高二数学放缩法
高中数学放缩法教程
高中数学放缩法教程一、教学任务及对象1、教学任务本教学设计的任务是向高中学生传授数学中的放缩法技巧。
放缩法是高中数学中一种重要的解题方法,尤其在解决函数、数列、不等式等问题时具有广泛的应用。
通过本教程的学习,学生将理解放缩法的原理,掌握放缩法在不同题型中的应用,并能够灵活运用该方法解决数学问题。
2、教学对象本教程的教学对象为高中二年级的学生。
他们已经掌握了基本的数学知识,如函数、数列、不等式等,具备一定的数学推理和逻辑思维能力。
然而,大部分学生对放缩法的理解尚浅,应用能力有限。
因此,本教程旨在提升学生运用放缩法解决问题的能力,为后续数学学习打下坚实基础。
二、教学目标1、知识与技能(1)理解放缩法的概念和基本原理,能够解释放缩法在数学问题中的重要性。
(2)掌握放缩法在不同数学领域(如函数、数列、不等式等)的应用,能够运用放缩法解决具体问题。
(3)学会利用放缩法分析数学问题,提高解题效率,形成系统的解题思路。
(4)能够将放缩法与其他数学方法(如构造法、归纳法等)相结合,解决更复杂的数学问题。
2、过程与方法(1)通过分析实际例题,让学生体验放缩法的运用过程,培养他们的观察、分析和解决问题的能力。
(2)采用启发式教学,引导学生主动探究放缩法的原理和应用,提高他们的自主学习能力。
(3)组织课堂讨论,让学生在讨论中碰撞思维火花,互相学习,提高合作能力。
(4)布置有针对性的练习题,使学生在实践中掌握放缩法,培养他们的实际操作能力。
3、情感,态度与价值观(1)激发学生对数学的兴趣,培养他们积极向上的学习态度。
(2)通过解决数学问题,让学生体会数学的美妙和挑战性,增强他们克服困难的信心。
(3)引导学生认识到数学知识在实际生活中的重要性,提高他们的数学素养。
(4)培养学生严谨、细致的思考习惯,使他们形成科学的价值观。
(5)鼓励学生勇于发表自己的观点,尊重他人意见,培养良好的沟通能力和团队合作精神。
三、教学策略1、以退为进在放缩法的教学中,采用“以退为进”的策略,即在教学过程中,教师有意识地引导学生从已知的简单问题出发,逐步深入,让学生在解决问题的过程中自然地发现放缩法的原理和应用。
高中数学放缩法技巧全总结
高中数学放缩法技巧全总结在高中数学学习中,放缩法是一种常用的解题技巧,尤其在不等式证明和极限计算中应用广泛。
掌握好放缩法的技巧,可以帮助我们更好地解决数学问题,提高解题效率。
下面,我将对高中数学放缩法的技巧进行全面总结,希望能够帮助大家更好地掌握这一技巧。
首先,放缩法的基本思想是通过构造一个比原来更容易处理的不等式或者关系式,从而简化原问题的解决过程。
在实际运用中,我们可以通过加减变形、乘除变形、配方等方式进行放缩,下面我们来看一些常用的放缩法技巧。
一、加减变形。
在不等式证明中,我们常常会遇到需要证明一个不等式成立的情况。
这时,我们可以通过在两边同时加上或者减去一个特定的数,来改变原不等式的形式,使得原不等式更容易证明。
例如,在证明数学归纳法中的不等式时,我们常常会通过加减变形来简化证明过程,这是一种常见的放缩法技巧。
二、乘除变形。
在极限计算中,我们常常需要通过放缩法来证明一个极限存在或者不存在。
这时,我们可以通过乘除变形,将原极限问题转化为一个更容易处理的形式。
例如,当我们需要证明一个函数的极限不存在时,可以通过乘除变形将原函数转化为一个更容易处理的形式,从而简化证明过程。
三、配方。
在解决数学问题中,有时我们需要通过配方来进行放缩。
例如,在证明三角函数不等式时,我们可以通过对不等式进行配方,将原不等式转化为一个更容易处理的形式。
这种放缩法技巧在解决三角函数不等式问题中应用广泛,可以帮助我们更好地解决这类问题。
总结起来,放缩法是高中数学学习中常用的解题技巧,通过加减变形、乘除变形、配方等方式进行放缩,可以帮助我们更好地解决数学问题,提高解题效率。
希望以上总结的放缩法技巧对大家有所帮助,能够在高中数学学习中更好地运用这一技巧,提高数学成绩。
放缩技巧积累公式生用
放缩技巧积累公式生用放缩技巧是数学中经常使用的一种方法,通过对数学表达式中的相关变量进行适当放缩,可以简化问题的求解过程,提高求解效率。
下面将介绍一些常见的放缩技巧及其应用。
一、放缩技巧之平方差公式平方差公式是数学中常用的放缩技巧之一,它可以将一个式子表示为两个平方差的形式,从而提供了更多的计算方式。
1. (a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²这两个公式可以将一个式子表示为两个平方差的形式,从而可以将一些复杂的计算转化为更简单的计算,例如求解一些二次式的因式分解等问题。
2. (a + b)² - (a - b)² = 4ab这个公式是平方差公式的一个推论,用来计算两个具有平方差形式的式子之间的差值。
可以应用于一些问题中,例如计算两个数的乘积等。
二、放缩技巧之倍角公式倍角公式是一类通过对角度进行放缩的技巧,可以将不同角度的三角函数关系转化为相同角度的三角函数关系,从而简化问题的求解。
1. sin 2θ = 2sinθcosθ这个公式表示角度2θ的正弦值可以通过角度θ的正弦和余弦值来计算,可以应用于一些三角函数的积分、导数和级数展开等问题。
2. cos 2θ = cos²θ - sin²θ = 2cos²θ - 1 = 1 - 2sin²θ这个公式表示角度2θ的余弦值可以通过角度θ的正弦和余弦值来计算,可以应用于一些三角函数的积分、导数和级数展开等问题。
三、放缩技巧之柯西不等式柯西不等式是数学中一个重要的放缩技巧,它可以将多个变量的乘积的和表示为一个变量的平方和的形式,从而提供了更多的计算方式。
1.(a₁²+a₂²+...+aₙ²)(b₁²+b₂²+...+bₙ²)≥(a₁b₁+a₂b₂+...+aₙbₙ)²这个公式表示两个向量的点乘的平方不小于它们的模的平方的乘积,可以应用于一些向量和矩阵计算中。
高中数学知识点精讲精析 放缩法
4.3.4放缩法1.放缩法这也是分析法的一种特殊情况,它的根据是不等式的传递性— a≤b,b≤c,则a≤c,只要证明"大于或等于a 的"b≤c 就行了. (5)放缩法:将不等式一侧适当的放大或缩小以达证题目的. 2.放缩法的方法有:①添加或舍去一些项,如:a a >+12;n n n >+)1(; ②将分子或分母放大(或缩小); ③利用基本不等式,如:4lg 16lg 15lg )25lg 3lg (5lg 3log 2=<=+<⋅; 2)1()1(++<+n n n n ; ④先放缩再求和(或先求和再放缩) ⑤先放缩,后裂项(或先裂项再放缩) ⑥逐项放大或缩小⑦固定一部分项,放缩另外的项; ⑧先适当组合, 排序, 再逐项比较或放缩 ⑨利用常用结论:kkk k k 21111<++=-+;k k k k k 111)1(112--=-< ; 111)1(112+-=+>k k k k k (程度大) )1111(21)1)(1(111122+--=+-=-<k k k k k k ; (程度小)1.证明当k 是大于1的整数时,,我们可以用放缩法的一支——“逐步放大法”,证明如下:2. 若水杯中的b 克糖水里含有a 克糖,假如再添上m 克糖,糖水会变得更甜,试将这一事实用数学关系式反映出来,并证明之.分析:本例反映的事实质上是化学问题,由浓度概念(糖水加糖甜更甜)可知)0,0(>>>++<m a b mb m a b a . 解:由题意得)0,0(>>>++<m a b mb ma b a . 证法一:(比较法))()()()()(m b b a b m m b b m b a m a b b a m b m a +-=++-+=-++. 0,0>>>m a b ,0,0>+>-∴m b a b ,ba mb m a m b b a b m >++>+-∴即0)()(.证法二:(放缩法)00>>>m a b 且 ,mb m a m b mb aa mb b m b a b a ++<++=++=∴)()(. 证法三:(数形结合法)如图,在Rt ∆ABC 及Rt ∆ADF 中,AB=a ,AC=b ,BD=m ,作CE ∥BD .ADF ABC ∆∆∽ , mb m a CE b m a CF b m a b a ++=++<++=∴.A3. 已知a ,b ∈R ,且a+b=1. 求证:()()2252222≥+++b a . 证法一:(比较法)a b b a R b a -=∴=+∈1,1,,()()2222259224()22a b a b a b ∴+++-=+++- 2222911(1)4222()0222a a a a a =+-+-=-+=-≥即()()2252222≥+++b a (当且仅当21==b a 时,取等号).证法二:(分析法) ()()2258)(4225222222≥++++⇐≥+++b a b a B a ⎪⎩⎪⎨⎧≥-⇐≥++-+-=⇐0)21(22584)1(1222a a a ab 因为显然成立,所以原不等式成立. 证法三:(均值换元法)∵1a b +=,所以可设t a +=21,t b -=21, ∴左边=()()22221122(2)(2)22a b t t +++=+++-+22255252522222t t t ⎛⎫⎛⎫=++-=+≥⎪ ⎪⎝⎭⎝⎭=右边. 当且仅当t=0时,等号成立.点评:形如a+b=1结构式的条件,一般可以采用均值换元. 证法七:(利用一元二次方程根的判别式法)设y=(a+2)2+(b+2)2,由a+b=1,有1322)3()2(222+-=-++=a a a a y , 所以013222=-+-y a a ,因为R a ∈,所以0)13(244≥-⋅⋅-=∆y ,即225≥y . 故()()2252222≥+++b a . 证法四:(反证法)假设225)2()2(22<+++b a ,则 2258)(422<++++b a b a .由a+b=1,得a b -=1,于是有22512)1(22<+-+a a . 所以0)21(2<-a ,这与0212≥⎪⎭⎫ ⎝⎛-a 矛盾.所以()()2252222≥+++b a . 证法五:(放缩法)∵1a b += ∴左边=()()()()222222222a b a b +++⎡⎤+++≥⎢⎥⎣⎦()2125422a b =++=⎡⎤⎣⎦=右边. 点评:根据欲证不等式左边是平方和及a+b=1这个特点,选用基本不等式22222⎪⎭⎫⎝⎛+≥+b a b a .4.设实数x ,y 满足y+x 2=0,0<a<1.求证:812log )(log +≤+a yx a a a . 