计量经济学_庞皓__第三章练习题答案

合集下载

计量经济学第三版庞浩第三章习题

计量经济学第三版庞浩第三章习题

第三章习题3.1(1)2011年各地区的百户拥有家用汽车量及影响因素数据图形可以看出,2011年各地区的百户拥有家用汽车量及影响因素的差异明显,其变动的方向基本相同,相互间可能具有一定的相关性,因而将其模型设定为线性回归模型形式:Y=β1+β2X2+β3X3+β4X4估计参数Y=246.854+5.996865X 2-0.524027X 3-2.26568X 4模型检验① R 2是0.666062,修正的R 2为0.628957,说明模型对样本拟合较好 ② F 检验,分别针对H0:βj=0(j=1,2,3,4),给定显著性水平α=0.05,在F 分布表中查出自由度为k-1=3,n-k=27的临界值F α(3,27)=3.65,由表可知,F=17.95108>F α(3,27)=3.65,应拒绝原假设,回归方程显著。

③ t 检验,分别针对H0:βj=0(j=1,2,3,4),给定显著性水平α=0.05,查t 分布表得自由度为n-k=27临界值t 205.0(n-k )=2.0518。

对应的t 统计量分别为 4.749476,4.265020,-2.922950,-4.366842,其绝对值均大于t (27)=2.0518,所以这些系数都是显著的。

(2)人均GDP增加1万元,百户拥有家用汽车增加5.996865辆,城镇人口比重增加1个百分点,百户拥有家用汽车减少0.524027辆, 交通工具消费价格指数每上升1,百户拥有家用汽车减少2.265680辆。

(3)将其模型设定为 Y=β1+β2X 2+β3LnX 3+β4LnX 4Y=1148.758+5.135670X2-22.81005LnX3-230.8481LnX4改进后的R2为0.691952>原R2为0.666062,拟合程度得到了提高3.2(1)估计参数Y = - 18231.58+0.135474X 2 + 18.85348X 3 模型检验R 2是0.985838,修正的R 2是0.983950,说明模型对样本拟合较好F 检验,分别针对H 0;βj =0(j=1,2,3),给定显著性水平α=0.05,在F 分布表中查出自由度为k-1=2,n-k=15的临界值F α(2,15)=4.77,由表可知,F=522.0976>F (2,15)=4.77,应拒绝原假设,回归方程显著。

计量经济学(庞皓)第二版课后思考题答案3

计量经济学(庞皓)第二版课后思考题答案3
5
答:多元线性回归分析中,多重可决系数是模型中解释变量个数的增函数,这给对比不同模 型的多重可决系数带来缺陷,所以需要修正。可决系数只涉及变差,没有考虑自由度。如果 用自由度去校正所计算的变差,可纠正解释变量个数不同引起的对比困难。 联系:由方差分析可以看出,F 检验与可决系数有密切联系,二者都建立在对应变量变 差分解的基础上。F 统计量也可通过可决系数计算。对方程联合显著性检验的 F 检验,实际 F 检验有精确的分布, 上也是对可决系数的显著性检验。区别: 它可以在给定显著性水平下, 给出统计意义上严格的结论。可决系数只能提供一个模糊的推测,可决系数越大,模型对数 据的拟合程度就越好。但要大到什么程度才算模型拟合得好,并没有一个绝对的数量标准。 3.5 什么是方差分析?对被解释变量的方差分析与对模型拟合优度的度量有什么联系和区 别? 答:被解释变量 Y 观测值的总变差分解式为: TSS = ESS + RSS 。将自由度考虑进去进行 方差分析,即得如下方差分析表: 变差来源 源于回归 源于残差 总变差
Y = b1 + β 2 X 2 + β3 X 3 + β 4 X 4 + u
其中,Y 为汽车销售量,X2 为居民收入, X3 为汽车价格, X4 为汽油价格,像其他费用、 道路状况、政策环境等次要因素包含在随机误差项 u 中。 3.9 说明用 Eviews 完成多元线性回归分析的具体操作步骤。 答:1、建立工作文件,建立一个 Group 对象,输入数据。 2、点击 Quick 下拉菜单中的 Estimate Equation。 3、在对话框 Equation Specification 栏中键入 Y C X2 X3 X4 ,点击 OK,即出现回归结 果。
而当 X 2 和 X 3 相互独立时, X 2 和 X 3 的斜方差等于零,即:

庞皓计量经济学课后答案第三章

庞皓计量经济学课后答案第三章

统计学2班第二次作业1、Ŷi =-151.0263 + 0.1179X 1i + 1.5452X 2iT= (-3.066806) (6.652983) (3.378064)R 2=0.934331 R 2=0.92964 F=191.1894 n=31⑴模型估计结果说明,各省市旅游外汇收入Y 受旅行社职工人数X 1,国际旅游人数X 2的影响。

由所估计出的参数可知,在假定其他变量不变的情况下,当旅行社职工人数每增加1人,各省市旅游外汇收入增加0.1179百万美元。

在嘉定其他变量不变的情况下。

当国际旅游人数每增加1万人,各省市旅游外汇收入增加1.5452百万美元。

⑵由题已知,估计的回归系数β1的T 值为:t (β1)=6.652983。

β2的T 值分为: t (β2)=3.378064。

α=0.05.查得自由度为n-2=22-2=29的临界值t 0.025(29)=2.045229因为t (β1)=6.652983≥t 0.025(29)=2.045229.所以拒绝原假设H 0:β1=0。

表明在显著性水平α=0.05下,当其他解释变量不变的情况下,旅行社职工人数X 1对各省市旅游外汇收入Y 有显著性影响。

因为 t (β2)=3.378064≥t 0.025(29)=2.045229,所以拒绝原假设H 0:β2=0表明在显著性水平α=0.05下,当其他解释变量不变的情况下,和国际旅游人数X 2对各省市旅游外汇收入Y 有显著性影响。

⑶正对H O :β1=β2=0,给定显著水性水平α=0.05,自由度为k-1=2,n-k=28的临界值F 0.05(2,28)=3.34038。

由题已知F=191.1894>F 0.05(2,28)=3.34038,应拒绝原假设H O :β1=β2=0,说明回归方程显著,即旅行社职工人数和旅游人数变量联合起来对各省市旅游外汇收入有显著影响。

2、⑴样本容量n=15 残差平方和RSS=66042-65965=77 回归平方和ESS 的自由度为K-1=2 残差平方和RSS 的自由度为n-k=13⑵可决系数R 2=TSS ESS =6604265965=0.99883 调整的可决系数R 2=1-(1-R 2)kn n --1=1-(1-0.99883)1214=0.99863 ⑶利用可决系数R 2=0.99883,调整的可决系数R 2=0.99863,说明模型对样本的拟合很好。

