的思想”,在法拉弟的物理思想影响下,他决心“为法拉弟的场概念提供数学方法的基础”.二、麦克斯韦创立电磁场理论麦克斯韦创立电磁场理论可分为三个阶段:第一阶段,统一已知电磁定律麦克斯韦于1856年发表了他的第一篇论文《论法拉弟的力线》,在这篇文章中,他试图用数学语言精确地表述法拉弟的力线概念,他使用数学推论与物理类比相结合的方法,以假想流体的力学模型去模拟电磁现象.他说:“借助于这种类比,我试图以一种方便的与易于处理的形式为研究电现象提供必要的数学观念”他的目标是想据此统一已知的电磁学定律.麦克斯韦为达到此目的,他运用了“建立力学模型——引出基本公式——进行数学引伸推导”的解决科学问题的思路与方法.第一步,建立力学模型首先运用类比方法,麦克斯韦把电磁现象与力学现象做了类比,认为能够建立一种不可压缩流体的力学模型来模拟电磁现象.这种流体模型为:一是没有惯性,因而也就没有质量;二是不可压缩;三是能够从无产生,又可消失.显然这是一种假设理想流体.麦克斯韦在这篇文章中写道:“我企图把一个在空间画力线的清晰概念摆在一个几何学家的面前,并利用一个流体的流线的概念,说明如何画出这些流线来”“力线的切线方向就是电场力的方向,力线的密度表示电场力的大小”.他企图阐明电力线与电力线所在空间之间的几何关系.他还试图通过类比凭借已知的力学公式推导出电磁学公式,寻求这两种不一致的现象在数学形式上的类似.第二步,引出基本公式早在1842年,W·汤姆逊就曾把拉普拉斯的势函数的二阶微分方程,普遍用于热、电与磁的运动,建立了这三种相似现象的数学联系.1847年,他又在不可压缩流体的流线连续性基础上,论述了电磁现象与流体力学现象的共同性.麦克斯韦正是汲取了W·汤姆逊这种类比方法,把它进展成为研究各类力线的重要工具.比如麦克斯韦把电学中的势等效于流电势麦克斯韦据此方式相继推导出了静电磁场、稳恒电磁场以至瞬变电磁场的基本公式.其中最重要的一个就是电场的泊松方程:2V=-4πρ (2) 式中V为电势,ρ为自由电荷密度.第三步,进行数学引伸根据电场的泊松公式可直接写出稳恒电磁场的两个基本方程:(ε0E)= ·D=4πρ (3) ▽B=0 (4) 关于瞬变电场,麦克斯韦类比了力学中的惯性力公式,从假想流体的由此推出磁场产生电场的公式:结合电场的泊松公式,可得运动电荷产生磁场的公式:× =4πj (6)在上述公式中,式(3)说明了静电场的性质(是一种无旋场);式(4)说明了磁场的性质(是一种涡旋场);式(5)说明了电场能够由随时间变化的磁场产生;式(6)说明了磁场能够由运动的电荷产生.从(3)、(4)、(5)、(6)方程看,这已基本具备了麦克斯韦方程组的雏形,只是未列入位移电流.第二阶段,提出位移电流概念麦克斯韦在完成了统一已知电磁学定律的第一阶段工作后,又投入到第二阶段工作中.他于1862年发表了具有决定意义的论文《论物理学的力线》.麦克斯韦在这篇著作中,突破了法拉弟的电磁观念,制造性地提出了自己理论的核心部分——位移电流的概念.在这一工作中,他一方面结合数学推论以逻辑手段揭示了旧电磁理论的内在矛盾,另一方面则构造了一个与往常的流体力学模型不一致的、新的电磁以太模型.麦克斯韦按照电磁学与动力学的类比关系发现,交变电流通过含有电容器的电路时,按照原有的认识,由于电荷不能在电容器极板之间移动,因此传导电流将中断,这同实际电流的连续性发生矛盾.而且假如电流仅限于导体,电磁场也就失去了意义.为熟悉决这些矛盾,他根据电磁学与动力学的类比关系与电磁现象的对称性,认为在交变电流电路中,电容器一个极板上变化的电场会引起感生磁场,变化的磁场又会在电容器的另一极板上引起感生电场,产生交变电流,故变化电场的作用就相当于传送电流,但它不是电荷的传导,而是电荷的位移.这样麦克斯韦就在无导体存在的磁场中引入了“位移电流”的概念.这样位移电流与传导电流迭加起来在电容电路中的总流线是闭合的.位移电流概念的引入,是麦克斯韦理论的关节点,也是他的重大发现,即发现了电场变化激发磁场变化的现象.而法拉弟的电磁感应定律,是说明磁场变化激发电场的现象.这样,一个变化的电场与磁场以对称的形式联系起来,是法拉弟电生磁、磁生电思想的精确化与完善化.为了在电磁场中形象地勾勒出位移电流的形状,务必给它塑造一个模型.麦克斯韦说:“电解质被电流带动在固定方向上的迁移与偏振光受到磁力作用在固定方向上旋转,就是曾经启发我把磁考虑为一种旋转现象而把电流当作平移现象的事实.”麦克斯韦根据这两个基本条件假设电磁场介质中充满着涡旋分子(在真空中则是涡旋以太),在这些涡旋分子之间夹着许多小的电粒子.