2019版高三数学一轮复习 3.8应用举例课件

合集下载

新高考数学一轮总复习课件第八章第八节立体几何的综合应用

新高考数学一轮总复习课件第八章第八节立体几何的综合应用

设平面 ACGD 的法向量为 n=(x,y,z),

CG AC
n n
00,,即x2x+-y3=z=0.0,
所以可取 n=(3,6,- 3 ).
又平面 BCGE 的法向量可取为 m=(0,1,0),
所以 cos
< n,m
>=|nn|·|mm|

3 2
.
因此二面角 B­ CG­ A 的大小为 30°.
规律方法 解决翻折问题的关键是看翻折前后线面位置关系的变化情况.根据翻折的过 程,把翻折前后一些线、面位置关系中没有变化和发生变化的量准确找出 来,应用到求解中.
对点训练 如图1所示,正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的 中点,现将△ABC沿CD翻折成直二面角A­DC­B,如图2所示. (1)试判断直线AB与平面DEF的位置关系,并说明理由; (2)求二面角E­DF­C的余弦值; (3)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论.
【解析】(1)由已知得AD∥BE,CG∥BE,所以AD∥CG,故AD,CG确定一个平 面,从而A,C,G,D四点共面. 由已知得AB⊥BE,AB⊥BC,BE∩BC=B, 故AB⊥平面BCGE. 又因为AB⊂ 平面ABC,所以平面ABC⊥平面BCGE.
(2)作 EH⊥BC,垂足为 H. 因为 EH⊂ 平面 BCGE,平面 BCGE⊥平面 ABC, 所以 EH⊥平面 ABC. 由已知,菱形 BCGE 的边长为 2,∠EBC=60°,可求得 BH=1,EH= 3 . 以 H 为坐标原点,HC的方向为 x 轴的正方向,建立如图所示的空间直角坐标 系 H­ xyz, 则 A(-1,1,0),C(1,0,0),G(2,0, 3 ),CG=(1,0, 3 ),AC= (2,-1,0).

2019版高考数学一轮复习第三章函数、导数及其应用第一节函数及其表示课件

2019版高考数学一轮复习第三章函数、导数及其应用第一节函数及其表示课件

映射
非空的集合 设A,B是两个___________
设A,B是两个非空 ____ ________ 的数集
如果按照某种确定 的对应关系 f,使对 对应 于集合A中的任意 ____一 关系 个数 x,在集合B中 f:A→B 唯一确定 的数 都有_________ f(x)和它对应
如果按某一个确定的对应 关系 f,使对于集合A中的 任意 一个元素x,在集合B _____ 唯一确定 的元素y与 中都有_________ 之对应
)
解析:选项 A 中,f(x)=x2 与 g(x)= x2的定义域相同,但对应 关系不同;选项 B 中,二者的定义域都为{x|x>0},对应关系也 相同;选项 C 中,f(x)=1 的定义域为 R,g(x)=(x-1)0 的定义 x2-9 域为{x|x≠1};选项 D 中,f(x)= 的定义域为{x|x≠-3}, x+3 g(x)=x-3 的定义域为 R.
5x+1 答案: 2 (x≠0) x
课 堂 考 点突破
自主研、合作探、多面观、全扫命题题点
考点一 函数的定义域
[题组练透]
1.函数 f(x)=ln(x2-x)的定义域为 A.(0,1) C.(-∞,0)∪(1,+∞) B.[0,1] D.(-∞,0]∪[1,+∞) ( )
解析:由题意知,x2-x>0,即 x<0 或 x>1. 则函数的定义域为(-∞,0)∪(1,+∞),故选 C.
3.分段函数 若函数在其定义域内,对于定义域内的不同取值区间,有 着不同的 对应关系 ,这样的函数通常叫做分段函数.
[小题体验]Βιβλιοθήκη 1. (2018· 台州模拟 )下列四组函数中,表示相等函数的是( A. f(x)= x2, g(x)= x2 x2 x B. f(x)= , g(x)= x x 2 C. f(x)= 1, g(x)= (x- 1)0 x2- 9 D. f(x)= , g(x)= x- 3 x+ 3

2019版高考数学一轮复习 专题讲座三课件 文

2019版高考数学一轮复习 专题讲座三课件 文
专题讲座三 不等式恒成立问题
专题讲座三 不等式恒成立问题
ppt精选
1
含参不等式恒成立问题是高考中的热点内容,它以各种形 式出现在高中数学的各部分内容中,扮演着重要的角色.解 决含参不等式恒成立问题的关键是转化与化归思想的运 用,从解题策略的角度看,一般而言,针对不等式的表现 形式,有如下四种策略.
是否存在实数 a,使得关于 x 的不等式 3x2-
logax<0 在 0<x<13时恒成立?若存在,求出 a 的取值范围;
若不存在,请说明理由.
[解]
由题意知,“关于
x
的不等式
3x2-logax<0

1 0<x<3
时 恒 成 立 ” 等 价 于 “3x2<logax 在 x∈ 0,13 内 恒 成
立”.若 a>1,在同一平面直角坐标系内,分别作出函数 y=3x2 和 y=logax 的大致图象,
又∵f(cos 2θ-3)+f(4m-2mcos θ)>0, ∴f(cos 2θ-3)>-f(4m-2mcos θ)=f(2mcos θ-4m),
∴cos 2θ-3>2mcos θ-4m,
ppt精选
8
即 2m(2-cos θ)>3-cos 2θ,
∵2-cos θ∈[1,3],
∴2m>3ss2θθ,
∴m 的取值范围为(4-2 2,+∞).
ppt精选
10
[规律方法] 这类问题经常用到下面的结论:若函数 f(x) 存在最小值,则 a≤(<)f(x)恒成立⇔a≤(<)f(x)min;若函数 f(x)存在最大值,则 a≥(>)f(x)恒成立⇔a≥(>)f(x)max.

新教材高考数学一轮复习第三章3-8函数的应用二课件新人教版

新教材高考数学一轮复习第三章3-8函数的应用二课件新人教版

(2)当a≠0时,Δ=42-4×24a×(-1)=16+96a.
①若Δ=0,即a=-16,则函数f(x)的图象与x轴交于点(12,0), x=12是(-1,1)内的唯一零点. ②若Δ>0,
即a>-16,则ቐf −1 f 1
=
a
>

1 6

24a − 5 24a + 3
< 0⇔-18<a<254.
Hale Waihona Puke 综上可得,a的取值范围是{-16}∪
题组二 教材改编
1.函数f(x)=ln x-2x的零点所在的大致区间是( )
A.(1,2)
B.(2,3)
C.(1e,1)和(3,4) D.(4,+∞)
答案:B
解析:∵f(2)=ln 2-1<0,f(3)=ln 3-23>0,且函数f(x)的图象在(0,+∞)上 连续不断,f(x)为增函数,∴f(x)的零点在区间(2,3)内.
答案:ABD
解析:由题知f(0)·f(1)<0,所以根据函数零点存在定理可得f(x)在区间(0,1) 上一定有零点,又f(1)·f(2)>0,因此无法判断f(x)在区间(1,2)上是否有零点.
题组三 易错自纠 1 . ( 多 选 题 ) 若 函 数 f(x) 的 图 象 在 R 上 连 续 不 断 , 且 满 足 f(0)<0 , f(1)>0,f(2)>0,则下列说法错误的有( ) A.f(x)在区间(0,1)上一定有零点,在区间(1,2)上一定没有零点 B.f(x)在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点 C.f(x)在区间(0,1)上一定有零点,在区间(1,2)上可能有零点 D.f(x)在区间(0,1)上可能有零点,在区间(1,2)上一定有零点

2019版高考数学(理)第一轮复习课件:函数、导数及其应用2-8a

2019版高考数学(理)第一轮复习课件:函数、导数及其应用2-8a

8.[2018· 孝感高级中学调考]函数 f(x)=ln x+2x-6 的
2 零点在区间(a,a+1)(a∈Z)内,则 a=________.
解析 因为函数 f(x)= ln x+2 x-6 的定义域为(0,+
∞),所以 a≥0,函数 f(x)=ln x+2x-6 在(0,+∞)上是单 调递增函数,f(1)=-4<0,f(2)=ln 2-2<0,f(3)=ln 3>0, 所以函数 f(x)=ln x+2x-6 的零点在区间(2,3)内,故 a=2.
的解,则 x0 属
1 A.0, 3
1 2 C. , 3 2
2 D. ,1 3
解析

1 1 x f(x)= -x 3 2 2 1 3 - 3 1 1 3 - 2 1 1 3 - 3 1 1 3 = 4
e2 9. g(x)=x+ -m(x>0 , 其中 e 表示自然对数的底数). 若 x [2e,+∞) . g(x)在(0,+∞)上有零点,则 m 的取值范围是__________
解析
由 g(x)=0,得 x2-mx+e2=0,x>0.
m >0, 由此方程有大于零的根,得 2 Δ= m2-4e2≥0, m>0, 解得 故 m≥2e. m≥2e或 m≤- 2e,
[B 级 的区间为( )
知能提升]
1.[2018· 衡阳模拟]函数 f(x)=log3x+x-2 的零点所在 A.(0,1) B .(1,2) C .(2,3) D.(3,4)
解析
函数 f(x)= log3x+x-2 的定义域为(0,+∞),并
且 f(x)在(0,+∞)上单调递增,图象是一条连续曲线. 又 f(1)=-1<0,f(2)=log32>0,f(3)=2>0,根据零点存 在性定理,可知函数 f(x)= log3x+x-2 有唯一零点,且零点 在区间(1,2)内.

