传感器实验讲义1

合集下载

传感器的认识实验报告(一)

传感器的认识实验报告(一)

传感器的认识实验报告(一)传感器的认识实验报告实验目的•了解传感器的基本原理•掌握传感器的分类及其应用领域•实际运用传感器,了解其检测物理量和读取数据的方法实验步骤1.搭建实验装置,将传感器与电路连接好2.使用实验工具进行数据读取和实验记录3.测量感光极板的亮度,并记录数据4.测量温度传感器的温度,并记录数据5.测量加速度传感器的加速度,并记录数据实验原理传感器是指可以将物理量转化为电信号的装置。

传感器的基本原理是利用感受材料对于被测参数的敏感性来测量所要求的物理量。

根据测量的物理量,传感器可以分为温度传感器、加速度传感器、光学传感器等等。

实验结果根据实验测量数据,感光极板的亮度为690 cd/m^2,温度传感器的温度为26℃,加速度传感器的加速度为0.02 m/s^2。

应用领域传感器在生活中有广泛的应用,例如:•温度传感器可以用于实时监测室温,控制家电设备的开关•光学传感器可以用于智能照明系统,根据光线强弱调节灯的亮度•加速度传感器可以用于车辆安全系统,检测车辆行驶状态结论通过本次实验,我们了解了传感器的基本原理和分类,掌握了使用传感器测量物理量的方法,对于传感器的应用领域也有了更深层次的认识。

传感器在现代生活中起着重要的作用,我们需要不断探索其更广泛的应用领域。

需要注意的问题在实验使用传感器时需要注意以下问题:1.传感器的选型要根据实际测量情况进行选择2.使用传感器前,需要了解传感器的使用说明,并保证传感器与电路连接良好3.实验数据的精确性要求很高,需要保证实验环境稳定,并进行多次测量取平均值总结传感器是一种非常重要的测量装置,广泛应用于各个领域。

通过本次实验,我们对于传感器有了更深层次的认识,掌握了基本的使用方法和应用场景。

同时,在实验过程中也意识到传感器的精确度要求很高,因此在日后的实践中需要继续探索其更广泛的应用领域,提高实验技巧和数据处理能力。

光电传感器设计性实验讲义

光电传感器设计性实验讲义

光电传感器设计性实验讲义一、实验目的掌握光电传感器的基本原理和设计方法,了解光电传感器在不同应用场景下的设计要点。

二、实验原理在设计光电传感器时,需要考虑以下几个方面的因素:1.光敏元件的选择:光敏元件是将光信号转换为电信号的核心部件。

常见的光敏元件有光敏电阻、光电二极管和光电三极管等。

根据实际应用需求选择合适的光敏元件。

2.光源的选择:合适的光源能够提供稳定、均匀的光线,使得光敏元件能够正常工作。

常见的光源有白光LED、红外LED等。

3.光电信号的处理:读取光敏元件产生的电信号,并进行信号放大、滤波等处理。

常见的信号处理电路有运放电路和滤波电路等。

三、实验设备1.光敏元件:根据实际需求选择相应的光敏元件,如光敏电阻、光电二极管等。

2.光源:根据实验需要选择合适的光源,如白光LED、红外LED等。

3.信号处理电路:运放电路、滤波电路等。

4.示波器:用于观察和分析电信号的波形。

四、实验步骤1.确定实验需求:根据实验目的,确定所需设计和实现的光电传感器的功能和性能。

2.选择光敏元件:根据实验需求和光敏元件的特性,选择合适的光敏元件。

3.选择光源:根据实验需求和光源的特性,选择合适的光源。

4.构建电路:根据实验需求,将光敏元件与光源连接到适当的电路中,并设计信号处理电路。

5.进行实验:将所设计的光电传感器置于合适的环境中,观察和记录光敏元件输出的电信号,并通过示波器进行波形分析。

6.分析和优化:根据实验结果,分析光电传感器的性能,并优化设计。

五、实验注意事项1.在实验过程中,注意保持实验环境的稳定性,避免干扰因素对实验结果的影响。

2.操作电路时,注意安全操作,避免触电和短路等事故的发生。

3.在实验结束后,注意及时关闭电源,避免设备的损坏和能源的浪费。

六、实验结果分析根据实验实际情况,对光电传感器的性能以及电信号的波形进行分析和比较,并进行实验结果的总结和归纳。

七、实验拓展1.尝试使用不同类型的光敏元件,比较不同光敏元件的性能和优劣。

传感器实验1

传感器实验1

实验一压阻式压力传感器的特性测试实验一、实验目的了解扩散硅压阻式压力传感器测量压力的原理和标定方法。

二、实验内容掌握压力传感器的压力计设计。

三、实验仪器传感器检测技术综合实验台、压力传感器实验模块、压力传感器、导线。

四、实验原理扩散硅压阻式压力传感器的工作机理是半导体应变片的压阻效应,在半导体受到力变形时会暂时改变晶体结构的对称性,因而改变了半导体的导电机理,使得它的电阻率发生变化,这种物理现象称之为半导体的压阻效应。

一般半导体应变采用N型单晶硅为传感器的弹性元件,在它上面直接蒸镀扩散出多个半导体电阻应变薄膜(扩散出敏感栅)组成电桥。

在压力(压强)作用下弹性元件产生应力,半导体电阻应变薄膜的电阻率产生很大变化,引起电阻的变化,经电桥转换成电压输出,则其输出电压的变化反映了所受到的压力变化。

图13-1为压阻式压力传感器压力测量实验原理图。

+-放大单元主台体上电压表+4V 压阻式压力传感器Vo+VS+Vo-Vs-图13-1 压阻式压力传感器压力测量实验原理五、实验注意事项1、严禁将信号源输出对地短接。

2、实验过程中不要带电拔插导线。

3、严禁电源对地短路。

六、实验步骤1、将引压胶管连接到压力传感器上,其他接线按图13-2进行连接,确认连线无误且打开主台体电源、压力传感器实验模块电源。

图13-2 压阻式压力传感器的特性测试实验接线图2、打开气源开关,调节流量计的流量并观察压力表,压力上升到4Kpa 左右时,根据计算所选择的第二级电路的反馈电阻值,接好相应的短接帽;再调节调零电位器RW2,使得图13-3中Vx 与计算所得的值相符;再调节增益电位器RW1,使电压表显示为0.4V 左右。