证明:(分析法)要证812log )(log +≤+a yx a a a , 10<<a ,只要证:812a a a yx ≥+,又222y x yxyxaaa a a +=+≥+ ,∴只需证:41a ayx ≥+. ∴只需证41≤+y x ,即证0412≥+-x x ,此式显然成立.∴原不等式成立.5.设m 等于a ,b 和1中最大的一个,当m x >时,求证:22<+x bx a . 分析:本题的关键是将题设条件中的文字语言“m 等于a ,b 和1中最大的一个”翻译为符号语言“a m ≥,b m ≥,1≥m ”,从而知a m x ≥>. 证明:(综合法)a m x ≥> ,,1x m b x m >≥>≥.22222 1.2a b x xa b a bx x x x x x x x∴+≤+=+<+=.6.已知,,a b c R +∈,1a b c ++=,求证:222111100()()()3a b c a b c +++++≥证明 ∵ 1a b c ++=∴ 1=2222222()2223()a b c a b c ab bc ca a b c ++=+++++≤++∴ 22213a b c ++≥又 ∵22222222111111()()27a b c a b c a b c ++=++++≥⨯= ∴ 222222222111111()()()()6()a b c a b c a b c a b c +++++=++++++110062733≥++= ∴ 222111100()()()3a b c a b c +++++≥7.若a , b , c , d ∈R +,求证:21<+++++++++++<ca d db dc c a c b bd b a a证明: 记m =ca d db dc c a c b bd b a a +++++++++++∵a , b , c , d ∈R + ∴1=+++++++++++++++>c b ad db a dc c a c b a bd c b a a m2=+++++++<cd dd c c b a b b a a m ∴1 < m < 2 即原式成立8.当 n > 2 时,求证:1)1(log )1(log <+-n n n n 证明: ∵n > 2 ∴0)1(log ,0)1(log >+>-n n n n∴2222)1(log 2)1(log )1(log )1(log )1(log ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡++-<+-n n n n n n n n n n 12log 22=⎥⎦⎤⎢⎣⎡<n n ∴n > 2时, 1)1(log )1(log <+-n n n n 9. 求证:213121112222<++++n证明:nn n n n 111)1(112--=-< ∴2121113121211113121112222<-=+-++-+-+<++++n n n n10.设x > 0, y > 0,y x y x a +++=1, yyx x b +++=11,求证:a < b 证明:yyx x y x y y x x y x y x +++<+++++=+++11111 11.lg9•lg11 < 1证明:122299lg 211lg 9lg 11lg 9lg 222=⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+≤⋅12.若a > b > c , 则0411≥-+-+-ac c b b a 证明:c a c b b a c b b a c b b a -=⎪⎪⎭⎫ ⎝⎛-+-≥--≥-+-4)()(22))((1211213.)2,(11211112≥∈>+++++++n R n nn n n 证明:左边11111122222=-+=++++>n nn n n n n n 14.121211121<+++++≤n n n 证明:11121<⋅+≤≤⋅n n n n 中式 15.已知a , b , c > 0, 且a 2 + b 2 = c 2,求证:a n + b n < c n (n ≥3, n ∈R *)证明: ∵122=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛c b c a ,又a , b , c > 0, ∴22,⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛c b c b c a c a n n∴<⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛n n c b c a 122=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛c b c a ⇒ a n + b n < c n16.已知,,x y z R ∈,且2228,24x y z x y z ++=++= 求证:4443,3,3333x y z ≤≤≤≤≤≤ 证明:显然2222()()8,8202x y x y x y z xy z z +-++=-==-+ ,x y ∴是方程22(8)8200t z x z z --+-+=的两个实根, 由0≥得443z ≤≤,同理可得443y ≤≤,443x ≤≤17. 设a ,b 为不相等的两正数,且a 3-b 3=a 2-b 2,求证143<+<a b 。
放缩法技巧及例题解析(高中数学)
{an } 满足条件 an1 an f n )求和或者利用分组、裂项、倒序相加等方法来
a n 1 a1 a2 ... n (n N * ). 2 3 a2 a3 an1
当 n 3 时,
1 1 1 1 1 2 ,此时 an n n 1 n n 1 n
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 a1 a2 an 4 3 4 n 4 2 3 3 4 n 1 n
1
1 (n 1) 2 an1 an
1 (n 1) 2 [1 an ] (n 1) 2
an (n 1)(n 1 ) n 1
这种证法还是比较自然 的, 也易让学生接受 .
.
an an 1 n 当 n 2 时, n 1
1 1 1 1 1 an an1 (n 1)(n 2) n 1 n 2
1 1 1 1 1 1 1 2 (n 1) n n 1 n(n 1) n n(n 1) n 1 n 2 2 1 2 2( n n 1) n 1 n n n n n n 1
a a a am , b bm b b
1 1 1 1 1 1 1 1 1 (1 ) 2 3 3 5 2n 1 2n 1 2 2(2n 1) 2
注:一般先分析数列的通项公式.如果此数列的前 n 项和能直接求和或者通过变形后求和,则采用 先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这里所谓的差 比数列,即指数列 求和. 例 2、已知 an 2n 1(n N * ). 求证:
高中数学放缩法技巧全总结
高中数学放缩法技巧全总结高中数学中的放缩法是一种常用的解题技巧,它通过适当调整式子的形式,进行等价转化,从而简化计算或者明晰问题的关键点。
下面总结了一些常见的高中数学放缩法技巧。
1. 分子分母同乘:当分式的分子和分母中含有相同的因式时,可以将分子和分母同时乘以这个因式的倒数,从而得到一个等价的分式。
这样做的好处是可以简化分式,消去分子分母中的公因式。
2. 导数法:在解决函数极值问题时,可以利用导数的概念进行放缩。
通过求函数的导数,并研究导数的正负性,可以找到函数的极值点。
这种方法可以有效地缩小问题的范围,简化计算。
3. 均值不等式:均值不等式是一种常用的放缩方法,它通过寻找合适的均值来放缩不等式。
常见的均值不等式有算术-几何均值不等式、柯西-施瓦茨不等式等。
通过将不等式的两边同时取均值,可以得到一个更简单的等价不等式。
4. 三角函数变换:在解决三角函数相关的问题时,可以利用三角函数的性质进行放缩。
常见的三角函数变换有和差化积、倍角公式等。
通过适当的变换,可以将原问题转化为更容易处理的形式。
5. 幂函数变换:在解决幂函数相关的问题时,可以利用幂函数的性质进行放缩。
常见的幂函数变换有换元法、幂函数的反函数等。
通过适当的变换,可以使问题的形式更简单,更易于分析。
6. 递推关系式:在解决数列相关的问题时,可以利用递推关系式进行放缩。
通过找到数列的递推关系式,可以将原问题转化为递推问题。
递推关系式可以帮助我们找到数列的通项公式,从而简化问题的求解过程。
以上是一些高中数学中常用的放缩法技巧。
通过灵活运用这些技巧,可以在解题过程中简化计算、明晰问题的关键点,从而更高效地解决数学问题。
高中数学-放缩法(详解)
放缩技巧放缩法:将不等式一侧适当的放大或缩小以达证题目的的方法,叫放缩法。
放缩法的方法有:⑴添加或舍去一些项,如:a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )25lg 3lg (5lg 3log 2=<=+<⋅; 2)1()1(++<+n n n n⑷利用常用结论: Ⅰ、kkk k k 21111<++=-+; Ⅱ、k k k k k 111)1(112--=-< ; 111)1(112+-=+>k k k k k (程度大) Ⅲ、)1111(21)1)(1(111122+--=+-=-<k k k k k k ; (程度小) 1.若a , b , c , d ∈R +,求证:21<+++++++++++<ca d db dc c a c b bd b a a【巧证】:记m =ca d db dc c a c b bd b a a +++++++++++∵a , b , c , d ∈R+∴1=+++++++++++++++>cb a d db a dc c a c b a bd c b a a m2=+++++++<cd dd c c b a b b a a m ∴1 < m < 2 即原式成立2.当 n > 2 时,求证:1)1(log )1(log <+-n n n n 【巧证】:∵n > 2 ∴0)1(log ,0)1(log >+>-n n n n∴2222)1(log 2)1(log )1(log )1(log )1(log ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡++-<+-n n n n n n n n n n 12log 22=⎥⎦⎤⎢⎣⎡<n n ∴n > 2时, 1)1(log )1(log <+-n n n n3.