涡旋轴代表磁力线的方向,涡旋旋转速度表示磁场强度的大小.在两个同向旋转的分子中间的电粒子起着隋性轮的作用,这些电粒子只会转动而不可能产生平移;在两个旋转方向的分子间,电粒子不发生转动而产生平动,从而形成电流.如右图,六方形表示涡旋分子,小圆圈表示电粒子,磁场方向由“+”“-”表示.“+”表示磁场穿出纸面,“-”穿入纸面.放在A→B线上形成了位移电流.麦克斯韦从这个涡旋模型出发,利用它进行唯象的思考,从物理意义一项,实现玻恩所说的“数学上的完美”.麦克斯韦进一步以位移电流的概念为物理基础,根据力学定律进行数学模拟,以弹性力学中的力、粒子流密度、及对旋涡转速的影响分别模拟电场强度、传导电流与磁场强度,从而建立起全电流的电磁场方程:第三阶段,揭示电磁场动力学本质1864年,麦克斯韦又发表了第三篇著名的论文《电磁场的动力理论》.在这篇论文中,麦克斯韦舍弃了他原先提出的力学模型而完全转向场论的观点,并明确论述了光现象与电磁现象的统一性,奠定了光的电磁理论的基础.麦克斯韦首先谈到由于电磁相互作用不仅与距离有关,而且依靠于相对速度,不应以超距作用为出发点.他仍然假设产生电磁现象的作用力是同样在空间媒质中与在电磁物质中进行的,在真空中有以太媒质存在,这种以太媒质弥漫整个空间,渗透物体内部,具有能量密度,并能够以有限速度传播电磁作用.麦克斯韦借助于以太媒质这种力学图象来描述真空场的概念,把以太媒质作为介电常数ε=1(真空场)的“电介质”.当电介质极化时,在分子范围内发生微观电荷移动的现象,这种微观电荷移动产生一种瞬息电流.他假设在真空中,由于以太媒质的存在,电场变化时同样也有位移电流出现.位移电流与传导电流一样,也按照毕奥——萨伐尔定律的规律产生磁场.位移电流与传导电流叠加起来的总电流(即全电流)线是闭合的.在真空位移电流概念的基础上,麦克斯韦建立了由二十个分量方程构成的电磁场方程组.麦克斯韦还使用拉格朗日与哈密顿的数学方法,推导出电磁场的波动方程.方程说明,电场与磁场以波动形式传播,二者相互垂直并都垂直于传播方向.若在空间某一区域中的电场发生了变化,在它邻近的区域就会产生变化的磁场;这个变化的磁场又会在较远的区域产生变化的电场,变化的电场与变化的磁场不断相互产生,就会以波的形式在空间散开,即以波的形式传播,称之电磁波.电场与磁场具有不可分割的联系,是一个整体,即电磁场.在麦克斯韦推出的方程中,他引入了一个电磁场能量方程,他指出,在超距作用理论中,能量只能存在于带电体、电路与磁体中,而根据新的理论,能量则存在于电磁场与这些物体中.这样,能量就被定域于整个电磁场空间,从而深刻地揭示了电磁场的物质实在性.它同时还说明了电磁波就是能量的传播过程.从平面电磁波的定量研究中,麦克斯韦证明了决定电磁波传播速度的“弹性模量”与电介质的性质相联系,“介质密度”与磁介质的性质相联系,从而求出了电磁波的传播速度公式,得到了与《论物理的力线》中相同的结论,即真空中电磁波的速度恰好等于光速,这使麦克斯韦得出了:“光是一种按照电磁定律在场内传播的电磁扰动”的结论.1868年,麦克斯韦发表了一篇论文《关于光的电磁理论》,明确地创立了光的电磁学说.他说:“光也是电磁波的一种,光是一种能看得见的电磁波.”这样,麦克斯韦就把原先相互独立的电、磁与光都统一起来了,成为十九世纪物理学上实现的一次重大理论综合.1873年麦克斯韦出版电磁理论的经典著作《论电与磁》在这部著作中,麦克斯韦对电磁理论作了全面系统与严密的论述,并从数学上证明了方程组解的唯一性,从而说明这个方程组是能够精确地反映电磁场的客观运动规律的完整理论.这样,经几代人的努力,电磁场理论的宏伟大厦终于建立起来了,从而实现了物理学史上的第二次理论大综合.三、麦克斯韦方程组的内容麦克斯韦在1864年发表的著名论文《电磁场的动力学理论》一文中提出了一套完整的方程组.他最先是以分量形式给出的,而且物理量的名称与符号都与现代使用的不一样.经后人加以整理,电磁场的方程得到进一步完善,形成如今称之麦克斯韦方程组的形式.1.麦克斯韦方程组的微分形式流密度.2.麦克斯韦方程组的积分形式三个描述介质性质的方程式.关于各向同性介质来说,有:=εrε0=μrμ0=σ式中εr,μr与σ分别是介质的相对介电常数相对磁导率与电导率.总结麦克斯韦提出的涡旋电场与位移电流假说的核心思想是:变化的磁场能够激发涡旋电场,变化的电场能够激发涡旋磁场;电场与磁场不是彼此孤立的,它们相互联系、相互激发构成一个统一的电磁场。