(进行此步之前,请先仔细阅读:七、实验报告要求)3、再仔细地反复调节流量使压力上升到18KPa 左右时,根据计算,电压表将显示1.8V 左右。

4、重复步骤2和3过程,直到认为已足够精度时调节流量计使压力在4~18KPa 之间,每上升1Kpa 气压分别读取电压表读数,将数值列于表3。

2024-2025学年新教材高中物理第5章传感器1认识传感器教案新人教版选择性必修第二册

2024-2025学年新教材高中物理第5章传感器1认识传感器教案新人教版选择性必修第二册
-设计互动式多媒体教学课件,包含传感器知识点的互动问答、动画演示等。
3.实验器材:
-准备不同类型的传感器实物,如光敏电阻、热敏电阻、压力传感器等,以便于学生观察和学习。
-确保传感器实验套件充足,包括传感器、信号放大器、显示装置等,以便学生进行实际操作。
-准备实验所需的连接线、电源、测量仪器(如万用表)等辅助工具。
3.随堂测试:
-设计针对传感器基础知识、特性参数和实际应用的随堂测试,以评估学生对本节课重点内容的掌握情况。
-分析测试结果,了解学生的知识盲点和理解误区,为后续教学提供参考。
4.实验操作评价:
-观察学生在实验操作中的规范性和安全性,评估学生对实验原理的理解和实验技能的掌握。
-检查实验报告的撰写质量,包括实验数据的记录、分析和结论的推导。
-湿度监测与改善建议:学生需要描述如何使用湿度传感器监测植物生长环境的湿度,并提出根据监测结果调整浇水或增加湿度的措施。
-学会了与他人合作,能够在小组讨论中发挥自己的优势,共同解决问题。
3.情感态度与价值观:
-增强了对物理学科的兴趣,认识到传感器在现代科技中的重要性,激发了进一步学习的欲望。
-培养了创新意识和实践精神,敢于提出自己的观点,勇于尝试新的解决方案。
-提升了环保意识和社会责任感,了解到传感器在环境保护、资源节约等方面的应用价值。
教学评价与反馈
1.课堂表现:
-观察学生在课堂上的参与度、提问回答的积极性和准确性,以及学生对传感器知识点的理解和掌握程度。
-关注学生在课堂上的注意力集中情况,以及他们对传感器案例分析的感兴趣程度。
2.小组讨论成果展示:
-评估各小组讨论的深度和广度,以及提出的解决方案的创新性和实用性。
-检查小组成果展示的逻辑性和清晰度,以及学生在展示过程中的表达能力和沟通技巧。

最新传感器实验讲义1

最新传感器实验讲义1

传感器实验讲义1一、 CSY传感器实验仪简介实验仪主要由四部分组成:传感器安装台、显示与激励源、传感器符号及引线单元、处理电路单元。

传感器安装台部分:装有双平行振动梁(应变片、热电偶、PN结、热敏电阻、加热器、压电传感器、梁自由端的磁钢)、激振线圈、双平行梁测微头、光纤传感器的光电变换座、光纤及探头小机电、电涡流传感器及支座、电涡流传感器引线Φ3.5插孔、霍尔传感器的二个半圆磁钢、振动平台(圆盘)测微头及支架、振动圆盘(圆盘磁钢、激振线圈、霍尔片、电涡流检测片、差动变压器的可动芯子、电容传感器的动片组、磁电传感器的可动芯子)、扩散硅压阻式传感器、气敏传感器及湿敏元件安装盒,具体安装部位参看附录三。

备注:CSY系列传感器实验仪的传感器具体配置根据需方的合同安装。

显示及激励源部分:电机控制单元、主电源、直流稳压电源(±2V-±10V档位调节)、F/V数字显示表(可作为电压表和频率表)、动圈毫伏表(5mV-500mV)及调零、音频振荡器、低频振荡器、±15V不可调稳压电源。

实验主面板上传感器符号单元:所有传感器(包括激振线圈)的引线都从内部引到这个单元上的相应符号中,实验时传感器的输出信号(包括激励线圈引入低频激振器信号)按符号从这个单元插孔引线。

处理电路单元:电桥单元、差动放大器、电容放大器、电压放大器、移相器、相敏检波器、电荷放大器、低通滤波器、涡流变换器等单元组成。

CSY实验仪配上一台双线(双踪)通用示波器可做几十种实验。

教师也可以利用传感器及处理电路开发实验项目。

二、主要技术参数、性能及说明<一>传感器安装台部分:双平行振动梁的自由端及振动圆盘下面各装有磁钢,通过各自测微头或激振线圈接入低频激振器V O可做静态或动态测量。

应变梁:应变梁采用不锈钢片,双梁结构端部有较好的线性位移。

传感器:1、差动变压器量程:≥5mm 直流电阻:5Ω-10Ω由一个初级、二个次级线圈绕制而成的透明空心线圈,铁芯为软磁铁氧体.2、电涡流位移传感器量程:≥1mm直流电阻:1Ω-2Ω多股漆包线绕制的扁平线圈与金属涡流片组成。

第3章电阻应变片式传感器1-PPT讲义

第3章电阻应变片式传感器1-PPT讲义
bhfrbhfr测量bk2s产品详细介绍采用国际流行的双梁式或剪切s梁结构拉压输出对称性好测量精度高结构紧凑安装方便广泛用于机电结合秤料斗秤包装秤等各种测力称重系统中供桥电压12vdc输入阻抗38020输出阻抗35010绝缘电阻2000m工作温度1050bk采用轮辐式结构高度低抗偏抗侧能力强测量精度高性能稳定可靠安装方便是大中量程精度传感器中的最佳形式广泛用于各种电子衡器和各种力值测量如汽车衡轨道衡吊勾秤料斗秤技术参数量程t12510203050供桥电压12vdc灵敏度152mvv输入阻抗73020非线性fs00300501输出阻抗70010重复性fs00300501绝缘电阻2000m滞后fs00300501工作温度1050允许过负荷120fs热零点偏移fs10主要用来测量流动介质的动态或静态压力应变片压力传感器大多采用膜片式或筒式弹性元件
产生的原因:由于胶层之间发生“滑动”,使力传到敏 感栅的应变量逐渐减少。
电阻应变片的选择、粘贴技术
1.目测电阻应变片有无折痕.断丝等缺陷,有 缺陷的应变片不能粘贴。
2.用数字万用表测量应变片电阻值大小。同一 电桥中各应变片之间阻值相差不得大于0.5欧姆.
3.试件表面处理:贴片处用细纱纸打磨干净,用 酒精棉球反复擦洗贴处,直到棉球无黑迹为止。
应变传感器在承重梁上
➢电阻应变片品种繁多, 形式多样。 ➢常用的应变片可分为两类: 金属电阻应变片和半导体电 阻应变片。
应变效应分析
•电阻应变片的工作原理是基于应变效应 •应变效应:即导体或半导体材料在外界力的作
用下产生机械变形时,其电阻值相应发生变化,
这种现象称为“应变效应”。
l
l
F
F
r
4.应变片粘贴:在应变片基底上挤一小滴502胶水,轻轻涂抹 均匀,立即放在应变贴片位置。

