小学六年级奥数系列讲座:最值问题(含答案解析)
六年级奥数专题经典 最值问题及答案
例1.1.有9个同学要进行象棋比赛,他们准备分成两组,不同组的人相互之间只比赛一场,同组的人之间不比赛。
他们一共最多能比赛多少场?2.直角三角形斜边长为10cm,求这个直角三角形面积的最大值。
3.一个边长为30的正方形,四个角减去四个正方形,剩下部分可以拼成一个无盖长方体,那么所得的长方体容积最大是多少?4.用1、2、3、4、5、6、7、8、9这九个数字(每个数字仅用一次)组成两个多位数,那么这两个多位数的乘积最大是多少?5.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用0,2,4,6,8这5个⨯-⨯的计算结果的最大值。
数字组成一个三位数FGH和一个两位数IJ。
求算式ABC DE FGH IJ例2.1.如图,用1×2和1×3两种规格的小长方形地板砖铺满5×8的地面,至少需要地板砖多少块?2. 国际象棋的皇后可以控制她所在的横线、竖线和斜线,图中一个皇后(图中五角星)就把整个3×3的棋盘控制了。
那么为了控制一个4×4的棋盘至少要放几个皇后?3. 通过在表达式1÷2÷3中加括号,我们可以得到两个不同的值(1÷2)÷3=61和1÷(2÷3)=23,现在表达式1÷2÷3÷4÷5÷6÷7÷8中加上括号,问我们所能得到的最大值是多少?4. 把14分拆成几个自然数的和,再求出这些自然数的乘积,使得到的积尽可能大,这个乘积是多少?请证明你的结论。
5. 在1,3,5,……99中选取k 个数,使得它们的和为1949,那么k 的最大值是多少?6. A 、B 、C 、D 、E 、F 、G 、H 、I 表示9个各不相同的不为零的自然数,这9个数排成一排,如果其中任何五个相邻的数之和都大于40,那么这9个数的和最小是多少?。
六年级奥数第13讲:最大值与最小值
六年级奥数第13讲:最大值与最小值【知识要点】解决最大最小问题,常用的方法和思路有以下几种:1.枚举比较。
在有限的情况下,通过计算,将所有情况的结果列举出来,然后比较出最大值或最小值。
2.运用规律。
①和一定的两个数,差越小,积越大。
②积一定的两个数,差越小,和越小。
③两点之间直线段最短。
3.解答最大最小问题,还要考虑极端的情形。
即可以从最特殊的情况入手,即可能出现的最大值或最小值考虑。
[例1] 两个数的和为198,这两个数的积最大是多少?点拨:和为198的两个数(整数或分数)有无穷多组,将每组的积计算出来再比较是不可能的。
我们先通过特例来寻求积的变化规律。
如果两数都是自然数,积的情况如下:197×1=197,196×2=392,195×3=585,194×4=776,……可以猜想,和为198的两个数,一定可以写成:99 + a与99 - a(0 ≤a ≤ 99),而(99 + a)×(99 - a)=99² - a²可见,由此可以得出,两个数的和一定,则当它们的差越来越小时,乘积越来越大;当它们相等时(差为0时),乘积最大。
解答:当a = 0时,积最大,最大值即为99×99=9801[试一试1] 两个数的和为15,积的最大值是多少?(答案:56.25)[例2] 将1、2、3、4、5、6这六个数字分成两组,分别排成两个三位数,并且使这两个数的乘积最大。
这个乘积是多少?点拨:要使两个数的乘积最大,应把6和5两个数放在千位,4和3两个数放在百位。
但4和3分别放在哪一个数字后面呢?由例1我们可以知道,当两个数的和一定时,两个数的差越小,积就越大。
64和53相差11,63和54相差9,所以3应放在6的后面,4应放在5的后面。
同样道理,1应放在3的后面,2应放在4的后面。
解答:631×542=342002,乘积最大。
[试一试2] 用2~9这八个数字分别组成两个四位数,使这两个四位数的乘积最大。
【2018-2019】六年级奥数最大值习题答案-精选word文档 (1页)
【2018-2019】六年级奥数最大值习题答案-精选word文档
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
六年级奥数最大值习题答案
1、从0,1,2,……,9这10个数中取出3个数,使其和是不小于10的
偶数,不同的取法共有多少种?
2、
1.从0,1,2,……,9这10个数中取出3个数,使其和是不小于10的偶数,不同的取法共有多少种?