经典电磁场理论的建立

经典电磁场理论的建立

经典电磁场理论的建立1、电磁场理论的建立1755年,普里斯特列(Priestley J ,1733—1804)通过类比,猜测到电荷间的电力也与物质间的引力一样,服从平方反比定律。

10年后,库仑与卡文迪许不约而同地通过扭秤实验总结出电相互作用和磁相互作用的平方反比定律。

库仑定律与万有引力定律的惊人相似。

促使人们将引力领域的超距作用思想移接到电磁领域中。

由此开始,超距作用的思想和方法便在电磁领域中迅速扩展,并取得了一系列丰硕成果。

其中又以法国的安培所取得的成就最为世人瞩目。

安培实际上是想仿照力学的理论结构来建立电磁理论的。

因此,他认为最核心的概念应该是与质点相对应的作为实体的电流元以及它们之间能超距作用的有心力。

他把自己的理论取名为“电动力学”。

安培的电动力学,作为将当时所知道的一切电磁现象用超距有心力的作用来说明的理论,的确十分出色。

但是,运用建立在超距有心力基础上的安培理论来解释i831年法拉第 发现的电磁感应现象时,却显得力不从心。

1845年,德国的纽曼(Neumann F E ,1798~1895)发展了安培的电动力学思想,并成功地解释了电磁感应定律。

纽曼考虑了两个载流线圈的情况,他把其中一个叫施感线圈,另一个叫被感线圈。

当施感电流线圈运动时,两个线圈的相互作用将发生变化,他假设被感电流线圈中的感应电动势与两线圈相互作用能的变化率成正比,并根据楞次定律而加上一个负号,于是:dl tA t ⋅∂∂-=⎰ ε 式中dl 是被感电流的线元,积分沿被感电流回路1进行,而矢量A 定义为:⎰''=rl d i A 式中A 是一个电流的位置函数,纽曼称之为电动力学势。