实验一--应变式传感器

实验一--应变式传感器

实验一应变式传感器一、应变片单臂电桥性能实验〔一〕、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。

〔二〕、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。

一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。

此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。

它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。

1、应变片的电阻应变效应所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。

以圆柱形导体为例:设其长为:L、半径为r、材料的电阻率为ρ时,根据电阻的定义式得〔1—1〕当导体因某种原因产生应变时,其长度L、截面积A和电阻率ρ的变化为dL、dA、dρ相应的电阻变化为dR。

对式〔1—1〕全微分得电阻变化率 dR/R为:〔1—2〕式中:dL/L为导体的轴向应变量εL; dr/r为导体的横向应变量εr由材料力学得:εL= - μεr (1—3)式中:μ为材料的泊松比,大多数金属材料的泊松比为左右;负号表示两者的变化方向相反。

将式〔1—3〕代入式〔1—2〕得:〔1—4〕式〔1—4〕说明电阻应变效应主要取决于它的几何应变〔几何效应〕和本身特有的导电性能〔压阻效应〕。

2、应变灵敏度它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。

(1)、金属导体的应变灵敏度K:主要取决于其几何效应;可取〔1—5〕其灵敏度系数为:K=金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。

金属导体的电阻应变灵敏度一般在2左右。

(2)、半导体的应变灵敏度:主要取决于其压阻效应;dR/R<≈dρ⁄ρ。

传感器原理及应用实验内容

传感器原理及应用实验内容

实验一 金属箔式应变片性能——单臂电桥一、实验目的:了解金属箔式应变片,单臂电桥的工作原理和工作情况。

二、基本原理:本实验说明箔式应变片及单臂直流电桥的电源的原理和工作情况。

应变片是最常用的测力传感元件。

当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变,应变片的敏感栅随同变形,其电阻也随之发生相应的变化,通过测量电路,转换成电信号输出显示。

电桥电路是最常用的非电量电测电路中的一种。

当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R 1、R 2、R 3、R 4中,电阻的相对变化率分别为ΔR 1/ R 1、ΔR 2/ R 2、ΔR 3/ R 3、ΔR 4/ R 4,当使用一个应变片时,∑R R R ∆=;当两个应变片组成差动状态工作,则有∑RRR ∆=2;用四个应变片组成两个差对工作,且R 1=R 2=R 3=R 4=R , ∑RRR ∆=4。

由此可知,单臂、半桥、全桥电路的灵敏度依次增大。

三、需用器件与单元:直流稳压电源、电桥、差动放大器、双平行梁、测微头、一片应变片、 电压/频率表、主、副电源。

四、旋钮初始位置:直流稳压电源打到±2V 档, 电压/频率表(即电压/频率表)打到2V 档,差动放大增益最大。

当应变梁收到拉力时,各应变片电阻值变化图1五、实验步骤:1、了解所需单元、部件在实验仪上的位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。

上下两片梁的外表面各贴两片受力应变片和一片补偿应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。

2、将差动放大器调零:用连线将差动放大器的正(+)、负(–)、地短接,连接图如图1。

将差动放大器的输出端与 电压/频率表的输入插口V i 相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮,使 电压/频率表显示为零,关闭主、副电源。

图23、根据图4接线(图3为原理图)。

传感器实验讲义

传感器实验讲义

使用说明CSY系列(CSY.CSY10.CSY10A.CSY10B)传感器系统实验仪是用于检测仪表类课程教学实验的多功能教学仪器。

其特点是集被测体、各种传感器、信号激励源、处理电路和显示器于一体,可以组成一个完整的测试系统。

通过实验指导书所提供的数十种实验举例,能完成包含光、磁、电、温度、位移、振动、转速等内容的测试实验。

通过这些实验,实验者可对各种不同的传感器及测量电路原理和组成有直观的感性认识,并可在本仪器上举一反三开发出新的实验内容。

实验仪主要由实验工作台、处理电路、信号与显示电路三部分组成。

各款实验仪的传感器配置及布局是:(具体布局详见各款仪器工作台布局图)一、位于仪器顶部的实验工作台部分,左边是一副平行式悬臂梁,梁上装有应变式、热敏式、P-N结温度式、热电式和压电加速度五种传感器。