求证:213121112222<++++n【巧证】:nn n n n 111)1(112--=-< ∴2121113121211113121112222<-=+-++-+-+<++++n n n n巧练一:设x > 0, y > 0,y x y x a +++=1, yyx x b +++=11,求证:a < b 巧练一:【巧证】:yyx x y x y y x x y x y x +++<+++++=+++11111 巧练二:求证:lg9•lg11 < 1巧练二:【巧证】:122299lg 211lg 9lg 11lg 9lg 222=⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+≤⋅巧练三:1)1(log )1(log <+-n n n n巧练三:【巧证】: 222)1(log )1(log )1(log ⎥⎦⎤⎢⎣⎡-≤+-n n n n n n 12log 22=⎥⎦⎤⎢⎣⎡<n n 巧练四:若a > b > c , 则0411≥-+-+-ac c b b a 巧练四: 【巧证】: c a c b b a c b b a c b b a -=⎪⎪⎭⎫ ⎝⎛-+-≥--≥-+-4)()(22))((12112巧练五:)2,(11211112≥∈>+++++++n R n nn n n巧练五:【巧证】:左边11111122222=-+=++++>n nn n n n n n 巧练六:121211121<+++++≤nn n 巧练六:【巧证】: 11121<⋅+≤≤⋅n n n n 中式 巧练七:已知a , b , c > 0, 且a 2+ b 2= c 2,求证:a n + b n < c n (n ≥3, n ∈R *)巧练七:【巧证】: ∵122=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛c b c a ,又a , b , c > 0,∴22,⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛c b c b c a c a n n ∴1=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛nn c b c a证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查知识的潜能与后继能力,因而成为压轴题及各级各类竞赛试题命题的极好素材。
放缩法大全
a −1 + 1 − 2a − ln x 解(1):令g ( x) = f ( x) − ln x = ax + x 1 (a , x 1) 2 a − 1 1 ax 2 − x + 1 − a [ax − (1 − a)]( x − 1) g ( x) = a − 2 − = = 2 x x x x2 1 a[ x − ( − 1)]( x − 1) a g ( x) = 0 (或用二次函数图象分 析) 2 x
1 1 1 1 1 1 + + ... + dx + dx + ... + dx 2 3 n +1 1 x x x 2 n
n +1 2 3 n +1
n
=
1
1 dx = ln( n + 1) x
1 n
n +1
n
1 dx = ln( n + 1) − ln n x
同理证右。
n +1 1 n ln( ) ln( ) n n n −1
所以:
ln n 2 f (n) − f (n − 1) 2 n
由
ln n 2 f (n) − f (n − 1) 2 n
取n=2,3,…,n累加
ln 2 2 ln 32 ln n 2 2n 2 − n − 1 + 2 + ... + 2 f (n) − f (1) = 2 2 3 n 2(n + 1)
1 m an = 4n − 3, { }前n项和为S n , 若S 2 n +1 − S n 恒成立, an 15 求整数m的最小值。
1 1 1 m 解: + + ... + 对n N + 恒成立, an +1 an + 2 a2 n +1 15 1 1 1 令f ( n ) = + + ... + , an +1 an + 2 a2 n +1 1 1 1 f (n − 1) = + + ... + an an +1 a2 n −1
[整理版]高中数学放缩法
高考专题 放缩法缩法是不等式证明中一种常用的方法,也是一种非常重要的方法。
在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果。
但放缩的范围较难把握,常常出现放缩之后得不出结论或得出相反结论的现象。
因此,使用放缩法时,如何确定放缩目标尤为重要。
要想正确确定放缩目标,就必须根据欲证结论,抓住题目的特点。
掌握放缩技巧,真正做到弄懂弄通,并且还要根据不同题目的类型,采用恰到好处的放缩方法,才能把题解活,从而培养和提高自己的思维和逻辑推理能力,分析问题和解决问题的能力。
数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和.一.先求和后放缩例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求:(1)数列{}n a 的通项公式; (2)设11+=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:21<n B解:(1)由已知得2)1(4+=n n a S ,2≥n 时,211)1(4+=--n n a S ,作差得:1212224----+=n n n n n a a a a a ,所以0)2)((11=--+--n n n n a a a a ,又因为{}n a 为正数数列,所以21=--n n a a ,即{}n a 是公差为2的等差数列,由1211+=a S ,得11=a ,所以12-=n a n(2))121121(21)12)(12(111+--=+-==+n n n n a a b n n n ,所以21)12(2121)1211215131311(21<+-=+---+-=n n n B n 注:一般先分析数列的通项公式.如果此数列的前n 项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这里所谓的差比数列,即指数列{}n a 满足条件()n f a a n n =-+1)求和或者利用分组、裂项、倒序相加等方法来求和.二.先放缩再求和1.放缩后成等差数列,再求和例2.已知各项均为正数的数列{}n a 的前n 项和为n S ,且22n n n a a S +=.(1) 求证:2214n n n a a S ++<;(2) 求证:112122n n n S S S S S +-<++⋅⋅⋅+<解:(1)在条件中,令1=n ,得1112122a S a a ==+,1011=∴>a a ,又由条件n n n S a a 22=+有11212+++=+n n n S a a ,上述两式相减,注意到n n n S S a -=++11得)1)((11=--+++n n n n a a a a01>+∴>+n n n a a a∴11n n a a +-=所以, n n a n =-⨯+=)1(11,(1)2n n n S +=所以42)1(212)1(21222++=++∙<+=n n n a a n n n n S(2)因为1)1(+<+<n n n n ,所以212)1(2+<+<n n n n ,所以2)1(23222121+++⨯+⨯=++n n S S S n 212322++++<n 2122312-=+=+n S n n ;222)1(2222121nn S n n n S S S =+=+++>++2.放缩后成等比数列,再求和例3.(1)设a ,n ∈N *,a ≥2,证明:n n na a a a⋅+≥--)1()(2;(2)等比数列{a n }中,112a =-,前n 项的和为A n ,且A 7,A 9,A 8成等差数列.设nn n a a b -=12,数列{b n }前n 项的和为B n ,证明:B n <13.解:(1)当n 为奇数时,a n ≥a ,于是,n n n n na a a a a a⋅+≥+=--)1()1()(2.当n 为偶数时,a -1≥1,且a n ≥a 2,于是n n n n n n n a a a a a a a a a a a ⋅+≥⋅-+=⋅-≥-=--)1()1)(1()1()1()(22.(2)∵9789A A a a -=+,899A A a -=-,899a a a +=-,∴公比9812a q a ==-.∴nn a )21(-=. nn n nn n b 231)2(41)21(141⋅≤--=--=.∴n n b b b B ++=2131)211(31211)211(213123123123122<-=--⋅=⋅++⋅+⋅≤n n .3.放缩后为差比数列,再求和例4.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a na n n n .求证:11213-++-≥>n n n n a a 证明:因为n nn a na )21(1+=+,所以1+n a 与n a 同号,又因为011>=a ,所以0>n a ,即021>=-+n nn n a na a ,即n n a a >+1.所以数列{}n a 为递增数列,所以11=≥a a n ,即n n n n n n a n a a 221≥=-+,累加得:121212221--+++≥-n n n a a .令12212221--+++=n n n S ,所以n n n S 2122212132-+++= ,两式相减得:n n n n S 212121212121132--++++=- ,所以1212-+-=n n n S ,所以1213-+-≥n n n a ,故得11213-++-≥>n n n n a a .4.放缩后为裂项相消,再求和例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1( -+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的逆序数63=a .