庞皓《计量经济学》(第4版)章节题库-第3章 多元线性回归模型【圣才出品】

庞皓《计量经济学》(第4版)章节题库-第3章 多元线性回归模型【圣才出品】

2
2
而 1-α 的置信度下 Y0 的置信区间为:
Yˆ0 t ˆ
1
X0
X
X
1
X
0
Y0
Yˆ0
t
ˆ
1
X0
X
X
1
X
0
2
2
6.多元回归模型中的解释变量个数为 k,那么回归方程显著性检验的 F 统计量的第一 自由度为 n-k-1,第二自由度为 k。( )
【答案】× 【解析】多元回归模型中的解释变量个数为 k,那么回归方程显著性检验的 F 统计量 的第一自由度为 k,第二自由度为 n-k-1。
2 / 22
圣才电子书
十万种考研考证电子书、题库视频学习平


【解析】在变量显著性检验中,针对某变量 Xj(j=1,2,…,k)设计的原假设与备
择假设为 H0:βj=0,H1:βj≠0。给定显著性水平 α 之后,可根据|t|>tα/2(n-k-1)
(或|t|≤tα/2(n-k-1))来决定拒绝(或接受)原假设 H0,从而判定对应的解释变量是
三、简答题 1.多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和 有效性的过程中,哪些基本假设起了作用? 答:(1)针对普通最小二乘法,多元线性回归模型的基本假设主要有以下三大类: ①关于模型设定的基本假设: 假定回归模型的设定是正确的,即模型的变量和函数形式均为正确的。 ②关于随机扰动项的基本假设: 假定随机扰动项满足条件零均值、条件同方差、条件序列不相关性以及服从正态分布。
2.调整的多重可决系数 Error!2 与多重可决系数 R2 的关系为( )。 A.Error!2=R2(n-1)/(n-k-1) B.Error!2=1-R2(n-1)/(n-k-1) C.Error!2=1-(1+R2)(n-1)/(n-k-1) D.Error!2=1-(1-R2)(n-1)/(n-k-1) 【答案】D 【解析】在样本容量一定的情况下,增加解释变量必定使得自由度减少,为了剔除变 量个数对拟合优度的影响,调整的多重可决系数是将残差平方和与总离差平方和处以各自

庞皓第三版计量经济学练习题及参考解答(完整版)

庞皓第三版计量经济学练习题及参考解答(完整版)

百户拥有 家用汽车量(辆) Y 37.71 20.62 23.32 18.60 19.62 11.15 11.24
北 京 天 津 河 北 山 西 内蒙古 辽 宁 吉 林
黑龙江 上 海 江 苏 浙 江 安 徽 福 建 江 西 山 东 河 南 湖 北 湖 南 广 东 广 西 海 南 重 庆 四 川 贵 州 云 南 西 藏 陕 西 甘 肃 青 海 宁 夏 新 疆
5 6 7 8 9 10 11 12 根据上表资料:
2.56 3.54 3.89 4.37 4.82 5.66 6.11 6.23
1678 1640 1620 1576 1566 1498 1425 1419
(1)建立建筑面积与建造单位成本的回归方程; (2)解释回归系数的经济意义; (3)估计当建筑面积为 4.5 万平方米时,对建造的平均单位成本作区间预测。
650 m 2.23 5.4772 1 5.0833 650 m 30.1250
2.4 假设某地区住宅建筑面积与建造单位成本的有关资料如表 2.11: 表 2.11 建筑地编号 1 2 3 4 某地区住宅建筑面积与建造单位成本数据 建筑面积(万平方米)X 0.6 0.95 1.45 2.1 建造单位成本(元/平方米)Y 1860 1750 1710 1690
(1)消费支出 C 的点预测值;
(2)在 95%的置信概率下消费支出 C 平均值的预测区间。 (3)在 95%的置信概率下消费支出 C 个别值的预测区间。
【练习题 2.3 参考解答】 (1)当 X f 1000 时,消费支出 C 的点预测值;
ˆ 50 0.6 X =50+0.6*1000=650 C i i
e2 ˆ2 i n 1 ˆ
2

计量经济学-庞皓-第二版-思考题-答案

计量经济学-庞皓-第二版-思考题-答案

第一章 绪论 思考题1.1答:计量经济学的产生源于对经济问题的定量研究,这是社会经济发展到一定阶段的客观需要。

计量经济学的发展是与现代科学技术成就结合在一起的,它反映了社会化大生产对各种经济因素和经济活动进行数量分析的客观要求。

经济学从定性研究向定量分析的发展,是经济学逐步向更加精密、更加科学发展的表现。

1.2答:理论计量经济学是以计量经济学理论与方法技术为研究内容,目的在于为应用计量经济学提供方法论。

所谓计量经济学理论与方法技术的研究,实质上是指研究如何运用、改造和发展数理统计方法,使之成为适合测定随机经济关系的特殊方法。

应用计量经济学是在一定的经济理论的指导下,以反映经济事实的统计数据为依据,用计量经济方法技术研究计量经济模型的实用化或探索实证经济规律、分析经济现象和预测经济行为以及对经济政策作定量评价。

1.3答:1、计量经济学与经济学的关系。

联系:计量经济学研究的主体—经济现象和经济关系的数量规律;计量经济学必须以经济学提供的理论原则和经济运行规律为依据;经济计量分析的结果:对经济理论确定的原则加以验证、充实、完善。

区别:经济理论重在定性分析,并不对经济关系提供数量上的具体度量;计量经济学对经济关系要作出定量的估计,对经济理论提出经验的内容。

2、计量经济学与经济统计学的关系。

联系:经济统计侧重于对社会经济现象的描述性计量;经济统计提供的数据是计量经济学据以估计参数、验证经济理论的基本依据;经济现象不能作实验,只能被动地观测客观经济现象变动的既成事实,只能依赖于经济统计数据。

区别:经济统计学主要用统计指标和统计分析方法对经济现象进行描述和计量;计量经济学主要利用数理统计方法对经济变量间的关系进行计量。

1.4答:解释变量是变动的原因,被解释变量是变动的结果。

被解释变量是模型要分析研究的对象。

解释变量是说明被解释变量变动主要原因的变量。

1.5一个完整的计量经济模型应包括哪些基本要素?你能举一个例子吗?答:一个完整的计量经济模型应包括三个基本要素:经济变量、参数和随机误差项。

计量经济学第三版庞浩第三章习题

计量经济学第三版庞浩第三章习题

计量经济学第三版庞浩第三章习题第三章习题3.1(1)2021年各地区的百户拥有家用汽车量及影响因素数据图形可以看出,2021年各地区的百户拥有家用汽车量及影响因素的差异明显,其变动的方向基本相同,相互间可能具有一定的相关性,因而将其模型设定为线性回归模型形式:Y=β1+β2X2+β3X3+β4X4① R2是0.*****,修正的R2为0.*****,说明模型对样本拟合较好② F检验,分别针对H0:βj=0(j=1,2,3,4),给定显著性水平α=0.05,在F分布表中查出自由度为k-1=3,n-k=27的临界值Fα(3,27)=3.65,由表可知,F=17.*****Fα(3,27)=3.65,应拒绝原假设,回归方程显著。

