1聚类分析
聚类分析中常用的距离
![聚类分析中常用的距离](https://img.taocdn.com/s3/m/6897a848cbaedd3383c4bb4cf7ec4afe04a1b16d.png)
聚类分析中常用的距离聚类分析是数据分析中一种常用的技术,它可以帮助对象之间的关系进行划分、推断以及研究。
聚类分析的基本思想就是将被调查者分为几类,使每类中的个体尽可能具有相似的特征,而不同组之间的特征则尽可能不同。
聚类分析是建立在距离概念上的,因此距离是聚类分析中不可或缺的重要因素。
本文将介绍聚类分析中常用的距离,以期使读者能够选择正确的距离来完成聚类分析。
在聚类分析中,最常用的距离有欧式距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离和马氏距离等。
欧式距离是最常用的距离,它的计算方式是计算两个点之间的直线距离,即两个点的每一个维度之间的差的平方和再开平方根,可以表示为:d(x,y)=√d2(x,y)=∑xi-yi2曼哈顿距离是另一种常用的距离,它与欧式距离不同之处在于它采用的是绝对距离,也就是说,它不考虑维度的平方关系,只考虑绝对的差值,可以表示为:d(x,y)=∑|xi-yi|切比雪夫距离是欧式距离和曼哈顿距离的折衷,它介于两者之间,可以表示为:d(x,y)=∑|xi-yi|p闵可夫斯基距离又称交叉距离,它是由结构问题中的最短路径算法演化而来的,可以表示为:d(x,y)=min(∑xi+yi)马氏距离是数据分析中最重要的距离,它介于欧式距离和曼哈顿距离之间,被用来衡量两组数据的相似性,可以表示为:d(x,y)=√ (xi-yi/σi2)以上就是聚类分析中常用的距离,各种距离各有特点,用户可以根据自己的需要来选择最合适的距离。
当然,在实际应用中,也常常用多种距离或者组合多种距离来构建新的距离指标,以更加完善的分析处理数据。
总之,距离的选择是聚类分析的重要组成部分,一个准确的距离指标是保证聚类分析结果准确性的关键。
3.2.6 专利信息分析之数据聚类分析(1)
![3.2.6 专利信息分析之数据聚类分析(1)](https://img.taocdn.com/s3/m/c06a777ab52acfc788ebc92d.png)
数据聚类分析
概念
聚类:是指将物理或抽象对象的
集合分成由类似的对象组成的多个类的过程。
由聚类所生成的簇是一组数据对象的集合,同一个簇中的对象彼此相似,与其他簇中的对象相异。
数据聚类分析:又称群分析,衡量不同数据源之间的相似性,对搜集的数据进行探索性分类,是数据挖掘的重要方法之一。
特点
可以提取到隐含的、预先未知的,且具有潜在应用价值的信息
文本聚类
可以处理非结构化信息
旭日图
1信道,基站,移动台,链路2脚本,管理,备份
3服务器,终端,计费
4报文,路由,交换
5
鉴权,数据帧,游戏,秘钥1终端,服务器,呼叫
2报文,组播,标签,虚拟3信道,基站,导频
4电路,电压,内存
5复用,视频,数据单元
矩阵图
王雯祎.基于专利的全球量子技术2.0主题分布[J].世界科技研究与发展,2019,41(02):192.。
经济统计学中的聚类分析方法
![经济统计学中的聚类分析方法](https://img.taocdn.com/s3/m/e03f06aa80c758f5f61fb7360b4c2e3f5627257b.png)
经济统计学中的聚类分析方法聚类分析是一种常用的数据分析方法,它在经济统计学中有着广泛的应用。
聚类分析的目标是将一组数据划分为若干个相似的子集,每个子集内的数据相似度高,而不同子集之间的数据相似度低。
这种方法可以帮助经济学家发现数据中的规律和模式,从而更好地理解经济现象。
聚类分析的基本原理是通过计算数据点之间的相似度或距离来确定数据的分组。
常用的相似度度量方法包括欧氏距离、曼哈顿距离和余弦相似度等。
欧氏距离是最常用的相似度度量方法,它计算两个数据点之间的直线距离。
曼哈顿距离则是计算两个数据点在坐标轴上的距离之和。
余弦相似度是通过计算两个向量之间的夹角来度量它们的相似度。
在经济统计学中,聚类分析可以用于多个方面的研究。
首先,它可以帮助经济学家对经济发展水平进行分类。
通过对不同国家或地区的经济指标进行聚类分析,可以将它们划分为不同的发展水平组别。
这有助于我们了解不同地区的经济特点和发展趋势,为政府制定相关政策提供参考。
其次,聚类分析可以用于市场细分。
市场细分是指将一个大市场划分为若干个小市场,每个小市场具有相似的需求和行为特征。
通过对消费者的购买行为和偏好进行聚类分析,可以将消费者划分为不同的群体,从而更好地满足他们的需求。