一年后,德国电动力学的另一位创始人韦伯在安培定律的基础上提出了所谓的韦伯电作用定律:⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-=22222221211dt c r rd dr dr c r e e F 式中e l 、e 2表示电量。

c 表示光速。

电磁波发展史

电磁波发展史

电磁学的发展史电磁学的历史背景静电和静磁现象很早就被人类发现,由于摩擦起电现象,英文中“电”的语源来自希腊文“琥珀”一词。

然而真正对电磁现象的系统研究则要等到十六世纪以后,并且静电学的研究要晚于静磁学,这是由于难以找到一个能产生稳定静电场的方法,这种情况一直持续到1660年摩擦起电机被发明出来。

十八世纪以前,人们一直采用这类摩擦起电机来产生研究静电场,代表人物如本杰明·富兰克林[26],人们在这一时期主要了解到了静电力的同性相斥、异性相吸的特性、静电感应现象以及电荷守恒原理。

静电学和库仑定律库仑定律是静电学中的基本定律,其主要描述了静电力与电荷电量成正比,与距离的平方反比关系。

人们曾将静电力与在当时已享有盛誉的万有引力定律做类比,发现彼此在理论和实验上都有很多相似之处,包括实验观测到带电球壳内部的球体不会带电,这和有质量的球壳内部物体不会受到引力作用(由牛顿在理论上证明,是平方反比力的一个特征)的情形类似。

其间苏格兰物理学家约翰·罗比逊(1759年)[27]和英国物理学家亨利·卡文迪什(1773年)等人都进行过实验验证了静电力的平方反比律,然而他们的实验却迟迟不为人知。

法国物理学家夏尔·奥古斯丁·库仑于1784年至1785年间进行了他著名的扭秤实验[28],其实验的主要目的就是为了证实静电力的平方反比律,因为他认为“假说的前一部分无需证明”,也就是说他已经先验性地认为静电力必然和万有引力类似,和电荷电量成正比。

扭秤的基本构造为:一根水平悬于细金属丝的轻导线两端分别置有一个带电小球A和一个与之平衡的物体P,而在实验中在小球A的附近放置同样大小的带电小球B,两者的静电力会在轻导线上产生扭矩,从而使轻杆转动。

通过校正悬丝上的旋钮可以将小球调回原先位置,则此时悬丝上的扭矩等于静电力产生的力矩。

如此,两者之间的静电力可以通过测量这个扭矩、偏转角度和导线长度来求得。

麦克斯韦的电磁场理论

麦克斯韦的电磁场理论
电磁波在真空中的传播速度是光速, 这是麦克斯韦方程组的一个重要结论 。
麦克斯韦方程组还揭示了电磁波在介 质中的传播速度与介质本身的性质有 关,如介电常数和磁导率。
电磁场的能量守恒
麦克斯韦方程组揭示了电磁场的能量守恒规律,即电磁场的能量在空间中不会凭空产生也不 会消失,只会从一个地方传递到另一个地方。
电子科技
麦克斯韦的理论为电子科技的发展 提供了指导,推动了电子设备、集 成电路等的进步。
电磁波应用
麦克斯韦的理论为电磁波的应用提 供了依据,如雷达、微波炉、电磁 炉等现代科技产品的出现和发展。
对未来科技发展的启示
01
02
03
深入研究电磁波
麦克斯韦的理论启示我们 深入研究电磁波的性质和 应用,探索更多未知领域。
无线电波的应用
总结词
基于麦克斯韦方程组,人们开发出了无线电波的应用,实现了远距离通信和信 息传输。
详细描述
无线电波的发现和应用是麦克斯韦电磁场理论的重要应用之一。通过调制和解 调技术,人们可以利用无线电波进行远距离通信和广播,极大地促进了信息时 代的到来。
现代科技中的应用
总结词
麦克斯韦的电磁场理论在现代科技中有着广泛的应用,如雷达、卫星通信、电磁炉等。
02
安培、法拉第等科学家通过实验研究,逐渐揭 示了电和磁之间的联系。
04
这个发现为后来麦克斯韦的电磁场理论奠定了基础。
02
麦克斯韦的电磁场理论概述
电磁场的组成
1 2
3
电场
由电荷产生,对电荷施加作用力。
磁场
由电流产生,对电流和磁体施加作用力。
电磁场
电场和磁场的统一体,它们相互依存、相互转化。
麦克斯韦方程组的推导