平行梁上梁的上表面和下梁的下表面对应地贴有八片应变片,受力工作片分别用符号和表示。

其中六片为金属箔式片(BHF-350)。

横向所贴的两片为温度补偿片,用符号和表示。

片上标有“BY”字样的为半导体式应变片,灵敏系数130。

(CSY10B型应变梁上只贴有半导体应变计。

)热电式(热电偶):串接工作的两个铜一康铜热电偶(T分度)分别装在上、下梁表面,冷端温度为环境温度。

分度表见实验指导书。

(CSY10B型上梁表面安装一支K分度标准热电偶。

)热敏式:上梁表面装有玻璃珠状的半导体热敏电阻MF-51,负温度系数,25℃时阻值为8~10K。

P-N结温度式:根据半导体P-N结温度特性所制成的具有良好线性范围的集成温度传感器。

压电加速度式:位于悬臂梁自由端部,由PZT-5双压电晶片、铜质量块和压簧组成,装在透明外壳中。

实验工作台左边是由装于机内的另一副平行梁带动的圆盘式工作台。

圆盘周围一圈安装有(依逆时针方向)电感式(差动变压器)、电容式、磁电式、霍尔式、电涡流式、压阻式等传感器。

电感式(差动变压器):由初级线圈Li和两个次级线圈L。

2024届物理一轮复习讲义第13章 第4讲 传感器 实验:利用传感器制作简单的自动控制装置

 2024届物理一轮复习讲义第13章 第4讲 传感器 实验:利用传感器制作简单的自动控制装置

第4讲传感器实验:利用传感器制作简单的自动控制装置目标要求 1.掌握制作传感器常用元件:光敏电阻、热敏电阻、金属热电阻、电阻应变片、霍尔元件的基本特性及工作原理.2.探究传感器的工作原理及传感器应用的一般模式.3.能利用传感器制作简单的自动控制装置.考点一常见的传感器一、传感器及其工作原理1.传感器的工作原理:能够感受诸如力、温度、光、声、化学成分等被测量,并能把它们按照一定的规律转换为便于传送和处理的可用信号输出.通常转换成的可用信号是电压、电流等______量,或转换为电路的________.把非电学量转换为电学量,可以很方便地进行测量、________、处理和________.传感器应用的一般模式如图所示:2.传感器的核心元件(1)敏感元件:能直接感受或响应外界被测非电学量的部分.(2)转换元件:能将敏感元件输出的信号直接转换成________________的部分.(3)信号调整与转换电路:能把输出的微弱的电信号放大的部分.3.传感器的分类工作原理举例物理传感器利用物质的物理特性或物理效应感知并检测出待测对象信息力传感器、磁传感器、声传感器等化学传感器利用电化学反应原理,把无机或有机化学物质的成分、浓度转换为电信号离子传感器、气体传感器等生物传感器利用生物活性物质的选择性来识别和测定生物化学物质酶传感器、微生物传感器、细胞传感器等二、常见敏感元件1.光敏电阻(1)特点:光照越强,电阻________.(2)原因:光敏电阻的构成物质为半导体材料,无光照时,载流子极少,导电性能________;随着光照的____________,载流子增多,导电性________.(3)作用:把________________这个光学量转换为________这个电学量.2.热敏电阻和金属热电阻(1)热敏电阻热敏电阻一般由半导体材料制成,其电阻随温度的变化明显,温度升高电阻________,如图甲所示为某一热敏电阻的阻值随温度变化的特性曲线.(2)金属热电阻有些金属的电阻率随温度的升高而________,这样的电阻也可以制作温度传感器,称为热电阻,如图乙所示为某金属导线电阻的温度特性曲线.(3)作用:热敏电阻和金属热电阻都能够把温度这个热学量转换为电阻这个电学量.注意:在工作温度范围内,电阻值随温度上升而增加的是正温度系数(PTC)热敏电阻器;电阻值随温度上升而减小的是负温度系数(NTC)热敏电阻器.3.电阻应变片(1)电阻应变片的作用:电阻应变片能够把物体________这个力学量转换为________这个电学量.(2)电子秤的组成及敏感元件:由________和电阻________组成,敏感元件是________.(3)电子秤的工作原理金属梁自由端受力F⇒金属梁发生弯曲⇒应变片的电阻变化⇒两应变片上电压的差值变化1.传感器是把非电学量转换为电学量的元件.()2.传感器只能感受温度和光两个物理量.()3.随着光照的增强,光敏电阻的电阻值逐渐增大.()4.电子秤所使用的测力装置是力传感器,它是把力信号转换为电压信号.()霍尔元件的应用霍尔元件是根据霍尔效应原理制成的一种磁敏元件.一般用于电机中测定转子的转速,如录像机的磁鼓、电脑中的散热风扇等.(1)霍尔元件的工作原理:E 、F 间通入恒定的电流I ,同时外加与薄片垂直的磁场B 时,薄片中的载流子就在洛伦兹力作用下,向着与电流和磁场都垂直的方向漂移,使M 、N 间出现电压(如图所示).(2)霍尔元件在电流、电压稳定时,载流子所受静电力和洛伦兹力二力平衡.(3)霍尔电压:U H =k IB d(d 为薄片的厚度,k 为霍尔系数).其中U H 与B 成正比,所以霍尔元件能够把磁感应强度这个磁学量转换为电压这个电学量.例1 (2022·重庆卷·11)某兴趣小组研究热敏电阻在通以恒定电流时,其阻值随温度的变化关系.实验电路如图所示,实验设定恒定电流为50.0 μA ,主要实验器材有:恒压直流电源E 、加热器、测温仪、热敏电阻R T 、可变电阻R 1、电流表A 、电压表V.(1)用加热器调节R T 的温度后,为使电流表的示数仍为50.0 μA ,须调节________________(选填一种给定的实验器材).当R T 两端未连接电压表时,电流表示数为50.0 μA ;连接电压表后,电流表示数显著增大,须将原电压表更换为内阻____________(选填“远大于”“接近”或“远小于”)R T 阻值的电压表.(2)测得R T 两端的电压随温度的变化如图所示,由图可得温度从35.0 ℃变化到40.0 ℃的过程中,R T 的阻值随温度的平均变化率是________ kΩ·℃-1(保留2位有效数字).例2为了节能和环保,一些公共场所用光控开关控制照明系统,光控开关可用光敏电阻控制,如图甲所示是某光敏电阻阻值随光的照度变化曲线,照度可以反映光的强弱,光越强照度越大,照度单位为:勒克斯(lx).(1)如图乙所示,电源电动势为3 V,内阻不计,当控制开关两端电压上升至2 V时,控制开关自动启动照明系统.要求当天色渐暗照度降至1.0 lx时控制开关接通照明系统,则R1=________ kΩ.(2)某同学为了测量光敏电阻在不同照度下的阻值,设计了如图丙所示的电路进行测量,电源(E=3 V,内阻未知),电阻箱(0~99 999 Ω).实验时将电阻箱阻值置于最大,闭合S1,将S2与1相连,减小电阻箱阻值,使灵敏电流计的示数为I,图丁为实验时电阻箱的阻值,其读数为________ kΩ;然后将S2与2相连,调节电阻箱的阻值如图戊所示,此时电流表的示数恰好为I,则光敏电阻的阻值为________ kΩ(结果均保留3位有效数字).例3(多选)如图是霍尔元件的工作原理示意图,如果用d表示薄片的厚度,k为霍尔系数,对于一个霍尔元件d、k为定值,如果保持I恒定,则可以验证U H随B的变化情况.以下说法正确的是(工作面是指较大的平面)()A.将永磁体的一个磁极逐渐靠近霍尔元件的工作面,U H将变大B.在测定地球两极的磁场强弱时,霍尔元件的工作面应保持水平C.在测定地球赤道上的磁场强弱时,霍尔元件的工作面应保持水平D.改变磁感线与霍尔元件工作面的夹角,U H将发生变化听课记录:______________________________________________________________________________________________________________________________________考点二实验:利用传感器制作简单的自动控制装置一、门窗防盗报警装置1.实验目的:了解门窗防盗报警装置,会组装门窗防盗报警装置.2.电路如图所示.3.工作原理:闭合电路开关S,系统处于防盗状态.当门窗紧闭时,磁体M靠近干簧管SA,干簧管两个簧片被磁化相吸而接通继电器线圈K,使继电器工作.继电器的动触点c与常开触点a接通,发光二极管LED发光,显示电路处于正常工作状态.当门窗开启时,磁体离开干簧管,干簧管失磁断开,继电器被断电.继电器的动触点c与常闭触点b接通,蜂鸣器H 发声报警.干簧管在电路中起传感器和控制开关的作用,继电器则相当于一个自动的双向开关.4.实验器材干簧管SA、继电器、发光二极管LED、蜂鸣器H、电源、导线若干、开关、电阻R、小磁体.5.实验步骤(1)连接电路前,要先判断一下干簧管是否可以正常工作.用磁体直接靠近干簧管,观察簧片能否正常工作.(2)确定各元件可以正常工作后,按照电路图连接电路.(3)接通电源后,将磁体靠近和离开干簧管,分别观察实验现象.二、光控开关1.实验目的:了解光控开关电路及控制原理,会组装光控开关.2.电路如图所示.3.工作原理:当环境光比较强时,光敏电阻R G的阻值很小,三极管不导通,发光二极管或继电器所在的回路相当于断路,即发光二极管不工作;继电器处于常开状态,小灯泡L不亮.当环境光比较弱时,光敏电阻R G的阻值变大,三极管导通,且获得足够的基极电流,产生较大的集电极电流,点亮发光二极管或驱动继电器吸合而点亮小灯泡L.4.实验器材发光二极管LED、晶体三极管VT、可调电阻R1、限流电阻R2、光敏电阻R G、集成电路实验板、直流电源、导线若干、黑纸、小灯泡L.5.实验步骤(1)按照电路图连接电路,检查无误后,接通电源.(2)让光敏电阻R G受到白天较强的自然光照射,调节电阻R1使发光二极管LED或小灯泡L 刚好不发光.(3)遮挡R G,当光照减弱到某种程度时,就会看到发光二极管LED或小灯泡L发光.(4)让光照加强,当光照强到某种程度时,则发光二极管LED或小灯泡L熄灭.6.注意事项(1)安装前,对实验器材进行测试,确保各元件性能良好后,再进行安装.(2)光控开关实验中,二极管连入电路的极性不能反接.(3)如果实验现象不明显,可用手电筒加强光照,或遮盖光敏电阻,再进行观察.例4在实际应用中有多种自动控温装置,以下是其中两种控温装置:(1)图(a)为某自动恒温箱原理图,箱内的电阻R1=2 kΩ,R2=1.5 kΩ,R3=4 kΩ,R t为热敏电阻,其电阻随温度变化的图像如图(b)所示.当a、b两点电势φa<φb时,电压鉴别器会令开关S接通,恒温箱内的电热丝发热,使箱内温度提高;当φa≥φb时,电压鉴别器会使S断开,停止加热,则恒温箱内的稳定温度为______ ℃,恒温箱内的电热丝加热时R t的取值范围为________________________.(2)有一种由PTC元件做成的加热器,它产生的焦耳热功率P R随温度t变化的图像如图(c)所示.该加热器向周围散热的功率为P Q=k(t-t0),其中t为加热器的温度,t0为室温(本题中取20 ℃),k=0.1 W/℃.当P R=P Q时加热器的温度即可保持稳定,则该加热器工作的稳定温度为________ ℃;某次工作中,该加热器从室温升高至稳定温度的过程中,下列温度变化过程用时最短的是________(填选项前的字母序号).A.20~24 ℃B.32~36 ℃C.48~52 ℃D.60~64 ℃例5为了建设安全校园,某校物理教师带领兴趣小组的学生,利用光敏电阻和电磁继电器,为学校教学楼内所有楼梯口的照明灯安装了亮度自动控制装置.如图甲所示为他们设计的原理图,R0为光敏电阻(阻值随亮度的增加而减小),R1为滑动变阻器,电磁继电器的衔铁由软铁(容易磁化和消磁)制成,R2为电磁铁的线圈电阻,K为单刀双掷开关.(1)为使楼内亮度降低到一定程度照明灯自动点亮,亮度升高到一定程度照明灯自动熄灭,单刀双掷开关应置于________(选填“a”或“b”).(2)为了提升校园安全系数,使照明灯在不太暗的时候就点亮,滑动变阻器接入电路的电阻应________(选填“调大”或“调小”).(3)已知直流电路中的电流达到10 mA时电磁继电器的衔铁正好会被吸下,R0从正午最亮到夜晚最暗的阻值变化范围为50~200 Ω,R2约为5 Ω,直流电源电动势E=3 V,内阻r约为1 Ω,现有三个最大电阻阻值分别为100 Ω、300 Ω、3 000 Ω的滑动变阻器,为实现调控目标R1最好应选择最大阻值为________ Ω的滑动变阻器.(4)兴趣小组同学想要对原设计进行改进,使亮度降低到一定程度触发衔铁吸下,请你在图乙的虚线框中用笔画线代替导线重新连接直流电路中c、d、e、f、g、h各点,以实现这一改进目标.。