③ t检验,分别针对H0:βj=0(j=1,2,3,4),给定显著性水平α=0.05,查t分布表得自由度为n-k=27临界值t=2.0518,所以这些系数都是显著的。

(2)人均GDP增加1万元,百户拥有家用汽车增加5.*****辆,城镇人口比重增加1个百分点,百户拥有家用汽车减少0.*****辆,交通工具消费价格指数每上升1,百户拥有家用汽车减少2.*****辆。

0.052(n-k)=2.0518。

对应的t统计量分别为4.*****,4.*****,-2.*****,-4.*****,其绝对值均大于t(27)(3)将其模型设定为Y=β1+β2X2+β3LnX3+β4LnX4Y=1148.758+5.*****X2-22.*****LnX3-230.8481LnX4改进后的R2为0.*****原R2为0.*****,拟合程度得到了提高3.2(1)估计参数Y = - *****.58+0.*****X2 + 18.*****X3 模型检验R2是0.*****,修正的R2是0.*****,说明模型对样本拟合较好F检验,分别针对H0;βj=0(j=1,2,3),给定显著性水平α=0.05,在F分布表中查出自由度为k-1=2,n-k=15的临界值Fα(2,15)=4.77,由表可知,F=522.0976F(2,15)=4.77,应拒绝原假设,回归方程显著。

计量经济学(庞皓)课后思考题答案

计量经济学(庞皓)课后思考题答案

思考题答案第一章绪论思考题1.1怎样理解产生于西方国家的计量经济学能够在中国的经济理论研究和现代化建设中发挥重要作用?答:计量经济学的产生源于对经济问题的定量研究,这是社会经济发展到一定阶段的客观需要。

计量经济学的发展是与现代科学技术成就结合在一起的,它反映了社会化大生产对各种经济因素和经济活动进行数量分析的客观要求。

经济学从定性研究向定量分析的发展,是经济学逐步向更加精密、更加科学发展的表现。

我们只要坚持以科学的经济理论为指导,紧密结合中国经济的实际,就能够使计量经济学的理论与方法在中国的经济理论研究和现代化建设中发挥重要作用。

1.2理论计量经济学和应用计量经济学的区别和联系是什么?答:计量经济学不仅要寻求经济计量分析的方法,而且要对实际经济问题加以研究,分为理论计量经济学和应用计量经济学两个方面。

理论计量经济学是以计量经济学理论与方法技术为研究内容,目的在于为应用计量经济学提供方法论。

所谓计量经济学理论与方法技术的研究,实质上是指研究如何运用、改造和发展数理统计方法,使之成为适合测定随机经济关系的特殊方法。

应用计量经济学是在一定的经济理论的指导下,以反映经济事实的统计数据为依据,用计量经济方法技术研究计量经济模型的实用化或探索实证经济规律、分析经济现象和预测经济行为以及对经济政策作定量评价。

1.3怎样理解计量经济学与理论经济学、经济统计学的关系?答:1、计量经济学与经济学的关系。

联系:计量经济学研究的主体—经济现象和经济关系的数量规律;计量经济学必须以经济学提供的理论原则和经济运行规律为依据;经济计量分析的结果:对经济理论确定的原则加以验证、充实、完善。

区别:经济理论重在定性分析,并不对经济关系提供数量上的具体度量;计量经济学对经济关系要作出定量的估计,对经济理论提出经验的内容。

2、计量经济学与经济统计学的关系。

联系:经济统计侧重于对社会经济现象的描述性计量;经济统计提供的数据是计量经济学据以估计参数、验证经济理论的基本依据;经济现象不能作实验,只能被动地观测客观经济现象变动的既成事实,只能依赖于经济统计数据。

庞皓计量经济学练习题及参考解答第四版

庞皓计量经济学练习题及参考解答第四版

庞皓计量经济学练习题及参考解答第四版目录1.简介2.练习题及解答–第一章:引言–第二章:回归分析的基本步骤–第三章:多元回归分析–第四章:假设检验和检定–第五章:函数形式选择和非线性回归–第六章:虚拟变量和联合假设检验–第七章:时间序列回归分析–第八章:面板数据回归分析–第九章:工具变量法–第十章:极大似然估计3.总结1. 简介《庞皓计量经济学练习题及参考解答第四版》是一本与《庞皓计量经济学》教材配套的习题集,旨在帮助读者巩固和加深对计量经济学理论和方法的理解。

本书第四版相比前三版进行了全面的修订和更新,更加贴近实际应用环境,同时也增加了一些新的内容。

本文档为《庞皓计量经济学练习题及参考解答第四版》的摘要,包含了各章节的练习题及参考解答。

2. 练习题及解答第一章:引言1.什么是计量经济学?计量经济学的研究范围是什么?–答案:计量经济学是运用统计学方法研究经济理论及实证问题的学科。

它主要研究经济学中的理论模型和假设是否能得到实证支持,对经济变量之间的关系进行定量分析和预测。

2.计量经济学中常用的方法有哪些?–答案:常用的计量经济学方法包括线性回归分析、假设检验、面板数据分析、时间序列分析等。

这些方法能够帮助研究者解决实际经济问题,预测经济变量,评估政策效果等。

第二章:回归分析的基本步骤1.请解释什么是回归分析?–答案:回归分析是一种研究因变量和自变量之间关系的统计方法。

通过建立一个数学模型来描述二者之间的函数关系,并利用样本数据对该函数关系进行估计和推断。

回归分析的基本思想是找到自变量对因变量的解释能力,并进行统计推断。

2.利用最小二乘法进行回归分析的基本思想是什么?–答案:基本思想是通过最小化预测值与实际观测值之间的差异,来确定最佳的参数估计值。

也就是说,最小二乘法通过选择一组参数,使得预测值与实际观测值之间的平方差最小化。

3.如何判断回归模型的拟合优度?–答案:拟合优度可以通过判断回归方程的决定系数R2来评估。

计量经济学(庞皓)课后思考题规范标准答案

计量经济学(庞皓)课后思考题规范标准答案
答:模型中的参数被估计以后,一般说来这样的模型还不能直接加以应用,还需要对其进行检验。首先,在设定模型时,对所研究经济现象规律性的认识可能并不充分,所依据的经济理论对所研究对象也许还不能作出正确的解释和说明。或者经济理论是正确的,但可能我们对问题的认识只是从某些局部出发,或者只是考察了某些特殊的样本,以局部去说明全局的变化规律,可能导致偏差。其次,我们用以估计参数的统计数据或其它信息可能并不十分可靠,或者较多地采用了经济突变时期的数据,不能真实代表所研究的经济关系,或者由于样本太小,所估计参数只是抽样的某种偶然结果。此外,我们所建立的模型、采用的方法、所用的统计数据,都有可能违反计量经济的基本假定,这也可能导出错误的结论。
2.4为什么在对参数作最小二乘估计之前,要对模型提出古典假设?
答:在对参数作最小二乘估计之前,要对模型提出古典假设。因为模型中有随机扰动,估计的参数是随机变量,只有对随机扰动的分布作出假定,才能确定所估计参数的分布性质,也才可能进行假设检验和区间估计。只有具备一定的假定条件,所作出的估计才具有较好的统计性质。
在简单线性回归中,可决系数越大,说明在总变差中由模型作出了解释的部分占的比重越大,X对Y的解释能力越强,模型拟合优度越好。对参数的t检验是判断解释变量X是否是被解释变量Y的显著影响因素。二者的目的作用是一致的。
2.7有人说:“得到参数区间估计的上下限后,说明参数的真实值落入这个区间的概率为 。”如何评论这种说法?
一般来说参数是未知的,又是不可直接观测的。由于随机误差项的存在,参数也不能通过变量值去精确计算。只能通过变量样本观测值选择适当方法去估计。
1.10你能分别举出三个时间序列数据、截面数据、面板数据、虚拟变量数据的实际例子,并分别说明这些数据的来源吗?
答:时间序列数据:中国1981年至2010年国内生产总值,可从中国统计年鉴查得数据。