这对企业来说是非常重要的,可以帮助它们制定更精准的市场营销策略。
此外,聚类分析还可以用于金融风险管理。
金融市场中的数据非常庞大复杂,通过对金融市场数据进行聚类分析,可以将相似的金融资产或交易划分为同一类别。
这有助于金融机构更好地评估风险和制定风险管理策略,从而提高金融市场的稳定性和安全性。
聚类分析方法还可以与其他经济统计学方法相结合,如主成分分析和因子分析。
主成分分析可以用于降维,将高维数据转化为低维数据,而聚类分析可以在降维后的数据上进行分组。
因子分析可以用于提取数据的主要因素,而聚类分析可以将具有相似因素的数据进行分组。
这些方法的结合可以更全面地分析经济数据,提高分析的准确性和可解释性。
聚类分析案例范文
![聚类分析案例范文](https://img.taocdn.com/s3/m/6147ad5b54270722192e453610661ed9ad5155df.png)
聚类分析案例范文聚类分析是一种无监督机器学习算法,它通过将数据集中的观测值分成不同的组或簇来发现数据之间的内在结构和相似性。
这种方法可以帮助我们理解数据集,发现隐藏的模式和关联性,并且可以应用于各种领域,包括市场细分、社交网络分析、生物信息学和图像处理等。
以下是一个关于使用聚类分析方法的案例研究,该案例介绍了如何使用聚类分析来帮助一家电商企业在众多商品中挖掘潜在的市场细分。
背景介绍:电商企业销售了大量商品,这些商品拥有不同的特征和属性。
该企业希望利用这些数据来了解他们的客户,并为不同的产品类型制定个性化的推广和营销策略。
为了实现这一目标,他们决定使用聚类分析方法来将客户细分成不同的群组,并理解他们的相似性和差异性。
数据收集:该企业从其销售系统中收集了一份包含多个属性的数据集。
这些属性包括:年龄、性别、购买历史、购买频率、平均订单金额等。
这些属性可以反映客户的购买行为和偏好。
数据预处理:在进行聚类分析之前,需要对数据进行预处理。
这包括对缺失值进行处理、进行数值归一化等。
然后,根据业务需求,选择适当的聚类算法和合适的距离度量方法。
聚类分析过程:在本案例中,采用了一种常见的聚类方法--K均值聚类算法,该算法通过计算数据点之间的欧氏距离来度量它们之间的相似度。
首先,选择合适的K值(聚类簇的个数)。
然后,在初始阶段,随机选择K个点作为聚类中心。
再通过计算每个数据点与聚类中心的距离,并将其归类到最近的聚类簇。
接下来,根据已经分配到每个聚类中的数据点,重新计算新的聚类中心。
这个过程将迭代,直到达到停止准则,如聚类中心不再变化或达到最大迭代次数。
聚类结果分析:在完成聚类过程后,可以根据每个聚类中心的特征和属性,对数据集进行可视化和解释。
这将帮助企业理解各个群组的特征和差异,并从中提取有价值的洞察力。
进而,企业可以根据不同群组的特征制定个性化的营销策略,提高销售和客户满意度。
总结:通过使用聚类分析方法,该电商企业成功地将其客户细分为几个不同的群组。
第一节系统聚类分析
![第一节系统聚类分析](https://img.taocdn.com/s3/m/528d638dcd22bcd126fff705cc17552707225e3b.png)
第一节系统聚类分析第五章聚类分析(一)教学目的通过本章的学习,对聚类分析从总体上有一个清晰地认识,理解聚类分析的基本思想和基本原理,掌握用聚类分析解决实际问题的能力。
(二)基本要求了解聚类分析的定义,种类及其应用范围,理解聚类分析的基本思想,掌握各类分析方法的主要步骤。
(三)教学要点1、聚类分析概述;2、系统聚类分析基本思想,主要步骤;3、动态聚类法基本思想,基本原理,主要步骤;4、模糊聚类分析基本思想,基本原理,主要步骤;5、图论聚类分析基本思想,基本原理。
(四)教学时数6课时五)教学内容 (1、聚类分析概述2、系统聚类分析3、动态聚类法4、模糊聚类分析5、图论聚类分析统计分组或分类可以深化人们的认识。
实际应用中,有些情况下进行统计分组比较容易,分组标志确定了,分组也就得到了,但是,有些情况下进行统计分组却比较困难,特别是当客观事物性质变化没有明显标志时,用于确定分组的标志和组别就很难确定。
聚类分析实际上给我们提供了一种对于复杂问题如何分组的统计方法。
第一节聚类分析概述一、聚类分析的定义聚类分析是将样品或变量按照它们在性质上的亲疏程度进行分类的多元统计分析方法。
聚类分析时,用来描述样品或变量的亲疏程度通常有两个途径,一是把每个样品或变量看成是多维空间上的一个点,在多维坐标中,定义点与点,类和类之间的距离,用点与点间距离来描述样品或变量之间的亲疏程度;另一个是计算样品或变量的相似系数,用相似系数来描述样品或变量之间的亲疏程度。