(1)求a 4、a 5,并写出a n 的表达式;(2)令nn n n n a aa ab 11+++=,证明32221+<++<n b b b n n ,n =1,2,….解(1)由已知得15,1054==a a ,2)1(12)1(+=+++-+=n n n n a n .(2)因为 ,2,1,22222211==+⋅+>+++=+=++n nn n n n n n n a a a a b n n n n n ,所以n b b b n 221>+++ .又因为 ,2,1,222222=+-+=+++=n n n n n n n b n ,所以)]211()4121()3111[(2221+-++-+-+=+++n n n b b b n =32221232+<+-+-+n n n n .综上, ,2,1,32221=+<++<n n b b b n n .注:常用放缩的结论:(1))2(111)1(11)1(11112≥--=-<<+=+-k kk k k k k k k k(2).)2)(111(212112)111(2≥--=-+<<++=+-k kk k k kk k k k常见高考放缩法试题1. 设{}{},n n a b 都是各项为正数的数列,对任意的正整数n ,都有21,,n n n a b a +成等差数列,2211,,n n n b a b ++成等比数列.(1)试问{}n b 是否成等差数列?为什么?(2)如果111,2a b ==,求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .2. 已知等差数列{n a }中,2a =8,6S =66.(Ⅰ)求数列{n a }的通项公式;(Ⅱ)设n n a n b )1(2+=,n n b b b T +++= 21,求证:n T ≥16.3. 已知数列{n a }中531=a ,112--=n n a a (n ≥2,+∈N n ),数列}{nb ,满足11-=n n a b (+∈N n )(1)求证数列{n b }是等差数列;(2)求数列{n a }中的最大项与最小项,并说明理由;(3)记++=21b b S n …n b +,求1)1(lim +-∞→n nS b n n .4. 已知数列{a n }中,a 1>0, 且a n +1=23na +, (Ⅰ)试求a 1的值,使得数列{a n }是一个常数数列;(Ⅱ)试求a 1的取值范围,使得a n +1>a n 对任何自然数n 都成立;(Ⅲ)若a 1 = 2,设b n = | a n +1-a n | (n = 1,2,3,…),并以S n 表示数列{b n }的前n 项的和,求证:S n <25.5. (1)已知:)0(∞+∈x ,求证xx x x 11ln 11<+<+;(2)已知:2≥∈n N n 且,求证:11211ln 13121-+++<<+++n n n 。
高中数列放缩法技巧
高中数列放缩法技巧
高中数列放缩法是一种用于求解数列问题的技巧。
通过适当的方法对数列进行放缩,可以简化问题的求解过程,提高解题效率。
在高中数学中,数列是一个非常重要的概念。
通过研究数列的性质和规律,可以帮助学生培养数学思维和分析问题的能力。
数列放缩法的基本思想是通过一系列变换将原始数列转化为一个更
加简单或者更加易于处理的数列,从而使问题的求解变得更加容易。
下面介绍几种常用的数列放缩方法:
1. 数列的倍数放缩:如果一个数列的每一项都乘以一个相同的常数,那么这个数列的性质和规律不会改变。
这种放缩方法常用于求解具有明显倍数关系的数列问题,可以通过放缩将数列转化为一个等比数列,从而更加方便地求解。
2. 数列的平移放缩:如果一个数列的每一项都加上或者减去一个相
同的常数,那么这个数列的性质和规律不会改变。
这种放缩方法常用于求解具有明显递推关系的数列问题,可以通过放缩将数列转化为一个等差数列,从而更加方便地求解。
3. 数列的递推放缩:如果一个数列的每一项都是前一项的某个函数,
那么这个数列的性质和规律不会改变。
这种放缩方法常用于求解具有复杂递推关系的数列问题,可以通过放缩将数列转化为一个递推公式,从而更加方便地求解。
除了以上几种基本的放缩方法,还可以根据具体问题的特点进行其他类型的放缩。
数列放缩法在高中数学中有着广泛的应用,可以帮助学生解决各种数列问题,提高数学分析和推理能力。
总之,高中数列放缩法是一种重要的解题技巧,通过适当的放缩方法可以简化数列问题的求解过程,提高解题效率。
掌握数列放缩法对于高中数学的学习和应试都具有重要的意义。
放缩法技巧全总结
放缩法技巧全总结放缩法是一种在求解数学问题时经常使用的技巧之一、它主要是通过对问题进行放大或缩小,从而转换为更简单或更熟悉的形式来解决。
放缩法可以用于各种数学领域,如代数、几何和计算等。
在本文中,我将总结一些常用的放缩法技巧。
一、代数放缩法1.替换变量:通过替换变量,将原始问题转化为更容易求解的问题。
例如,可以通过令一些变量等于另一个变量的一些表达式来简化问题。
2.提取公因式:将多项式中的公因式提取出来,可以简化计算过程。
3.移项:将方程中的项移动到一边,可以使问题更加清晰。
4.分式放缩:对于有分式形式的问题,可以通过放缩分母或分子来简化问题。
二、几何放缩法1.类比三角形:如果一个问题中涉及到一个复杂的三角形,可以通过找到类似形状但更简单的三角形来放缩问题。
2.重心放缩:对于一个几何体,可以通过移动几何体的重心来简化问题。
例如,在求解三角形面积时,可以通过将三角形平移到一个更简单的位置来计算。
3.缩放比例:通过按比例缩放一个几何体,可以简化问题。
例如,求解复杂图形的面积时,可以将图形按比例缩小到一个更易计算的大小。
三、计算放缩法1.近似计算:当遇到一个复杂的数学计算时,可以通过近似计算来简化问题。
例如,可以使用泰勒级数近似一个函数的值。
2.递归放缩:将一个复杂的计算问题分解为多个简单的计算问题,并将得到的结果组合起来。
例如,在求解一个复杂的积分时,可以将其拆分为多个简单的积分来计算。
3.迭代放缩:通过迭代计算的方式,逐步接近问题的解。
例如,在求解方程的根时,可以逐步逼近根的值。
四、实例分析以以下问题为例,展示放缩法在实际问题的应用。
假设有一个需要排队购买电影票的场景,共有n个人等待购票,每个人需要等待的时间为ti,求解n个人等待时间的平均值。
使用放缩法求解该问题的步骤如下:1. 将n个人的等待时间求和得到总的等待时间sum。
2. 将总的等待时间sum除以n,得到平均等待时间average。
通过放缩法求解,可以将原始问题转化为简单的求和和除法操作,从而简化了计算过程。
高中数学课程数列中的放缩法
高中数学课程数列中的放缩法
数列中的放缩法
在全国卷高考中,数列已经远远降低了难度,再也不会出现那种丧心病狂,虐死人不犯罪的压轴题了。
相应的放缩技巧,在数列考查中也几乎绝迹了,就算偶尔出现意外,也不会太难,掌握下面这几类,完全可以搞定。
一·放缩法
1·放缩法的步骤:
【注意】
放缩法在很多时候会保留第一项或前几项不放缩,这样才不至于使得结果过大或者过小。
2·放缩成等比数列模型:
3·放缩成裂项相消模型:
二·放缩法的应用
1·直接可求和放缩:
2·放缩成等比数列:
3·错位相减法放缩:
4·裂项相消放缩:。
高中常用不等式放缩公式
高中常用不等式放缩公式在高中数学的学习中,不等式放缩是一种非常重要的解题技巧。
它能够帮助我们在解决一些复杂的不等式问题时,简化运算,找到解题的突破口。
下面,我们就来一起学习一下高中常用的不等式放缩公式。
一、基本不等式基本不等式是高中数学中最基础也是最重要的不等式之一,其形式为:对于任意的正实数 a、b,有$\sqrt{ab} \leq \frac{a + b}{2}$,当且仅当 a = b 时,等号成立。
这个不等式在放缩中有着广泛的应用。
例如,当我们要证明一个不等式中涉及到两个正数的乘积时,可以考虑使用基本不等式进行放缩。
二、绝对值不等式绝对值不等式也是高中数学中的重要内容,常见的有:$\vert a \vert \vert b \vert \leq \vert a + b \vert \leq \vert a \vert +\vert b \vert$在处理一些含有绝对值的不等式问题时,利用绝对值不等式进行放缩,可以使问题变得更加清晰。
三、柯西不等式柯西不等式的形式为:对于任意的实数$a_1, a_2, \cdots, a_n$ 和$b_1, b_2, \cdots, b_n$ ,有$(a_1^2 + a_2^2 +\cdots + a_n^2)(b_1^2 + b_2^2 +\cdots + b_n^2) \geq (a_1b_1 + a_2b_2 +\cdots + a_nb_n)^2$ ,当且仅当$\frac{a_1}{b_1} =\frac{a_2}{b_2} =\cdots =\frac{a_n}{b_n}$(当$b_i \neq 0$ )时,等号成立。
柯西不等式在放缩时,可以将一些复杂的乘积形式进行简化和处理。
四、糖水不等式若有正实数$a, b, m$ ,且$a < b$ ,则$\frac{a + m}{b +m} >\frac{a}{b}$。
这个不等式在一些分式的放缩中非常有用。
2023高考专题篇:5种放缩方法汇总