高考数学一轮复习 第三章 三角函数、解三角形 3.8 解三角形应用举例课件 理

高考数学一轮复习 第三章 三角函数、解三角形 3.8 解三角形应用举例课件 理

问题.
角函数的性质交汇命题,且多以解答题的形式呈现,
解题时要注意一些常用术语,充分结合数形结合及
转化化归思想的运用.
课时思维激活
教材知识梳理和小题探究
回扣教材
1.仰角和俯角 在视线和水平线所成的角中,视线在水平线 上方 的角叫仰角,在水平线 下方 的角叫俯角(如图①).
2.方位角 从指北方向顺时针转到目标方向线的水平角,如 B 点的方位角为 α(如图②). 3.方向角 相对于某一正方向的水平角 (1)北偏东 α,即由指北方向顺时针旋转 α 到达目标方向(如图③); (2)北偏西 α,即由指北方向逆时针旋转 α 到达目标方向; (3)南偏西等其他方向角类似.
又 sin15°=sin(60°-45°)=sin60°cos45°-cos60°sin45°
= 23× 22-12× 22=
6- 4
2,
所以 AB=AsCinsi1n56°0°=3
2+ 20
6,
因此,BD=3
2+ 20
6≈0.33(km).
故 B,D 的距离约为 0.33 km.
距离问题的类型及解法 (1)类型:测量距离问题分为三种类型:两点间不可达又不可视、两点间可视但不可达、 两点都不可达. (2)解法:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题, 从而利用正余弦定理求解.
MN=
900+300-2×30×10

3 2
= 300=10 3(m).
考点多维探究
考点 1 测量距离问题 研究测量距离问题是高考中的常考内容,既有选择题、填空题,也有解答题,难度一般适中,属中档 题.解题时要选取合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正余 弦定理求解,且主要有以下几个命题角度.

2019版高三数学一轮复习 3.8应用举例课件

2019版高三数学一轮复习 3.8应用举例课件

又∠BCD=60°,所以∠CBD=30°,所以
∠DBA=10°,因此灯塔A在灯塔B的南偏西80°.
精品
10
3.如图所示,D,C,B三点在地面的同一直线
上,DC=a,从C,D两点测得A点的仰角分别
为60°,30°,则A点离地面的高度AB等于( )
A.1 a 2
B. 3a 2
C. 3a
D. 3 a
3
【解析】选B.因为∠DAC=∠ACB-∠D=60°-30°=30°,
∠ADC=60°+45°=105°,
所以∠CAD=180A °D - 1C 0D 5°s in - 3A 0C °D = 44 50 ° s ,in 3 0 2 02 .
s in C A D s in 4 5
由正弦定理,得
在 ( △2 0 AD2 ) 2 B ( 中4 ,0 由2 ) 余2 - 弦2 定2 0 理2 , 得4 0 A2 Bc 2o =s A6 0 D 2+2 D4 0 B0 2, - 2AD·DB2 c0 o6s∠ADB
故大小的范围为, ).
2
精品
9
2.两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站
南偏西40°,灯塔B在观察站南偏东60°,则灯塔A在灯塔B的
()
A.北偏东10°
B.北偏西10°
C.南偏东80°
D.南偏西80°
【解析】选D.由条件可知,∠A=∠B=40°,
由正弦定理得 100 解x得x, =100 .
sin30 sin 45
2
精品
12
5.(2014·绍兴模拟)甲船在A处观察乙船,乙船在它的北偏东
60°的方向,两船相距a海里的B处,乙船正向北行驶,若甲船

高三数学第一轮复习课件(ppt)目录

高三数学第一轮复习课件(ppt)目录

Page 12
目录 CONTENTS
第二章
2.1 函数及其表示 2.2 函数的单调性与最值 2.3 函数的奇偶性与周期性 2.4 一次函数、二次函数 2.5 指数与指数函数 2.6 对数与对数函数 2.7 幂函数 2.8 函数的图象及其变换 2.9 函数与方程
函数
2.10 函数模型及其应用
第一讲:三角函数
S ABC=1/2bcsinA=1/2absinC=1/2ah,可得sinA=√15/8,sinC=√15/4。
∴cosA=7/8,cosC=1/4,
∴cos(A-C)=7/8 x 1/4 + √15/8 x √15/4
=11/16 c=2
A
b=2
h=√15/2
Page 21
B
C 1/2 a
1/2
C、﹙1,+∞﹚
D、[1,+∞﹚
解析:由于3x>0,所以3x+1>1,所以f(x)>0,集合表示为(0,+∞),答案为A
2、已知函数y=2x+1的值域为(5,7),则对应的自变量x的范围为(

A、[2,3)
B、[2,3]
C、(2,3)
D、(2,3]
解析:根据题意:5<2x+1<7,解得2<x<3,用集合表示为(2,3),答案为C
A [1,2]
解析:解二元一次不等式x2 +2x-8≤0,可得-4≤x≤2,所以M为[-4,2]; 解不等式3x-2≥2x-1,可得x≥1,所以N为[1,+∞﹚。此时我们可以应用数轴马 上解决问题:
-4 0 1 2
如图所示,阴影部分即为所求。答案:A 启示:掌握好数轴工具,在集合、函数问题( B
B、﹙-∞,5]

D、[5,+∞﹚

新高考数学人教A版一轮总复习课件3.8函数模型及函数的综合应用创新篇

新高考数学人教A版一轮总复习课件3.8函数模型及函数的综合应用创新篇

方法总结 认真阅读,还原函数模型题解决此类问题的关键,通过对还原 的函数模型的研究,得出对生活(或实际问题)的结论.
创新思维
例 (2020河北衡水中学考试,3)由我国引领的5G时代已经到来,5G的发 展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展, 进而对GDP增长产生直接贡献,并通过产业间的关联效应和波及效应,间 接带动国民经济各行业的发展,创造出更多的经济增加值,如图是某单位 结合近年数据,对今后几年的5G经济产出所做的预测.
结合上图,下列说法错误的是 ( ) A.5G的发展带动今后几年的总经济产出逐年增加 B.设备制造商的经济产出前期增长较快,后期放缓 C.信息服务商与运营商的经济产出的差距有逐步拉大的趋势 D.设备制造商在各年的总经济产出中一直处于领先地位 解题导引 本题以5G时代为背景创设情境,引导学生关注社会现实和经 济发展.考查学生收集数据,整理数据,处理数据的能力.
2
m
≤10,
f(x)的最大值为fBiblioteka m18 2=
10
2
m
2
.当2<m≤3
时, m 18 >10, f(x)的最大值为f(10)=4(6-m)=24-4m.综上可知,当1≤m≤2时,
2
售价为
m
18 2
元,f(x)取得最大值
10
2
m
2
千元.当2<m≤3时,售价为10元,
f(x)取得最大值(24-4m)千元.
解析 设备制造商的经济产出在2029年将被信息服务商超过,故选D.
答案 D 方法总结 仔细阅读题目,与社会生活联系,得出与实际相符的结论.
应用探索
例 (2020河南八市重点中学9月月考,21)“2019年”是一个重要的时间 节点——中华人民共和国成立70周年和全面建成小康社会的关键之年. 70年披荆斩棘,70年砥砺奋进,70年风雨兼程,70年沧桑巨变,勤劳勇敢的中 国人用自己的双手创造了一项项辉煌的成绩,取得了举世瞩目的成就.趁 此良机,李明在某网店销售“新中国成立70周年纪念册”,每本纪念册进 价4元,物流费、管理费共为m(1≤m≤3)元/本,预计当每本纪念册的售价 为x元(9≤x≤10)时,月销售量为(14-x)千本. (1)求月利润f(x)(千元)与每本纪念册的售价x(元)的函数关系式,并注明定 义域; (2)当x为何值时,月利润f(x)最大?并求出最大月利润.

高三数学,一轮复习人教A版 ,第3章 第8节, 正弦定理和余弦定理,的应用 课件 (1)

高三数学,一轮复习人教A版 ,第3章 第8节, 正弦定理和余弦定理,的应用 课件 (1)
目录
CONTENTS
1 高考导航 考纲下载
第三章 三角函数、解三角形
2 3 4 5
主干知识 自主排查 核心考点 互动探究
真题演练 明确考向
第八节 正弦定理和余弦定
理的应用
课时作业
高考导航 考纲下载
能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的 实际问题.
[知识梳理] 实际应用中的常用术语 术语名称
3 若测得CD= 2 km,∠ADB=∠CDB=30° ,∠ACD=60° ,∠ACB=45° ,求 A,B两点间的距离.
考点二
解析:∵∠ADC=∠ADB+∠CDB=60° ,∠ACD=60° ,∴∠DAC=60° , 3 ∴AC=DC= 2 (km). 在△BCD中,∠DBC=45° , 3 2 DC 6 由正弦定理,得BC= · sin∠BDC=sin 45° · sin 30° =4. sin∠DBC 在△ABC中,由余弦定理,得 AB2=AC2+BC2-2AC· BCcos 45°
10 6 米. BDC=45° ,则塔 AB 的高是________
的角)是关键.
塔 AB的高是10 6米. (2) 在实际问题时,可能会遇到空间与
平面(地面)同时研究的问题,这时最 好画两个图形,一个空间图形,一个 平面图形,这样处理起来既清楚又不 容易搞错. (3)注意山或塔垂直于地面或海平面, 把空间问题转化为平面问题.
方向角
方向线平面的夹角
设坡角为 α,坡度为 i,则 i h = l = tan α
坡度
坡面的垂直高度 h 和水平 宽度 l 的比
[自主诊断] 1.如图,设 A,B 两点在河的两岸,一测量者在 A 的同侧,选定一点 C,测出 AC 的距离为 50 m,∠ACB=45° ,∠CAB=105° ,则 A,B 两点的距离为( A )