二、聚类分析的种类(一)聚类分析按照分组理论依据的不同,可分为系统聚类法,动态聚类法,模糊聚类、图论聚类、聚类预报等多种聚类方法。
1、系统聚类分析法。
是在样品距离的基础上定义类与类的距离,首先将个样品自成n一类,然后每次将具有最小距离的两个类合并,合并后再重新计算类与类之间的距离,再并类,这个过程一直持续到所有的样品都归为一类为止。
这种聚类方法称为系统聚类法。
根据并类过程所做的样品并类过程图称为聚类谱系图。
一篇文章透彻解读聚类分析及案例实操
![一篇文章透彻解读聚类分析及案例实操](https://img.taocdn.com/s3/m/8b6ed755e45c3b3567ec8b25.png)
一篇文章透彻解读聚类分析及案例实操【数盟致力于成为最卓越的数据科学社区,聚焦于大数据、分析挖掘、数据可视化领域,业务范围:线下活动、在线课程、猎头服务、项目对接】【限时优惠福利】数据定义未来,2016年5月12日-14日DTCC2016中国数据库技术大会登陆北京!大会云集了国内外数据行业顶尖专家,设定2个主会场,24个分会场,将吸引共3000多名IT 人士参会!马上领取数盟专属购票优惠88折上折,猛戳文末“阅读原文”抢先购票!摘要:本文主要是介绍一下SAS的聚类案例,希望大家都动手做一遍,很多问题只有在亲自动手的过程中才会有发现有收获有心得。
这里重点拿常见的工具SAS+R语言+Python介绍!1 聚类分析介绍1.1 基本概念聚类就是一种寻找数据之间一种内在结构的技术。
聚类把全体数据实例组织成一些相似组,而这些相似组被称作聚类。
处于相同聚类中的数据实例彼此相同,处于不同聚类中的实例彼此不同。
聚类技术通常又被称为无监督学习,因为与监督学习不同,在聚类中那些表示数据类别的分类或者分组信息是没有的。
通过上述表述,我们可以把聚类定义为将数据集中在某些方面具有相似性的数据成员进行分类组织的过程。
因此,聚类就是一些数据实例的集合,这个集合中的元素彼此相似,但是它们都与其他聚类中的元素不同。
在聚类的相关文献中,一个数据实例有时又被称为对象,因为现实世界中的一个对象可以用数据实例来描述。
同时,它有时也被称作数据点(Data Point),因为我们可以用r 维空间的一个点来表示数据实例,其中r 表示数据的属性个数。
下图显示了一个二维数据集聚类过程,从该图中可以清楚地看到数据聚类过程。
虽然通过目测可以十分清晰地发现隐藏在二维或者三维的数据集中的聚类,但是随着数据集维数的不断增加,就很难通过目测来观察甚至是不可能。
1.2 算法概述目前在存在大量的聚类算法,算法的选择取决于数据的类型、聚类的目的和具体应用。
大体上,主要的聚类算法分为几大类。
聚类分析基础知识总结
![聚类分析基础知识总结](https://img.taocdn.com/s3/m/462b039c51e79b8968022667.png)
聚类分析cluster analysis聚类分析方法是按样品(或变量)的数据特征,把相似的样品(或变量)倾向于分在同一类中,把不相似的样品(或变量)倾向于分在不同类中。
聚类分析根据分类对象不同分为Q型和R型聚类分析在聚类分析过程中类的个数如何来确定才合适呢?这是一个十分困难的问题,人们至今仍未找到令人满意的方法。
但是这个问题又是不可回避的。
下面我们介绍几种方法。
1、给定阈值——通过观测聚类图,给出一个合适的阈值T。
要求类与类之间的距离不要超过T值。
例如我们给定T=0.35,当聚类时,类间的距离已经超过了0.35,则聚类结束。
聚类分析的出发点是研究对象之间可能存在的相似性和亲疏关系。
样品间亲疏程度的测度研究样品或变量的亲疏程度的数量指标有两种,一种叫相似系数,性质越接近的变量或样品,它们的相似系数越接近于1或一l,而彼此无关的变量或样品它们的相似系数则越接近于0,相似的为一类,不相似的为不同类;另一种叫距离,它是将每一个样品看作p维空间的一个点,并用某种度量测量点与点之间的距离,距离较近的归为一类,距离较远的点应属于不同的类。
变量之间的聚类即R型聚类分析,常用相似系数来测度变量之间的亲疏程度。
而样品之间的聚类即Q型聚类分析,则常用距离来测度样品之间的亲疏程度。
定义:在聚类分析中反映样品或变量间关系亲疏程度的统计量称为聚类统计量,常用的聚类统计量分为距离和相似系数两种。
距离:用于对样品的聚类。
常用欧氏距离,在求距离前,需把指标进行标准化。
相似系数:常用于对变量的聚类。
一般采用相关系数。
相似性度量:距离和相似系数。
距离常用来度量样品之间的相似性,相似系数常用来度量变量之间的相似性。
样品之间的距离和相似系数有着各种不同的定义,而这些定义与变量的类型有着非常密切的关系。