电磁学的发展历史

电磁学的发展历史

正负电Байду номын сангаас命名
1747年,富兰克林首先以正电荷、负电荷的名称来 区分两种电荷。
他把摩擦时物体获得的电的多余部分叫做带正电,物 体失去电而不足的部分叫做带负电。这种命名方法一 直延续至今。
16
电荷守恒定律
1747年他根据实验提出:在正常条件下电是以一定 的量存在于所有物质中的一种元素;电跟流体一样, 摩擦的作用可以使它从一个物体转移到另一个物体, 但不能创造;
34
1832年亨利发现自感现象
1829年,亨利改进电磁铁,他用绝 缘导线密绕在铁芯上,制成了能提起 近一吨重物的强电磁铁。 同年,亨利在用实验证明不同长度的 导线对电磁铁的提举力的影响时,发 现了电流的自感现象:断开通有电流 的长导线可以产生明亮的火花。
1832年,他在发表的论文中宣布发现 了自感现象。
9
正负电荷的发现
1734年法国人迪费(Charles-Francois du Fay,1696 ~1739)
迪费根据大量的实验事实断定电有两种: 一种是与琥珀带的电性质相同,叫做“琥珀电”; 一种是与玻璃带的电性质相同,叫做“玻璃电”。
10
带相同电的物体互相排斥;带不同电的物体彼此吸引
北京邮电大学经济管理学院
第二章 电磁学的发展历史
1
目录
2.1 电磁现象的早期研究
2.2 电磁学的建立 2.3 电磁感应现象的发现与研究 2.4 电磁场理论的建立
2
2.1 电磁现象的早期研究
2.1.1 静电学的发展
我国东汉时期,王充在《论衡》一书中提到"顿牟掇芥 "等问题,也是说摩擦过的琥珀能吸引轻小物体。 公元前7世纪,古希腊哲学家泰勒斯已经发现用毛织物 摩擦过的琥珀能吸引某些轻小物体。Electricity(电) 这个字的起源就来自希腊文的“琥珀”(elec tron)。

试论述电磁场理论的发展历史以及在现在科技中的应用

试论述电磁场理论的发展历史以及在现在科技中的应用

试论述电磁场理论的发展历史以及在现在科技中的应用02113002 何海波电磁场理论的发展历史以及在现在科技中的应用对电磁场现象的研究是从十六世纪下半叶英国伊莉莎白女王的试医官吉尔伯特开始,然而他的研究方法很原始,基本上是定性地对现象的总结。

对电磁场的近代研究是从十八世纪的卡文迪许、库伦开始,他们开创了用测量仪器对电磁场现象做定量的规律,引起了电磁场从定性到定量的飞跃。

库仑定律的建立基于英国科学家卡文迪许在1772年做的一个一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。

库伦定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。

安培在假设了两个电流元之间的相互作用力沿着它们的连线之间的作用力正比于它们的长度和电流强度,而与它们之间的距离的平方成反比的公式,即提出了著名的安培环路定理。

基于这与牛顿万有引力定律十分类似,S.D.泊松、C.F.高斯等人仿照引力理论,对电磁现象也引入了各种场矢量,如电场强度、电通量密度(电位移矢量)、磁场强度、磁通密度等,并将这些量表示为空间坐标的函数。