余弦定理正弦定理应用举例课件高三数学一轮复习

余弦定理正弦定理应用举例课件高三数学一轮复习
2.方位角 从正北方向线顺时针旋转到目标方向线的水平角.如点B的方位角为α(如图②). 微点拨 仰角与俯角是相对水平线而言的,而方位角是相对正北方向而言的.
3.方向角 相对某一正方向的水平角,即从指定方向线到目标方向线的水平角(指定方向线 一般是指正北或正南方向,方向角小于90°).如北偏东α,南偏西α.特别地,若目标方 向线与指北或指南方向线成45°角,则称为东北方向、西南方向等. (1)北偏东α,即由__指_北__方__向__顺__时__针__旋__转__α__到达目标方向(如图③); (2)北偏西α,即由__指_北__方__向__逆__时__针__旋__转__α__到达目标方向; (3)南偏西等其他方向角类似.
留宇宙秘密的最后遗产”,若要测量如图所示某蓝洞洞口边缘A,B两点CD=8海里,∠ADB=135°,∠BDC=∠DCA=15°,
∠ACB=120°,则A,B两点的距离为
海里.
考点二测量高度问题 [例2](1)如图,某同学为测量鹳雀楼的高度MN,在鹳雀楼的正东方向找到一座建 筑物AB,高约为37 m,在地面上点C处(B,C,N三点共线)测得建筑物顶部A,鹳雀楼 顶部M的仰角分别为30°和45°,在A处测得鹳雀楼顶部M的仰角为15°,则鹳雀楼的 高度约为( )
核心考点·分类突破
14
解题技法 距离问题的类型及解法
(1)类型:①两点间既不可达也不可视,②两点间可视但不可达,③两点都不可达. (2)解法:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长 问题,从而利用正、余弦定理求解.
对点训练
1.(2023·青岛模拟)海洋蓝洞是地球罕见的自然地理现象,被喻为“地球给人类保
第六章 平面向量、复数
第2课时 余弦定理、正弦定理应用举例

(新课标)19届高考数学一轮复习第三章导数及其应用3.3导数的应用(二)课件文

(新课标)19届高考数学一轮复习第三章导数及其应用3.3导数的应用(二)课件文

4.N 型曲线与直线 y=k 的位置关系问题
如图,方程 f(x)=0 有三个根 x1,x2,x3 时,极大值 f(a)>0 且极小值 f(b) <0. 曲线 y=f(x)与直线 y=k(k 是常数)有一个交点时,见图中的直线①或直 线②,极大值 f(a)______k 或极小值 f(b)______k; 曲线 y=f(x)与直线 y=k(k 是常数)有两个交点时,见图中的直线③或直 线④,极大值 f(a)______k 或极小值 f(b)______k; 曲线 y=f(x)与直线 y=k(k 是常数)有三个交点时,见图中的直线⑤. 以上这些问题, 常见于求参数的取值范围、 讨论不等关系等形式的题目.
k-1
(k-1,+∞) + ↗
所以,f(x)的单调递减区间是(-∞,k-1);单调递增 区间是(k-1,+∞).
(2)当 k-1≤0,即 k≤1 时,函数 f(x)在[0,1]上单调递 增, 所以 f(x)在区间[0,1]上的最小值为 f(0)=-k, 当 0<k-1<1,即 1<k<2 时, 由(1)知 f(x)在[0,k-1)上单调递减,在(k-1,1]上单调 递增, k -1 所以 f(x)在区间[0,1]上的最小值为 f(k-1)=-e . 当 k-1≥1,即 k≥2 时,函数 f(x)在[0,1]上单调递减, 所以 f(x)在区间[0,1]上的最小值为 f(1)=(1-k)e. 综上可知, 当 k≤1 时, f(x)min=-k; 当 1<k<2 时, f(x)min k -1 =-e ;当 k≥2 时,f(x)min=(1-k)e.
因此,f(x)的极大值为 f(-1)=1,极小值为 f(1)=-1.
3 2016 ·郑州模拟 (2)( )设 x1, x2 是函数 f(x)=x -2ax2+a2x 的两个极值点, 若 x1<2<x2, 则实数 a 的取值范围是________.

2019版高考数学(理)第一轮复习课件:函数、导数及其应用2-3a

2019版高考数学(理)第一轮复习课件:函数、导数及其应用2-3a
A.3 B.0 C.-1 D.-2
解析 设 F(x)=f(x)-1=x3+sinx,显然 F(x)为奇函数, 又 F(a)=f(a)-1=1,所以 F(-a)=f(-a)-1=-1,从而 f(-a)=0.故选 B.
7.[2018·德州模拟]设偶函数 f(x)在(0,+∞)上为增函
数,且 f(1)=0,则不等式fx+xf-x>0 的解集为(
解析 ∵y=f(x)+x2 是奇函数,且 f(1)=1, ∴f(-1)+(-1)2=-[f(1)+12],∴f(-1)=-3. 因此 g(-1)=f(-1)+2=-1.
[B 级 知能提升]
1.[2018·金版创新]已知函数 f(x)是定义在 R 上的函数,
若函数 f(x+2016)为偶函数,且 f(x)对任意 x1,x2∈[2016,
8.[2017·全国卷Ⅱ]已知函数 f(x)是定义在 R 上的奇函 数,当 x∈(-∞,0)时,f(x)=2x3+x2,则 f(2)=___1_2____.
解析 解法一:令 x>0,则-x<0. ∴f(-x)=-2x3+x2. ∵函数 f(x)是定义在 R 上的奇函数, ∴f(-x)=-f(x). ∴f(x)=2x3-x2(x>0). ∴f(2)=2×23-22=12. 解法二:f(2)=-f(-2)=-[2×(-2)3+(-2)2]=12.
-|x|=12|x|在(0,+∞)上均为减函数,只有 y=|x|+1 在(0,+ ∞)上为增函数,所以 C,D 两项错误,只有 B 正确.
2.[2018·南宁模拟]设函数 f(x),g(x)的定义域都为 R, 且 f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是 ()
A.f(x)g(x)是偶函数 B.f(x)|g(x)|是奇函数 C.|f(x)|g(x)是奇函数 D.|f(x)g(x)|是奇函数

2019高三数学一轮复习+教师讲义(word版)

2019高三数学一轮复习+教师讲义(word版)

