飞机重量和重心计算教案资料

合集下载

《飞机构造基础》重量和平衡及计算方式

《飞机构造基础》重量和平衡及计算方式
重心,即飞机的所有重量集中于重心一点上,它位于升力 重心稍前一点。
这种布置将使飞机头部下俯,下俯力矩由水平尾翼的载荷 平衡,它使飞机水平飞行。
重心在焦点前,纵向静稳定;重心在焦点后,纵向静不稳定。
焦点:当飞机的攻角发生变化时,飞机的气动力对该点的力矩 始终不变,因此它可以理解为飞机气动力增量的作用点。
2.飞机重心太靠前:
① 飞机会有俯冲的趋势; ② 稳定性降低; ③ 要求有较大的发动机功率。
3.飞机重心太靠后:
① 飞行速度降低; ② 发生失速较快; ③ 稳定性降低; ④ 需要较大的发动机功率。
注意:任何一种情况都可能导致严重后果。
2.2定期称重的必要性
• 飞机会因不易清洗的角落里积聚灰尘和油 脂等而有增加重量的趋势。飞机在一定时 间内的增重程度则取决于飞机的使用、飞 行时间、环境状况以及起降场地的类型。 所以定期对飞机称重是必要的。
2.5飞机称重
• 飞机称重前的准备 • 称重设备的准备 • 飞机的称重程序 • 称重计算
称重前准备
• 使飞机处于水平姿态。 • 清洗飞机。称重时保持飞机干燥。 • 检查飞机设备清单以确保所有需要的设备
确实安装好,拆下不包括在飞机设备清单 内的所有项目。 • 对燃油系统放油直到优良指示为零,即排 空。 • 装满液压油箱及滑油箱。(属于空重) • 饮用和洗涤水箱以及厕所便桶排空。 • 当对一架飞机称重时,如扰流板、襟翼等 装置的位置应收好。
• 飞机的水平顶置
最常用的顶置工序是在飞机构架上的几个 制定点安置气泡水准仪。
• 飞机的水平顶置
对于飞机进行称重时,重量集中在磅秤上 的一点叫做称重点。通常把机轮放在磅秤 上。
飞机上的某些结构部位(如主梁上的千斤 顶底座),可当作称重点而采用千斤顶支 撑方式来对飞机称重。

飞机重量和重心计算讲解

飞机重量和重心计算讲解
10%; • 如果起落架不安装在机翼,减少5%; • 采用富勒襟翼,增加2%。 • 讨论:
bs W机翼 可通过增加翼载来减缓由于bs 带来的不利因素,故大型飞机
通常有较高的翼载
From 《Synthesis of Subsonic Airplane Design》 ,Torenbeek,1982
航空宇航学院
控制面操纵系统的重量
W操纵 K SC (Wto )2/3 0.768 (kg)
• 设有双重操纵机构的轻型飞机:KSC=0.23 • 用于手操纵的运输机和教练机: KSC=0.44 • 运输机,动力操纵系统,仅有后缘襟翼: KSC=0.64 • 有前缘襟翼时,增加20%。
航空宇航学院
(kg)
• 对于增压客舱,增加8%; • 后机身安装发动机,增加4%; • 主起落架在机身上,增加7%; • 若无主起落架支撑结构,也无机轮舱减少4%; • 对于货机,增加10%。
From 《Synthesis of Subsonic Airplane Design》 ,Torenbeek,1982
根据油箱布置的位置 计算油箱的体积和重量,燃油密度=0.8g/cm3
• 有效载荷(乘客和行李、 货物或武器弹药)
由载荷的布置来确定
航空宇航学院
全机重量计算和重心定位
xG
(mgx)i (mg)i
yG
(mgy)i (mg)i
重心在平均空气动力翼弦的位置:
xG

xG xA cA

• 使用燃油

航空宇航学院
飞机的过载
• 结构重量与飞机过载有关
• 几种飞机的使用过载:
战斗机: 教练机和攻击机: 轰炸机: 运输机和货机:

第三章飞机称重及决定空重重心

第三章飞机称重及决定空重重心

圖 3-1 重心前限與後限之分佈區域。 在 FAA AC120-27B 詳細說明 , 正常登記註冊為 N 字頭的航空器所要檢測的 時間間隔 36 個曆月,最長可延至 4 年,本情況為航機未有任更改時,若有下列 之行為,則需再次校驗載重及重心位置。 (A)重大修改或修理完成時,無正確的資料可供計算。 (B)所記載之文件懷疑有誤。 (C) 駕駛員操縱飛行時,出現不平穩的現象,例機鼻太重,妨礙操縱性能, 且無法證明是因不適當的裝載所造成。 (D)除去塗裝噴漆,或重新塗裝。 (E)實際操作重量比最大著陸重量有±0.5%的變動。
飛機總重 (8000+12000+12000)=32000 重心位置 10240000/32000=320 吋 3-3 準備稱重準備工作 不管是內部或是外在的準備,航機要完成載重的量測時,要盡可能做到以 下這些系統所要求的。 (A)燃油系統:油箱、管路、唧筒完全清乾,或依照標準燃油排出程序將 油箱的燃油排出。 (B)潤滑系統(Lubricating System) :潤滑的滑油箱和系統完全清乾,或 將滑油箱裝滿,確認引擎可以完全運轉。 (C)各式的流體: (1)以下所列之水箱和系統都應洩光: *洗手間和廚房的飲用水和洗滌水 *洗手間和廁所的慶水 *飲用水的水箱及管路 (2)以下所列之容器或系統將其操作的容量裝滿: *液壓系統及其儲存槽 *氧氣系統之鋼瓶 *防火滅火器 *起落架內之滑油精 (D)飛機結構:以下每一個步驟必需在載重量測前完成: (1)使用認可的設備清單進行飛機設備盤存。 (2)移除所有工作場合的多餘裝備工具和垃圾。 (3)將全部設備固定在適當的位置。 (4)確定飛機完全乾燥,淋過雨後 10 小時才能秤重。 (5)關閉所有的門及進出口。 (6)收起所有襟翼、翼縫條、擾流器。 (7)設定水平安定面及控制面在中心位置。 (8)充氣讓輪胎保持在規定的操作壓力。 (9)收回引擎推進反向器。 飛機載重測量應盡可能水平姿態,如果無法達成水平量測,最低要求為±2° (與實際秤重的水平夾角) , 利用已知的重心以數學式算出等效的水平重心位置, 應用前面所提的矯正因子計算,並對照載重與平衡手冊中的表。 如果利用棚廠進行載重量測,在密閉的棚廠內,地板清斜角度不可超過 1/4 吋(每呎) ,當室內環境無法提供,在外界時,所受的限制就更多,如下:

第七章 第六节 飞机重心的计算

第七章 第六节 飞机重心的计算

第六节 飞机重心的计算一、飞机的重心和重心位置的表示1、飞机重心确保飞行安全的要求和条件是多方面的,重要的一点就是要保证飞机平衡。

飞机的重心必须在安全的范围内,保证飞机飞行具有良好的操作性和稳定性。

飞机重心具有以下特性:(1)飞行中,重心位置不随姿态改变。

(2)飞机在空中的一切运动,无论怎样错综复杂,总可以分解为:飞机各部分随飞机重心一道的移动和飞机各部分转绕着飞机重心的转动。

本节将着重介绍飞机的重心、重心计算的方法,以及飞机的平衡,稳定性和操纵性。

重力是地球对物体的吸引力,飞机的各部件(机身、机翼、尾翼、发动机等)、燃油、货物、乘客等都要受到重力的作用,飞机各部分重力的合力,叫做飞机的重力,用G 表示。

重力的着力点,叫做飞机的重心。

重心所处的位置叫做重心位置。

飞机在空中的转动,是绕飞机的重心进行的。

因此,确定飞机重心位置是十分重要的。

飞机重心的前后位置,常用重心到某特定翼弦上投影点到该翼弦前缘点的距离,占该翼弦的百分比来表示。

这一特定翼弦,就是平均空气动力弦(MAC )。

所谓平均空气动力弦,是一个假想的矩形机翼的翼弦。

该矩形机翼和给定的任意平面形状的机翼面积、空气动力以及俯仰力矩相同。

在这个条件下,假想矩形机翼的弦长,就是给定机翼的平均空气动力弦长。

机翼的平均空气动力弦的位置和长度,均可以从飞机技术手册上查到。

有了平均空气动力弦作为基准,就可以计算飞机重心相对位置。

燃油的消耗等都使飞机重心位置发生变化。

有了平均空气动力弦作为基准,就可以计算飞机重心相对位置。

设重心的投影点到前缘点的距离为X T ,平均空气动力弦长为b A ,则重心相对位置可用下表示: 飞机各部分重力的合力叫飞机的重力G=G 1+G 2+G 3+G 4+G 5+. . . . .图7.6.1 飞机重心 图 7.6.3 平均空气动力弦 图 7.6.2 飞机重心相对位置 T = 100%X T b A2、飞机的机体轴通过飞机重心的三条互相垂直的、以机体为基准的坐标轴,叫机体轴。

第七章第六节飞机重心的计算

第七章第六节飞机重心的计算

G=G i+ G 2+ G 3+ G 4+ G 5+ .......所谓平均空气动力弦,是一个•假想的矩形机翼的翼、弦。

该矩形机翼和给定的任意平面形状的机翼面积、 空气动力以及俯仰力矩相同。

在这个条件下6.假想矩形机翼的弦长,就是给定机翼的平均空气动力弦长。

机翼的平均空气动力弦的位置和长度,均可以从飞机技术手册上查到。

有了平均空气动力弦作为基准,就 可以计算飞机重心相对位置。

飞机飞机对置与装载情况有关, 要发生移动。

如果飞机前总载重增加,重心位置前 燃油的消耗等都使飞机重心位置发生变化。

有了平均空气动力弦作为基准 平均空气动力弦长为76| b A而与飞机飞行状态无关。

当载;载重减少,重心位置后移。

在飞行中,收放起落架、, 就可以计算飞机重心相对位置。

设重心的投影点到前缘点的距离为 X T , b A ,则重心相对位置可用下表示:图763平均空气动力弦 第六节飞机重心的计算、飞机的重心和重心位置的表示1飞机重心确保飞行安全的要求和条件是多方面的,重要的一点就是要保证飞机平衡。