距离和相似系数这两个概念反映了样品(或变量)之间的相似程度。
相似程度越高,一般两个样品(或变量)间的距离就越小或相似系数的绝对值就越大;反之,相似程度越低,一般两个样品(或变量)间的距离就越大或相似系数的绝对值就越小。
IBM SPSS MODELER 实验一、聚类分析
![IBM SPSS MODELER 实验一、聚类分析](https://img.taocdn.com/s3/m/1222906576a20029bc642d5f.png)
IBM SPSS Modeler 实验一、聚类分析在数据挖掘中,聚类分析关注的内容是一些相似的对象按照不同种类的度量构造成的群体。
聚类分析的目标就是在相似的基础上对数据进行分类。
IBM SPSS Modeler提供了多种聚类分析模型,其中主要包括两种聚类分析,K-Mean 聚类分析和Kohonen聚类分析,下面对各种聚类分析实验步骤进行详解。
1、K-Means聚类分析实验首先进行K-Means聚类实验。
(1)启动SPSS Modeler 14.2。
选择“开始”→“程序”→“IBM SPSS Modeler 14.2”→“IBM SPSS Modeler 14.2”,即可启动SPSS Modeler程序,如图1所示。
图1 启动SPSS Modeler程序(2)打开数据文件。
首先选择窗口底部节点选项板中的“源”选项卡,再点击“可变文件”节点,单击工作区的合适位置,即可将“可变文件”的源添加到流中,如图2所示。
右键单击工作区的“可变文件”,选择“编辑”,打开如图3的编辑窗口,其中有许多选项可供选择,此处均选择默认设定。
点击“文件”右侧的“”按钮,弹出文件选择对话框,选择安装路径下“Demos”文件夹中的“DRUG1n”文件,点击“打开”,如图4所示。
单击“应用”,并点击“确定”按钮关闭编辑窗口。
图2 工作区中的“可变文件”节点图3 “可变文件”节点编辑窗口图4 文件选择对话框图5 工作区中的“表”节点(3)借助“表(Table)”节点查看数据。
选中工作区的“DRUG1n”节点,并双击“输出”选项卡中的“表”节点,则“表”节点出现在工作区中,如图5所示。
运行“表”节点(Ctrl+E或者右键运行),可以看到图6中有关病人用药的数据记录。
该数据包含7个字段(序列、年龄(Age)、性别(Sex)、血压(BP)、胆固醇含量(Cholesterol)、钠含量(Na)、钾含量(K)、药类含量(Drug)),共200条信息记录。
聚类分析实验报告
![聚类分析实验报告](https://img.taocdn.com/s3/m/bc2b1e5fc381e53a580216fc700abb68a982adec.png)
聚类分析实验报告
《聚类分析实验报告》
在数据挖掘和机器学习领域,聚类分析是一种常用的技术,用于将数据集中的对象分成具有相似特征的组。
通过聚类分析,我们可以发现数据集中隐藏的模式和结构,从而更好地理解数据并做出相应的决策。
在本次实验中,我们使用了一种名为K均值聚类的方法,对一个包含多个特征的数据集进行了聚类分析。
我们首先对数据进行了预处理,包括缺失值处理、标准化和特征选择等步骤,以确保数据的质量和可靠性。
接着,我们选择了合适的K值(聚类的数量),并利用K均值算法对数据进行了聚类。
在实验过程中,我们发现K均值聚类方法能够有效地将数据集中的对象分成具有相似特征的组,从而形成了清晰的聚类结构。
通过对聚类结果的分析,我们发现不同的聚类中心代表了不同的数据模式,这有助于我们更好地理解数据集中的内在规律和特点。
此外,我们还对聚类结果进行了评估和验证,包括使用轮廓系数和肘部法则等方法来评价聚类的质量和效果。
通过这些评估方法,我们得出了实验结果的可靠性和有效性,证明了K均值聚类在本次实验中的良好表现。
总的来说,本次实验通过聚类分析方法对数据集进行了深入的挖掘和分析,得到了有意义的聚类结果,并验证了聚类的有效性和可靠性。
通过这一实验,我们对聚类分析方法有了更深入的理解,也为今后在实际应用中更好地利用聚类分析提供了有力支持。
聚类分析与判别分析的区别
![聚类分析与判别分析的区别](https://img.taocdn.com/s3/m/1d30d73743323968011c92c9.png)
武汉学刊 2006 年第 1 期
经济研究
聚类分析与判别分析的区别
邓海燕
上世纪 60 年代末到 70 年代初, 人们把大量 因变量的各个类别。
义如下:
m
"! 2
dij=
( Xik- Xjk)
k= 1
其中: Xik: 第 i 个样品的第 k 个指标的观测值
Xjk: 第 j 个样品的第 k 个指标的观测值