第一节集合1.集合的含义与表示(1)了解集合的含义、元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩(Venn)图表达集合的关系及运算.授课提示:对应学生用书第1页◆教材通关◆1.元素与集合(1)集合中元素的三个特征:确定性、互异性、无序性.(2)集合中元素与集合的关系有且仅有两种:属于(用符号“∈”表示)和不属于(用符号“∉”表示).(3)集合的表示法:列举法、描述法、图示法.2.集合间的基本关系A B[必记结论]集合的子集、真子集个数的规律为:含n 个元素的集合有2n 个子集,有2n -1个真子集(除集合本身),有2n -1个非空子集,有2n -2个非空真子集(除集合本身和空集,此时n ≥1).3.集合的基本运算(1)A ∩∅=∅,A ∪∅=A ;(2)A ⊆B ⇔A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B ⇔A ∩(∁U B )=∅;(3)A ∪(∁U A )=U ,A ∩(∁U A )=∅,∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).[小题诊断]1.(2017·高考全国卷Ⅰ)已知集合A ={x |x <2},B ={x |3-2x >0},则( )A .A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪x <32B .A ∩B =∅C .A ∪B =⎩⎨⎧⎭⎬⎫x ⎪⎪ x <32D .A ∪B =R解析:因为A ={x |x <2},B ={x |3-2x >0}=⎩⎨⎧⎭⎬⎫x ⎪⎪x <32,所以A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪x <32,A ∪B ={x |x <2}.故选A.答案:A2.设集合M ={-1,1},N ={x |x 2-x <6},则下列结论正确的是( ) A .N ⊆M B .N ∩M =∅ C .M ⊆ND .M ∩N =R解析:由已知得集合M ={-1,1},N ={x |x 2-x <6}={x |-2<x <3},所以M ⊆N ,故选C.答案:C3.(2018·唐山模拟)已知全集U ={1,2,3,4,5},A ={1,2,4},B ={2,5},则(∁U A )∪B =( ) A .{3,4,5} B .{2,3,5} C .{5}D .{3}解析:因为U ={1,2,3,4,5},A ={1,2,4},所以∁U A ={3,5},又B ={2,5},所以(∁U A )∪B={2,3,5}.答案:B4.(2018·衡水中学联考)若集合B={x|x≥0},且A∩B=A,则集合A可能是()A.{1,2} B.{x|x≤1}C.{-1,0,1} D.R解析:由A∩B=A得A⊆B,因为B={x|x≥0},所以集合A可能是{1,2},故选A.答案:A5.已知全集U=R,集合A={0,1,2,3,4,5},B={x∈R|x≥2},则图中阴影部分所表示的集合为()A.{0,1} B.{1}C.{1,2} D.{0,1,2}解析:由Venn图可知,阴影部分的元素由属于A且不属于B的元素构成,所以用集合表示为A∩∁U B.∵U=R,A={0,1,2,3,4,5},B={x∈R|x≥2},∴A∩∁U B={0,1},故选A.答案:A6.已知集合A={(x,y)|x,y∈R,x2+y2=1},B={(x,y)|x,y∈R,y=4x2-1},则A∩B 的元素个数是________.解析:集合A是以原点为圆心,半径等于1的圆周上的点的集合,集合B是抛物线y=4x2-1上的点的集合,观察图象可知,抛物线与圆有3个交点,因此A∩B中含有3个元素.答案:3◆易错通关◆1.易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身.2.运用数轴图示法易忽视端点是实心还是空心.3.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.[小题纠偏]1.设全集U=R,集合A={x|7-6x≤0},集合B={x|y=lg(x+2)},则(∁U A)∩B等于()A.⎝⎛⎭⎫-2,76 B .⎝⎛⎭⎫76,+∞ C.⎣⎡⎭⎫-2,76 D .⎝⎛⎭⎫-2,-76 解析:依题意得A =⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≥76,∁U A =⎩⎨⎧⎭⎬⎫x ⎪⎪x <76;B ={x |x +2>0}={x |x >-2},因此(∁U A )∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪-2<x <76. 答案:A2.若集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ⊆A ,则由m 的可取值组成的集合为________.解析:当m +1>2m -1,即m <2时,B =∅,满足B ⊆A ;若B ≠∅,且满足B ⊆A ,如图所示,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,即⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,∴2≤m ≤3.故m <2或2≤m ≤3,即所求集合为{m |m ≤3}.答案:{m |m ≤3}3.已知集合A ={x ∈N |x 2-2x ≤0},则满足A ∪B ={0,1,2}的集合B 的个数为________. 解析:由A 中的不等式解得0≤x ≤2,x ∈N ,即A ={0,1,2}.∵A ∪B ={0,1,2},∴B 可能为{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},∅,共8个.答案:8授课提示:对应学生用书第2页考点一 集合的概念与关系 自主探究 基础送分考点——自主练透[题组练通]1.已知集合A ={1,-1},B ={1,0,-1},则集合C ={a +b |a ∈A ,b ∈B }中元素的个数为( )A .2B .3C .4D .5解析:由题意,当a =1,b =1时,a +b =2;当a =1,b =0时,a +b =1;当a =1,b =-1时,a +b =0;当a =-1,b =1时,a +b =0;当a =-1,b =0时,a +b =-1;当a =-1,b =-1时,a +b =-2.因此集合C ={2,1,0,-1,-2},共有5个元素.故选D.答案:D2.(2018·兰州模拟)已知集合A ={x |y =ln(x +3)},B ={x |x ≥2},则下列结论正确的是( ) A .A =B B .A ∩B =∅ C .A ⊆BD .B ⊆A解析:A ={x |x >-3},B ={x |x ≥2},结合数轴可得:B ⊆A . 答案:D3.已知集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =k π4+π4,k ∈Z ,集合N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π8-π4,k ∈Z ,则( ) A .M ∩N =∅ B .M ⊆N C .N ⊆MD .M ∪N =N解析:由题意可知,M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =(2k +4)8π-π4,k ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪x =2n π8-π4,n ∈Z ,N =⎩⎨⎧ x ⎪⎪ x =2k π8-π4或⎭⎪⎬⎪⎫x =(2k -1)8π-π4,k ∈Z ,所以M ⊆N ,故选B.答案:B4.已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.解析:由log 2x ≤2,得0<x ≤4, 即A ={x |0<x ≤4}, 而B =(-∞,a ),由于A ⊆B ,如图所示,则a >4,即c =4. 答案:41.集合中元素的互异性常常容易被忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.如题组中1易错.2.已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的条件,解决这类问题常常要合理利用数轴、Venn 图帮助分析.如题组中2,4均用了数轴进行分析求解.考点二 集合的基本运算 多维探究 题点多变考点——多角探明[锁定考向] 集合运算多与解简单的不等式、函数的定义域、值域相联系,考查对集合的理解及不等式的有关知识;有些集合题为抽象集合题或新定义型集合题,考查学生的灵活处理问题的能力.常见的命题角度有:(1)集合的基本运算;(2)利用集合运算求参数或范围. 角度一 集合的基本运算1.(2017·高考全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.答案:B2.设集合A ={x ∈Z ||x |≤2},B =⎩⎨⎧⎭⎬⎫x ⎪⎪32x≤1,则A ∩B =( ) A .{1,2} B .{-1,2} C .{-2,1,2}D .{-2,-1,0,2}解析:A ={-2,-1,0,1,2},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪2x -32x≥0=⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥32或x <0,所以A ∩B ={-2,-1,2},故选C.答案:C3.已知集合A ={y |y =x 2-1},B ={x |y =lg(x -2x 2)},则∁R (A ∩B )=( ) A.⎣⎡⎭⎫0,12 B .(-∞,0)∪⎣⎡⎭⎫12,+∞ C.⎝⎛⎭⎫0,12 D .(-∞,0]∪⎣⎡⎭⎫12,+∞ 解析:A ={y |y =x 2-1}=[0,+∞), B ={x |y =lg(x -2x 2)}=⎝⎛⎭⎫0,12, 所以A ∩B =⎝⎛⎭⎫0,12, 所以∁R (A ∩B )=(-∞,0]∪⎣⎡⎭⎫12,+∞. 答案:D解决集合运算的两个方法角度二 利用集合运算求参数或范围4.(2017·高考全国卷Ⅱ)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =( )A .{1,-3}B .{1,0}C .{1,3}D .{1,5}解析:因为A ∩B ={1},所以1∈B ,所以1是方程x 2-4x +m =0的根,所以1-4+m =0,m =3,方程为x 2-4x +3=0,解得x =1或x =3,所以B ={1,3}.答案:C5.已知集合A ={x |log 2x <1},B ={x |0<x <c },若A ∪B =B ,则c 的取值范围是( ) A .(0,1] B .[1,+∞) C .(0,2]D .[2,+∞)解析:A ={x |log 2x <1}={x |0<x <2},因为A ∪B =B ,所以A ⊆B ,所以c ≥2,所以c ∈[2,+∞),故选D.答案:D6.(2017·合肥模拟)已知A =[1,+∞),B =⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B .⎣⎡⎦⎤12,1 C.⎣⎡⎭⎫23,+∞ D .(1,+∞)解析:因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1,故选A. 答案:A根据集合运算的结果确定参数的取值范围解决此类问题的步骤一般为:(1)化简所给集合;(2)用数轴表示所给集合;(3)根据集合端点间关系列出不等式(组);(4)解不等式(组);(5)检验,通过返回代入验证端点是否能够取到.解决此类问题多利用数形结合的方法,结合数轴或Venn 图进行求解.[即时应用]1.(2017·高考全国卷Ⅱ)设集合A ={1,2,3},B ={2,3,4},则A ∪B =( ) A .{1,2,3,4} B .{1,2,3} C .{2,3,4}D .{1,3,4}解析:由题意得A ∪B ={1,2,3,4}. 答案:A2.(2017·高考浙江卷)已知集合P ={x |-1<x <1},Q ={x |0<x <2},则P ∪Q =( ) A .(-1,2) B .(0,1) C .(-1,0)D .(1,2) 解析:P ∪Q =(-1,2). 答案:A3.(2017·高考山东卷)设函数y =4-x 2的定义域为A ,函数y =ln(1-x )的定义域为B ,则A ∩B =( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1) 解析:由4-x 2≥0,解得-2≤x ≤2,由1-x >0,解得x <1,∴A ∩B ={x |-2≤x <1}.故选D.答案:D4.(2018·长沙模拟)已知集合A ={1,2,3},B ={x |x 2-3x +a =0,a ∈A },若A ∩B ≠∅,则a 的值为( )A .1B .2C.3 D.1或2解析:当a=1时,B中元素均为无理数,A∩B=∅;当a=2时,B={1,2},A∩B={1,2}≠∅;当a=3时,B=∅,则A∩B=∅,所以a的值为2,故选B.答案:B5.设集合A={0,1},集合B={x|x>a},若A∩B=∅,则实数a的取值范围是() A.a≤1 B.a≥1C.a≥0 D.a≤0解析:由A∩B=∅知0∉B,1∉B,∴a≥1,故选B.答案:B考点三集合的新定义问题创新探究交汇创新考点——突破疑难与集合有关的新定义问题属于信息迁移类问题,它是化归思想的具体运用,是近几年高考的热点问题,这类试题的特点是:通过给出的新的数学概念或新的运算法则,在新的情境下完成某种推理证明,或在新的运算法则下进行运算.常见的有定义新概念、新公式、新运算和新法则等类型.解决此类题型的关键是理解问题中的新概念、新公式、新运算、新法则等的含义,然后分析题目中的条件,设法进行套用.[典例]设A是自然数集的一个非空子集,对于k∈A,如果k2∉A,且k∉A,那么k是A 的一个“酷元”,给定S={x∈N|y=lg(36-x2)},设M⊆S,集合M中有两个元素,且这两个元素都是M的“酷元”,那么这样的集合M有()A.3个B.4个C.5个D.6个解析:由36-x2>0可解得-6<x<6,又x∈N,故x可取0,1,2,3,4,5,故S={0,1,2,3,4,5}.由题意可知:集合M不能含有0,1,且不能同时含有2,4.故集合M可以是{2,3}、{2,5}、{3,5}、{3,4}、{4,5}.答案:C[即时应用]1.设A,B是两个非空集合,定义集合A-B={x|x∈A,且x∉B}.若A={x∈N|0≤x≤5},B={x|x2-7x+10<0},则A-B=()A.{0,1} B.{1,2}C.{0,1,2} D.{0,1,2,5}解析:∵A ={x ∈N |0≤x ≤5}={0,1,2,3,4,5},B ={x |x 2-7x +10<0}={x |2<x <5},A -B ={x |x ∈A 且x ∉B },∴A -B ={0,1,2,5}.故选D. 答案:D2.设P ,Q 为两个非空实数集合,定义集合P ⊗Q ={z |z =a ÷b ,a ∈P ,b ∈Q },若P ={-1,0,1},Q ={-2,2},则集合P ⊗Q 中元素的个数是( )A .2B .3C .4D .5解析:当a =0时,无论b 取何值,z =a ÷b =0; 当a =-1,b =-2时,z =12;当a =-1,b =2时,z =-12;当a =1,b =-2时,z =-12;当a =1,b =2时,z =12.故P ⊗Q =⎩⎨⎧⎭⎬⎫0,-12,12,该集合中共有3个元素,所以选B.答案:B课时作业单独成册 对应学生用书第187页A 组——基础对点练1.(2017·高考天津卷)设集合A ={1,2,6},B ={2,4},C ={1,2,3,4},则(A ∪B )∩C =( ) A .{2} B .{1,2,4} C .{1,2,4,6}D .{1,2,3,4,6}解析:由题意知A ∪B ={1,2,4,6}, ∴(A ∪B )∩C ={1,2,4}. 答案:B2.(2018·成都市模拟)设集合A ={0,1},B ={x |(x +2)(x -1)<0,x ∈Z },则A ∪B =( ) A .{-2,-1,0,1} B .{-1,0,1} C .{0,1}D .{0} 解析:因为集合A ={0,1},B ={x |(x +2)(x -1)<0,x ∈Z }={-1,0},所以A ∪B ={-1,0,1}.故选B.答案:B3.设集合A ={x |x <2},B ={y |y =2x -1},则A ∩B =( ) A .