庞皓版计量经济学课后习题答案

庞皓版计量经济学课后习题答案

第二章练习题参考解答练习题资料来源:《深圳统计年鉴2002》,中国统计出版社(1)建立深圳地方预算内财政收入对GDP的回归模型;(2)估计所建立模型的参数,解释斜率系数的经济意义;(3)对回归结果进行检验;(4)若是2005年年的国内生产总值为3600亿元,确定2005年财政收入的预测值和预测区间(0.05α=)。

2.2某企业研究与发展经费与利润的数据(单位:万元)列于下表:1995 1996 1997 1998 1999 2000 2001 2002 2003 2004研究与发展经费 10 10 8 8 8 12 12 12 11 11利润额 100 150 200 180 250 300 280 310 320 300 分析企业”研究与发展经费与利润额的相关关系,并作回归分析。

2.3为研究中国的货币供应量(以货币与准货币M2表示)与国内生产总值(GDP)的相互依存关系,分析表中1990年—2001年中国货币供应量(M2)和国内生产总值(GDP)的有关数据:年份货币供应量(亿元)M2国内生产总值(亿元)GDP1990 1529.31 8598.41991 19349.92 1662.51992 25402.22 6651.91993 34879.83 4560.51994 46923.54 6670.01995 60750.55 7494.91996 76094.96 6850.51997 90995.37 3142.71998 104498.57 6967.21999 119897.98 0579.42000 134610.38 8228.12001 158301.99 4346.4资料来源:《中国统计年鉴2002》,第51页、第662页,中国统计出版社对货币供应量与国内生产总值作相关分析,并说明分析结果的经济意义。

2.4表中是16支公益股票某年的每股帐面价值和当年红利:根据上表资料:(1)建立每股帐面价值和当年红利的回归方程;(2)解释回归系数的经济意义;(3)若序号为6的公司的股票每股帐面价值增加1元,估计当年红利可能为多少?2.5美国各航空公司业绩的统计数据公布在《华尔街日报1999年年鉴》(The Wall Street1。

计量经济学_(第二版)庞皓__第三章练习题答案

计量经济学_(第二版)庞皓__第三章练习题答案

第三章考虑以下“期望扩充菲利普斯曲线(Expectations-augmented Phillips curve )”模型:t t t t u X X Y +++=33221βββ其中:t Y =实际通货膨胀率(%);t X 2=失业率(%);t X 3=预期的通货膨胀率(%)表为某国的有关数据,表 1970-1982年某国实际通货膨胀率Y (%),失业率X 2(%)和预期通货膨胀率X 3(%)1)对此模型作估计,并作出经济学和计量经济学的说明。

2)根据此模型所估计结果作统计检验。

3)计算修正的可决系数(写出详细计算过程)。

解答:(1)对此模型作估计,并作出经济学和计量经济学的说明。

;(2)根据此模型所估计结果,作计量经济学的检验。

t 检验表明:各参数的t 值的绝对值均大于临界值0.025(133) 2.228t -=,从P 值也可看出均明显小于0.05α=,表明失业率和预期通货膨胀率分别对实际通货膨胀率都有显著影响。

F 检验表明: F=,大于临界值, 其P 值也明显小于0.05α=,说明失业率和预期通货膨胀率联合起来对实际通货膨胀率有显著影响。

从经济意义上看:失业率与实际通货膨胀率负相关,预期通货膨胀率与实际通货膨胀率正相关,与经济理论一致。

(3)计算修正可决系数(写出详细计算过程) 由Y 的统计量表得=214.12846ie=∑223.041892(131)111.0373iy=⨯-=∑214.12846110.12720.8728111.0373R =-=-=!某市1974年—1987年粮食年销售量Y 、常住人口X2、人均收入X3、肉销售量2211311(1)1(10.8728)0.8473133n R R n k --=--=--⨯=--X4、蛋销售量X5、鱼虾销售量X6等数据如表所示:表 某市粮食年销售量、常住人口、人均收入、肉、蛋、鱼虾销售量数据1)建立线性回归模型:12233445566t t Y X X X X X u ββββββ=++++++,你预期所估计参数的符号应该是什么2)用OLS 法估计参数,模型参数估计的结果与你的预期是否相符合3)对模型及各个解释变量的显著性作检验,从检验结果中你能发现什么问题吗你如何评价这样的检验结果解答:1) 建立线性回归模型:12233445566t t Y X X X X X u ββββββ=++++++预期常住人口和人均收入应与粮食销售量正相关,2β和3β应为正值,而肉、蛋、鱼虾与粮食消费应该负相关,预期4β、5β、6β应当为负值。