但是当时对这些量仅是为了描述方便而提出的数学手段,实际上认为电荷之间或电流之间的物理作用是超距作用。

直到M.法拉第,他认为场是真实的物理存在,电力或磁力是经过场中的力线逐步传递的,最终才作用到电荷或电流上。

他在1831年发现了著名的电磁感应定律,并用磁力线的模型对定律成功地进行了阐述,但是电磁感应定律的确认是在1851年,这一过程花了20年。

1846年,M.法拉第还提出了光波是力线振动的设想,为以后麦克斯韦从数学上建立电磁场理论奠定了基础。

J.C.麦克斯韦继承并发展了法拉第的这些思想,仿照流体力学中的方法,采用严格的数学形式,将电磁场的基本定律归结为4个微分方程,人们称之为麦克斯韦方程组。

在方程中麦克斯韦对安培环路定律补充了位移电流的作用,他认为位移电流也能产生磁场。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁场理论发展史引言载法拉弟发现电磁感应现象的那一年,英国诞生了一位伟大的科学家——麦克斯韦,他因创立电磁场理论而成为十九世纪最伟大的物理学家.麦克斯韦创立电磁场理论系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。

一、历史的前奏在麦克斯韦以前,解释电磁相互作用有两种相互对立的观点.一种是超距作用学说.即在研究两个电荷之间相互作用力时,忽略中介空间的作用,电荷会超越空间距离而互相作用,库仑、韦伯、安培等人都是主张用超距作用学说来解释电磁相互作用的.这种学说当时拥有数学基础.另一种是媒递作用学说.认为空间有一种能传递电力的媒质(称作以太)存在,电荷间通过媒质互相作用.法拉弟通过实验揭露了空间媒质的重要作用,他认为在空间媒质中充满了电力线,即通过场来传递,但媒递作用学说还没有数学基础,不易被人接受.也使其发展受到了阻碍.麦克斯韦功绩就在于建立了电磁场理论并促进了它的发展.他中学时曾在数学和诗歌比赛中获第一名,这显示了他的数学才华与丰富的想象力方面的潜力.他年轻时曾读过法拉弟的《电学实验研究》,对法拉弟的物理思想(如电力线和场的思想)十分推崇,同时也发现了它的弱点.麦克斯韦对电磁相互作用的超距观点早就表示“不能接受即时传播的思想”,在法拉弟的物理思想影响下,他决心“为法拉弟的场概念提供数学方法的基础”.二、麦克斯韦创立电磁场理论麦克斯韦创立电磁场理论可分为三个阶段:第一阶段,统一已知电磁定律麦克斯韦于1856年发表了他的第一篇论文《论法拉弟的力线》,在这篇文章中,他试图用数学语言精确地表述法拉弟的力线概念,他采用数学推论与物理类比相结合的方法,以假想流体的力学模型去模拟电磁现象.他说:“借助于这种类比,我试图以一种方便的和易于处理的形式为研究电现象提供必要的数学观念”他的目标是想据此统一已知的电磁学定律.麦克斯韦为达到此目的,他运用了“建立力学模型——引出基本公式——进行数学引伸推导”的解决科学问题的思路和方法.第一步,建立力学模型首先运用类比方法,麦克斯韦把电磁现象和力学现象做了类比,认为可以建立一种不可压缩流体的力学模型来模拟电磁现象.这种流体模型为:一是没有惯性,因而也就没有质量;二是不可压缩;三是可以从无产生,又可消失.显然这是一种假设理想流体.麦克斯韦在这篇文章中写道:“我企图把一个在空间画力线的清楚概念摆在一个几何学家的面前,并利用一个流体的流线的概念,说明如何画出这些流线来”“力线的切线方向就是电场力的方向,力线的密度表示电场力的大小”.他企图阐明电力线和电力线所在空间之间的几何关系.他还试图通过类比凭借已知的力学公式推导出电磁学公式,寻求这两种不同的现象在数学形式上的类似.