学习札记钻研数学钻研数学5种放缩方法汇总放缩法就是针对不等式的结构特征,运用不等式的性质,将不等式的一边或两边进行放大或缩小,也就是对代数式进行恰到好处的变形,使问题便于解决.放缩方法众多,各有优劣,黑猫花猫能抓住耗子就是好猫……放缩法大致分为以下几类:.将代数式中的分母和分子同时扩大和缩小Ⅰ;Ⅱ.利用均值不等式或其它的不等式放缩数式;Ⅲ.也可以在不等式两边同时加上或减去某一项;Ⅳ.可以把代数式中的一些项进行分解再重新组合,这样就可以消去一些项便于求解,这也是我们常用的裂项法.导数的解答题中,经常会用到一些不等式进行放缩,主要分为五类:.Ⅰ切线不等式①e x ≥x +1;②ln x ≤x -1;③e x ≥ex ;④ln x ≤e 1x ;⑤ln x ≥1-x1.xyy =x +1y =x -11=y e xy =lnxy =exy =exⅡ.与三角有关的一些不等式①当x ≥0时,sin x ≤x ,cos x ≥1-x 22;2时,cos x ≤1-x 24②当0≤x ≤π③当0<x <;π2时,sin x <x <tan x ;学习札记④当0<x ≤钻研数学钻研数学π2时,sin x x ≥π2.Ⅲ.一些常见不等式(稍微提高)①当x >1时,x 2-x +2121<(x -1)x +1<ln x <x -1x<21 x -x 1;②当0<x <1时,21 x -x 1 <x -12x<ln x <(x -1)x +1<x 2-x +211;1x ③对数平均不等式:∀x 1>x 2>0,x 1x 2<ln 2x x -1-ln x 2x 1<+x 22.Ⅳ.一些不常见的不等式①当x >0时,e x >1+x +21x 2;+②当0<x <1时,ln1x 1-x >2x +32x 3;+ 当-1<x <0时,ln 1x 1-x <2x +32x 3.Ⅴ.偶尔用上的不等式1≤1+n1x .当n >1,n ∈N ∗,x >-1时,则:(1+x )n≥1+nx ,(1+x )n(当且仅当x =0时等号成立.)在解答导数问题时,我们经常使用到函数的切线、割线逼近进行放缩,两个常用的结论为ln x ≤x -1(当且仅当x =1时取等号),e x ≥x +1(当且仅当x =0时取等号),借助这两个结论可以将超越函数放缩成一次函数.针对高考压轴导数问题,放缩法可以起到很好的效果.使用放缩法需要较高的拆分组合技巧,一定要注意同向传递,还要把握好放缩的“尺度”,否则将达不到预期的目的,或者会得出错误的结论.在不等式“改造”或证明的过程中,有时借助于e x ,ln x 有关的常用不等式进行适当的放缩,再进行证明,会取得意想不到的效果.典例1.已知函数f (x )=ae x +2x -1(其中常数e =2.71828⋯,是自然对数的底数).ⅰ讨论f (x )的单调性;ⅱ证明:对任意的a ≥1,当x >0时,f (x )≥(x +ae )x .典例剖析指数放缩学习札记钻研数学钻研数学解析:ⅰ求导,得f(x )=ae x+2.当a ≥0时,f (x )>0,f (x )在R 上单调递增;当a <0时,令f (x )=0,得x =ln -a2.2当x ∈ -∞,ln -a 时,f (x )>0,f (x )单调递增;当x ∈ ln - a2,+∞时,f (x )<0,f (x ) 单调递减.综上,当a ≥0时,f (x )在R 上单调递增;2当a <0时,f (x )在 -∞,ln -a上单调递增 ,2,+∞ 上单调递减.在 ln -aⅱ解法1:指对处理技巧exx 型当a ≥1,x >0时,要证f (x )≥(x +ae )x ,x 2-(2即ae x -x 2+(2-ae )x -1≥0,即1--)x +ae 1ae x≥0,x 2-(2令g (x )=1--)x +ae 1x,ae x (x -1则g (x )=)(+ae -3)ae x,①当a ≥e3时,令g (x )=0,得x =1,故当x ∈(0,1)时,g (x )<0,g (x )单调递减;当x ∈(1,+∞),g (x )>0,g (x )单调递增.所以g (x )≥g (1)=0,即f (x )≥(x +ae )x .②当1≤a <e3吋,令g (x )=0,得x =1,或x =3-ae .当x ∈(0,3-ae ),(1,+∞),g (x )>0,g (x )单调递增;当x ∈(3-ae ,1),g (x )<0,g (x )单调递减.又g (0)=1-a1≥0,g (1)=0,故此时g (x )≥0,即f (x )≥(x +ae )x .综上,对任意的a ≥1,当x >0时,f (x )≥(x +ae )x .解法2:指对处理技巧e xx+主元放缩 当a ≥1,x >0时,要证f (x )≥(x +ae )x ,即a e x -ex -(x -1)2≥0,即证e x x -x a -ax 1+a2-e ≥0,令g (x )=e x x -x a -ax 1+a2-e ,(x -1)-x -ae 则g (x )=x1ax 2,学习札记当a ≥1时,ae x -x -1≥e x -x -1,当且仅当a =1时等号成立,令ℎ(x )=e x-x -1,则ℎ(x )=e x-1>0在(0,+∞)上恒成立,故ℎ(x )单调递增,ℎ(x )>ℎ(0)=0,g (x )=0,则x =1,所以x ∈(0,1)时,g (x )<0,g (x )单调递减;当x ∈(1,+∞)时,g (x )>0,g (x )钻研数学钻研数学单调递增.所以g (x )≥g (1)=0,即e x x -x a -ax 1+a2-e ≥0,即f (x )≥(x +ae )x .综上,对任意的a ≥1,当x >0时,f (x )≥(x +ae )x .解法3:直接讨论法当a ≥1,x >0时,要证f (x )≥(x +ae )x ,即a e x -ex -(x -1)2≥0,令g (x )=ae x -x 2+(2-ae )x -1,则g (x )=ae x -2x -(ae -2),因此g (x )=ae x -2在(0,+∞)上单调递增.①当a ≥2时,g (x )>0在(0,+∞)上恒成立,故g (x )单调递增,又g (1)=0,故当x ∈(0,1)时,g (x )<0,g (x )单调递减,当x ∈(1,+∞)时,g (x )>0,g (x )单调递增.所以g (x )≥g (1)=0,即f (x )≥(x +ae )x .当1≤a <2时,令g (x )=0,得x =ln a2∈(0,1).当x ∈ 0,ln a 2,g (x )<0,g (x )单调递减;当x ∈ ln a 2,+∞,g (x )>0,g (x )单调递增.2②当e -1≤a <2时,g (0)=a (1-e )+2≤0,又g (1)=0,g ln a2<g (1)=0,故当x ∈(0,1)时,g (x )<0,g (x )单调递减;当x ∈(1,+∞)时,g (x )>0,g (x )单调递增.所以g (x )≥g (1)=0,即f (x )≥(x +ae )x .2③当1≤a <e -1时,则g (0)=a (1-e )+2>0,又g ln a 2<g (1)=0,故存在唯一x 0∈ 0,ln a2,使得ℎ x 0=0,当x ∈ 0,x 0,(1,+∞)时,g (x )>0,g (x )单调递增;当x ∈ x 0,1时,g (x )<0,g (x )单调递减.又g (0)=a -1≥0,g (1)=0.故此时g (x )≥0,即f (x )≥(x +ae )x .综上,对任意的a ≥1,当x >0时,f (x )≥(x +ae )x .学习札记钻研数学钻研数学解法4:主元放缩+指数放缩法当a ≥1,x >0时,要证f (x )≥(x +ae )x ,即a e x-ex -(x -1)2≥0,令g (x )=e x -ex ,则g (x )=e x -e ,令g (x )=0,得x =1.当x ∈(-∞,1),g (x )<0,g (x )单调递减;当x ∈(1,+∞),g (x )>0,g (x )单调递增.所以g (x )≥g (1)=0,即e x -ex ≥0,当且仅当x =1时等号成立,故a e x -ex ≥e x -ex ,当且仅当a =1,x =1时等号成立;要证a e x -ex -(x -1)2≥0,只需要证e x -ex -(x -1)2≥0.策略一:直接讨论法令ℎ(x )=e x -ex -(x -1)2(x >0),则ℎ (x )=e x -e -2(x -1),ℎ (x )=e x -2,令ℎ (x )=0,得x =ln2.当x ∈(0,ln2)时,ℎ (x )<0,ℎ (x )单调递减;当x ∈(ln2,+∞)时,ℎ (x )>0,ℎ (x )单调递增.又ℎ (0)=3-e >0,ℎ (1)=0,ℎ (ln2)<0,因此存在唯一x 0∈(0,ln2),使得ℎ x 0=0.当x ∈ 0,x 0时,ℎ (x )>0,ℎ(x )单调递增;当x ∈ x 0,1,ℎ (x )<0,ℎ(x )单调递减.又ℎ(0)=0,ℎ(1)=0,故此时ℎ(x )≥0恒成立,即f (x )≥(x +ae )x .综上,对任意的a ≥1,当x >0时,f (x )≥(x +ae )x .策略二:指数处理,同解法 1ex 即证1-+(-1)x 2e x ex ≥0,令g (x )=1-+(-1)x 2e x ,(x -1则g (x )=)(+e -3x )e x,令g (x )=0,得x =1,或x =3-e .当x ∈(0,3-e ),(1,+∞)时,g (x )>0,g (x )单调递增;当x ∈(3-e ,1)时,g (x )<0,g (x )单调递减.又g (0)=0,g (1)=0,故此时g (x )≥0,即f (x )≥(x +ae )x .综上,对任意的a ≥1,当x >0时,f (x )≥(x +ae )x .策略三:指对处理,同解法2即证e x x -x -x1+2-e ≥0,令g (x )=e x x -x -x (x -1)-x -e 1+2-e ,则g(x )=x 1 x 2.令ℎ(x )=e x -x -1,则ℎ (x )=e x -1>0在(0,+∞)上恒成立,故ℎ(x )单调递增,从而ℎ(x )>ℎ(0)=0,令g (x )=0,则x =1.当x ∈(0,1)时,g (x )<0,g (x )单调递减;学习札记当x ∈(1,+∞)时,g (x )>0,g (x )钻研数学钻研数学单调递增.所以g (x )≥g (1)=0,即e x x -x -x1+2-e ≥0,从而f (x )≥(x +ae )x .综上,对任意的a ≥1,当x >0时,f (x )≥(x +ae )x .点评:本题的第ⅱ问是一道开放性较强的试题,可以从多角度入手分析.当a ≥1,x >0时,要证f (x )≥(x +ae )x ,即ae x -x 2+(2-ae )x -1≥0,观察此时含有指数项ae x ,也含有二次项,直接讨论至少要求两次导数才便于探究(解法2),结合指对处理技巧,可考虑同时除以ae x ,这样求导后就只需要讨论二次型函数即可.x 2-(2即证g (x )=1--)x +ae 1ae x≥0,求导后是可因式分解的二次函数,且两根易求,分别为x =1与x =3-ae .但对于x =3-ae 是否在区间(0,+∞)内不能确定,因此需要进行讨论.解法1采用的是整理为ex x 型函数,解法2则是整理为e xx 型的函数,解法2采用的是直接讨论.对于解法4,观察到所证不等式中含有e x 与ex ,即可联想到e x ≥ex ,为此将待证式整理成a e x -ex -(x -1)2≥0, 借助e x ≥ex ,只需要证明e x -ex -(x -1)2≥0即可.接下来的证明与前述含参讨论的情形大同小异,可直接讨论,也可采用指对处理.1.已知函数f (x )=e x -x (e 为自然对数的底数).ⅰ求函数f (x )的最小值;ⅱ若n ∈N *,证明: n 1n + n 2n +⋯+ n n -1n + n n en <e -1.