计量经济学第三版(庞浩)版课后答案全

计量经济学第三版(庞浩)版课后答案全

第二章之迟辟智美创作(1)①对浙江省预算收入与全省生产总值的模型,用Eviews分析结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/03/14 Time: 17:00Sample (adjusted): 1 33Included observations: 33 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.XCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)③关于浙江省财政预算收入与全省生产总值的模型,检验模型的显著性:1)可决系数为0.983702,说明所建模型整体上对样本数据拟合较好.2)对回归系数的t检验:t(β2)=43.25639>t0.025(31)=2.0395,对斜率系数的显著性检验标明,全省生产总值对财政预算总收入有显著影响.④用规范形式写出检验结果如下:(0.004072) (39.08196)t= (43.25639) (-3.948274)R2=0.983702 F=1871.115 n=33⑤经济意义是:全省生产总值每增加1亿元,财政预算总收入增加0.176124亿元.(2)当x=32000时,①进行点预测,由上可知Y=0.176124X—154.3063,代入可得:②进行区间预测:先由Eviews分析:由上表可知,当Xf=32000时,将相关数据代入计算获得:5481.6617—2.0395x175.2325x√1/33+1852223.473/675977068. 2≤即Yf的置信区间为(5481.6617—64.9649,5481.6617+64.9649)(3) 对浙江省预算收入对数与全省生产总值对数的模型,由Eviews分析结果如下:Dependent Variable: LNYMethod: Least SquaresDate: 12/03/14 Time: 18:00Sample (adjusted): 1 33Included observations: 33 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.LNXCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)③关于浙江省财政预算收入与全省生产总值的模型,检验其显著性:1)可决系数为0.963442,说明所建模型整体上对样本数据拟合较好.2)对回归系数的t检验:t(β2)=28.58268>t0.025(31)=2.0395,对斜率系数的显著性检验标明,全省生产总值对财政预算总收入有显著影响.④经济意义:全省生产总值每增长1%,财政预算总收入增长0.980275%(1)对建筑面积与建造单元本钱模型,用Eviews分析结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/01/14 Time: 12:40Sample: 1 12Included observations: 12Variable Coefficient Std. Error t-Statistic Prob.XCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)由上可得:建筑面积与建造本钱的回归方程为:(2)经济意义:建筑面积每增加1万平方米,建筑单元本钱每平方米减少64.18400元.(3)②再进行区间估计:用Eviews分析:由上表可知,当Xf=4.5时,将相关数据代入计算获得:1556.647—2.228x31.73600x√1/12+43.5357/0.95387843≤即Yf的置信区间为(1556.647—478.1231, 1556.647+478.1231)第三章1)对出口货物总额计量经济模型,用Eviews分析结果如下::Dependent Variable: YMethod: Least SquaresDate: 12/01/14 Time: 20:25Sample: 1994 2011Included observations: 18Variable Coefficient Std. Error t-Statistic Prob.X2X3CR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid8007316. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)①由上可知,模型为:②对模型进行检验:1)可决系数是0.985838,修正的可决系数为0.983950,说明模型对样本拟合较好2)F检验,F=522.0976>F(2,15)=4.77,回归方程显著3)t检验,t统计量分别为X2的系数对应t值为10.58454,年夜于t(15)=2.131,系数是显著的,X3的系数对应t值为1.928512,小于t(15)=2.131,说明此系数是不显著的.(2)对对数模型,用Eviews分析结果如下:Dependent Variable: LNYMethod: Least SquaresDate: 12/01/14 Time: 20:25Sample: 1994 2011Included observations: 18Variable Coefficient Std. Error t-Statistic Prob.LNX2LNX3CR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)①由上可知,模型为:LNY=-20.52048+1.564221 LNX2+1.760695 LNX3②对模型进行检验:1)可决系数是0.986295,修正的可决系数为0.984467,说明模型对样本拟合较好.2)F检验,F=539.7364> F(2,15)=4.77,回归方程显著.3)t检验,t统计量分别为-3.777363,17.57789,2.581229,均年夜于t(15)=2.131,所以这些系数都是显著的.(3)①(1)式中的经济意义:工业增加1亿元,出口货物总额增加0.135474亿元,人民币汇率增加1,出口货物总额增加18.85348亿元.②(2)式中的经济意义:工业增加额每增加1%,出口货物总额增加1.564221%,人民币汇率每增加1%,出口货物总额增加1.760695%(1)对家庭书刊消费对家庭月平均收入和户主受教育年数计量模型,由Eviews分析结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/01/14 Time: 20:30Sample: 1 18Included observations: 18Variable Coefficient Std. Error t-Statistic Prob.XTCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)②对模型进行检验:1)可决系数是0.951235,修正的可决系数为0.944732,说明模型对样本拟合较好.2)F检验,F=539.7364> F(2,15)=4.77,回归方程显著. 3)t检验,t统计量分别为2.944186,10.06702,均年夜于t (15)=2.131,所以这些系数都是显著的.③经济意义:家庭月平均收入增加1元,家庭书刊年消费支出增加0.086450元,户主受教育年数增加1年,家庭书刊年消费支出增加52.37031元.(2)用Eviews分析:①Dependent Variable: YMethod: Least SquaresDate: 12/01/14 Time: 22:30Sample: 1 18Included observations: 18Variable Coefficient Std. Error t-Statistic Prob.TCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)②Dependent Variable: XMethod: Least SquaresDate: 12/01/14 Time: 22:34Sample: 1 18Included observations: 18Variable Coefficient Std. Error t-Statistic Prob.TCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid4290746. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)以上分别是y与T,X与T的一元回归模型分别是:(3)对残差进行模型分析,用Eviews分析结果如下:Dependent Variable: E1Method: Least SquaresDate: 12/03/14 Time: 20:39Sample: 1 18Included observations: 18Variable Coefficient Std. Error t-Statistic Prob.E2CR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)模型为:(3)由上可知,β2与α2的系数是一样的.回归系数与被解释变量的残差系数是一样的,它们的变动规律是一致的.第五章(1)由Eviews软件分析得:Dependent Variable: YMethod: Least SquaresDate: 12/10/14 Time: 16:00Sample: 1 31Included observations: 31Variable Coefficient Std. Error t-Statistic Prob.XCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid12220196 Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)由上表可知,2007年我国农村居民家庭人均消费支出(x)对人均纯收入(y)的模型为:(2)①由图形法检验由上图可知,模型可能存在异方差.②Goldfeld-Quanadt检验1)界说区间为1-12时,由软件分析得:Dependent Variable: Y1Method: Least SquaresDate: 12/10/14 Time: 11:34Sample: 1 12Included observations: 12Variable Coefficient Std. Error t-Statistic Prob.X1CR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid1772245. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)得∑e1i2=1772245.2)界说区间为20-31时,由软件分析得:Dependent Variable: Y1Method: Least SquaresDate: 12/10/14 Time: 16:36Sample: 20 31Included observations: 12Variable Coefficient Std. Error t-Statistic Prob.X1CR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid7909670. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)得∑e2i2=7909670.3)根据Goldfeld-Quanadt检验,F统计量为:在α=0.05水平下,分子分母的自由度均为10,查分布表得临界值F0.05(10,10)=2.98,因为F=4.4631> F0.05(10,10)=2.98,所以拒绝原假设,此检验标明模型存在异方差.(3)1)采纳WLS法估计过程中,①用权数w1=1/X,建立回归得:Dependent Variable: YMethod: Least SquaresDate: 12/09/14 Time: 11:13Sample: 1 31Included observations: 31Weighting series: W1Variable Coefficient Std. Error t-Statistic Prob.XCWeighted StatisticsR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid8352726. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)Unweighted StatisticsR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Sum squared resid14484289 Durbin-Watson stat对此模型进行White检验得:Heteroskedasticity Test: WhiteF-statistic Prob. F(2,28)Obs*R-squared Prob. Chi-Square(2)Scaled explained SS Prob. Chi-Square(2)Test Equation:Dependent Variable: WGT_RESID^2Method: Least SquaresDate: 12/10/14 Time: 21:13Sample: 1 31Included observations: 31Collinear test regressors dropped from specificationVariable Coefficient Std. Error t-Statistic Prob.C1045682.WGT^21173622.X*WGT^2R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid 1.40E+13 Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)从上可知,nR2=0.649065,比力计算的统计量的临界值,因为nR2=0.649065<0.05(2)=5.9915,所以接受原假设,该模型消除异方差.