dij: 第 i 个样品与第 j 个样品之间的欧氏距离
依次求出任何两个点的距离系数 dij( i, j=1, 2,
…, n) 以后, 则可形成一个距离矩阵:
或“ 相 似 系 数 ”较 小 的 点 归 为 不 同 的 类 。
“距离”常用来度量样品之间的相似性 ,“相似
系 数 ”常 用 来 度 量 变 量 之 间 的 相 似 性 。
a、根 据 不 同 的 需 要 , 距 离 可 以 定 义 为 许 多 类
型, 最常见、最 直 观 的 距 离 是 欧 几 里 德 距 离 , 其 定
目的决定 , 一般 可 用 背 景 变 量 、生 活 形 态 变 量 、产 品使用变量或消费者行为变量等。
b 、研 究 消 费 者 行 为 同一类别的消费者或购买者可能有着相似的 购买行为, 通过对不同类别的消费者的研究, 可以 深入地探讨各类消费者的消费行为。 c 、设 计 抽 样 方 案 在大规模的抽样调查中, 常常采用分层抽样, 以提高抽样的精度。例如: 湖北省的消费者调查的 抽样方案, 首先将城市或地区按一些可能影响消 费水平和行为的变量分层, 然后在各层中再实行 多级抽样, 分层所采用的方法之一就是聚类分析。 d 、寻 找 新 的 潜 在 市 场 按照同一类的产品或品牌聚类, 可将竞争的 产 品 或 品 牌 分 类 。竞 争 更 为 激 烈 的 会 在 同 一 类 内 。 通过考察和比较目前自己的情况和竞争对手的情 况, 就有可能发现潜在的新产品机会。 e 、选 择 试 验 的 市 场 为了推出某项新的市场策略, 例如开发新的 产品、实行新的 促 销 方 式 、新 的 广 告 创 意 等 , 需 要 进行事先的实验。通过聚类分析, 可将实验的对象 ( 例如商店、城市、居民区等) 分成同质的几个组作 为实验组和控制组。 f、作 为 多 元 分 析 的 预 处 理 通过聚类分析可以达到简化数据的目的, 将 众多的样品先聚集成比较好处理的几个类别或子 集, 然后再进行后续的多元分析。比如在回归分析 中, 有时不对原始数据进行拟合, 而是对这些子集 的中心作拟合, 可能会更有意义。又比如, 为了研 究不同消费者群体的消费行为特征, 可以先聚类, 然后再利用判别分析进一步研究各个群体之间的 差异。 ( 2) 判别分析在市场研究中主要用于对一个 企业进行市场细分, 以选择目标市场, 有针对性地 进行广告、促销等活动。例如, 根据消费者的一些 背景资料如何判定他们中的哪些会是某种品牌的 忠诚用户, 哪些不是? 或者想要知道, 忠诚用户和 非忠诚用户在人口的基本特征方面到底有哪些不 同? 如何区分价格敏感型的顾客和非敏感型的顾 客? 哪些心里特征或生活形态特征可以用作判别 或区分的标准? 各种目标消费群体在媒介接触方 面是否有显著的差异? 等等这类均可以通过判别
市场研究——聚类分析法
![市场研究——聚类分析法](https://img.taocdn.com/s3/m/aae6364653ea551810a6f524ccbff121dc36c511.png)
市场研究——聚类分析法
聚类分析法在市场研究中有着广泛的应用。
通过对市场中消费者、产品、品牌等进行聚类分析,可以帮助市场研究人员更好地理解市场细分和
目标受众,并制定针对不同群体的市场营销策略。
下面将详细介绍聚类分
析法的原理、应用和步骤。
聚类分析的原理是将数据样本划分为不同的类别或群组,使得同类之
间的差异最小,而不同类之间的差异最大。
输入聚类分析的数据通常是多
维的,每个维度代表一个变量。
聚类分析的目标是找到一个最优的聚类方案,使得相同类别内的样本相似度最高,而不同类别的样本相似度最低。
聚类分析法的应用非常广泛。
在市场研究中,它可以用于客户细分、
产品定位、市场定位等方面。
通过对消费者进行聚类,可以发现隐藏在市
场中的不同消费者群体,并确定他们的特征、需求和偏好。
对产品和品牌
进行聚类分析,则可以帮助确定产品和品牌的差异化定位和市场竞争策略。
需要注意的是,聚类分析法只是一种分析工具,通过聚类分析得到的
结果并不一定代表真实的市场现象,仅供市场研究人员参考和决策。
在市场研究中,聚类分析法的应用是非常重要的。
它能够帮助市场研
究人员更好地理解市场细分和目标受众,并制定针对不同群体的市场营销
策略。
随着数据量的不断增加和分析技术的不断发展,聚类分析法在市场
研究中的应用前景将更加广阔。
IBM SPSS MODELER 实验一、聚类分析
![IBM SPSS MODELER 实验一、聚类分析](https://img.taocdn.com/s3/m/1222906576a20029bc642d5f.png)