解答:从5个偶数中取出3个数,共有10种取法;取2个奇数,1个偶数,有50种取法,故和为偶数的不同取法有60种。
在这60种取法中,3数之和小于10的有:{0,1,3}、{0,1,5}、{0,1,7}、{0,2,4}、{0,2,6}、{0,3,5}、{1,2,3}、{1,2,5}、{1,3,4}
共9种
综上可知满足要求的不同取法有51种。
小学数学人教新版六年级上册奥数系列讲座:最值问题(含答案解析)
小学数学人教新版六年级上册实用资料最值问题内容概述均值不等式,即和为定值的两数的乘积随着两数之差的增大而减小.各种求最大值或最小值的问题,解题时宜首先考虑起主要作用的量,如较高数位上的数值,有时局部调整和枚举各种可能情形也是必要的.典型问题2.有4袋糖块,其中任意3袋的总和都超过60块.那么这4袋糖块的总和最少有多少块?【分析与解】方法一:设这4袋为A、B、C、D,为使4袋糖块的总和最少,则每袋糖应尽量平均,有A、B、C袋糖有20、20、21块糖.则当A、B、D三袋糖在一起时,为了满足条件,D袋糖不少于21块,验证A、B、C、D 这4袋糖依次有20,20,2l,2l时满足条件,且总和最少.这4袋糖的总和为20+20+21+21=82块.方法二:设这4袋糖依次有a、b、c、d块糖,有61616161a b ca b da c db c d++≥⎧⎪++≥⎪⎨++≥⎪⎪++≥⎩①②③④,①+②+③+④得:3(a+b+c+d)≥244,所以a+b+c+d≥8113,因为a+b+c+d均是整数,所以a+b+c+d的和最小是82.评注:不能把不等式列为a b c60a+b+d60a+c+d60b+c+d60++〉⎧⎪〉⎪⎨〉⎪⎪〉⎩①②③④,如果这样将①+②+③+④得到3(a+b+c+d)>240,a+b+c+d>80,因为a、b、c、d均是整数,所以a+b+c+d的和最小是81.至于为什么会出现这种情况.如何避免,希望大家自己解决.4.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用O,2,4,6,8这5个数字组成一个三位数FGH和一个两位数IJ.求算式ABC×DE-FGH×IJ的计算结果的最大值.【分析与解】为了使ABC×DE-FGH×IJ尽可能的大,ABC×DE尽可能的大,F GH×IJ 尽可能的小.则ABC×DE最大时,两位数和三位数的最高位都最大,所以为7、9,然后为3、5,最后三位数的个位为1,并且还需这两个数尽可能的接近,所以这两个数为751,93.则FGH×IJ最小时,最高位应尽可能的小,并且两个数的差要尽可能的大,应为468×20.所以AB C×DE-FG H×IJ的最大值为751×93-468×20=60483.评注:类似的还可以算出FGH×IJ-ABC×DE的最大值为640×82-379×15=46795.6.将6,7,8,9,10按任意次序写在一圆周上,每相邻两数相乘,并将所得5个乘积相加,那么所得和数的最小值是多少?【分析与解】我们从对结果影响最大的数上人手,然后考虑次大的,所以我们首先考虑10,为了让和数最小,10两边的数必须为6和7.然后考虑9,9显然只能放到图中的位置,最后是8,8的位置有两个位置可放,而且也不能立即得到哪个位置的乘积和最小,所以我们两种情况都计算.8×7+7×10+10×6+6×9+9×8=312;9×7+7×10+10×6+6×8+8×9=313.所以,最小值为312.8.一个两位数被它的各位数字之和去除,问余数最大是多少?【分析与解】设这个两位数为ab=lOa+b,它们的数字和为a+b,因为lOa+b=(a+b)+9a,所以lOa+b≡9a(moda+b),设最大的余数为k,有9a≡k(mod a+b).特殊的当a+b为18时,有9a=k+18m,因为9a、18m均是9的倍数,那么k也应是9的倍数且小于除数18,即0,9,也就是说余数最大为9;所以当除数a+b不为18,即最大为17时,:余数最大为16,除数a+b只能是17,此时有9a=15+17m,有m=7+9t a=15+17t ⎧⎨⎩(t为可取0的自然数),而a是一位数,显然不满足;:余数其次为15,除数a+b只能是17或16,除数a+b=17时,有9a=15+17m,有m=6+9ta=13+17t⎧⎨⎩,(t为可取0的自然数),a是一位数,显然也不满足;除数a+b=16时,有9a=15+16m,有m=3+9ta=7+16t⎧⎨⎩(t为可取0的自然数),因为a是一位数,所以a只能取7,对应b为16-7=9,满足;所以最大的余数为15,此时有两位数79÷(7+9)=4……15.10.用1,2,3,4,5,6,7,8,9这9个数字各一次,组成一个被减数、减数、差都是三位数的正确的减法算式,那么这个算式的差最大是多少?