飞机的重心必须在安全的 范围内,保证飞机飞行具有良好的操作性和稳定性。

飞机重心具有以下特性: (1)飞行中,重心位置不随姿态改变。

(2)飞机在空中的一切运动,无论怎样错综复杂,总可以分解为:飞机各部分随飞机重心一道的移动和飞机各部分转绕着飞机重心的转动。

本节将着重介绍飞机的重心、重心计算的方法,以及飞机的平衡,稳定性和操纵性。

重力是地球对物体的吸引力,飞机的各部件(机身、机翼、尾翼、发动机等)、燃油、货物、乘客等 都要受到重力的作用,飞机各部分重力的合力,叫做飞机的重力,用 G 表示。

重力的着力点,叫做飞机的重心。

重心所处的位置叫做重心位置。

飞机在空中的转动,是绕飞机的重心进行的。

因此,确定飞机重心 位置是十分重要的。

飞机重心的前后位置,常用重心到某特定翼弦上投影点到该翼弦前缘点的距离,占该翼弦的百分比来 表示。

这一特定翼弦,就是平均空气动力弦(MAC 。

飞机重量和重心计算演示幻灯片

飞机重量和重心计算演示幻灯片
W 固定 设 0.1 备1W to
14
航空宇航学院
飞机重心的几个概念
• 飞机重心的前、后限
- 中立重心位置
纵向静稳定度为零时的重心位置
- 重心后限位置
10%; • 如果起落架不安装在机翼,减少5%; • 采用富勒襟翼,增加2%。 • 讨论:
▪ bs W机翼 ▪ 可通过增加翼载来减缓由于bs 带来的不利因素,故大型飞机
通常有较高的翼载
From 《Synthesis of Subsonic Airplane Design》 ,Torenbeek,1982
3
航空宇航学院
重量的分组


全 机 重 量
油 重 量
使
用 空 重

机 重 量
• 机翼结构 • 尾翼结构 • 机身结构 • 起落装置 • 操纵系统 • 推进系统 • 固定设备 • 不可用燃油 • 机组乘员
? ? ? ? ? ? ?
√ √
有 • 乘客
效 • 行李 载 • 货物
√ √ √
荷 • 军用装载
Zh — 定义见图:
1/4 — ¼ 弦线后掠角(度); 垂 — 垂尾梯形比; MH — 海平面最大马赫数; W平、 W垂的单位为磅
Zh = 0
From 《Airplane Design》, Part 5 , Roskam.
9
航空宇航学院
机身结构重量
W机身 KWf
VDbf
lt hf
SG 1.2
Kwf = 0.23 VD — 设计俯冲速度(km/h) lt — 机翼根弦1/4处至平尾根弦1/4处之间的距离 bf — 机身最大宽度(m); SG — 机身壳体面积(m);
航空宇航学院

航空飞机重心的计算下

航空飞机重心的计算下

7.6 飞机重心的计算
–3、指数计算法 • 1)以力矩数为基础的指数 –定义:以力矩数为基础的指数是以力矩数作为 基数,按照一定的规定换算成指数,这种方法叫 以力矩数为基础的指数。 –方法:确定两类力矩数: –①固定力矩数:空机力矩、基本重量力矩数是 固定的。 –②变动力矩数:燃油、旅客、货物的重量数是 变动的,但客座的位置、货舱的位置、油箱的位 置是固定的。可预先计算出每个固定位置的单位 载量力矩数。
–以上结果中的重心站位可以换算成MAC % 值, 是商务配平中最常用的重心表示方法。
7.6 飞机重心的计算
• [例1]:某架飞机的平均空气动力弦长度为6.91642米, 重心在该弦上的投影点距翼弦前缘的距离为1.647米,则 飞机的重心位置? –1.647/6.91642×1OO%MAC=23.82%MAC
原后掠机翼
假想矩 形机翼
平均空气 动力弦MAC
7.6 飞机重心的计算
• 7.6.5飞机重心位置的计算 –1.代数计算法 • (1)定义: 以重心到基准点的距离作为未知数x, 按照逐项计算力矩,最后求算重心位置的方法,叫 代数计算法。 • (2)原理公式:重心到基准点的距离=总力矩 ÷ 总重量 • (3)计算方法:从其定义和原理公式可知,重心的 位置是由重心到基准点的距离来表示,首先要设定 基准点;其次应求算总力矩和总重量;即可得出重 心距离基准点的长度。
7.6 飞机重心的计算
• 2)平均空气动力弦百分比法
–平均空气动力弦百分比(MAC%,Mean aerodynamic chord_MAC):飞机重心的前后位 置,常用重心到某特定翼弦上投影点到该翼弦前 缘点的距离,占该翼弦的百分比来表示,这就是 平均空气动力弦百分比。
–假想一个矩形机翼,其面积、空气动力特性和 俯仰力矩等都与原机翼相同。该矩形机翼的翼弦 与原机翼某处的翼弦长度相等,则原机翼的这条 翼弦即为平均空气动力弦,用MAC表示。