IBM SPSS Modeler 实验一、聚类分析在数据挖掘中,聚类分析关注的内容是一些相似的对象按照不同种类的度量构造成的群体。
聚类分析的目标就是在相似的基础上对数据进行分类。
IBM SPSS Modeler提供了多种聚类分析模型,其中主要包括两种聚类分析,K-Mean 聚类分析和Kohonen聚类分析,下面对各种聚类分析实验步骤进行详解。
1、K-Means聚类分析实验首先进行K-Means聚类实验。
(1)启动SPSS Modeler 14.2。
选择“开始”→“程序”→“IBM SPSS Modeler 14.2”→“IBM SPSS Modeler 14.2”,即可启动SPSS Modeler程序,如图1所示。
图1 启动SPSS Modeler程序(2)打开数据文件。
首先选择窗口底部节点选项板中的“源”选项卡,再点击“可变文件”节点,单击工作区的合适位置,即可将“可变文件”的源添加到流中,如图2所示。
右键单击工作区的“可变文件”,选择“编辑”,打开如图3的编辑窗口,其中有许多选项可供选择,此处均选择默认设定。
点击“文件”右侧的“”按钮,弹出文件选择对话框,选择安装路径下“Demos”文件夹中的“DRUG1n”文件,点击“打开”,如图4所示。
单击“应用”,并点击“确定”按钮关闭编辑窗口。
图2 工作区中的“可变文件”节点图3 “可变文件”节点编辑窗口图4 文件选择对话框图5 工作区中的“表”节点(3)借助“表(Table)”节点查看数据。
选中工作区的“DRUG1n”节点,并双击“输出”选项卡中的“表”节点,则“表”节点出现在工作区中,如图5所示。
运行“表”节点(Ctrl+E或者右键运行),可以看到图6中有关病人用药的数据记录。
该数据包含7个字段(序列、年龄(Age)、性别(Sex)、血压(BP)、胆固醇含量(Cholesterol)、钠含量(Na)、钾含量(K)、药类含量(Drug)),共200条信息记录。
聚类分析的应用案例
![聚类分析的应用案例](https://img.taocdn.com/s3/m/6a46cd7311661ed9ad51f01dc281e53a580251fc.png)
聚类分析的应用案例聚类分析是一种常用的数据挖掘技术,它可以将数据集中的对象按照其相似性进行分类,从而找出数据中的潜在模式和结构。
聚类分析在各个领域都有着广泛的应用,例如市场营销、医学诊断、社交网络分析等。
本文将介绍几个聚类分析在实际应用中的案例,帮助读者更好地理解和应用这一技术。
首先,聚类分析在市场营销中的应用案例。
假设一个公司希望对其客户进行细分,以便更好地定制营销策略。
通过聚类分析,可以将客户按照其购买行为、偏好等特征进行分类,从而识别出不同的客户群体。
比如,通过聚类分析可以将客户分为价值型客户、潜在客户、忠诚客户等不同的群体,然后针对不同的群体制定相应的营销策略,提高营销效果。
其次,聚类分析在医学诊断中的应用案例也非常广泛。
医学领域的数据往往包含大量的特征和变量,通过聚类分析可以将患者按照其症状、生理指标等特征进行分类,从而辅助医生进行诊断和治疗。
例如,通过聚类分析可以将患者分为不同的疾病类型或病情严重程度,帮助医生更好地制定个性化的治疗方案,提高治疗效果。
另外,聚类分析在社交网络分析中也有着重要的应用价值。
随着社交网络的快速发展,人们在社交网络上产生了大量的数据,通过聚类分析可以将用户按照其兴趣、行为等特征进行分类,从而挖掘出不同的用户群体和社交圈子。
这对于社交网络平台来说,可以帮助他们更好地推荐好友、内容等,提高用户的粘性和使用体验。
综上所述,聚类分析在市场营销、医学诊断、社交网络分析等领域都有着重要的应用价值。
通过聚类分析,可以帮助人们更好地理解和利用数据,发现数据中的潜在模式和结构,为决策提供科学依据。
随着数据挖掘技术的不断发展,相信聚类分析在更多的领域将会有着更广泛的应用。
卫生统计学名词解释
![卫生统计学名词解释](https://img.taocdn.com/s3/m/03534e43af45b307e8719798.png)
脉搏(次/分)、血压(KPa)等。
(2)计数资料:将观察单位按某种属性或类别分组,所得的观察单位数称为计数资料
(count data)。计数资料亦称定性资料或分类资料。其观察值是定性的,表现为互不相容的
值,记为P(A),P(A)越大,说明A事件发生的可能性越大。0﹤P(A)﹤1。
频率:在相同的条件下,独立重复做n次试验,事件A出现了m次,则比值m/n称为随
机事件A在n次试验中出现的频率(freqency)。当试验重复很多次时P(A)= m/n。