估计结果为:t=(11.97157)(-0.972298)②用权数w2=1/x2,用回归分析得:Dependent Variable: YMethod: Least SquaresDate: 12/09/14 Time: 21:08Sample: 1 31Included observations: 31Weighting series: W2Variable Coefficient Std. Error t-Statistic Prob.XCWeighted StatisticsR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid6320554. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)Unweighted StatisticsR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Sum squared resid19268334Durbin-Watson stat对此模型进行White检验得:Heteroskedasticity Test: WhiteF-statistic Prob. F(3,27)Obs*R-squared Prob. Chi-Square(3)Scaled explained SS Prob. Chi-Square(3)Test Equation:Dependent Variable: WGT_RESID^2Method: Least SquaresDate: 12/10/14 Time: 21:29Sample: 1 31Included observations: 31Variable Coefficient Std. Error t-Statistic Prob.CWGT^22240181.X^2*WGT^2X*WGT^2R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid 5.10E+12 Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)从上可知,nR2=0.999322,比力计算的统计量的临界值,因为nR2=0.999322<0.05(2)=5.9915,所以接受原假设,该模型消除异方差.估计结果为:t=(10.70922)(-1.841272)③用权数w3=1/sqr(x),用回归分析得:Dependent Variable: YMethod: Least SquaresDate: 12/09/14 Time: 21:35Sample: 1 31Included observations: 31Weighting series: W3Variable Coefficient Std. Error t-Statistic Prob.XCWeighted StatisticsR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid9990985. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)Unweighted StatisticsR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Sum squared resid12717412 Durbin-Watson stat对此模型进行White检验得:Heteroskedasticity Test: WhiteF-statistic Prob. F(2,28)Obs*R-squared Prob. Chi-Square(2)Scaled explained SS Prob. Chi-Square(2)Test Equation:Dependent Variable: WGT_RESID^2Method: Least SquaresDate: 12/09/14 Time: 20:36Sample: 1 31Included observations: 31Collinear test regressors dropped from specificationVariable Coefficient Std. Error t-Statistic Prob.C1212308.2141958.WGT^21301839.X^2*WGT^2R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid 2.17E+13 Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)从上可知,nR2=0.911022,比力计算的统计量的临界值,因为nR2=0.911022<0.05(2)=5.9915,所以接受原假设,该模型消除异方差.估计结果为:t=(13.52507)(-0.151390)经过检验发现,用权数w1的效果最好,所以综上可知,即修改后的结果为:t=(11.97157)(-0.972298)第六章(1)建立居民收入-消费模型,用Eviews分析结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/20/14 Time: 14:22Sample: 1 19Included observations: 19Variable Coefficient Std. Error t-Statistic Prob.XCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)所得模型为:Se=(0.012877)(12.39919)t=(53.62068)(6.446390)(2)1)检验模型中存在的问题①做出残差图如下:残差的变动有系统模式,连续为正和连续为负,标明残差项存在一阶自相关.②该回归方程可决系数较高,回归系数均显著.对样本量为19,一个解释变量的模型,5%的显著水平,查DW统计表可知,dL=1.180,dU=1.401,模型中DW=0.574663,<dL,显然模型中有自相关.③对模型进行BG检验,用Eviews分析结果如下:Breusch-Godfrey Serial Correlation LM Test:F-statistic Prob. F(2,15)Obs*R-squared Prob. Chi-Square(2)Test Equation:Dependent Variable: RESIDMethod: Least SquaresDate: 12/20/14 Time: 15:03Sample: 1 19Included observations: 19Presample missing value lagged residuals set to zero.Variable Coefficient Std. Error t-Statistic Prob.XCRESID(-1)RESID(-2)R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)如上表显示,LM=TR2=7.425088,其p值为0.0244,标明存在自相关.2)对模型进行处置:①采用广义差分法a)为估计自相关系数ρ.对et进行滞后一期的自回归,用EViews分析结果如下:Dependent Variable: EMethod: Least SquaresDate: 12/20/14 Time: 15:04Sample (adjusted): 2 19Included observations: 18 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.E(-1)R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.Durbin-Watson statb)对原模型进行广义差分回归,用Eviews进行分析所得结果如下:Dependent Variable: Y-0.657352*Y(-1)Method: Least SquaresDate: 12/20/14 Time: 15:04Sample (adjusted): 2 19Included observations: 18 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.CX-0.657352*X(-1)R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)由上图可知回归方程为:Yt*=35.97761+0.668695Xt*Se=(8.103546)(0.020642)t=(4.439737)(32.39512)由于使用了广义差分数据,样本容量减少了1个,为18个.查5%显著水平的DW统计表可知,dL=1.158,dU=1.391模型中DW=1,830746,du<DW<4- dU,说明在5%的显著水平下广义差分模型中已无自相关.可决系数R2,t,F统计量也均到达理想水平.由此最终的消费模型为:Yt=104.9987+0.668695Xt②用科克伦-奥克特迭代法,用EVIews分析结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/20/14 Time: 15:15Sample (adjusted): 2 19Included observations: 18 after adjustmentsConvergence achieved after 5 iterationsVariable Coefficient Std. Error t-Statistic Prob.CXAR(1)R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)Inverted AR Roots .63所得方程为:(3)经济意义:人均实际收入每增加1元,平均说来人均时间消费支出将增加0.669262元.(1)针对对数模型,用Eviews分析结果如下:Dependent Variable: LNYMethod: Least SquaresDate: 12/27/14 Time: 16:13Sample: 1980 2000Included observations: 21Variable Coefficient Std. Error t-Statistic Prob.LNXCR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)所得模型为:se=(0.038897) (0.241025)t=(24.45123) (9.007529)2)检验模型的自相关性该回归方程可决系数较高,回归系数均显著.对样本量为21,一个解释变量的模型,5%的显著水平,查DW统计表可知,dL=1.221,dU=1.420,模型中DW=1.159788<dL,显然模型中有自相关.(2)用广义差分法处置模型:1)为估计自相关系数ρ.对et进行滞后一期的自回归,用EViews分析结果如下:Dependent Variable: EMethod: Least SquaresDate: 12/27/14 Time: 16:18Sample (adjusted): 1982 2000Included observations: 19 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.E(-1)R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid2848090. Schwarz criterionLog likelihood Hannan-Quinn criter.Durbin-Watson stat2)对原模型进行广义差分回归,用Eviews进行分析所得结果如下:Dependent Variable: Y+0.012872*Y(-1)Method: Least SquaresDate: 12/27/14 Time: 21:06Sample (adjusted): 1981 2000Included observations: 20 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.CX+0.012872*X(-1)R-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid2882022. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)由上图可知回归方程为:Yt*=-104.9645+6.653757Xt*Se=(197.7928)( 0.304157)t=(-0.530679)( 21.87605)由于使用了广义差分数据,样本容量减少了1个,为20个.查5%显著水平的DW统计表可知,dL=1.201,dU=1.411模型中DW=1.8222596,du<DW<4- dU,说明在5%的显著水平下广义差分模型中已无自相关.可决系数R2,t,F统计量也均到达理想水平.由此最终的模型为:(3)对此模型,用Eviews分析结果如下:Dependent Variable: LNY1Method: Least SquaresDate: 12/27/14 Time: 22:16Sample (adjusted): 1981 2000Included observations: 20 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.LNX1CR-squared Mean dependent varAdjusted R-squared S.D. dependent varS.E. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProb(F-statistic)由题目可知,此模型样本容量为20,查5%显著水平的DW 统计表可知,dL=1.201,dU=1.411模型中DW=1.590363,du<DW<4- dU,说明在5%的显著水平此模型中无自相关.可决系数R2,t,F统计量也均到达理想水平。