第二步,引出基本公式早在1842年,W·汤姆逊就曾把拉普拉斯的势函数的二阶微分方程,普遍用于热、电和磁的运动,建立了这三种相似现象的数学联系.1847年,他又在不可压缩流体的流线连续性基础上,论述了电磁现象和流体力学现象的共同性.麦克斯韦正是吸收了W·汤姆逊这种类比方法,把它发展成为研究各种力线的重要工具.例如麦克斯韦把电学中的势等效于流电势麦克斯韦据此方式相继推导出了静电磁场、稳恒电磁场以至瞬变电磁场的基本公式.其中最重要的一个就是电场的泊松方程:2V=-4πρ (2) 式中V为电势,ρ为自由电荷密度.第三步,进行数学引伸根据电场的泊松公式可直接写出稳恒电磁场的两个基本方程:(ε0E)= ·D=4πρ (3)▽B=0 (4)对于瞬变电场,麦克斯韦类比了力学中的惯性力公式,从假想流体的由此推出磁场产生电场的公式:结合电场的泊松公式,可得运动电荷产生磁场的公式:× =4πj (6)在上述公式中,式(3)说明了静电场的性质(是一种无旋场);式(4)说明了磁场的性质(是一种涡旋场);式(5)说明了电场可以由随时间变化的磁场产生;式(6)说明了磁场可以由运动的电荷产生.从(3)、(4)、(5)、(6)方程看,这已基本具备了麦克斯韦方程组的雏形,只是未列入位移电流.第二阶段,提出位移电流概念麦克斯韦在完成了统一已知电磁学定律的第一阶段工作后,又投入到第二阶段工作中.他于1862年发表了具有决定意义的论文《论物理学的力线》.麦克斯韦在这篇著作中,突破了法拉弟的电磁观念,创造性地提出了自己理论的核心部分——位移电流的概念.在这一工作中,他一方面结合数学推论以逻辑手段揭示了旧电磁理论的内在矛盾,另一方面则构造了一个与以前的流体力学模型不同的、新的电磁以太模型.麦克斯韦按照电磁学和动力学的类比关系发现,交变电流通过含有电容器的电路时,按照原有的认识,由于电荷不能在电容器极板之间移动,因此传导电流将中断,这同实际电流的连续性发生矛盾.而且如果电流仅限于导体,电磁场也就失去了意义.为了解决这些矛盾,他依据电磁学与动力学的类比关系和电磁现象的对称性,认为在交变电流电路中,电容器一个极板上变化的电场会引起感生磁场,变化的磁场又会在电容器的另一极板上引起感生电场,产生交变电流,故变化电场的作用就相当于传送电流,但它不是电荷的传导,而是电荷的位移.这样麦克斯韦就在无导体存在的磁场中引入了“位移电流”的概念.这样位移电流和传导电流迭加起来在电容电路中的总流线是闭合的.位移电流概念的引入,是麦克斯韦理论的关节点,也是他的重大发现,即发现了电场变化激发磁场变化的现象.而法拉弟的电磁感应定律,是说明磁场变化激发电场的现象.这样,一个变化的电场和磁场以对称的形式联系起来,是法拉弟电生磁、磁生电思想的精确化和完善化.为了在电磁场中形象地勾勒出位移电流的形状,必须给它塑造一个模型.麦克斯韦说:“电解质被电流带动在固定方向上的迁移和偏振光受到磁力作用在固定方向上旋转,就是曾经启发我把磁考虑为一种旋转现象而把电流当作平移现象的事实.”麦克斯韦根据这两个基本条件假设电磁场介质中充满着涡旋分子(在真空中则是涡旋以太),在这些涡旋分子之间夹着许多小的电粒子.涡旋轴代表磁力线的方向,涡旋旋转速度表示磁场强度的大小.在两个同向旋转的分子中间的电粒子起着隋性轮的作用,这些电粒子只会转动而不会产生平移;在两个旋转方向的分子间,电粒子不发生转动而产生平动,从而形成电流.如右图,六方形表示涡旋分子,小圆圈表示电粒子,磁场方向由“+”“-”表示.“+”表示磁场穿出纸面,“-”穿入纸面.放在A→B线上形成了位移电流.麦克斯韦从这个涡旋模型出发,利用它进行唯象的思考,从物理意义一项,实现玻恩所说的“数学上的完美”.