6.随机误差:随机误差(random error)又称偶然误差,是指排除了系统误差后尚存的
3、生存时间:是任何两个有联系事件之间的时间间隔。
4、截尾值:指在随访过程中,由于某种原因未能观察到病人的明确结局(即终止事件),所以不知道该病人的确切生存时间,它提供的生存时间的信息是不完全的。
5、生存函数:又称为累积生存率,简称生存率。表示具有协变量X的观察对象其生存时间T大于时间t的概率,常用S(t,X)=P(T>t,X)表示。
3均方:每种来源的离均差平方和用相应的自由度去除,可得到平均的离均差平方和,简称均方(mean square,MS)
4、LSD-t检验:即最小显著性差异t检验,适用于一对或几对在专业上有特殊意义的样本均数间的比较。
5、SNK(student-Newman-Keuls)法:又称q检验,是根据q值的抽样分布作出统计推论,适用于多个样本均数两两之间的全面比较。
3、Q型聚类:又称样品聚类,是指将n个样品归类的方法,其目的是找出样品间的共性。
1、潜在变量(latent variable):不能或不易直接观测得到的变量。这种变量往往是根据某种理论假设的。如:交感神经等。
聚类分析
![聚类分析](https://img.taocdn.com/s3/m/baf43bf9c8d376eeaeaa31c3.png)
简要回答题:
1. 什么是聚类分析?聚类的依据是什么?
答案:
(1)聚类分析就是把“对象”分成不同的类别,这些类不是事先给定的,而是直接根据数据的特征确定的。
这里的“对象”可以是所观察的多个样本,也可以是针对每个样本测得的多个变量。
如果是根据变量对所观察的样本进行分类,称为Q 型聚类;如果是根据样本对多个变量进行分类,则称为R型聚类。
(2)分类的依据是“对象”之间的相似性,相似是指对象之间关系或距离的远近。
根据样本观测数据测度变量之间的相似性使用的测量工具是“相似系数”。
变量间的相似系数越大,说明它们越相近;根据变量来测度样本之间的相似程度则使用“距离(distance)”,分类时把离得比较近的归为一类,而离得比较远的放在不同的类。
知识点:主成分分析和因子分析
难易度:2
2. 聚类分析时对变量或数据有哪些基本要求?
答案:
(1)参与分类的变量应符合与分类目标有关。
(2)各变量的取值不应该有数量级上的过大差异,否则会对分类结果产生较大影响。
这时需要对变量进行标准化处理
(3)各变量之间不应该有较强的相关关系。
如果两个强相关的变量同时参与聚类分析,在测度距离时,就加大了它们的贡献,而其他变量则相对被削弱。
知识点:主成分分析和因子分析
难易度:1。
聚类分析在经济学当中的一个应用
![聚类分析在经济学当中的一个应用](https://img.taocdn.com/s3/m/154db6eba8114431b80dd837.png)
聚类分析在经济学当中的一个应用本文根据系统聚类分析的最小离差平方和法,利用SPSS软件,通过浙江省11个地市的国民经济主要指标,对处在不同经济发展水平的各个地市进行聚类分析,从而将浙江省划分为三个经济发展水平不同的经济区域,结果供有关决策部门参考。
标签:最小离差平方和法主要经济指标聚类分析聚类分析又称群分析,是多元统计分析中研究样本或指标的一种主要的分类方法,起源于考古分类学。
随着经济和社会的发展,结合了更为强大的数学工具的聚类分析方法已经越来越多应用到经济分析和社会工作分析中。
在经济领域中,主要是根据影响国家、地区乃至单个企业的经济效益、发展水平的各项指标进行聚类分析,然后根据分析结果进行综合评价,以便得出科学的结论。
聚类分析的方法主要有两种,一种是“快速聚类分析方法”(K-Means Cluster Analysis),另一种是“系统聚类分析方法”(Hierarchical Cluster Analysis)。
本文将根据2004年浙江省各市国民经济主要指标,利用系统聚类的Ward’s Method,对浙江省11个市进行分类。
一、聚类方法简介系统聚类法(hierarchical clustering method)是使用最多的一种聚类方法。
它的基本思想是:1.将全部n个样品各看成一类,即得到n类;2.确定样品与样品和类与类之间的距离;3.计算各类之间的距离,并将距离最近的两类合并为一类,形成一个新的类;4.重复步骤3。
这样从有n类开始,每次合并一类,经过n-1次合并后,所有的样品成为一类;5.将上述合并的全部聚类过程用一个直观图形画出来,即画出聚类图;6.决定类的个数,并由上述步骤得到相应的聚类分析的结果。
以下我们用Gij表示第i个样品与第j个样品的距离,G1,G2,…表示类,GKL表示GK与GL的距离。