庞皓计量经济学课后答案第三章-推荐下载

庞皓计量经济学课后答案第三章-推荐下载

模型参数估计结果为:β1=3.931474 β2=0.248535 β3=0.063869911684.0049404.05398.158ˆX X Y-+=由图近似可知,分析结果合理。

6、Y :能源需求指数 X 1:实际GDP 指数 X 2:能源价格指数⑴t t t t X X Y μβββ+++=22110ln ln ln由表可知β0=1.549504 β1=0.996923 β2=-0.33136421ln 0.331364-ln 0.9969231.549504ˆln X X Y t +=估计结果说明,在假定其他变量不变的前提下,当年实际GDP 指数每增加1%,平均导致能源需求指数增加0.996923%;在假定其他变量不变的前提下,当年能源价格指数每增加1%,平均导致能源需求指数减少0.331364%。

针对H 0:β1=0,由表可得β1=0.996923时所对应的P 值为0.0000≤0.05,所以拒绝原假设。

说明在显著性水平α=0.05下,假定其他变量不变的前提下,实际GDP 指数对能源需求指数有显著性影响。

针对H 0:β2=0,由表可得β2=-0.331364时所对应的P 值为0.0000≤0.05,所以拒绝原假设。

说明在显著性水平α=0.05下,假定其他变量不变的前提下,能源价格指数对能源需求指数有显著性影响。

⑵t t t t X X Y μβββ+++=22110由表可知β0=28.25506 β1=0.980849 β2=-0.25842621ln 0.258426-0.98084928.25506ˆX X Yt +=估计结果说明,在假定其他变量不变的前提下,当年实际GDP 指数每增加1,平均导致能源需求指数增加0.996923;在假定其他变量不变的前提下,当年能源价格指数每增加1,平均导致能源需求指数减少0.331364。

针对H 0:β1=0,由表可得β1=0.980849时所对应的P 值为0.0000≤0.05,所以拒绝原假设。

计计量经济学(庞浩)第二版_科学出版社_课后答案三章

计计量经济学(庞浩)第二版_科学出版社_课后答案三章

众志成城 互帮互助第三章练习题参考解答练习题3.1为研究中国各地区入境旅游状况,建立了各省市旅游外汇收入(Y ,百万美元)、旅行社职工人数(X1,人)、国际旅游人数(X2,万人次)的模型,用某年31个省市的截面数据估计结果如下:ii i X X Y 215452.11179.00263.151ˆ++-= t=(-3.066806) (6.652983) (3.378064)R 2=0.934331 92964.02=R F=191.1894 n=31 (1) 从经济意义上考察估计模型的合理性。

(2) 在5%显著性水平上,分别检验参数21,ββ的显著性。

(3) 在5%显著性水平上,检验模型的整体显著性。

3.2根据下列数据试估计偏回归系数、标准误差,以及可决系数与修正的可决系数: 367.693Y =, 1402.760X =, 28.0X =, 15n =, 2()66042.269iYY -=∑, 211()84855.096iX X -=∑,222()280.000iX X -=∑,11()()74778.346ii YY X X --=∑,22()()4250.900ii YY X X --=∑,1122()()4796.000ii XX XX--=∑3.3 经研究发现,家庭书刊消费受家庭收入几户主受教育年数的影响,表中为对某地区部分家庭抽样调查得到样本数据:(1) 建立家庭书刊消费的计量经济模型; (2)利用样本数据估计模型的参数; (3)检验户主受教育年数对家庭书刊消费是否有显著影响;(4)分析所估计模型的经济意义和作用3.4 考虑以下“期望扩充菲利普斯曲线(Expectations-augmented Phillips curve )”模型:t t t t u X X Y +++=33221βββ其中:t Y =实际通货膨胀率(%);t X 2=失业率(%);t X 3=预期的通货膨胀率(%)下表为某国的有关数据,表1. 1970-1982年某国实际通货膨胀率Y (%),(2)根据此模型所估计结果,作计量经济学的检验。

计量经济学(庞皓)_课后习题答案

计量经济学(庞皓)_课后习题答案

Yˆ2005 = −3.611151 + 0.134582 × 3600 = 480.884 (亿元)
区间预测:
∑ 平均值为:
xi2
=
σ
2 x
(n
−1)
=
587.26862
× (12
−1)
=
3793728.494
( X f 1 − X )2 = (3600 − 917.5874)2 = 7195337.357
1.138
18
2.98
1.092
试建立曲线回归方程 yˆ = a ebx ( Yˆ = ln a + b x )并进行计量分析。
2.7 为研究美国软饮料公司的广告费用 X 与销售数量 Y 的关系,分析七种主要品牌软饮
料公司的有关数据2(见表 8-1)
表 8-1
美国软饮料公司广告费用与销售数量
品牌名称
449.2889
1994
74.3992
615.1933
1995
88.0174
795.6950
1996
131.7490
950.0446
1997
144.7709
1130.0133
1998
164.9067
1289.0190
1999
184.7908
1436.0267
2000
225.0212
1665.4652
2 i
=
3134543
∑Yi2 = 539512
(1)作销售额对价格的回归分析,并解释其结果。 (2)回归直线未解释的销售变差部分是多少?
∑ XiYi = 1296836
2.9 表中是中国 1978 年-1997 年的财政收入 Y 和国内生产总值 X 的数据:

计量经济学(庞皓)第二版课后思考题答案

计量经济学(庞皓)第二版课后思考题答案

计量经济学(庞皓)第二版课后思考题答案第一章绪论思考题1.1怎样理解产生于西方国家的计量经济学能够在中国的经济理论研究和现代化建设中发挥重要作用?答:计量经济学的产生源于对经济问题的定量研究,这是社会经济发展到一定阶段的客观需要。