民航培训资料之载重平衡讲义

民航培训资料之载重平衡讲义

民航培训资料之载重平衡讲义
目录Content
一、载重平衡基础知识
二、舱单
一、载重平衡基础知识
一、载重平衡基础知识
一、载重平衡基础知识
定义:MAC与LEMAC
平均空气动力弦(MAC):是从空气动力角度计算出来的一个假想的矩形机翼的翼弦。

重心通常以平均空气动力弦的百分比(MAC%)表示。

即:重心到某特定翼弦上投影点到该翼弦前缘点的距离(LEMAC),占该翼弦的百分比。

一、载重平衡基础知识
力矩=力×力臂
指数(INDEX):用来衡量飞机重心相对于力臂参考点的力矩的大小
(简而言之,指数是缩小了一定倍数的力矩)
干使用指数(DOI ):用来衡量飞机干使用重量重心相对于力臂参考点的力矩大小
一、载重平衡基础知识
目录Content
一、载重平衡基础知识
二、舱单
二、舱单
结束。

飞机载重平衡和重心知识要点

飞机载重平衡和重心知识要点

飞机载重平衡和重心知识要点飞机载重平衡和重心知识要点飞机由于自身结构强度、客货舱容积、运行条件及运行环境等原因,都必须有最大装载量的限制。

那么,下面是店铺为大家整理的飞机载重平衡和重心知识要点,欢迎大家阅读浏览。

一、飞机的载重1.飞机的最大业务载重量飞机由于自身结构强度、客货舱容积、运行条件及运行环境等原因,都必须有最大装载量的限制。

飞机是在空中飞行,要求具有更加高的可靠性和安全性以及更加好的平衡姿态,而货物装载量、装载位置和旅客客舱座位分布直接影响飞行安全和飞机平衡。

因此严格限制飞机的最大装载量对飞行安全至关重要。

飞机的最大起飞全重、最大落地全重、最大无油全重、最大起飞油量、航段耗油量、飞机的最大业载量和空机重量是飞机制造商在交付用户时提供的静态业务数据。

2.飞机的最大起飞全重(MTOW)飞机的最大起飞全重是飞机在起飞线加大马力起飞滑跑时全部重量的最大限额。

限制飞机的最大起飞重量主要有以下几个方面的原因:(1)飞机的自身结构强度;(2)发动机的功率;(3)刹车效能限制及起落架轮胎的线速度要求。

影响飞机的最大起飞重量的因素主要有:(1)大气温度和机场标高;(2)风向和风速;(3)起飞跑道的情况:跑道长度越大,起飞重量可以越大,因为可供飞机起飞滑跑的距离越大。

例如当跑道长度达到3200米时,可以起降大型飞机,当跑道长度只有1700米时,只能起降中小型飞机,(4)机场的净空条件:机场的净空条件是指机场周围影响飞机安全、正常起降飞行的环境条件,例如高建筑物、高山、鸟及其他动物的活动等情况;(5)航路上单发超越障碍的能力;(6)是否使用喷水设备;(7)受襟翼放下角度的影响;(8)噪音的限制规定等。

3.飞机的最大落地全重(MLDW)飞机的最大落地全量是在飞机设计和制造时确定的飞机着陆时全部重量的最大限额。

限制飞机的最大着陆重量的原因主要有:(1)飞机的机体结构强度和起落架允许承受的冲击载荷;(2)飞机的复飞爬高能力。

轻型复合材料电动飞机重量及重心估算研究

轻型复合材料电动飞机重量及重心估算研究

轻型复合材料电动飞机重量及重心估算研究摘要:在飞机初步方案设计阶段,对各部件、各系统的重量和重心计算是比较困难的,将这些重量和重心求出来以后,进一步计算全机的重量和重心就比较容易了。