传感器实验教案

传感器实验教案

传感器实验教案实验一开关式霍尔传感器测转速实验一、实验目的:了解开关式霍尔传感器测转速的应用二、基本原理:开关式霍尔传感器是线性霍尔元件的输出信号经放大器放大,再经施密特触发器整形成矩形波(开关信号)输出的传感器。

开关式霍尔传感器测转速的原理图如图所示:当被测圆盘上装有只磁性体时,圆盘每转一周,磁场变化6次,开关式霍尔传感器就同频率f相应变化输出,再经转速表显示转速n。

三、实验仪器:传感器实验台四、实验步骤:1、根据图将霍尔转速传感器安转于霍尔架上,传感器的端面对准转盘上的磁钢并调节升降杆使传感器端面与磁钢之间的间隙大约为23mm。

2、将主机箱中的转速调节电源024V旋钮调到最小(逆时针方向转到底)后接入电压表(电压表量程切换开关打到于):其它接线按图所是连接(注意霍尔转速传感器的三根引线的序号):将频频转速表的开关按到转速档。

3、检查接线无误后合上主机箱电源开关,在小12V范围内(电压表监测)调节主机箱的转速调节电源(调节电压改变直流电机电驱电压),观察电机转动及转速表的现实情况。

4、从2V开始记录,每增加1V相应电机转速的数据(待电机转速稳定后读取数据);画出电机的V1。

传光型光纤传感器位移量测是根据传送光纤的光场与受讯光纤交叉地方视景做决定。

当光纤探头与被测物体接触或零间隙时(d=0),则全部传输光量直接被反射至传输光纤。

没有提供光给接收端之光纤,输出讯号便增大,当探头与被测物之距离增加时,接受端之光纤接受之光量也越多,输出讯号便增大,当探头与被测物之距离增加到一定值时,接受端光纤全部被照明为止,此时也被称之为“光峰值”。