(-∞,3) B .[2,3) C .(-∞,2)D .(-1,2)解析:A ={x |x <2},因为y =2x -1>-1,所以B ={y |y =2x -1}=(-1,+∞),所以A ∩B =(-1,2),故选D.答案:D4.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =( )A .1B .-1C .2D .-2解析:根据题意,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,又∵a ≠0,∴a +b =0,即a =-b ,∴ba=-1,b =1.故a =-1,b =1,则b -a =2.故选C. 答案:C5.已知集合A ={-2,-1,0,1,2,3},B ={x |x +1x -2<0},则A ∩B =( )A .{-2,-1,0,1,2,3}B .{-1,0,1,2}C .{-1,2}D .{0,1}解析:由题意,得B ={x |-1<x <2},所以A ∩B ={0,1},故选D. 答案:D6.已知集合A ={1,2,3,4},B ={y |y =3x -2,x ∈A },则A ∩B =( ) A .{1} B .{4} C .{1,3}D .{1,4}解析:由题意,得B ={1,4,7,10},∴A ∩B ={1,4}. 答案:D7.(2018·长沙市模拟)已知集合P ={x |-2 016≤x ≤2 017},Q ={x | 2 017-x <1},则P ∩Q =( )A .(2 016,2 017)B .(2 016,2 017]C .[2 016,2 017)D .(-2 016,2 017)解析:由已知可得Q ={x |0≤2 017-x <1}=(2 016,2 017],则P ∩Q =(2 016,2 017]. 答案:B8.(2018·石家庄模拟)函数y =x -2与y =ln(1-x )的定义域分别为M ,N ,则M ∪N =( )A.(1,2] B.[1,2]C.(-∞,1]∪[2,+∞) D.(-∞,1)∪[2,+∞)解析:使x-2有意义的实数x应满足x-2≥0,∴x≥2,∴M=[2,+∞),y=ln(1-x)中x应满足1-x>0,∴x<1,∴N=(-∞,1),所以M∪N=(-∞,1)∪[2,+∞),故选D.答案:D9.(2018·沈阳市模拟)设全集U=R,集合A={x|x≥2},B={x|0≤x<6},则集合(∁U A)∩B =()A.{x|0<x<2} B.{x|0<x≤2}C.{x|0≤x<2} D.{x|0≤x≤2}解析:∵U=R,A={x|x≥2},∴∁U A={x|x<2}.又B={x|0≤x<6},∴(∁U A)∩B={x|0≤x <2}.故选C.答案:C10.(2017·天津模拟)设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=()A.{1} B.{2}C.{0,1} D.{1,2}解析:N={x|x2-3x+2≤0}={x|1≤x≤2},又M={0,1,2},所以M∩N={1,2}.答案:D11.已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4} B.{2,3}C.{9,16} D.{1,2}解析:n=1,2,3,4时,x=1,4,9,16,∴集合B={1,4,9,16},∴A∩B={1,4}.答案:A12.(2018·长春市模拟)已知集合A={x|x2-x+4>x+12},B={x|2x-1<8},则A∩(∁R B )=()A.{x|x≥4} B.{x|x>4}C.{x|x≥-2} D.{x|x<-2或x≥4}解析:由题意易得,A={x|x<-2或x>4},B={x|x<4},则A∩(∁R B)={x|x>4}.故选B.答案:B13.已知集合A={-1,2,3,6},B={x|-2<x<3},则A∩B=________.答案:{-1,2}14.已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A∪(∁U B)=________.解析:∁U B={2},∴A∪∁U B={1,2,3}.答案:{1,2,3}15.集合{-1,0,1}共有__________个子集.解析:集合{-1,0,1}的子集有∅,{-1},{0},{1},{-1,0},{-1,1},{0,1},{-1,0,1},共8个.答案:816.已知集合U ={1,2,3,4,5},A ={1,3},B ={1,3,4},则A ∪(∁U B )=__________. 答案:{1,2,3,5}B 组——能力提升练1.已知全集U ={0,1,2,3},∁U M ={2},则集合M =( ) A .{1,3} B .{0,1,3} C .{0,3}D .{2}解析:M ={0,1,3}. 答案:B2.已知集合A ={0,1,2},B ={1,m }.若A ∩B =B ,则实数m 的值是( ) A .0 B .2C .0或2D .0或1或2 解析:∵A ∩B =B ,∴B ⊆A ,∴m =0或m =2. 答案:C3.(2018·南昌市模拟)已知集合A ={x ∈R |0<x ≤5},B ={x ∈R |log 2x <2},则(∁A B )∩Z =( )A .{4}B .{5}C .[4,5]D .{4,5}解析:∵集合A ={x ∈R |0<x ≤5},B ={x ∈R |log 2x <2}={x |0<x <4},∴∁A B ={x |4≤x ≤5},∴(∁A B )∩Z ={4,5},故选D.答案:D4.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -1x +2≤0,B ={x |y =lg(-x 2+4x +5)},则A ∩(∁R B )=( ) A .(-2,-1] B .[-2,-1] C .(-1,1]D .[-1,1]解析:依题意,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -1x +2≤0={x |-2<x ≤1},B ={x |y =lg(-x 2+4x +5)}={x |-x 2+4x +5>0}={x |-1<x <5},∴∁R B ={x |x ≤-1或x ≥5},A ∩(∁R B )=(-2,-1],选A.答案:A5.(2018·惠州模拟)已知集合A ={0,1},B ={z |z =x +y ,x ∈A ,y ∈A },则集合B 的子集的个数为()A.3 B.4C.7 D.8解析:由题意知,B={0,1,2},则集合B的子集的个数为23=8.故选D.答案:D6.(2018·太原市模拟)已知全集U=R,集合A={x|x(x+2)<0},B={x||x|≤1},则如图所示的阴影部分表示的集合是()A.(-2,1)B.[-1,0]∪[1,2)C.(-2,-1)∪[0,1]D.[0,1]解析:因为集合A={x|x(x+2)<0},B={x||x|≤1},所以A={x|-2<x<0},B={x|-1≤x≤1},所以A∪B=(-2,1],A∩B=[-1,0),所以阴影部分表示的集合为∁A∪B(A∩B)=(-2,-1)∪[0,1],故选C.答案:C7.(2018·郑州质量预测)设全集U={x∈N*|x≤4},集合A={1,4},B={2,4},则∁U(A∩B)=()A.{1,2,3} B.{1,2,4}C.{1,3,4} D.{2,3,4}解析:因为U={1,2,3,4},A∩B={4},所以∁U(A∩B)={1,2,3},故选A.答案:A8.(2018·广雅中学测试)若全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是()解析:由题意知,N={x|x2+x=0}={-1,0},而M={-1,0,1},所以N M,故选B.答案:B9.已知集合A满足条件{1,2}⊆A{1,2,3,4,5},则集合A的个数为()A.8 B.7C.4 D.3解析:由题意可知,集合A中必含有元素1和2,可含有3,4,5中的0个、1个、2个,则集合A 可以为{1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},共7个.故选B.答案:B10.已知集合A ={2,0,1,4},B ={k |k ∈R ,k 2-2∈A ,k -2∉A },则集合B 中所有的元素之和为( )A .2B .-2C .0D . 2解析:若k 2-2=2,则k =2或k =-2,当k =2时,k -2=0,不满足条件,当k =-2时,k -2=-4,满足条件;若k 2-2=0,则k =±2,显然满足条件;若k 2-2=1,则k =±3,显然满足条件;若k 2-2=4,得k =±6,显然满足条件.所以集合B 中的元素为-2,±2,±3,±6,所以集合B 中的元素之和为-2,故选B.答案:B11.给出下列四个结论: ①{0}是空集; ②若a ∈N ,则-a ∉N ;③集合A ={x |x 2-2x +1=0}中有两个元素;④集合B =⎩⎨⎧⎭⎬⎫x ∈Q ⎪⎪6x∈N 是有限集. 其中正确结论的个数是( ) A .0 B .1 C .2D .3解析:对于①,{0}中含有元素0,不是空集,故①错误; 对于②,比如0∈N ,-0∈N ,故②错误;对于③,集合A ={x |x 2-2x +1=0}={1}中有一个元素,故③错误;对于④,当x ∈Q 且6x ∈N 时,6x 可以取无数个值,所以集合B =⎩⎨⎧⎭⎬⎫x ∈Q ⎪⎪6x ∈N 是无限集,故④错误.综上可知,正确结论的个数是0.故选A. 答案:A12.已知集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z },B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },定义集合A B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B },则A B 中元素的个数为( )A .77B .49C .45D .30解析:集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z },所以集合A中有5个元素(即5个点),即图中圆内及圆上的整点.集合B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z }中有25个元素(即25个点),即图中正方形ABCD 内及正方形ABCD 上的整点.集合A B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B }中的元素可看作正方形A 1B 1C 1D 1内及正方形A 1B 1C 1D 1上除去四个顶点外的整点,共7×7-4=45个.答案:C13.设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________. 解析:依题意得U ={1,2,3,4,5,6,7,8,9,10},∁U A ={4,6,7,9,10},(∁U A )∩B ={7,9}. 答案:{7,9}14.集合A ={x ∈R ||x -2|≤5}中的最小整数为________.解析:由|x -2|≤5,得-5≤x -2≤5,即-3≤x ≤7,所以集合A 中的最小整数为-3. 答案:-315.若集合A ={x |(a -1)x 2+3x -2=0,x ∈R }有且仅有两个子集,则实数a 的值为________.解析:由题意知,方程(a -1)x 2+3x -2=0,x ∈R ,有一个根,∴当a =1时满足题意,当a ≠1时,Δ=0,即9+8(a -1)=0,解得a =-18.答案:1或-18第二节 命题及其关系、充分条件与必要条件1.理解命题的概念.2.了解“若p ,则q ”形式的命题及其逆命题、 否命题与逆否命题,会分析四种命题的相互关系. 3.理解必要条件、充分条件与充要条件的意义.授课提示:对应学生用书第4页◆ 教材通关 ◆1.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题时,它们的真假性没有关系.[必记结论]由于互为逆否命题的两个命题具有相同的真假性,因而当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假.[提醒]易混否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.充分条件、必要条件与充分必要条件的概念qpp1.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是() A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3解析:同时否定原命题的条件和结论,所得命题就是它的否命题.答案:A2.命题“若a2<b,则-b<a<b”的逆否命题为()A.若a2≥b,则a≥b或a≤-bB.若a2>b,则a>b或a<-bC.若a≥b或a≤-b,则a2≥bD.若a>b或a<-b,则a2>b解析:因为“a 2<b ”的否定为“a 2≥b ”,“-b <a <b ”的否定为“a ≥b 或a ≤-b ”,所以逆否命题为“若a ≥b 或a ≤-b ,则a 2≥b ”. 答案:C3.(2018·唐山模拟)已知a ,b 为实数,则“a 3<b 3”是“2a <2b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件解析:由于函数y =x 3,y =2x 在R 上单调递增,所以a 3<b 3⇔a <b ⇔2a <2b ,即“a 3<b 3”是“2a <2b ”的充要条件.答案:C4.已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( )A .逆命题B .否命题C .逆否命题D .否定解析:命题p :“正数a 的平方不等于0”写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题.答案:B5.(2016·高考四川卷)设p :实数x ,y 满足x >1且y >1,q :实数x ,y 满足x +y >2,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵⎩⎪⎨⎪⎧x >1,y >1,∴x +y >2,即p ⇒q .而当x =0,y =3时,有x +y =3>2,但不满足x >1且y >1,即q p .故p 是q 的充分不必要条件.答案:A6.命题“对任意x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( ) A .a ≥4 B .a >4 C .a ≥1D .a >1解析:要使“对任意x ∈[1,2),x 2-a ≤0”为真命题,只需要a ≥4,∴a >4是命题为真的充分不必要条件.答案:B◆ 易错通关 ◆1.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视A 是B 的充分不必要条件(A ⇒B 且BA )与A 的充分不必要条件是B (B ⇒A 且A B )两者的不同.[小题纠偏]1.设a ,b 均为非零向量,则“a ∥b ”是“a 与b 的方向相同”的________条件. 答案:必要不充分2.“在△ABC 中,若C =90°,则A ,B 都是锐角”的否命题为:________. 解析:原命题的条件:在△ABC 中,C =90°, 结论:A ,B 都是锐角.否命题是否定条件和结论, 即“在△ABC 中,若C ≠90°,则A ,B 不都是锐角”. 答案:在△ABC 中,若C ≠90°,则A ,B 不都是锐角授课提示:对应学生用书第5页考点一 命题及其关系 自主探究 基础送分考点——自主练透[题组练通]1.命题“若△ABC 有一内角为π3,则△ABC 的三个内角成等差数列”的逆命题( )A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:原命题显然为真,原命题的逆命题为“若△ABC 的三个内角成等差数列,则△ABC有一内角为π3”,它是真命题.答案:D2.(2018·焦作质检)设等比数列{a n }的公比为q ,前n 项和为S n .给出命题s :若|q |=2,则S 6=7S 2,则在命题s 的逆命题、否命题、逆否命题中,错误命题的个数是( )A .3B .2C .1D .0解析:若|q |=2,则q 2=2,S 6=a 1(1-q 6)1-q =a 1(1-q 2)(1+q 2+q 4)1-q =7·a 1(1-q 2)1-q=7S 2,所以原命题为真,从而逆否命题为真;而当S 6=7S 2时,显然q ≠1,这时a 1(1-q 6)1-q =7·a 1(1-q 2)1-q ,解得q =-1或|q |=2,因此,逆命题为假,否命题为假,故错误命题的个数为2.