文章结合某型双座电动复合材料飞机重量和重心数据,给出了在初步方案设计时,轻型复合材料电动飞机的重量及重心的估算方法。

标签:复合材料;电动飞机;重量;重心在飞机设计研究中,表明飞机结构重量增加对飞机设计的影响是可能的。

如果飞机技术指标(如航程,起飞性能等)保持不变,那么较差的设计,增加了结构重量并将导致较大的油耗,较大的发动机,更强的起落架,较大机翼面积和尾翼面积。

反过来,这些增加将要求更重的结构。

这个恶性循环影响即众所周知的“重量增长”。

方案研究表明对于飞机上每千克不必要的结构重量,飞机最大起飞重量将增加约3kg。

对于飞机采用复合材料来说,可以实现飞机减重的效果,因此,目前大量的轻型飞机采用复合材料结构。

在飞机初步设计阶段,飞机的重量对飞机设计的影响比其他任何设计参数都大。

在飞机初步方案设计阶段,对各部件、各系统的重量和重心计算是比较困难的,将这些重量和重心求出来以后,进一步计算全机的重量和重心就比较容易了。

在早期设计阶段,不得不使用飞机所有部件的历史统计数据进行估算。

对于轻型复合材料电动飞机,目前发展较缓慢,因此复合材料电动飞机的重量估算方法及统计数据相对传统的飞机来说较少。

文章结合某型双座电动复合材料飞机重量和重心数据,给出了轻型复合材料电动飞机的重量及重心的估算方法。

1 轻型复合材料电动飞机部件重量估算飞机重量是连接设计活动中所有分别进行设计的共同因素(空气动力学、结构、推进、布局、适航性、环境、经济性和使用方面)。

飞机重量对性能、设计、经济性和管理规章等方面的重要性如图1所示。

图1 对飞机重量的影响电动飞机与传统燃油飞机相比,其能源来源于电池,因此,其全机重量m 可以用下式来表达:m=m结构+m动力+m航电+m操纵+m有效其中动力系统的重量包括电池重量。

飞机载重平衡实际业务载量配算教学课件

飞机载重平衡实际业务载量配算教学课件

确定货物和乘客的配比
货物类型和数量
了解货物的种类和数量,以便合理配 比。
历史数据和经验
根据历史数据和经验,可以更合理地 进行配比。
乘客数量和行李重量
乘客的数量和携带的行李重量也会影 响配比。
计算重心位置
重心位置公式
使用公式计算飞机的重心 位置。
飞行稳定性
重心位置会影响飞机的稳 定性,因此需要合理计算 。
02
飞机载重的合理分配对飞机的安 全性和性能至关重要,过载或欠 载都可能对飞机的结构造成损害 或影响飞行稳定性。
飞机重心位置的影响
飞机重心位置是指飞机重力的作用点 ,对飞机的飞行姿态和稳定性有重要 影响。
在起飞和降落阶段,重心位置的合理 选择可以确保飞机的稳定性和操纵性 ,防止翻滚和失速等危险情况。
飞机载重平衡实际业 务载量配算教学课件
目录
CONTENTS
• 飞机载重平衡基础知识 • 实际业务载量配算流程 • 实际业务载量配算案例分析 • 实际业务载量配算注意事项 • 总结与展望
01 飞机载重平衡基础知识
飞机载重的概念
01
飞机载重是指飞机在起飞、巡航 、降落等不同飞行阶段所承载的 总重量,包括乘客、货物、燃油 和机载设备的重量。
详细描述:大型航班载重平衡计算通常采用自动化计算 方式,利用计算机软件进行精确的计算和控制,确保飞 机起飞、降落和飞行过程中的安全和稳定性。
详细描述:大型航班载重平衡计算需要精确控制飞机的 重心位置和重量分布,以确保飞机起飞、降落和飞行过 程中的安全性和稳定性。
案例三:特殊情况下的载重平衡计算
总结词:特殊情况处理 总结词:灵活应对 总结词:经验积累
04 实际业务载量配算注意事 项

飞机重心位置求算介绍课件

飞机重心位置求算介绍课件

3
4
飞机重心位置求算在 飞行模拟器中的应用: 飞行模拟器需要模拟 飞机的重心位置,以 便飞行员在训练过程 中能够真实地感受到 飞机的飞行特性。
飞机重心位置求算在 飞行事故分析中的应 用:通过分析飞机的 重心位置,可以了解 飞机在飞行过程中可 能出现的问题,从而 采取相应的措施避免 事故发生。
飞机设计优化
03 模拟退火算法:模拟金属退火过程,通过 控制温度和冷却速度,实现全局最优解
04 神经网络算法:模拟人脑神经网络,通过 调整网络结构和参数,实现全局最优解
03
影响飞机的飞行 性能:重心位置 对飞机的飞行性 能有重要影响, 合适的重心位置 可以提高飞机的
飞行性能。
04
影响飞机的载荷 分布:重心位置 对飞机的载荷分 布有重要影响, 合适的重心位置 可以提高飞机的
载荷分布。
基本原理
01
飞机重心位置求算的基本 原理是利用飞机的静力平 衡方程求解。
02
静力平衡方程描述了飞机 在静止状态下,作用在飞 机上的所有力矩之和为零。
总重量/总重量
实例分析
确定飞机的 尺寸和重量
分布
计算飞机的 惯性矩和惯
性积
利用重心位 置公式求解
重心位置
验证重心位 置求解结果
的准确性
飞行控制
1
飞机重心位置求算在 飞行控制中的作用: 通过计算飞机重心位 置,可以调整飞机的 飞行姿态和稳定性。
2
飞机重心位置求算在 自动驾驶系统中的应 用:自动驾驶系统需 要知道飞机的重心位 置,以便在飞行过程 中自动调整飞机的飞 行姿态和速度。
03
飞机的重心位置是飞机静
力平衡方程的一个解。
04
通过求解静力平衡方程,