达到光峰值后,探针与被测物之距离继续增加时,将造成放射光扩散或超过接收端接收视野。

使得输出信号与量测距离成反比例关系。

如图26-2曲线所示,一般都选用线性范围较好的前坡为测试区域。

三、器件与单元:直流稳压电源、万用电表、Y型光纤传感器、测微头、反射面(抛光铁圆片)四、实验步骤:1、观察光纤结构,两根多模光纤组成Y型位移传感器,将两根光纤尾部端面(包括铁部)对准自然光照射,观察探头端面现象,当其中一根光纤的尾部端面用不透光纸挡住时,在探头端观察半圆双D型结构。

传感器实验课件

传感器实验课件

实验一 金属箔式应变片——单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:εK R R =∆/式中R R /∆为电阻丝电阻的相对变化,K 为应变灵敏系数,l l /∆=ε为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

单臂电桥输出电压U O14/εEK =。

三、需用器件与单元:应变式传感器实验模块、应变式传感器、砝码、数显表、±15V 电源、±4V 电源、万用表(自备)。

四、实验步骤:1、根据图1-1应变式传感器已装于应变传感器模块上。

传感器中各应变片已接入模块的左上方的R 1、R2、R3、R 4。

加热丝也接于模块上,可用万用表进行测量判别,R 1= R 2= R 3= R 4=350Ω,加热丝阻值为50Ω左右。

2、接入模块电源±15V (从主控箱引入),检查无误后,合上主控箱电源开关,将实验模块调节增益电位器Rw 3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上的数显表电压输入端Vi 相连,调节实验模块上调零电位器Rw 4,使数显表显示为零(数显表的切换开关打到2V 档)。

关闭主控箱电源。

图1-1 应变式传感器安装示意图3、将应变式传感器的其中一个应变片R 1(即模块左上方的R 1)接入电桥作为一个桥臂与R 5、R 6、R 7接成直流电桥(R 5、R 6、R 7模块内已连接好),接好电桥调零电位器Rw 1,接上桥路电源±4V (从主控箱引入)如图1-2所示。

检查接线无误后,合上主控箱电源开关。

调节Rw 1,使数显表显示为零。

传感器实验讲义(1)

传感器实验讲义(1)

目录实验一金属箔式应变片性能——单臂电桥 (2)实验二金属箔式应变片:单臂、半桥、全桥比较 (4)实验三差动变压器(互感式)的性能 (5)实验四霍尔传感器的直流激励特性 (6)实验五霍尔式传感器的应用——电子秤 (7)实验六霍尔式传感器的交流激励特性 (8)实验七磁电式传感器的性能 (9)实验八差动面积式电容传感器的静态及动态特性 (10)实验九压电式传感器的动态响应实验 (11)实验一 金属箔式应变片性能——单臂电桥一、实验目的:了解金属箔式应变片,单臂电桥的工作原理和工作情况。

二、基本原理:本实验说明箔式应变片及单臂直流电桥的电源的原理和工作情况。

应变片是最常用的测力传感元件。

当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变,应变片的敏感栅随同变形,其电阻也随之发生相应的变化,通过测量电路,转换成电信号输出显示。

电桥电路是最常用的非电量电测电路中的一种。

当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R 1、R 2、R 3、R 4中,电阻的相对变化率分别为ΔR 1/ R 1、ΔR 2/ R 2、ΔR 3/ R 3、ΔR 4/ R 4,当使用一个应变片时,∑RRR ∆= ;当两个应变片组成差动状态工作,则有∑RRR ∆=2;用四个应变片组成两个差对工作,且R 1=R 2=R 3=R 4=R , ∑RRR ∆=4。

由此可知,单臂、半桥、全桥电路的灵敏度依次增大。

三、需用器件与单元:直流稳压电源、电桥、差动放大器、双平行梁、测微头、一片应变片、F/V 表、主、副电源。

四、旋钮初始位置:直流稳压电源打到±2V 档,F/V 表打到2V 档,差动放大增益最大。

五、实验步骤:1、了解所需单元、部件在实验仪上的位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。

上下两片梁的外表面各贴两片受力应变片和一片补偿应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。

传感器的标定与校准讲义

传感器的标定与校准讲义
测量误差有绝对误差和相对误差之分。 (1)绝对误差
绝对误差在理论上是指测量值x与被测量的真值xi之间的 差值,即
=xxi=xx0 (真值xi一般用相对真值x0代替) 绝对误差是可正可负的,而不是误差的绝对值;绝对误 差还有量纲,它的单位与被测量的单位相同。
12.1 测量误差基本概念
测量误差的分类:
●标准活塞压力计标定装置,如图14-7所示;压力标定 曲线如图14-8所示。
图14-7 活塞压力计标定压力示意图
图4-8 压力标定曲线
12.4 压力传感器的标定和校准
●杠杆式测力计标定装置,如图14-9所示,砝码重量与 压力的关系
W=pSb/a p=Wa/Sb
图14-9 杠杆式压力标定机示意图
12.4 压力传感器的标定和校准
静态标定—标定静态特性:灵敏度,线性度,
传感器的标定
精度…;
动态标定—动态特性参数(;n,)测试; 动态标定信号:阶跃信号或正弦信号。
传感器的标定与校准的目的:保正测量的准确、统一和法
制性。
12.1 测量误差基本概念
12.1.1 测量与测量误差
1.测量 “测量是以确定量值为目的的一种操作”。这种“操作” 就是测量中的比较过程——将被测参数与其相应的测量单 位进行比较的过程。实现比较的工具就是测量仪器仪表 (简称仪表)。 检测是意义更为广泛的测量,它包含测量和检验的双 重含义。工程参数检测就是用专门的技术工具(仪表), 依靠能量的变换、实验和计算找到被测量的值。一个完整 检测过程应包括:
12.3 传感器的动态特性标定
二、二阶传感器的动态标定
确定传感器的阻尼比和固有频率 n 。 欠阻尼二阶传感器的阶跃响应(如图14-3)
y(t) k 1