计量经济学的发展是与现代科学技术成就结合在一起的,它反映了社会化大生产对各种经济因素和经济活动进行数量分析的客观要求。

经济学从定性研究向定量分析的发展,是经济学逐步向更加精密、更加科学发展的表现。

我们只要坚持以科学的经济理论为指导,紧密结合中国经济的实际,就能够使计量经济学的理论与方法在中国的经济理论研究和现代化建设中发挥重要作用。

答:计量经济学不仅要寻求经济计量分析的方法,而且要对实际经济问题加以研究,分为理论计量经济学和应用计量经济学两个方面。

理论计量经济学是以计量经济学理论与方法技术为研究内容,目的在于为应用计量经济学提供方法论。

所谓计量经济学理论与方法技术的研究,实质上是指研究如何运用、改造和发展数理统计方法,使之成为适合测定随机经济关系的特殊方法。

应用计量经济学是在一定的经济理论的指导下,以反映经济事实的统计数据为依据,用计量经济方法技术研究计量经济模型的实用化或探索实证经济规律、分析经济现象和预测经济行为以及对经济政策作定量评价。

1.3怎样理解计量经济学与理论经济学、经济统计学的关系?1.4在计量经济模型中被解释变量和解释变量的作用有什么不同?答:在计量经济模型中,解释变量是变动的原因,被解释变量是变动的结果。

被解释变量是模型要分析研究的对象。

解释变量是说明被解释变量变动主要原因的变量。

1.5一个完整的计量经济模型应包括哪些基本要素?你能举一个例子吗?答:一个完整的计量经济模型应包括三个基本要素:经济变量、参数和随机误差项。

例如研究消费函数的计量经济模型:Yαβ某u其中,Y为居民消费支出,某为居民家庭收入,二者是经济变量;α和β为参数;u是随机误差项。

1.6假如你是中央银行货币政策的研究者,需要你对增加货币供应量促进经济增长提出建议,你将考虑哪些因素?你认为可以怎样运用计量经济学的研究方法?答:货币政策工具或者说影响货币供应量的因素有再贴现率、公开市场业务操作以及法定准备金率。

(完整word版)计量经济学(庞皓)课后思考题答案

(完整word版)计量经济学(庞皓)课后思考题答案

思考题答案第一章绪论思考题1。

1怎样理解产生于西方国家的计量经济学能够在中国的经济理论研究和现代化建设中发挥重要作用?答:计量经济学的产生源于对经济问题的定量研究,这是社会经济发展到一定阶段的客观需要。

计量经济学的发展是与现代科学技术成就结合在一起的,它反映了社会化大生产对各种经济因素和经济活动进行数量分析的客观要求。

经济学从定性研究向定量分析的发展,是经济学逐步向更加精密、更加科学发展的表现。

我们只要坚持以科学的经济理论为指导,紧密结合中国经济的实际,就能够使计量经济学的理论与方法在中国的经济理论研究和现代化建设中发挥重要作用。

1。

2理论计量经济学和应用计量经济学的区别和联系是什么?答:计量经济学不仅要寻求经济计量分析的方法,而且要对实际经济问题加以研究,分为理论计量经济学和应用计量经济学两个方面。

理论计量经济学是以计量经济学理论与方法技术为研究内容,目的在于为应用计量经济学提供方法论。

所谓计量经济学理论与方法技术的研究,实质上是指研究如何运用、改造和发展数理统计方法,使之成为适合测定随机经济关系的特殊方法。

应用计量经济学是在一定的经济理论的指导下,以反映经济事实的统计数据为依据,用计量经济方法技术研究计量经济模型的实用化或探索实证经济规律、分析经济现象和预测经济行为以及对经济政策作定量评价。

1.3怎样理解计量经济学与理论经济学、经济统计学的关系?答:1、计量经济学与经济学的关系。

联系:计量经济学研究的主体—经济现象和经济关系的数量规律;计量经济学必须以经济学提供的理论原则和经济运行规律为依据;经济计量分析的结果:对经济理论确定的原则加以验证、充实、完善.区别:经济理论重在定性分析,并不对经济关系提供数量上的具体度量;计量经济学对经济关系要作出定量的估计,对经济理论提出经验的内容.2、计量经济学与经济统计学的关系。

联系:经济统计侧重于对社会经济现象的描述性计量;经济统计提供的数据是计量经济学据以估计参数、验证经济理论的基本依据;经济现象不能作实验,只能被动地观测客观经济现象变动的既成事实,只能依赖于经济统计数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章
考虑以下“期望扩充菲利普斯曲线(Expectations-augmented Phillips curve )”模型:
t t t t u X X Y +++=33221βββ
其中:t Y =实际通货膨胀率(%);t X 2=失业率(%);t X 3=预期的通货膨胀率(%)
表为某国的有关数据,
表 1970-1982年某国实际通货膨胀率Y (%),失业率X 2(%)和预期通货膨胀率X 3(%)
1)对此模型作估计,并作出经济学和计量经济学的说明。

2)根据此模型所估计结果作统计检验。

3)计算修正的可决系数(写出详细计算过程)。

解答:
(1)对此模型作估计,并作出经济学和计量经济学的说明。

(2)根据此模型所估计结果,作计量经济学的检验。

t 检验表明:各参数的t 值的绝对值均大于临界值0.025(133) 2.228t -=,从P 值也可看出均明显小于0.05α=,表明失业率和预期通货膨胀率分别对实际通货膨胀率都有显着影响。

F 检验表明: F=,大于临界值, 其P 值也明显小于0.05α=,说明失业率和预期通货膨胀率联合起来对实际通货膨胀率有显着影响。

从经济意义上看:失业率与实际通货膨胀率负相关,预期通货膨胀率与实际通货膨胀率正相关,与经济理论一致。

(3)计算修正可决系数(写出详细计算过程) 由Y 的统计量表得=
2
14.12846i
e
=∑
223.041892(131)111.0373i
y
=⨯-=∑
214.12846
110.12720.8728111.0373
R =-
=-=
某市1974年—1987年粮食年销售量Y 、常住人口X2、人均收入X3、肉销售量X4、蛋销售量X5、鱼虾销售量X6等数据如表所示:
表 某市粮食年销售量、常住人口、人均收入、肉、蛋、鱼虾销售量数据
2
211311(1)1(10.8728)0.8473
133
n R R n k --=--=--⨯=--
1)建立线性回归模型:12233445566t t Y X X X X X u ββββββ=++++++,你预期所估计参数的符号应该是什么
2)用OLS 法估计参数,模型参数估计的结果与你的预期是否相符合
3)对模型及各个解释变量的显着性作检验,从检验结果中你能发现什么问题吗你如何评价这样的检验结果
解答:
1)
建立线性回归模型:12233445566t t Y X X X X X u ββββββ=++++++ 预期常住人口和人均收入应与粮食销售量正相关,2β和3β应为正值,而肉、蛋、鱼虾与粮食消费应该负相关,预期4β、5β、6β应当为负值。

2)用OLS 法估计参数:
只有2β和6β的符号与预期一致,3β、4β、5β的符号均与预期相反。

3)对模型及各个解释变量的显着性发现:虽然可决系数和修正的可决系数都较高,F=,检验表明也显着,但是所有的解释变量的t 检验却都不显着! 这种矛盾现象说明此模型存在严重的问题(存在严重多重共线性)。

(本题的目的是让学生提前体验到多重共线性的影响)。

相关文档
最新文档