小飞机重心计算

小飞机重心计算

教材教法飛機載重與平衡實習-小飛機重心計算影響飛機飛行安全最重要的因素是載重與平衡,一架超重的航空器或重心不在規定範圍之內,是非常危險而且沒有效率。

在航空器設計之初,設計者暨工程師必須將飛機的載重與平衡考量在適當的位置,當航空器進行營運操作時,駕駛員及航空維修技術人員接續起此責任。

如果不考慮航空器的個別差異,有兩種共通的特性需考慮,一個是對重量的限制,另一個是對重心的範圍必須侷限於規定之範圍內。

前者在航空器設計之初就決定最大重量(maximum weight),所有航空器最大授權重量及設備列表都在都根據機型認證資料表(Type Certificate Data Sheets,TCDS),依照操作時的狀況,機翼或旋翼所能提供升力之大小,決定航空器起飛重量,此外航空器結構強度也會限制飛行安全的最大重量;而理想重心的位置及重心所能移動的最大範圍,都是經過設計者精心計算的。

所謂重心(center of gravity,CG)可視為飛機上某一點,將飛機在空中懸掛起會保持水平平衡姿態,通常我們計算飛機重心是利用下列公式:飛機總力矩飛機重心(從參考線算起)=飛機總重製造廠商會提供航空器空重及空重重心的位置,所謂空重(empty weight)是指機身、發動機及其它安裝在飛機上固定或永久性設備重量之和,空重重心就是上述設備的水平平衡點。

航空維修技術人員在維修航空器或操作維修檢查工作要記錄最新的載重與平衡資料,尤其是經過修理(repairs)或變更(alterations),更要記錄其變化。

航空器超重將引起以下一些問題:*航空器需要更大起飛速度,表示需要更長的跑道距離。

*降低爬升率、爬升角度。

*降低實用升限(service ceiling),實用升限是指標準大氣情況維持每分鐘100呎之穩定速率爬升,可達到的最大高度。

*降低巡航速度*所短巡航距離。

*機動性或靈敏度降低。

*著陸速度變高,增加著陸跑道長度。

*超重將衝擊結構,引起損傷,尤其是起落架。

飞机重量和重心计算PPT课件

飞机重量和重心计算PPT课件
飞机重量和重心计算 ppt课件
• 引言 • 飞机重量计算 • 飞机重心计算 • 飞机重量和重心对飞行性能的影
响 • 实际应用案例分析 • 结论
目录
01
引言
飞机重量和重心的概念
飞机重量
指飞机在任何特定状态下的总重 力,包括空重、燃油、货物、乘 客等重量。
飞机重心
飞机上各部分重力的合力作用点 ,是飞机平衡和稳定性的关键因 素。
重量和重心计算技术的发展推动 了航空科技的进步,为新型飞机 设计、材料选择和制造工艺提供
了重要支持。
对未来研究的展望
智能化计算
随着人工智能和大数据技术的发展,未来可以开发更加智能化的 重量和重心计算系统,提高计算精度和效率。
材料与结构影响
深入研究新型材料和结构对飞机重量和重心的影响,为新一代飞机 设计提供理论支持。
04
飞机重量和重心对飞行性能 的影响
飞机重量对飞行性能的影响
飞机起飞和着陆性能
飞机重量增加会导致起飞和着陆距离 增加,需要更长的跑道和更大的刹车 力。
爬升和巡航性能
结构强度和寿命
飞机重量增加会对结构造成更大压力, 影响飞机结构寿命。
过重的飞机难以爬升,且在巡航高度 需要消耗更多燃料,影响航程。
飞机重心对飞行性能的影响
着陆时的总重和着陆速度。
详细描述
着陆重量计算需要考虑飞机的总重、 着陆速度、刹车力、阻力等因素, 以确保飞机能够安全着陆。
计算公式
着陆重量 = 总重 + 着陆滑跑时的重 力 + 刹车力 - 阻力
飞机无油重量计算
总结词
无油重量是指飞机在起飞前已经加满油,但尚未 起飞时所达到的重量。
详细描述
无油重量计算需要考虑飞机的总重、燃油重量等 因素,以确定飞机的实际有效载荷。