答案:B3.命题“若a >b ,则a +c >b +c ”的否命题是( ) A .若a ≤b ,则a +c ≤b +c B .若a +c ≤b +c ,则a ≤b C .若a +c >b +c ,则a >b D .若a >b ,则a +c ≤b +c解析:否命题是将原命题的条件和结论都否定,故命题“若a >b ,则a +c >b +c ”的否命题是“若a ≤b ,则a +c ≤b +c ”,故选A.答案:A1.判断命题真假的方法(1)判定一个命题是真命题,需经过严格推理证明,而要说明它是假命题,只需举出一个反例即可.(2)利用原命题与逆否命题、逆命题与否命题具有相同的真假性对所给命题的真假进行间接判断.2.由原命题写出其他三种命题的方法由原命题写出其他三种命题,关键要分清原命题的条件和结论,将原命题的条件与结论互换即得到逆命题,将原命题的条件与结论同时否定即得否命题,将原命题的条件与结论互换的同时进行否定即得逆否命题.考点二 充分必要条件的判定 互动探究 重点保分考点——师生共研[典例] (1)(2018·合肥教学质检)“x ≥1”是“x +1x ≥2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)如果x ,y 是实数,那么“x ≠y ”是“cos x ≠cos y ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件(3)(2018·衡阳联考)设p :x 2-x -20>0,q :log 2(x -5)<2,则p 是q 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:(1)由题意得x +1x ≥2⇔x >0,所以“x ≥1”是“x +1x≥2”的充分不必要条件,故选A.(2)设集合A ={(x ,y )|x ≠y },B ={(x ,y )|cos x ≠cos y },则A 的补集C ={(x ,y )|x =y },B 的补集D ={(x ,y )|cos x =cos y },显然C D ,所以B A .于是“x ≠y ”是“cos x ≠cos y ”的必要不充分条件.(3)∵x 2-x -20>0,∴x >5或x <-4,∴p :x >5或x <-4.∵log 2(x -5)<2,∴0<x -5<4,即5<x <9,∴q :5<x <9,∵{x |5<x <9}{x |x >5或x <-4},∴p 是q 的必要不充分条件.故选B.答案:(1)A (2)C (3)B充要条件的3种判断方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断;(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy ≠1”是“x ≠1或y ≠1”的某种条件,即可转化为判断“x =1且y =1”是“xy =1”的某种条件.[即时应用]1.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:设命题a :“若p ,则q ”,可知命题a 是祖暅原理的逆否命题,则a 是真命题.故p 是q 的充分条件.设命题b :“若q ,则p ”,若A 比B 在某些等高处的截面积小一些,在另一些等高处的截面积大一些,且大的总量与小的总量相抵,则它们的体积还是一样的.所以命题b 是假命题,即p 不是q 的必要条件.综上所述,p 是q 的充分不必要条件.故选A.答案:A2.设a ,b ∈R ,则“log 2a >log 2b ”是“2a -b >1”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:log 2a >log 2b ⇔a >b >0,2a -b >1⇔a >b ,所以“log 2a >log 2b ”是“2a -b >1”的充分不必要条件.故选A.答案:A3.已知命题甲是“⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x 2+x x -1≥0”,命题乙是“{x |log 3(2x +1)≤0}”,则( ) A .甲是乙的充分条件,但不是乙的必要条件B .甲是乙的必要条件,但不是乙的充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件解析:由x 2+x x -1≥0,即x (x +1)(x -1)≥0且x ≠1,解得-1≤x ≤0或x >1.∵log 3(2x +1)≤0,∴0<2x +1≤1,解得-12<x ≤0.∴甲是乙的必要条件,但不是乙的充分条件.故选B. 答案:B考点三 根据充分、必要条件求参数的取值范围 变式探究 母题变式考点——多练题型[典例] (2018·济南月考)已知P ={x |x 2-8x -20≤0},S ={x |1-m ≤x ≤1+m }.是否存在实数m ,使得x ∈P 是x ∈S 的充分必要条件?若存在,求出m 的取值范围.解析:P ={x |x 2-8x -20≤0}={x |-2≤x ≤10}.要使x ∈P 是x ∈S 的充分必要条件,则P =S ,即{x |-2≤x ≤10}={x |1-m ≤x ≤1+m }.∴⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,此时,m 不存在,即不存在实数m ,使得x ∈P 是x ∈S 的充分必要条件.[变式探究1]母题条件若改为“x ∈P 是x ∈S 的必要条件”,问题不变.解析:∵x ∈P 是x ∈S 的必要条件,即x ∈S ⇒x ∈P ,∴S P ,∴1-m >1+m 或⎩⎪⎨⎪⎧ 1-m ≥-2,1+m ≤10,1-m ≤1+m ,∴m ≤3.[变式探究2] 母题条件若改为“綈P 是綈S 的必要不充分条件”,问题不变.解析:∵綈P 是綈S 的必要不充分条件,∴S 是P 的必要不充分条件,∴P 是S 的充分不必要条件,∴P S ⇔⎩⎪⎨⎪⎧ 1+m >1-m ,1-m ≤-2,1+m ≥10,∴m ≥9.利用充要条件求参数的值或范围的关键点和注意点(1)关键点:是合理转化条件,准确将每个条件对应的参数的范围求出来,然后转化为集合的运算.(2)注意点:注意区间端点值的检验.[即时应用]1.(2018·日照模拟)已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.解析:由2x 2-3x +1≤0,得12≤x ≤1, ∴命题p 为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤1. 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,∴命题q 为{x |a ≤x ≤a +1}.綈p 对应的集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪x >1或x <12, 綈q 对应的集合B ={x |x >a +1或x <a }.∵綈p 是綈q 的必要不充分条件,∴a +1≥1且a ≤12,∴0≤a ≤12, 即实数a 的取值范围是⎣⎡⎦⎤0,12.答案:⎣⎡⎦⎤0,12 2.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析:A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2.答案:(2,+∞)课时作业单独成册 对应学生用书第189页A 组——基础对点练1.(2017·高考天津卷)设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:由|x -1|≤1,得0≤x ≤2,∵0≤x ≤2⇒x ≤2,x ≤20≤x ≤2, 故“2-x ≥0”是“|x -1|≤1”的必要而不充分条件,故选B.2.命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数解析:由于“x ,y 都是偶数”的否定表达是“x ,y 不都是偶数”,“x +y 是偶数”的否定表达是“x +y 不是偶数”,故原命题的逆否命题为“若x +y 不是偶数,则x ,y 不都是偶数”,故选C.答案:C3.已知命题“若函数f (x )=e x -mx 在(0,+∞)上是增函数,则m ≤1”,则下列结论正确的是( )A .否命题“若函数f (x )=e x -mx 在(0,+∞)上是减函数,则m >1”是真命题B .逆命题“若m ≤1,则函数f (x )=e x -mx 在(0,+∞)上是增函数”是假命题C .逆否命题“若m >1,则函数f (x )=e x -mx 在(0,+∞)上是减函数”是真命题D .逆否命题“若m >1,则函数f (x )=e x -mx 在(0,+∞)上不是增函数”是真命题 解析:命题“若函数f (x )=e x -mx 在(0,+∞)上是增函数,则m ≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.答案:D4.“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a=-2时,直线l1:2x+y-3=0,l2:2x+y+4=0,所以直线l1∥l2;若l1∥l2,则-a(a+1)+2=0,解得a=-2或a=1.所以“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的充分不必要条件,故选A.答案:A5.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是()A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0解析:由原命题和逆否命题的关系可知D正确.答案:D6.(2018·惠州市调研)设函数y=f(x),x∈R,“y=|f(x)|是偶函数”是“y=f(x)的图象关于原点对称”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件解析:设f(x)=x2,y=|f(x)|是偶函数,但是不能推出y=f(x)的图象关于原点对称.反之,若y=f(x)的图象关于原点对称,则y=f(x)是奇函数,这时y=|f(x)|是偶函数,故选C.答案:C7.(2018·南昌十校模拟)命题“已知a,b,c为实数,若abc=0,则a,b,c中至少有一个等于0”,在该命题的逆命题、否命题、逆否命题中,真命题的个数为() A.0 B.1C.2 D.3解析:原命题为真命题,逆命题为“已知a,b,c为实数,若a,b,c中至少有一个等于0,则abc=0”,也为真命题.根据命题的等价关系可知其否命题、逆否命题也是真命题,故在该命题的逆命题、否命题、逆否命题中,真命题的个数为3.答案:D8.(2018·石家庄模拟)已知向量a =(1,m ),b =(m,1),则“m =1”是“a ∥b ”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:向量a =(1,m ),b =(m,1),若a ∥b ,则m 2=1,即m =±1,故“m =1”是“a ∥b ”的充分不必要条件,选A.答案:A9.(2018·武汉市模拟)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:a 1>0,a 2n -1+a 2n =a 1q 2n -2(1+q )<0⇒1+q <0⇒q <-1⇒q <0,而a 1>0,q <0,取q =-12,此时a 2n -1+a 2n =a 1q 2n -2(1+q )>0.故“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的必要不充分条件.答案:B10.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“a ⊥b ”是“α⊥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:因为α⊥β,b ⊥m ,所以b ⊥α,又直线a 在平面α内,所以a ⊥b ;但直线a ,m 不一定相交,所以“a ⊥b ”是“α⊥β”的必要不充分条件,故选B.答案:B11.(2018·南昌市模拟)a 2+b 2=1是a sin θ+b cos θ≤1恒成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:因为a sin θ+b cos θ=a 2+b 2sin(θ+φ)≤a 2+b 2,所以由a 2+b 2=1可推得a sin θ+b cos θ≤1恒成立.反之,取a =2,b =0,θ=30°,满足a sin θ+b cos θ≤1,但不满足a 2+b 2=1,即由a sin θ+b cos θ≤1推不出a 2+b 2=1,故a 2+b 2=1是a sin θ+b cos θ≤1恒成立的充分不必要条件.故选A.答案:A12.(2018·洛阳统考)已知集合A ={1,m 2+1},B ={2,4},则“m =3”是“A ∩B ={4}”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析:若A ∩B ={4},则m 2+1=4,∴m =±3,而当m =3时,m 2+1=4,∴“m =3”是“A ∩B ={4}”的充分不必要条件.答案:A13.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的__________条件.解析:由正弦定理,得a sin A =b sin B,故a ≤b ⇔sin A ≤sin B .答案:充要14.“x >1”是“log 12(x +2)<0”的__________条件. 解析:由log 12(x +2)<0,得x +2>1,解得x >-1,所以“x >1”是“log 12(x +2)<0”的充分不必要条件.答案:充分不必要15.命题“若x >1,则x >0”的否命题是__________.答案:若x ≤1,则x ≤016.如果“x 2>1”是“x <a ”的必要不充分条件,则a 的最大值为__________.解析:由x 2>1,得x <-1,或x >1,又“x 2>1”是“x <a ”的必要不充分条件,知由“x <a ”可以推出“x 2>1”,反之不成立,所以a ≤-1,即a 的最大值为-1.答案:-1B 组——能力提升练1.(2018·湖南十校联考)已知数列{a n }的前n 项和S n =Aq n +B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:若A =B =0,则S n =0,故数列{a n }不是等比数列;若数列{a n }是等比数列,则a 1=Aq +B ,a 2=Aq 2-Aq ,a 3=Aq 3-Aq 2,由a 3a 2=a 2a 1,得A =-B .故选B. 答案:B2.已知函数f (x )=3ln(x +x 2+1)+a (7x +7-x ),x ∈R ,则“a =0”是“函数f (x )为奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由题意知f (x )的定义域为R ,易知y =ln(x +x 2+1)为奇函数,y =7x +7-x 为偶函数.当a =0时,f (x )=3ln(x +x 2+1)为奇函数,充分性成立;当f (x )为奇函数时,则a =0,必要性成立.因此“a =0”是“函数f (x )为奇函数”的充要条件.故选C.答案:C3.l 1,l 2表示空间中的两条直线,若p :l 1,l 2是异面直线;q :l 1,l 2不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充要条件D .p 既不是q 的充分条件,也不是q 的必要条件解析:两直线异面,则两直线一定无交点,即两直线一定不相交;而两直线不相交,有可能是平行,不一定异面,故两直线异面是两直线不相交的充分不必要条件,故选A.答案:A4.“x 1>3且x 2>3”是“x 1+x 2>6且x 1x 2>9”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:x 1>3,x 2>3⇒x 1+x 2>6,x 1x 2>9;反之不成立,例如x 1=12,x 2=20.故选A. 答案:A5.若a ,b 为正实数,且a ≠1,b ≠1,则“a >b >1”是“log a 2<log b 2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件。