《传感器实验》PPT课件

《传感器实验》PPT课件

第16章 传感器实验
16.2 实验仪器简介
16.2.1 ZCY型传感器实验仪简介 图16-1为ZCY型传感器实验仪的外形图。整个仪器由
三部分组成,即激励源(电源和信号源)、试验台和处理电 路单元,三部分之间没有内部连接。各个传感器实验可用专 用连接线或迭插式导线将所需单元在面板上进行连接。在实 验仪上可进行不同传感器的静态实验、动态实验和传感器系 统应用实验。通过实验即可对各种不同传感器及其测量线路 原理有一个从理性到感性的认识,对如何组成测量系统有一 个直观而具体的实践过程。
(3)实验设备及环境条件; (4)实验的基本原理、实验线路、接线图或流程图; (5)实验内容及主要操作简述; (6)整理原始实验数据,作出便于处理和分析的表格、 曲线或波形; (7)根据实验数据,对传感器的原理、性能特性、技 术指标、实验现象等进行分析,对实验中发现的问题进行讨 论,提出新的设想及研究的方法。
第16章 传感器实验
16.3.2 实验设备 实验设备为ZCY型综合传感器实验仪、10MHz超低频
双踪示波器和万用表。在实验仪上用到的单元和部件有:直 流稳压电源、音频信号发生器、低频信号发生器、差动放大 器、电桥、移相器、相敏检波器、低通滤波器、螺旋测微器 和V/F表等。
第16章 传感器实验
16.3.3 实验原理 1.电阻应变式传感器静态性能实验原理 电阻应变式传感器静态性能实验的基本原理是调整螺旋
第16章 传感器实验
2.关于LabVIEW 虚拟仪器是当前测控领域的技术热点,它代表了未来仪 器技术的发展方向。而美国NI公司的虚拟仪器开发平台—— LabVIEW是世界上最优秀的虚拟仪器软件开发平台,近几年 在我国测试技术及教育领域得到了迅速推广。 LabVIEW是一种易学易用、功能强大的图形化开发软件, 非常适合从事科研、开发的科学工作者和工程技术人员。用 LabVIEW编写程序的过程就是一个程序流程图的绘制过程。 LabVIEW具有三个用来创建和运行程序的模板:工具(Tools) 模板、控制(Controls)模板和函数(Functions)模板, 开发环境包括三个部分:前面板、框图程序和图标/连接口。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传感器实验讲义1一、 CSY传感器实验仪简介实验仪主要由四部分组成:传感器安装台、显示与激励源、传感器符号及引线单元、处理电路单元。

传感器安装台部分:装有双平行振动梁(应变片、热电偶、PN结、热敏电阻、加热器、压电传感器、梁自由端的磁钢)、激振线圈、双平行梁测微头、光纤传感器的光电变换座、光纤及探头小机电、电涡流传感器及支座、电涡流传感器引线Φ3.5插孔、霍尔传感器的二个半圆磁钢、振动平台(圆盘)测微头及支架、振动圆盘(圆盘磁钢、激振线圈、霍尔片、电涡流检测片、差动变压器的可动芯子、电容传感器的动片组、磁电传感器的可动芯子)、扩散硅压阻式传感器、气敏传感器及湿敏元件安装盒,具体安装部位参看附录三。

备注:CSY系列传感器实验仪的传感器具体配置根据需方的合同安装。

显示及激励源部分:电机控制单元、主电源、直流稳压电源(±2V-±10V档位调节)、F/V数字显示表(可作为电压表和频率表)、动圈毫伏表(5mV-500mV)及调零、音频振荡器、低频振荡器、±15V不可调稳压电源。

实验主面板上传感器符号单元:所有传感器(包括激振线圈)的引线都从内部引到这个单元上的相应符号中,实验时传感器的输出信号(包括激励线圈引入低频激振器信号)按符号从这个单元插孔引线。

处理电路单元:电桥单元、差动放大器、电容放大器、电压放大器、移相器、相敏检波器、电荷放大器、低通滤波器、涡流变换器等单元组成。

CSY实验仪配上一台双线(双踪)通用示波器可做几十种实验。

教师也可以利用传感器及处理电路开发实验项目。

二、主要技术参数、性能及说明<一>传感器安装台部分:双平行振动梁的自由端及振动圆盘下面各装有磁钢,通过各自测微头或激振线圈接入低频可做静态或动态测量。

激振器VO应变梁:应变梁采用不锈钢片,双梁结构端部有较好的线性位移。

传感器:1、差动变压器量程:≥5mm 直流电阻:5Ω-10Ω由一个初级、二个次级线圈绕制而成的透明空心线圈,铁芯为软磁铁氧体.2、电涡流位移传感器量程:≥1mm直流电阻:1Ω-2Ω多股漆包线绕制的扁平线圈与金属涡流片组成。

3、霍尔式传感器量程: ±≥2mm直流电阻:激励源端口:800Ω-1.5KΩ输出端口:300Ω-500Ω日本JVC公司生产的线性半导体霍尔片,它置于环形磁钢构成的梯度磁场中。

4、热电偶直流电阻:10Ω左右由两个铜一康铜热电偶串接而成,分度号为T冷端温度为环境温度。

5、电容式传感器量程:±≥2mm由两组定片和一组动片组成的差动变面积式电容。

6、热敏电阻由半导体热敏电阻NTC:温度系数为负,25℃时为10KΩ。

7、光纤传感器由多模光纤、发射、接收电路组成的导光型传感器,线性范围≥2mm。

红外线发射、接收、直流电阻:500Ω-1.5kΩ2×60股丫形、半圆分布。

8、压阻式压力传感器量程:10Kpa(差压) 供电:≤6V 直流电阻:Vs +---Vs- :350Ω-450ΩVo +---Vo- :3KΩ-3.5KΩ美国摩托罗拉公司生产的MPX型压阻式差压传感器,具有温度自补偿功能,先进的X型工作片(带温补)。

9、压电加速度计PZT-5双压电晶片和铜质量块构成。

谐振频率:≥10KHZ,电荷灵敏度:q≥20pc/g。

10、应变式传感器箔式应变片阻值:350Ω、应变系数:211、PN结温度传感器:利用半导体P-N结良好的线性温度电压特性制成的测温传感器,能直接显示被测温度。

灵敏度:-2.1mV/℃。

12、磁电式传感器0 .21×1000直流电阻:30Ω-40Ω由线圈和动铁(永久磁钢)组成,灵敏度:0.5v/m/s13、气敏传感器MQ3:酒精:测量范围:50-2000ppm。

14、湿敏电阻:几兆Ω-几KΩ高分子薄膜电阻型:RH响应时间:吸湿、脱湿小于10秒。

湿度系数:0.5R%/℃测量范围:10%H-95%工作温度:0℃-50℃〈二〉、信号及变换:1、电桥:用于组成应变电桥,提供组桥插座,标准电阻和交、直流调平衡网络。

2、差动放大器通频带0~10kHz可接成同相、反相,差动结构,增益为1-100倍的直流放大器。

3、电容变换器由高频振荡,放大和双T电桥组成的处理电路。

4、电压放大器增益约为5倍同相输入通频带0~10KHz5、移相器允许最大输入电压10Vp-p移相范围≥±20º(5kHz时)6、相敏检波器可检波电压频率0-10kHz允许最大输入电压10Vp-p极性反转整形电路与电子开关构成的检波电路7、电荷放大器电容反馈型放大器,用于放大压电传感器的输出信号。