重量、重心估算-20181229

重量、重心估算-20181229

1 基于统计方法的重量估算1.1 机身重量f FUS f f f f f L C p 222M =(9.75+5.84B )(-1.5)(B +H )(B +H )2273.270.790.58(9.75 5.84 6.062)( 1.5)(6.062 6.062)6.062 6.062⨯=⨯⨯+⨯-++32194.9815kg = 其中:1、 -机身长度(m ):73.272、 -机身最大宽度(m ):6.0623、 -机身最大高度(m ):6.0624、-增压机身系数,对于客机取0.795、 -客舱内外压差(bar ),典型值为0.581.2 机翼重量估算1.2.1 理想的基本结构重量 零燃油重量:00(1)128835fuel ZW M M M kg M =-=惯性影响因子:01[0.2(1/)]0.42ZW r M M =-+-=机翼材料的工作许用应力:(运输机的最大设计过载为2.5-3.0取2.5)1.752.50.5500.75 1.51.752.50.550.75 1.55R 1.12[(1)sec sec ]104.1259.6207690111.12[(10.35)]10384.03060.14cos32cos326038.31210a NrA M f S Paλφϕτ=+⨯⨯⨯=⨯+⨯⨯⨯⨯=⨯1.50.51.50.551920R (1)sec sec /1119209.6384.0306 4.125(10.35)/(0.146038.31210)cos32cos320.1025C a m A S Nr f λφϕτ=+=⨯⨯⨯⨯+⨯⨯⨯⨯= 1.250.520.520.250 1.250.520.520.253(10.340.44) 2.2()(10.72)3384.03060.14384.0306(10.340.350.440.35) 2.20.14()(10.350.720.35)207690.012409.69.6r S S m M AR AR τλλτλλ⎡⎤=-++-+⎢⎥⎣⎦⨯⨯⎡⎤=-⨯+⨯+⨯-+⨯=⎢⎥⨯⎣⎦ 计算有:0.10250.01240.1149IPSC r M m m M =+=+= 则理想机翼重量0.114920769023865.5564IPS M kg=⨯=1.2.2 次级机翼结构修正系数机翼上发动机挂架等机翼上的主要因数影响下的惩罚修正系数项如下表,对于我们的设计有部分系数是没有的。

ARJ21配载理论基础

ARJ21配载理论基础
使

2.1 基本重量的概念

制造空机重量+标准项目的重量
仅 作
件 中


制造空机重


基本空机重
仅供培训使用

培 训
使
旅客座椅,厨房结构 盥洗室,衣帽间 储藏室,杂志架 地毯,应急救生设备 发动机滑油,不可用燃油 结构,动力装置 内部设备,系统 其他


不 作
使


不 作


配载不正确造成的危害:

使

1.2 重要性
仅供培训使用

件 中

效 益
• 科学有效地控制好飞机的载量,可以优化 装载,提高空间利用率,从而提高运营效 益。



仅 作
培 训
安 全
使
• 合理的分配旅客座位、货物的舱位以有效 控制飞机的重心位置,使飞机的重心处于 适当的范围之内,保证飞行安全。



使

2.2 限制重量的概念
2.2 限制重量的概念
结构限制:在适航取证时建立 最大着陆重量(MLW) 最大零油重量(MZFW)
仅供培训使用

件 中


上最大商载,无可用燃油及其它液体的最大重量。


液体加注到飞机规定位置以前的最大允许重量,即使用空重加
培 训
使用空机重
使
干使用重量 DOW


零油重量
业载
不 作


零油重量
使

2.1 基本重量的概念
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

航空宇航学院
机身结构重量
W机身 KWf
VDbf
lt hf
SG 1.2
Kwf = 0.23 VD — 设计俯冲速度(km/h) lt — 机翼根弦1/4处至平尾根弦1/4处之间的距离 bf — 机身最大宽度(m); SG — 机身壳体面积(m);
(kg)
• 对于增压客舱,增加8%; • 后机身安装发动机,增加4%; • 主起落架在机身上,增加7%; • 若无主起落架支撑结构,也无机轮舱减少4%; • 对于货机,增加10%。
From 《Introduction to Aircraft Design: Synthesis and Analysis》, Kroo
航空宇航学院
控制面操纵系统的重量
W 操 纵 K SC (W to )2 /30 .76( 8 k)g
• 设有双重操纵机构的轻型飞机:KSC=0.23 • 用于手操纵的运输机和教练机: KSC=0.44 • 运输机,动力操纵系统,仅有后缘襟翼: KSC=0.64 • 有前缘襟翼时,增加20%。
机翼结构重量(运输机)
• 基本公式
以下公式为基本公式—只适于起落架可收,发动机 不安装在机翼上的情况:
W 机 翼 K w b s0 .75 (1 b b rse)fn m( aW b x s G //tr S)0 .3W 0G
其中: bref = 1.905
bs为结构展长: bsb/co1s/2
S — 机翼面积;
W 固定 设 0.1 备1W to
航空宇航学院
飞机重心的几个概念
• 飞机重心的前、后限
- 中立重心位置
纵向静稳定度为零时的重心位置
- 重心后限位置