高三数学一轮复习PPT课件

高三数学一轮复习PPT课件
如何求解? 解:①若 B=∅,则 Δ=m2-4<0, 解得-2<m<2; ②若 1∈B,则 12+m+1=0, 解得 m=-2,此时 B={1},符合题意; ③若 2∈B,则 22+2m+1=0, 解得 m=-52,此时 B=2,12,不合题意. 综上所述,实数 m 的取值范围为[-2,2).
第28页/共60页
第23页/共60页
[典题 2] (1)已知集合 A={x|x2-3x+2=0,x∈R},B
={x|0<x<5,x∈N},则满足条件 A⊆C⊆B 的集合 C 的个
数为( D )
A.1
B.2
C.3
D.4
第24页/共60页
[解析] 由 x2-3x+2=0,得 x=1 或 x=2, ∴A={1,2}. 由题意知 B={1,2,3,4}, ∴满足条件的 C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.
第30页/共60页
1.[2017·广东河源东江中学月考]已知全集 U=R,集合 A ={y|y=2x,x∈R},B={y|y=x2,x∈R},则能正确表示集 合 A,B 关系的韦恩(Venn)图是( C )
A
B
C
D
第31页/共60页
解析:∵A={y|y=2x,x∈R}=(0,+∞),B={y|y=x2,x ∈R}=[0,+∞),∴A B.故选 C.
[点石成金] 1.集合间基本关系的两种判定方法和一个关键
第29页/共60页
2.根据两集合的关系求参数的方法 已知两个集合之间的关系求参数时,要明确集合中的元素, 对子集是否为空集进行分类讨论,做到不漏解. (1)若集合元素是一一列举的,依据集合间的关系,转化为解 方程(组)求解,此时注意集合中元素的互异性; (2)若集合表示的是不等式的解集,常依据数轴转化为不等式 (组)求解,此时需注意端点值能否取到.