麦克斯韦进一步以位移电流的概念为物理基础,根据力学定律进行数学模拟,以弹性力学中的力、粒子流密度、及对旋涡转速的影响分别模拟电场强度、传导电流和磁场强度,从而建立起全电流的电磁场方程:第三阶段,揭示电磁场动力学本质1864年,麦克斯韦又发表了第三篇著名的论文《电磁场的动力理论》.在这篇论文中,麦克斯韦舍弃了他原来提出的力学模型而完全转向场论的观点,并明确论述了光现象和电磁现象的统一性,奠定了光的电磁理论的基础.麦克斯韦首先谈到由于电磁相互作用不仅与距离有关,而且依赖于相对速度,不应以超距作用为出发点.他仍然假设产生电磁现象的作用力是同样在空间媒质中和在电磁物质中进行的,在真空中有以太媒质存在,这种以太媒质弥漫整个空间,渗透物体内部,具有能量密度,并能够以有限速度传播电磁作用.麦克斯韦借助于以太媒质这种力学图象来描述真空场的概念,把以太媒质作为介电常数ε=1(真空场)的“电介质”.当电介质极化时,在分子范围内发生微观电荷移动的现象,这种微观电荷移动产生一种瞬息电流.他假设在真空中,由于以太媒质的存在,电场变化时同样也有位移电流出现.位移电流和传导电流一样,也按照毕奥——萨伐尔定律的规律产生磁场.位移电流和传导电流叠加起来的总电流(即全电流)线是闭合的.在真空位移电流概念的基础上,麦克斯韦建立了由二十个分量方程组成的电磁场方程组.麦克斯韦还采用拉格朗日与哈密顿的数学方法,推导出电磁场的波动方程.方程表明,电场和磁场以波动形式传播,二者相互垂直并都垂直于传播方向.若在空间某一区域中的电场发生了变化,在它邻近的区域就会产生变化的磁场;这个变化的磁场又会在较远的区域产生变化的电场,变化的电场与变化的磁场不断相互产生,就会以波的形式在空间散开,即以波的形式传播,称为电磁波.电场与磁场具有不可分割的联系,是一个整体,即电磁场.在麦克斯韦推出的方程中,他引入了一个电磁场能量方程,他指出,在超距作用理论中,能量只能存在于带电体、电路和磁体中,而根据新的理论,能量则存在于电磁场和这些物体中.这样,能量就被定域于整个电磁场空间,从而深刻地揭示了电磁场的物质实在性.它同时还说明了电磁波就是能量的传播过程.从平面电磁波的定量研究中,麦克斯韦证明了决定电磁波传播速度的“弹性模量”与电介质的性质相联系,“介质密度”与磁介质的性质相联系,从而求出了电磁波的传播速度公式,得到了与《论物理的力线》中相同的结论,即真空中电磁波的速度恰好等于光速,这使麦克斯韦得出了:“光是一种按照电磁定律在场内传播的电磁扰动”的结论.1868年,麦克斯韦发表了一篇论文《关于光的电磁理论》,明确地创立了光的电磁学说.他说:“光也是电磁波的一种,光是一种能看得见的电磁波.”这样,麦克斯韦就把原来相互独立的电、磁和光都统一起来了,成为十九世纪物理学上实现的一次重大理论综合.1873年麦克斯韦出版电磁理论的经典著作《论电和磁》在这部著作中,麦克斯韦对电磁理论作了全面系统和严密的论述,并从数学上证明了方程组解的唯一性,从而表明这个方程组是能够精确地反映电磁场的客观运动规律的完整理论.这样,经几代人的努力,电磁场理论的宏伟大厦终于建立起来了,从而实现了物理学史上的第二次理论大综合.三、麦克斯韦方程组的内容麦克斯韦在1864年发表的著名论文《电磁场的动力学理论》一文中提出了一套完整的方程组.他最先是以分量形式给出的,而且物理量的名称和符号都与现代采用的不一样.经后人加以整理,电磁场的方程得到进一步完善,形成如今称为麦克斯韦方程组的形式.1.麦克斯韦方程组的微分形式流密度.2.麦克斯韦方程组的积分形式三个描述介质性质的方程式.对于各向同性介质来说,有:=εrε0=μrμ0=σ。

相关文档
最新文档