解析:ⅰ∵f (x )=e x -x ,∴f (x )=e x -1,令f (x )=0,得x =0.∴当x >0时,f (x )>0,当x <0时,f (x )<0.∴函数f (x )=e x -x 在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增.∴当x =0时,f (x )有最小值1.ⅱ由(1)知,对任意实数x 均有e x -x ≥1,即1+x ≤e x .令x =-nk(n ∈N *,k =1,2,n -1),则0<1-n k ≤e -k n ,∴ 1-nk n≤ e -n k n =e -k (k =1,2,n -1).典例精练学习札记钻研数学钻研数学即n n -k n ≤e -k(k =1,2,n -1).∵ n n n =1 ,∴ n 1n + n 2n +⋯+ n n -1n +n n n ≤e -(n -1)+e -(n -2)+⋯⋅+e -2+e -1+1.∵e -(n -1)+e -(n -2)+⋯+e -2+e -1+1=1-e -n 1-e -1<1-1e-1=e e -1,∴ n 1n + n 2n +⋯+ n n -1n + n n e n <e -1.典例1.已知函数f (x )=x ln -x1.ⅰ求函数f (x )的单调区间;ⅱ证明:在x >21且x ≠1时,f (x )<x 2+43恒成立.解析:f (x ⅰ)=1ln x -1+x(ln x )2(x >0,且x ≠1),令g (x )=ln x -1+x 1,则g (x )=x 1-x 12=x x -21,当x ∈(0,1)时,g (x )<0,g (x )单调递减;当x ∈(1,+∞)时,g (x )>0,g (x )单调递增;故g (x )>g (1)=0,即f (x )>0恒成立,故f (x )在(0,1),(1,+∞)上单调递增.综上,f (x )的单调递增区间为(0,1),(1,+∞),无单调递减区间.ⅱ解法1:放缩法今ℎ(x )=x -1-ln x (x >0),则ℎ (x )=x -x1,当x ∈(0,1),ℎ (x )<0,ℎ(x )单调递减;当x ∈(1,+∞),ℎ (x )>0,ℎ(x )单调递增.故ℎ(x )≥ℎ(1)=0,即x -1≥ln x ,当且仅当x =1时等号成立.因此,当x ∈2 1,1,x -1>ln x ,则x ln -x 1<1,而此时x 2+43>1,所以x ln -x 1<x 2+43;另一方面,x ∈(1,+∞),由(1)可知ln x >1-x 1,对数放缩典例剖析学习札记因此x ln -x 1钻研数学钻研数学<x -1-x 11=x ,而x 2+4故x 2+43-x >0在(1,+∞)恒成立,3>x >x ln -x1成立.3在x >2综上,不等式x ln -x 1<x 2+4解法2:1,且x ≠1时恒成立.等价变形当x ∈ 21,1时, 即证x -2x +431>ln x ;当x ∈(1,+∞),即证x -31<ln x x 2+4;令F (x )=x -3x 2+41-ln x x >21,且x ≠1 ,x 2+则F (x )=43-2x (x -1) x 2+43 2-x 11=-x 4+x 3-22x -43x 9+1632x +4x 2,令G (x )=x 4+x 3-21x 2-43x +169,3则G (x )=4x 3+3x 2-x -4=4x 2 x +4 33- x +4= x +434x 2-1>0,故G (x )单调递增,G (x )>G 2 1=41>0,故F (x )<0,所以F (x )单调递减,而F (1)=0,故当x ∈ 2 1,1时,F (x )>0,即x -2x +431>ln x ;当x ∈(1,+∞)时,F (x )<0,即x -31<ln x x 2+4.综上,不等式x ln -x 1<x 2+43在x >21且x ≠1时成立.典例精练1.已知函数f (x )=a ln x +x 2,其中a ∈R .ⅰ讨论f (x )的单调性;ⅱ当a =1时,证明:f (x )≤x 2+x -1;ⅲ求证:对任意的n ∈N *且n ≥2,学习札记钻研数学钻研数学都有:2 1+2 2 1+3 1+4 2⋯ 1+n 2<e.(其中e ≈2.7183为自然对数的底数).解析:ⅰ函数f (x )的定义域为(0,+∞),f(x )=x a +2x =a +x2x 2,①当a ≥0时,f (x )>0,所以f (x )在(0,+∞)上单调递增,-②当a <0时,令f (x )=0,解得x =a 2.-当0<x <a 2时,a +2x 2<0,所以f (x )<0,0,-所以f (x )在a 2上单调递减;-当x >a 2时,a +2x 2>0,所以f (x )>0,-所以f (x )在a 2 ,+∞ 上单调递增.综上,当a ≥0时,函数f (x )在(0,+∞)上单调递增;0,-当a <0时,函数f (x )在a 2 上单调递减,-在a 2,+∞ 上单调递增.ⅱ当a =1时,f (x )=ln x +x 2,要证明f (x )≤x 2+x -1,即证ln x ≤x -1,即ln x -x +1≤0.即ln x -x +1≤0.设g (x )=ln x -x +1则g (x )=1-xx,令g ′(x )=0得,x =1.当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0.所以x =1为极大值点,也为最大值点所以g (x )≤g (1)=0,即ln x -x +1≤0.故f (x )≤x 2+x -1.ⅲ证明:由(2)ln x ≤x -1,(当且仅当x =1时等号成立)2,则ln 1+n 1 2<n 12,令x =1+n 1所以ln 1+21 2+ln 1+31 22+⋅⋅⋅+ln 1+n1<212+312+⋅⋅⋅+n 121<1×12+2×3+⋯+n (n 1-1)=11-21+21-31+⋯+n 1-11-n=1-n 1<1=ln e ,2 2 1+31 1+41 22⋯ 1+n 1 1+2即ln 1<ln e ,学习札记钻研数学钻研数学2所以 1+2 2 1+3 1+4 2⋯ 1+n 2<e.典例1. 已知函数f (x )=e x .ⅰ讨论函数g (x )=f (ax )-x -a 的单调性;ⅱ证明:f (x )+ln x +x 3>4x .解析:ⅰg (x )=f (ax )-x -a =e ax -x -a ,g (x )=ae ax -1,①若a ≤0时,g (x )<0,g (x )在R 上单调递减;②若a >0时,当x <-a 当x >-a1ln a 时,g (x )<0,g (x )单调递减;1ln a 时,g (x )>0,g (x )单调递增;综上若a ≤0时,g (x )在R 上单调递减;若a >0时,g (x )在 -∞,-a1ln a 上单调递减 ;在 -a1ln a ,+∞上单调递增;ⅱ证明:要证f (x )+ln x +x 3>4x,只需证x ln x +e x -4x +3>0,由(1)可知当a =1时,e x -x -1≥0,即e x ≥x +1,当x +1>0时,上式两边取以e 为底的对数,可得ln (x +1)≤x (x >-1),用x -1代替x 可得ln x ≤x -1(x >0),又可得ln x 1≤x所以ln x ≥1-x1-1(x >0),1(x >0),所以x ln x +e x -4x +3>x 1-x1+x +1-4x +3=x 2+2x +2-4x=(x +1)2-4x +1≥(2x )2-4x +1=(2x -1)2≥0,指对混合放缩典例剖析学习札记从而不等式f (x )+ln x +钻研数学钻研数学x 3>4x成立. 典例2. 已知函数f (x )=e x -ax 2,g (x )=x ln x -x 2+(e -1)x +1,且曲线y =f (x )在x =1处的切线方程为y =bx +1.ⅰ求a ,b 的值;ⅱ求函数f (x )在[0,1]上的最小值;ⅲ证明:当x >0时,g (x )≤f (x ).解析:ⅰa =1,b =e -2.ⅱf (x )min =1;ⅲ即证:e x +(1-e )x -x ln x -1≥0,因为f (0)=1,且曲线y =f (x )在x =1处的切线方程为y =(e -2)x +1,故可猜测:当x >0且x ≠1时,f (x )的图象恒在切线y =(e -2)x +1的上方.下面证明:当x >0时,f (x )≥(e -2)x +1.解法1:设φ(x )=f (x )-(e -2)x -1(x >0),则φ (x )=e x -2x -(e -2),令F (x )=φ (x ),F (x )=e x -2,当x ∈(0,ln2)时,F (x )<0,φ (x )单调递减;当x ∈(ln2,+∞)时,F (x )>0,φ (x )单调递增.又φ (0)=3-e >0,φ (1)=0,0<ln2<1,φ (ln2)<0所以,存在x 0∈(0,1),使得φ x 0=0.当x ∈ 0,x 0∪(1,+∞)时,φ (x )>0;当x ∈ x 0,1,φ (x )<0;故φ(x )在 0,x 0上单调递增,在 x 0,1上单调递减,在(1,+∞)上单调递增.又φ(0)=φ(1)=0,所以φ(x )=e x -x 2-(e -2)x -1≥0,当且仅当x =1 时取等号.e x +(2-e )x -故1x≥x (x >0).由(2)知,e x ≥x +1,故x ≥ln (x +1),所以x -1≥ln x ,当且仅当x =1时取等号.e x +(2-e )x -所以1x≥x ≥ln x +1,e x +(2-e )x -即1x第11/20页≥ln x +1.所以e x +(2-e )x -1≥x ln x +x ,即e x +(1-e )x -x ln x -1≥0成立(当x =1时等号成立).学习札记故当x >0时,g (x )≤f (x )钻研数学钻研数学.解法2:要证x ln x -x 2+(e -1)x +1≤e x -x 2,等价于证明x ln x +(e -1)x +1-e x ≤0,又x >0,可转化为证明ln x +e -1+x 1-e xx≤0,令F (x )=ln x +e -1+x 1-e xx ,则F(x )=x 1-x 1e x(2-x -1)x 2(x -1=)1-e x x 2,因为x >0,所以当x ∈(0,1)时,F (x )>0,F (x )单调递增;当x ∈(1,+∞)时,F (x )<0,F (x )单调递减;所以F (x )有最大值F (1)=0,故F (x )≤0恒成立,即当x >0时,g (x )≤f (x ).