高三数学第一轮复习课件(ppt)目录

高三数学第一轮复习课件(ppt)目录
目录 CONTENTS
第一章
集合与常用逻辑用语
1.1 集合的概念与运算 1.2 命题及其关系、充分条件与必要条件 1.3 简单的逻辑联结词、全称量词与存在量词
目录 CONTENTS
第二章
函数
2.1 函数及其表示 2.2 函数的单调性与最值 2.3 函数的奇偶性与周期性 2.4 一次函数、二次函数 2.5 指数与指数函数 2.6 对数与对数函数 2.7 幂函数 2.8 函数的图象及其变换 2.9 函数与方程 2.10 函数模型及其应用
12.1 算法与程序框图 12.2 基本算法语句 12.3 合情推理与演绎推理 12.4 直接证明与间接证明 12.5 数学归纳法 12.6 数系的扩充与复数的引入
目录 CONTENTS
选修4系列
选修4-1 几何证明选讲(选考) 选修4-4 坐标系与参数方程(选考) 选修4-5 不等式选讲(必考)
目录 CONTENTS
第十一章
概率与统计
11.1 事件与概率 11.2 古典概型与几何概型 11.3 离散型随机变量及其分布列 11.4 二项分布及其应用 11.5 离散型随机变量的均值与方差、正态分布 11.6 随机抽样与用样本估计总体 11.7 变量间的相关关系
目录 CONTENTS
第十二章 算法初步、推理与证明、复数
目录 CONTENT第S五章
平面向量
5.1 平面向量的概念及其线性运算
5.2 平面向量的基本定理及坐标运算
5.3 平面向量的数量积及其应用
第六章
数列
6.1 数列的概念与简单表示法 6.2 等差数列及其前n项和 6.3 等比数列及其前n项和 6.4 数列的通项与求和 6.5 数列的综合应用
目录 CONTENTS
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
又0°<∠BAC<60°,所以∠BAC=30°.
答案:30°
ppt精选
13
6.海上有A,B两个小岛相距10nmile,从A岛望C岛和B岛成60°的
视角,从B岛望C岛和A岛成75°的视角,那么B岛和C岛的距离是
nmile.
【解析】画出示意图如图,
由题意可知,∠CAB=60°,∠CBA=75°,
所以∠C=45°,
A.100 2m
B.100 3m
C.50 2 6 m D.200m
【解析】选A.设坡底需加长x m,
由正弦定理得 100 解x得x, =100 .
sin30 sin 45
2
ppt精选
12
5.(2014·绍兴模拟)甲船在A处观察乙船,乙船在它的北偏东
60°的方向,两船相距a海里的B处,乙船正向北行驶,若甲船
第八节 应用举例
ppt精选
1
ppt精选
2
【知识梳理】
1.三角形中常用的面积公式
(1)S= 1 ah(h表示边a上的高).
2
(2)S= 1
bcsinA=
1 acsin 2
B
=
1 absin C 2
.
2
(3)S= 1 r(a+b+c)(r为三角形的内切圆半径).
2
ppt精选
3
2.实际应用中的常用术语
()
A.北偏东10°
B.北偏西10°
C.南偏东80°
D.南偏西80°
【解析】选D.由条件可知,∠A=∠B=40°,
又∠BCD=60°,所以∠CBD=30°,所以
∠DBA=10°,因此灯塔A在灯塔B的南偏西80°.
ppt精选
10
3.如图所示,D,C,B三点在地面的同一直线
上,DC=a,从C,D两点测得A点的仰角分别
米.
ppt精选
15
(2)(2014·泰安模拟)如图,A,B是海面上位于东西方向相距 5(3+ 3 )海里的两个观测点,现位于A点北偏东45°,B点北偏西 60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B 点相距20 3 海里的C点的救援船立即前往营救,其航行速度为 30海里/小时,该救援船到达D点需要多长时间?
由正弦定理得 10 BC ,
sin 45 sin60
所以 BC5 6.
答案:5 6
ppt精选
14
考点1 测量距离问题 【典例1】(1)(2014·宁波模拟)如图,为测量河对岸A,B两点间 的距离,在河岸选取相距40米的C,D两点,测得∠BCA=60°, ∠ACD=30°,∠CDB=45°,∠BDA=60°,则A,B间距离为
是乙船速度的 3 倍,甲船为了尽快追上乙船,则应取北偏东 ______(填角度)的方向前进.
【解析】设两船在C处相遇,则由题意∠ABC=
180°-60°=120°,且A C = 3,
BC
由正弦定理得 A C = s in 1 2 0 = 3 s in B A C = 1 .
B Cs in B A C
术语名称
术语意义
仰角与俯角
在目标视线与水平视线所 成的角中,目标视线在水 平视线上方的叫做仰角, 目标视线在水平视线下方 的叫做俯角
方位角
从某点的指北方向线起按 顺时针方向到目标方向线 之间的水平夹角叫做方位 角.方位角α的范围是 0°≤α<360°
ppt精选
图形表示
4
术语名称
术语意义
图形表示 例:(1)北偏东m°
①面积公式中S= 1 bcsin A= 1 absin C= 1 acsin B,其实质就
2
2
2
是面积公式S= 1 ah= 1 bh= 1 ch(h为相应边上的高)的变形;
2
2
2
②俯角是铅垂线与视线所成的角,其范围为[0, ];
2
③方位角与方向角其实质是一样的,均是确定观察点与目标点
之间的位置关系;
方向角
正北或正南方向线与目标 方向线所成的锐角,通常 表达为北(南)偏东 (西)××度
(2)南偏西n°
ppt精选
5
术语名称
术语意义
图形表示
坡角 坡度
坡面与水平面的夹角
设坡角为α,坡度
为i,则i= h =tanα
l
坡面的垂直高度h和水平宽 度l的比
ppt精选
6
【考点自测】
1.(思考)给出下列命题:
ppt精选
16
【解题视点】(1)观察AB所在的三角形,根据已知条件求出有关 的边角再求解. (2)已知速度,要求时间,只要求出路程,即CD的长即可;再观察 CD所在的三角形,确定已知条件较集中的三角形求解.
ppt精选
17
【规范解答】(1)由已知得,∠BCD=30°+60°=90°,又因

2
∠BDC=45°,CD=40米,所以BD=40 米,在△ADC中,
为60°,30°,则A点离地面的高度AB等于( )
A.1 a 2
B. 3a 2
C. 3a
D. 3 a
【解析】选B.因为3 ∠DAC=∠ACB-∠D=60°-30°=30°,
所以AC=CD=a,在Rt△ABC中,AB=AC·sin 60°=3 a.
2
ppt精选
11
4.某工程中要将一长为100 m,倾斜角为75° 的斜坡,改造成倾斜角为30°的斜坡,并保 持坡高不变,则坡底需加长( )
ppt精选
7
④方位角大小的范围是[0,2π),方向角大小的范围一般是
[0, ).
2
其中正确的是( )
A.①② B.①③④ C.①②③ D.②④
ppt精选
8
【解析】选B.①正确.如S= 1 absin C= 1 ah(h=bsin C),h即为
2
2
边a上的高
②错误.俯角是视线与水平线所构成的角.
③正确.方位角与方向角均是确定观察点与目标点之间的位置
关系的.
④正确.方位角是由正北方向顺时针转到目标方向线的水平角,
故大小的范围为[0,2π),而方向角大小的范围由定义可知为
[0, ).
2
ppt精选
9
2.两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站
南偏西40°,灯塔B在观察站南偏东60°,则灯塔A在灯塔B的
20 6
ppt精选
18
(2)由题意知AB=5(3+ 3 )海里, 因为∠DAB=90°-45°=45°,∠DBA=90°-60°=30°,
∠ADC=60°+45°=105°,
所以∠CAD=180A °D - 1C 0D 5°s in - 3A 0C °D = 44 50 ° s ,in 3 0 2 02 .
s in C A D s in 4 5
由正弦定理,得
在 ( △2 0 A2 D) 2 B ( 中4 ,0 由2 ) 余2 - 弦2 定2 0 理2 , 得4 0 A2 Bc 2o =s 6 A0 D 2+2 D4 0 B0 2, - 2AD·DB2 c0 o6s∠ADB
相关文档
最新文档