* 最低纵向静稳定度由设计规范或适航性条例规定:
航空宇航学院
尾翼结构重量
平尾结构重量:
W 平 0 . 0 尾 { W 3 t o ( n m 4 ) 0 . 8 a S 1 平 x 0 . 5 3 ( b 8 平 / t 4 r , 平 ) 0 . 0 ( c 3 A / l 平 3 ) 0 . 2 } 0 . 9 81
垂尾结构重量:
From 《Synthesis of Subsonic Airplane Design》 ,Torenbeek,1982
航空宇航学院
起落装置重量
起落装置重量包括:
▪ 主结构(支柱和撑杆) ▪ 机轮、 刹车装置、 轮胎、 导管和冷气装置; ▪ 收放机构、阻尼器、操纵器件、机轮小车等。
W 起落 装 0.0 置 4W to
W 垂 0 .1{ 9 1 (Z h/b 垂 )0 .5 (W to n m)0 a .3x6 (S 5 垂 )1 .08 (M 9H )0 .601
l垂 0 .7( 2 1 6 S r/S 垂 )0 .2( 1垂 7 )0 .3( 3 1 7 1 垂 )0 .3( 6 C 3 O 1 /4 ) 0 .4 S } 8 1 .0 41
10%; • 如果起落架不安装在机翼,减少5%; • 采用富勒襟翼,增加2%。 • 讨论:
▪ bs W机翼 ▪ 可通过增加翼载来减缓由于bs 带来的不利因素,故大型飞机
通常有较高的翼载
From 《Synthesis of Subsonic Airplane Design》 ,Torenbeek,1982
航空宇航学院
重量的分组


全 机 重 量
油 重 量
使
用 空 重

机 重 量
• 机翼结构 • 尾翼结构 • 机身结构 • 起落装置 • 操纵系统 • 推进系统 • 固定设备 • 不可用燃油 • 机组乘员
? ? ? ? ? ? ?
√ √
有 • 乘客
效 • 行李 载 • 货物
√ √ √
荷 • 军用装载
航空宇航学院
飞机重量和重心计算
航空宇航学院
飞机总体设计框架
设计 要求
主要参数计算 布局型式选择
发动机选道
是否满足 设计要求?
最优?
分析计算
重量计算 气动计算 性能计算
结构分析
总体布局 三面图 部位安排图 结构布置图
内容提要
航空宇航学院
• 重量的分组 • 飞机的过载 • 飞机结构重量估算 • 飞机重心的几个概念 • 各部件的重心位置估算 • 全机重量计算和重心定位 • 飞机重心位置的调整 • 飞机重量重心计算报告
航空宇航学院
推进系统重量
推进系统重量包括: ▪ 发动机 ▪ 安装发动机的结构 ▪ 短舱 ▪ 操纵发动机的附件(起动和控制系统等) ▪ 反推力装置 ▪ 燃油系统
W推进系 1统 .6W发动机
航空宇航学院
固定设备重量
• 包括:
▪ 辅助动力装置(APU) ▪ 仪表、 导航、 电子设备 ▪ 液压、 冷气、 电气 ▪ 装饰和设备 ▪ 空调和防冰 ▪ 其它……
nMAX — 最大过载系数; 垂 — 垂尾展弦比; Sr — 方向舵面积(ft) ; Wto — 起飞重量(磅);
Zh — 定义见图:
1/4 — ¼ 弦线后掠角(度); 垂 — 垂尾梯形比; MH — 海平面最大马赫数; W平、 W垂的单位为磅
Zh = 0
From 《Airplane Design》, Part 5 , Roskam.
其中:S平 — 平尾面积(ft2); l平 — 平尾尾力臂(ft); tr,平— 平尾根部最大厚度(ft); tr,垂— 垂尾根部最大厚度(ft);
S垂 — 垂尾面积(ft2); l垂 — 垂尾尾力臂(ft); b平 — 平尾展长(ft); b垂 — 垂尾展长(ft);
航空宇航学院
尾翼结构重量(续)
WG — 零燃油重量;
nMAX — 最大过载系数; tr — 根弦最大厚度
对于轻型飞机(Wto 5670):Kw = 4.90 10-3
对于运输飞机(Wto 5670):Kw = 6.67 10-3
航空宇航学院
机翼结构重量(续)
• 如机翼上有扰流板和减速板,增加2%; • 当机翼安装2台或4台发动机时,分别减少5%或

• 使用燃油

航空宇航学院
飞机的过载
• 结构重量与飞机过载有关
• 几种飞机的使用过载:
▪ 战斗机: ▪ 教练机和攻击机: ▪ 轰炸机: ▪ 运输机和货机:
ny = 8 ~ 9 ny = 5 ~ 6 ny = 3 ~ 4 ny = 1.5 ~ 2.5
▪ 最大过载: nmax = 1.5 ny
航空宇航学院
相关文档
最新文档