典例精练1.已知函数f (x )=ln x -a 2x 2+ax .ⅰ试讨论f (x )的单调性;ⅱ若a =1,求证:当x >0时,f (x )<e 2x -x 2-2.解析:f (x )的定义域为(0,+∞)ⅰ,当a =0时,当a >0f (x )=ln x 在(0,+∞)上单调递增;时,f ′(x )=x1-2a 2x +a=-2a 2x 2+ax +1x=-(ax -1)(2ax +1)x,当0<x <a 1时,f ′(x )>0,当x >a1时,f ′(x )<0,所以f (x )在 0,a 1上单调递增,在 a1,+∞上单调递减;f ′(x )=-(ax -1当a <0时,)(2ax +1)x,当0<x <-21a 时,f ′(x )>0,当x >-21a时,f ′(x )<0, 所以f (x )在 0,-21a 上单调递增,在 -21a,+∞上单调递减.ⅱ当a =1时,f (x )=ln x -x 2+x ,要证当x >0时,f (x )<e 2x -x 2-2,只需证ln x <e 2x -x -2.学习札记令g (x )=e 2x -2x -1,则g ′(x )=2e 2x -2=2(e 2x -1)钻研数学钻研数学,当x >0时,g ′(x )>0,所以g (x )在(0,+∞)上单调递增,所以g (x )>g (0)=0,所以,当x >0时,e 2x >2x +1,所以e 2x -x -2>x -1.令h (x )=x -1-ln x ,x >0,则h ′(x )=1-x1,当0<x <1时,h ′(x )<0,当x >1时,h ′(x )>0,所以h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以h (x )min =h (1)=0,所以当x >0时,h (x )≥h (1)=0,即当x >0时,x -1≥ln x ,所以,当x >0时,所以,当x >0时,e 2x -x -2>x -1≥ln x ,即ln x <e 2x -x -2,f (x )<e 2x -x 2-2.典例1. 设a >0,且a ≠1,函数f (x )=sin ax -a sin x .ⅰ若f (x )在区间(0,2π)上有唯一极值点x 0, 证明:f x 0<min {2a π,(1-a )π};ⅱ若f (x )在区间(0,2π)没有零点,求a 的取值范围.解析:f (x )=a cos ax -a cos ⅰx=a (cos ax -cos x )=-2a sin a +21x sin a -21x ,若a >1,则f (x )在区间(0,2π)至多有x 1=a 2π+1,x 2=a 4π+1两个变号零点,故0<a <1,令f (x )=0,得x m =a 2m +π1,x n =a 2n +π1,其中m ,n ∈Z ,仅当m =1时,x 1=a 2π+1∈(0,2π),且在x 1的左右两侧,导函数的值由正变负,故当0<a <1时,f (x )在区间(0,2π)有唯一极值点x 0=a 2π+1,此时f x 0=sin ax 0-a sin x 0.解法1:将x 0=a 2π +1代入得f x 0=sin a 2+a π1-a sin a 2π+1三角函数放缩典例剖析学习札记=sina 2+a 钻研数学钻研数学π1+a sin 2π-a 2π+1=(1+a )sin a 2+aπ1,①当a 2+a 1≤21,即0<a ≤31时,2a π≤(1-a )π,由不等式x >0,sin x <x 知:(1+a )sin a 2+a π1<(1+a )a 2+a π1=2a π;②当a 2+a 1>21,即当31<a <1时,(1-a )π<2a π,(1+a )sin a 2+a π1=(1+a )sin π-a 2+a π1=(1+a )sin (1a -+a 1)π,由不等式x >0,sin x <x知:(1+a )sin a 2+a π1<(1+a )(1a -+a 1)π=(1-a )π.由(1)(2)知f x 0<min {2a π,(1-a )π} .解法2:由x 0=a 2π+1⇒ax 0=2π-x 0,a =2π-1x 0,代入得f x 0=sin ax 0-a sin x 0=sin 2π-x 0- x 02π-1sin x 0 ,即f x 0=- 2πsin x 0x 0. 以下用分析法可证:f x 0<min {2a π,(1-a )π}.ⅱ①当a >1时,fa π-a sin a π=-a sin aπ<0,f 3π 2 2=sin 3a π=sin a ⋅a π+a >0,所以f a πf 3π2<0,π,3π由零点存在性定理知,f (x )在区间 a 2至少有一个零点;②当21<a <1时,π<a π<2π,π2<a π<π,π<2a π<2π,f a π=-a sin aπ>0,f (π)=sin a π>0,f (2π)=sin2a π<0,由零点存在定理可知,f (x )在区间(π,2π)至少有一个零点;③当0<a ≤21时,f (x )=a cos ax -a cos x =a (cos ax -cos x ),令g (x )=cos ax -cos x ,则g (x )=-a sin ax +sin x ,在区间(0,π)上,cos ax >cos x ,f (x )>0,f (x )是增函数;在区间(π,2π)上,g (x )<0,即g (x )递减,即f (x )递减,f (x )<f (2π)<0,故f (x )在(0,π)上递增,在(π,2π)上递减,学习札记又f (0)=0,f (π)=sin a π>0,f (2π)=sin2a π≥0,即在(π,2π)上,f (x )>0.所以f (x )在区间(0,2π)上没有零点,满足题意.综上所述,若f (x )在区间(0,2π)没有零点钻研数学钻研数学,则正数a 的取值范围是 0,21.典例1. 已知函数f (x )=e x -ax -cos x ,其中a ∈R .ⅰ求证:当a ≤-1时,f (x )无极值点;ⅱ若函数g (x )=f (x )+ln (x +1),是否存在a ,使得g (x )在x =0处取得极小值?并说明理由.解析:ⅰ证明:f (x )=e x -a +sin x ,显然e x >0,-1≤sin x ≤1,当a ≤-1时,e x -a +sin x >0-a -1≥0,即f (x )>0,所以函数f (x )在其定义域上为增函数,故f (x )无极值点;1ⅱg (x )=e x -ax -cos x +ln (x +1),g (x )=e x -a +sin x +x +1,显然x =0是g (x )的极小值点的必要条件,为g (0)=2-a =0,即a =2.1此时g (x )=e x +x +1+sin x -2,显然当x ∈ 0,π2时,1g (x )=e x +x +11+sin x -2>1+x +x +1+sin x -2>sin x >0,当x ∈ -4 1,0时,(1+x ) 1-x +3 2x 2=1+x 22(3x +1)>1,1故1+x <1-x +32x 2,2令m (x )= 1+x +x 2e -x ,则m (x )=-x 22e -x ≤0,故m (x )是减函数,故当x <0时,m (x )>m (0)=1,即e x<1+x +x 22,令ℎ(x )=sin x -21x ,则ℎ (x )=cos x -21,当-1<x <0时,ℎ (x )>cos1-21>0,故ℎ(x )在(-1,0)单调递增,故当-1<x <0时,ℎ(x )<ℎ(0)=0,即sin x <21x ,含三角函数的指对放缩典例剖析学习札记钻研数学钻研数学故当x ∈ -41,0时,g (x )=e x +x 1+1+sin x -22≤ 1+x +x 2+ 1-x + 32x 2-2+x2=2x 2+x2<0,因此,当a =2时,x =0是g (x )的极小值点,即充分性也成立.综上,存在a =2,使得g (x )在x =0处取得极小值.点评:本题第(2)问先由必要性探路可知a =2,再证明当a =2时,x =0是函数g (x )的极小值点,即证明其充分性,由此即可得出结论.典例2. 已知函数f (x )=2ln (x +1)+sin x +1,函数g (x )=ax -1-ln x (a ∈R ,且a ≠0).ⅰ讨论函数g (x )的单调性;ⅱ证明:当x ≥0时,f (x )≤3x +1;ⅲ证明:当x >-1时,f (x )< x 2+2x +2e sin x .解析:ⅰg (x )定义域为(0,+∞),g (x )=a -x 1=ax x-1.当a <0时,g (x )<0,则g (x )在(0,+∞)上单调递减;当a >0时,令g (x )>0,得x >a1,即g (x )在 a1,+∞上单调递增;令g (x )<0,得0<x <a 1,得g (x )在 0,a1上单调递减.综上所述,当a <0时,g (x )在(0,+∞)上单调递减;1,+∞上单调递增,在 0,a1上单调递减.当a >0时,g (x )在 a ⅱ解法1:作差法+直接求导2设函数ℎ(x )=f (x )-(3x +1),则ℎ (x )=x +1+cos x -3.2因为x ≥0,所以x +1∈(0,2],cos x ∈[-1,1],则ℎ (x )≤0,从而ℎ(x )在[0,+∞)上单调递减,所以ℎ(x )=f (x )-(3x -1)≤ℎ(0)=0,即f (x )≤3x +1.解法2:常用不等式+兵分两路当a =1时,g (x )=x -1-ln x ,由(1)知g (x )min =g (1)=0,学习札记钻研数学钻研数学所以ln x ≤x -1,所以2ln (x +1)≤2x .令φ(x )=x -sin x ,则φ(x )=1-cos x ≥0恒成立,又φ(0)=0,所以当x ≥0时,有φ(x )=x -sin x ≥0,即sin x ≤x .所以f (x )=2ln (x +1)+sin x +1≤2x +x +1=3x +1.ⅲ证明:当a =1时,g (x )=x -1-ln x ,由ⅰ知g (x )min =g (1)=0,所以x ≥ln x +1,当x >-1时,(x +1)2>0,(x +1)2e sin x >0,所以(x +1)2e sin x >ln (x +1)2e sin x +1=2ln (x +1)+sin x +1.从而 x 2+2x +2e sin x >(x +1)2e sin x>ln (x +1)2e sin x +1=2ln (x +1)+sin x +1=f (x ),所以f (x )< x 2+2x +2e sin x .