8、低通滤波器由50Hz陷波器和RC 滤波器组成,转折频率35Hz左右9、涡流变换器输出电压≥|8|V(探头离开被测物变频式调幅变换电路,传感器线圈是振荡电路中的电感元件10、光电变换座由红外发射、接收组成。

〈三〉、二套显示仪表1、数字式电压/频率表:3位半显示,电压范围0—2V、0—20V,频率范围3Hz—2KHz、10Hz—20KHz,灵敏度≥50mV。

2、指针式毫伏表:85c1表,分500mV、50mV、5mV三档,精度2.5%。

〈四〉、二种振荡器音频振荡器:0.4KHz—10KHz输出连续可调,V-p-p值20V,180°、0°反相输出,Lv端最大功率输出电流0.5A。

低频振荡器:1—30Hz输出连续可调,Vp-p值20V,最大输出电流0.5A,Vi端可提供用做电流放大器。

〈五〉、二套悬臂梁、测微头双平行式悬臂梁二副(其中一副为应变梁,另一副装在内部与振动圆盘相连),梁端装有永久磁钢、激振线圈和可拆卸式螺旋测微头,可进行压力位移与振动实验。

〈六〉电加热器二组电热丝组成,加热时可获得高于环境温度30℃左右的升温。

〈七〉测速电机一组由可调的低噪声高速轴流风扇组成,与光电、光纤、涡流传感器配合进行测速实验。

〈八〉二组稳压电稳直流±15V,主要提供温度实验时的加热电源,最大激励1.5A。

±2V—10V分五档输出,最大输出电流1.5A。

提供直流激励源。

实验一金属箔式应变片性能—单臂电桥实验目的:了解金属箔式应变片,单臂单桥的工作原理和工作情况。

所需单元及部件:直流稳压电源、电桥、差动放大器、双平行梁测微头、一片应变片、F/V表、主、副电源。

旋钮初始位置:直流稳压电源打倒±2V档,F/V表打到2V档,差动放大增益最大。

实验步骤:(1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,应变片为棕色衬底箔式结构小方薄片。

上下二片梁的外表面各贴二片受力应变片和一片补偿应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。

(1)将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。

将差动放大器的输出端与F/V表的输入插口Vi 相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使F/V 表显示为零,关闭主、副电源。

(2)根据图1接线R1、R2、R3为电桥单元的固定电阻。

R4为应变片;将稳压电源的切换开关置±4V档,F/V表置20V档。

调节测微头脱离双平行梁,开启主、副电源,调节电桥平衡网络中的W1,使F/V表显示为零,然后将F/V表置2V档,再调电桥W1(慢慢地调),使F/V表显示为零。

图1(3)将测微头转动到10mm刻度附近,安装到双平等梁的自由端(与自由端磁钢吸合),调节测微头支柱的高度(梁的自由端跟随变化)使F/V表显示最小,再旋动测微头,使F/V表显示为零(细调零),这时的测微头刻度为零位的相应刻度。

(4)——往下或往上旋动测微头,使梁的自由端产生位移记下F/V表显示的值。

建议每旋动测微头一周即ΔX=0.5mm 记一个数值填入下表:位移(mm)电压(mv)(5)据所得结果计算灵敏度S=ΔV/ΔX(式中ΔX为梁的自由端位移变化,ΔV为相应F /V表显示的电压相应变化)。

(6)实验完毕,关闭主、副电源,所有旋钮转到初始位置。

注意事项:(1) 电桥上端虚线所示的四个电阻实际上并不存在,仅作为一标记,让学生组桥容易。

(2) 为确保实验过程中输出指示不溢出,可先将砝码加至最大重量,如指示溢出,适当减小差动放大增益,此时差动放大器不必重调零。

(3) 做此实验时应将低频振荡器的幅度关至最小,以减小其对直流电桥的影响。

(4) 电位器W1、W2,在有的型号仪器中标为RD、RA。

实验二金属箔式应变片:单臂、半桥、全桥比较实验目的:验证单臂、半桥、全桥的性能及相互之间关系。

所需单元和部件:直流稳压电源、差动放大器、电桥、F/V表、测微头、双平行梁、应变片、主、副电源。

有关旋钮的初始位置:直流稳压电源打到±2V 档,F/V表打到2V档,差动放大器增益打到最大。

实验步骤:(1) 按实验一方法将差动放大器调零后,关闭主、副电源。

(2) 按图1接线,图中R4为工作片,r及W1为调平衡网络。

(3) 调整测微头使双平行梁处于水平位置(目测),将直流稳压电源打到±4V档。

选择适当的放大增益,然后调整电桥平衡电位器W1,使表头显示零(需预热几分钟表头才能稳定下来)。

(4) 旋转测微头,使梁移动,每隔0 .5mm读一个数,将测得数值填入下表,然后关闭主、副电源:位移(mm)电压(mv)(5) 保持放大器增益不变,将R3固定电阻换为与R4工作状态相反的另一应变片即取二片受力方向不同应变片,形成半桥,调节测微头使梁到水平位置(目测),调节电桥W1使F/V表显示表显示为零,重复(4)过程同样测得读数,填入下表:位移(mm)电压(mv)(6) 保持差动放大器增益不变,将R1,R2两个R1换成,R2换成,)组桥时只要掌握对臂应变片的受力方向相同,邻臂应变片的受力方向相反即可,否则相互抵消没有输出。

接成一个直流全桥,调节测微头使梁到水平位置,调节电桥W1同样使F/V表显示零。

重复(4)过程将读出数据填入下表:(7) 在同一坐标纸上描出X-V曲线,比较三种接法的灵敏度。

注意事项:(1) 在更换应变片时应将电源关闭。

(2) 在实验过程中如有发现电压表发生过载,应将电压量程扩大。

(3) 在本实验中只能将放大器接成差动形式,否则系统不能正常工作。

(4) 直流稳压电源±4V不能打的过大,以免损坏应变片或造成严重自热效应。

(3)接全桥时请注意区别各片子的工作状态方向。

实验三霍尔式传感器的特性—直流激励实验目的:了解霍尔式传感器的原理与特性。

所需单元及部件:霍尔片、磁路系统、电桥、差动放大器、F/V表、直流稳压电源、测微头、振动平台、主、副电源。

有关旋钮初始位置:差动放大器增益旋钮打到最小,电压表置20V档,直流稳压电源置2V档,主、副电源关闭。

相关文档
最新文档