本节介绍的系数聚类法中,类与类之间的距离与样品之间的距离相同,即DKL=dkl。
二、数据处理(来源:2005浙江统计年鉴,见参考文献[13])。
聚类分析原理
![聚类分析原理](https://img.taocdn.com/s3/m/d256a257fbd6195f312b3169a45177232f60e4bd.png)
聚类分析原理聚类分析是一种常用的数据分析方法,它可以将数据集中的个体按照相似性进行分组,从而揭示数据内在的结构和规律。
在实际应用中,聚类分析被广泛应用于市场细分、社交网络分析、生物信息学、图像处理等领域。
本文将介绍聚类分析的原理及其常见的方法。
首先,聚类分析的原理是基于样本之间的相似性进行分组。
相似的样本被归为同一类别,而不相似的样本则被划分到不同的类别中。
在进行聚类分析时,我们需要选择合适的相似性度量方法,常见的相似性度量包括欧氏距离、曼哈顿距离、余弦相似度等。
通过计算样本之间的相似性,我们可以构建出样本之间的相似性矩阵,从而为后续的聚类分析提供依据。
其次,聚类分析的方法包括层次聚类和非层次聚类两种。
层次聚类是一种自下而上或自上而下的聚类方法,它通过计算样本之间的相似性来构建聚类树,从而实现对样本的分层聚类。
非层次聚类则是一种直接将样本划分为不同类别的方法,常见的非层次聚类方法包括K均值聚类、DBSCAN聚类等。
不同的聚类方法适用于不同的数据特点和分析目的,选择合适的聚类方法对于获得准确的聚类结果至关重要。
此外,聚类分析还需要考虑到聚类数目的确定。
在进行聚类分析时,我们需要事先确定聚类的数目,这也是聚类分析的一个重要参数。
常见的确定聚类数目的方法包括肘部法则、轮廓系数法等。
通过选择合适的聚类数目,我们可以获得更加准确和有意义的聚类结果。
总之,聚类分析是一种重要的数据分析方法,它可以帮助我们揭示数据内在的结构和规律。
在进行聚类分析时,我们需要选择合适的相似性度量方法、聚类方法和确定聚类数目的方法,以获得准确和有意义的聚类结果。
希望本文能够帮助读者更好地理解聚类分析的原理和方法,从而更好地应用聚类分析于实际问题中。
中药材分类中的聚类分析
![中药材分类中的聚类分析](https://img.taocdn.com/s3/m/7cf3ebf885254b35eefdc8d376eeaeaad0f31677.png)
中药材分类中的聚类分析
中药材分类是中医学的重要组成部分,有效的中药材分类便于中医科学使用,推动中药材分类研究变得十分重要。
其中,聚类分析在中药材分类研究中起着重要的作用。
聚类分析是一种有监督学习方法,其目的是将数据集中的行或向量聚类到相似的组中,以便研究具有相似特征的组。
聚类分析可以有效地研究中药材分类问题,如药材植物分类、气味分类、性质分类、功能分类等,可以找到相似的特征,形成足够接近的分类情况,也可以用于在不同数据集之间找到可能的相似性。
聚类分析用于中药材分类的过程主要分为五步:第一步是计算数据的距离矩阵,即计算样本之间的特征距离;第二步是确定聚类个数,采用聚类最优法从样本距离矩阵中计算得到最优聚类个数;第三步是设置距离标准,以确定样本类型;第四步是计算质心,并利用质心进行样本聚类;第五步是样本归类、结果检查,然后将最终的聚类结果应用到中药材分类中。
总之,聚类分析在中药材分类研究中的应用是一种非常有效的方法,可以找出具有相似性的特征,有效提高中药材分类的精度,提高中医科学使用的效率。
聚类分析算法
![聚类分析算法](https://img.taocdn.com/s3/m/4ce9f5c76394dd88d0d233d4b14e852458fb3937.png)
聚类分析算法
聚类分析是数据挖掘中一个重要的分类技术,它可以将大量数据组织在一起,从而帮助人们更加清楚地理解数据之间的关系。
聚类分析最初被用于社会科学研究,但如今也被广泛用于计算机领域,被用于识别类别、预测模型等。
聚类分析的主要目的是将不相关的数据点组织成类簇,从而使得相关性更加明显。
它可以帮助人们发现未知数据中的趋势和模式,从而更好地理解数据。
聚类分析的主要流程包括:首先,使用数据挖掘技术对数据集进行特征提取;其次,使用聚类算法对数据分组;最后,对每一组数据进行分析,找出其中的联系和模式。
聚类分析的优点在于可以有效地挖掘数据中的模式,而且可以根据需要调整算法的参数,从而更好地满足特定的需求。
此外,聚类分析也不需要人为编写程序,因此它可以节省人力和时间成本。
总的来说,聚类分析是一个强大而有效的数据挖掘技术,它可以帮助我们找出谜底,发现模式,从而更有效地利用数据。
它也是一个灵活的技术,可以被用于各种数据挖掘应用中,从而提高工作效率。