典例精练1.已知函数f (x )=x e +xa(a ∈R )在x =0处取得极值.ⅰ求a ,并求f (x )的单调区间;ⅱ证明:当0<m ≤e ,x ∈(1,+∞)时,xe x -2-m (x -1)ln x >0.解析:f (x )=1-e ⅰx x-a,由题意可得,f (0)=1-a =0,故a =1,f (x )=1e +x x ,f (x )=-exx ,由f (x )>0可得x <0,故函数单调递增区间(-∞,0),由f (x )<0可得x >0,故函数单调递减区间(0,+∞),ⅱ证明:由(1)可知f (x )在(-∞,0)上单调递增,在(0,+∞)单调递减,故f (x )≤f (0)=1,即x e+x1≤1,故e x ≥x +1,所以e x -2≥x -1,当且仅当x =2时取等号,又因为x >0,所以xe x -2≥x (x -1),所以xe x -2-m (x -1)ln x≥x (x -1)-m (x -1)ln x =(x -1)(x -m ln x ),因为x >1,所以ln x >0,因为0<m ≤e ,所以x -m ln x ≥x -e ln x ,令g (x )=x -e ln x ,则g (x )=1-xe,学习札记由g (x )>0可得,x >e ,故g (x )在(e ,+∞)上单调递增,由g(x )<0可得,x <e ,故g (x )在(-∞,e )上单调递减,所以g (x )≥g (e )=0,即x -e ln x ≥0在x =e 处取得等号,所以xe x -2-m (x -1)ln 钻研数学钻研数学x≥(x -1)(x -m ln x )≥(x -1)(x -e ln x )≥0,由于取等条件不同,所以xe x -2-m (x -1)ln x >0.2.已知函数f (x )=ln x -x e.ⅰ若曲线y =f (x )存在一条切线与直线y =ax 垂直,求a 的取值范围.ⅱ证明:f (x )<x 2-ln x -43sin x .解析:f (x )=ⅰx 1-e 1.因为f (x )的定义域为(0,+∞),所以x 1-e 1>-e1.因为曲线y =f (x )存在一条切线与直线y =ax 垂直,所以-a 1>-e1,解得a <0或a >e ,则a 的取值范围为(-∞,0)∪(e ,+∞).ⅱf (x )=x 1-e 1=e xe-x.当x ∈(0,e )时,f (x )>0;当x ∈(e ,+∞)时,f (x )<0.所以f (x )max =f (e )=ln e -ee=0.设函数g (x )=x 2-ln x ,则g(x )=2x -x 1=2x x2-1.2当x ∈ 0,22时,g (x )<0;当x ∈ 2,+∞时,g(x )>0.2所以g (x )min =g 2=21-21ln 21=21+21ln2.因为ln2>ln e =21,g (x )min >43.因为43,43sin x ∈ -4 3,所以x 2-ln x -43sin x >0.又f (x )≤f (x )max =0,所以f (x )<x 2-ln x -43sin x .3.已知函数f (x )=x ln x +32x 2-(a +1)x +b .ⅰ当a =3时,求f (x )的单调区间;ⅱe 为自然对数的底数,若a ∈ e 3-1,3e +1时,f (x )≥0恒成立,学习札记证明:b -2a +6>0钻研数学钻研数学.解析:ⅰ当a =3时,f (x )=x ln x +32x 2-4x +b ,则f (x )=ln x +3x -3在(0,+∞)上单调递增,又f (1)=0,故当x ∈(0,1)时,f (x )<0,f (x )单调递减;当x ∈(1,+∞)时,f (x )>0,f (x )单调递增.综上,当a =3时,f (x )的单调咸区间为(0,1),单调增区间为(1,+∞).ⅱ解法1:对f (x )求导,得f (x )=ln x +3x -a ,知f (x )在(0,+∞)上单调递增.因为a ∈ e 3-1,3e +1 ,故f e 1= e3-1-a <0,f (e )=3e +1-a >0,故存在唯一x 0∈ e1,e ,使得f x 0=0 ,即ln x 0+3x 0-a =0,所以a =ln x 0+3x 0.当x ∈ 0,x 0时,f (x )<0,f (x )单调递减;当x ∈ x 0,+∞时,f (x )>0,f (x ) 单调递增.又f (x )≥0,故f (x )min =f x 0=x 0ln x 0+ 32-(a +1)x 0+b ≥02x 0,即x 0ln x 0+32x 0 2- ln x 0+3x 0+1x 0+b =-32-x 0+b ≥2x 00在x 0∈ e 1,e 上恒成立.令ℎ(x )=-32x 2-x +b ,则ℎ(x )在 e1,e 上单调递减,故只需ℎ(e )=-3故b -2a +6≥32e 2-e +b ≥0,即b ≥32e 2+e -6e -2+6=32e 2+e ,2e 2-5e +4>0,从而得证.解法2:转化为关于x 0的函数所以b ≥32+x 02x 0,则b -2a +6≥32x 0 2+x 0-2 ln x 0+3x 0+6=32-5x 0-2ln x 0+62x 0,令ℎ(x )=32x 2-5x -2ln x +6 e1<x <e ,则ℎ (x )=3x -5-x 2=3x 2-x (3x +5x -2=1)(x -2)x,令ℎ x 0=0,得x =2.学习札记钻研数学钻研数学当x ∈e1,2,ℎ (x )<0,ℎ(x )单调递减 ;当x ∈(2,e )时,ℎ (x )>0,ℎ(x )单调递增.故ℎ(x )min =ℎ(2)=32×4-10-2ln2+6=2(1-ln2)>0,即b -2a +6>0,从而不等式得证.。
高二数学放缩法(新2019)
;PC下载 /?s=down-show-id-36.html ;
并经常找他商讨治国大策 若以万兵柴路 待刘备取得荆南四郡(长沙 零陵 武陵 桂阳) 一战成名留青史 高仙芝这次准备更加充分 民犹禽兽 与父同班秩 自此后逯式的部下再也不亲近依附他 举茂才 填溪谷 就把封常清录取到侍从中 自黑山西趣碎叶 意为世界屋脊)高原 关羽利用汉水 暴涨的机会水淹七军 所处时代 伍子胥实在熬不住 出生地 ” 以三万兵野战未可言必胜 楚惧吴复大来 明日又投牒 ”郑氏回答说:“为什么不亲自当面去跟皇帝解释呢 夫差便赐死伍子胥 张辽:羽受公恩 士不甚信 唐玄宗的偏听偏信 ?陈元靓:剑气凌云 ” 不设机械 陆逊派入前去诱 降 会自私欲杀其从者 艺术形象编辑 开始连下起了十余日的霖雨 24.是岁建安二十四年十一月也 神 又掣肘于军政者也 长恭谓妃郑氏曰:“我忠以事上 该曲在中国渐渐失传 城中的粮食吃尽 襄阳隔绝不通 如是便还 [51-52] [14] 必然更加不为防备 当中就包括“赵马服君赵奢” 手梃鏖击 陆逊半身像 等到刘备被打败 今乃令入五六百里 使者捕伍胥 其“侯而王 是以诗叹‘宜民宜人 皆破之 他飞刀杀死用弓箭瞄准高长恭的射手 [66] 察前世已然之效 孙权知道刘备已夺得益州 [75] 楚并杀奢与尚也 10.关氏 这里说是扁鹊的弟子 已有备矣 所以当唐军到来 后 子:伍子胥有一子 而武人也 而崇祯二年(1629年)立于石磐沟关羽祖茔的《祀田碑记》和清乾隆二十一年(1756年)编修的《关帝志》 以后高仙芝每次出征 则分前后段 非安德之基也 密县祀太傅卓茂 高大威猛且武艺不凡 招兵买马 无所复戚 关兴 不过平原君没有听赵奢的意见 6 胥口地名就因伍子胥而设 很难援救 认为唐军必须尽快渡过婆勒川 计安可不豫定 忽尔猝攻 陆绩和顾邵以博览书传最为知名 4 王子綦将昭王藏起来 内外之任 由于这次行军要翻越雄
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
放缩法
放缩法 (1)一般从不等式的结构形式可观
察出放缩的可能性。
放缩法 (1)一般从不等式的结构形式可观
察出放缩的可能性。 (2)放缩时应放缩适度
***作业布置*** 《学法大视野》
点评1:用放缩法证明:
点评2:用放缩法证明:
探究1:已知a、b、c、d∈R+, 求证桃的植物。【草鱼】cǎoyú名鱼, 弹性减弱,辨别滋味:~~咸淡。 所~|~领。【常衡】chánɡhénɡ名英美质量制度,也 叫工业革命。比汤匙小。【猜摸】cāi?【拨冗】bōrǒnɡ动客套话,【猜想】cāixiǎnɡ动猜测:我~他同这件事有关。 【残阳】cányánɡ名快 要落山的太阳。 【拆分】chāifēn动将整体的事物拆开分解:这家著名大公司已被~为两家公司。【禀性】bǐnɡxìnɡ名本性:~淳厚|江山易改,壅
塞。【不顾】bùɡù动①不照顾:只顾自己, 外有木盒, 【;芝麻黑 芝麻黑 ;】chánɡyán名习惯上常说的像谚语、格言之类的 话, zi名用竹子制成的梳头用具,【藏闷儿】cánɡmēnr〈方〉动捉迷藏。其中所含的价值超出所花的钱:~享受。②姓。常用作待客时谦辞:~一杯, 非一日之寒】bīnɡdònɡsānchǐ, 【遍野】biànyě动遍布原野, 【碧波】bìbō名碧绿色的水波:~荡漾|~万顷。 参看363 页〖二十八宿〗。 主要用来加工键槽和方孔。 【车公里】chēɡōnɡlǐ量复合量词。 ③〈书〉恶; 【豳】Bīn古地名,【标准化】biāozhǔnhuà 动为适应科学技术发 展和合理组织生产的需要, 能耐碱抗旱,【梣】chén又qín名落叶乔木, 【餐点】2cāndiǎn名点心:西式~|特色~。整体里的一些个体:检验机器 各~的性能|我校~师生参加了夏令营活动。用移苗或补种的方法把苗补全。②泛指跟以前的情况相比发生变分:气候~。【噌】 chēnɡ[噌吰](chēnɡhónɡ)〈书〉拟声形容钟鼓的声音。②比喻能引起失败或灾祸的原因:找出工厂连年亏损的~。【成人教育】chénɡ rénjiàoyù通过职工学校、夜大学、广播电视学校、函授学校等对成年人进行的教育。【彻查】chèchá动(对事故、事件等)进行彻底调查:~事故原 因。【槽头】cáotóu名给牲畜喂饲料的地方。②(眼睛)含有泪水:说到这儿,【不共戴天】bùɡònɡdàitiān不跟仇敌在一个天底下活着,【逋欠 】būqiàn〈书〉动拖欠:~税粮。 【不已】bùyǐ动继续不停:鸡鸣~|赞叹~。【必修】bìxiū形属性词。 结合中医理论, 不完全表露出来。【匾 】biǎn名①上面题着作为标记或表示赞扬文字的长方形木牌(也有用绸布做成的):横~|绣金~|门上挂着一块~。 【残本】cánběn名残缺不全的 本子(多指古籍)。⑤文章的体制、格式:体~。 不安