【分析与解】考虑到对差的影响大小,我们先考虑百位数,为了让差最大,被减数的百位为9,减数的百位为1,如果差的百位为8,那算式就是如下形式:剩下的6个数字为2、3、4、5、6、7,因为百位数字为8,所以我们可以肯定被减数的十位数字比减数要大,而且至少大2,因为1已经出现在算式中了,算式的可能的形式如下:得数的十位只可能是减数和被减数的十位数字之差,或者小1,可能的算式形式如下:但这时剩下的数都无法使算式成立.再考虑差的百位数字为7的情况,这时我们可以肯定减数的十位数比被减数要大,为了使差更大,我们希望差值的十位为8,因此,算式可能的形式为:再考虑剩下的三个数字,可以找到如下几个算式:,所以差最大为784.12. 4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【分析与解】设这四个分数为上12m、12n、12a+1、12b+1(其中m、n、a、b均为非零自然数)有12m+12n=12a+1+12b+1,则有12m-12b+1=12a+1-12n,我们从m=1,b=1开始试验:1 2=16+13=14+14,13=112+14=16+16,1 4=120+15=18+18,15=130+16=110+110,1 6=15+110=112+112,﹍我们发现,15和16分解后具有相同的一项110,而且另外两项的分母是满足一奇一偶,满足题中条件:1 5+115=16+110,所以最小的两个偶数和为6+10=16.14.有13个不同的自然数,它们的和是100.问其中偶数最多有多少个?最少有多少个?【分析与解】 13个整数的和为100,即偶数,那么奇数个数一定为偶数个,则奇数最少为2个,最多为12个;对应的偶数最多有11个,最少有1个.但是我们必须验证看是否有实例符合.当有11个不同的偶数,2个不同的奇数时,11个不同的偶数和最小为2+4+6+8+10+12+14+16+18+20+22=132,而2个不同的奇数和最小为1+3=4.它们的和最小为132+4=136,显然不满足:当有9个不同的偶数,4个不同的奇数时,9个不同的偶数和最小为2+4+6+8+10+12+14+16+18=90,而4个不同的奇数和最小为1+3+5+7=16,还是大于100,仍然不满足;当有7个不同的偶数,6个不同的奇数时,7个不同的偶数和最小为2+4+6+8+10+12+14=56,6个不同的奇数和为1+3+5+7+9+11:36,满足,如2,4,6,8,10,12,22,1,3,5,7,9,11的和即为100.类似的可知,最少有5个不同的偶数,8个不同的奇数,有2,4,8,10,16,1.3.5,7,9,11,13,15满足.所以,满足题意的13个数中,偶数最多有7个,最少有5个.。
XX六年级奥数最值问题试题及答案
XX六年级奥数最值问题试题及答案奥数在综合测评中所占比重越来越大,很多的名校牛初也都看重孩子的奥数成绩。
对孩子思维的开发,以及今后的数学学习都大有裨益,当然,奥数经典问题也不少,下面跟一起来看看最值问题试题及答案吧!例:阶梯教室座位有10排,每排有16个座位,当有150个人就坐时,某些排坐着的人数就一样多.我们希望人数一样的排数尽可能少,那么相同人数的至少有多少排.解:至少有4排.如果排人数各不相同,那么这10排最多分别坐16、15、14、13、……、7人,那么最多坐16+15+14+13+12+11+10+9+8+7=115(人);如果最多有2排人数相同,那么最多坐(16+15+14+13+12)×2=140 (人);如果最多有3排人数一样,那么最多坐(16+15+14)×3+13=148(人);如果最多有4排人数一样,那么最多坐(16+15)×4+14×2=152(人).由于148<150<152 ,所以只有3排人数一样的话将不可能坐下150个人,相同人数的至少有4排在一定范围内求最大值或最小值的问题,我们称之为“最大最小问题”。
“最大”、“最小”是同学们所熟悉的两个概念,多年来各级数学竞赛中屡次出现求最值问题,但一些学生感到束手无策。
例1一把钥匙只能开一把锁,现在有4把钥匙4把锁。
但不知哪把钥匙开哪把锁,最多要试多少次就能配好全部的钥匙和锁?【解析】开第一把锁,按最坏情况考虑试了3把还未成功,那么第4把不用试了,它一定能翻开这把锁,因此需要3次。
同样的道理开第二把锁最多试2次,开第三把锁最多试1次,最后一把锁那么不用再试了。
这样最多要试的次数为:3+2+1=6(次)。
例2 x3=84A(x、A均为自然数)。
A的最小值是。
【解析】根据题意,84A开立方的结果应为自然数,于是我们可以把84分解质因数,得84=2×2×3×7,因此x3=2×2×3×7×A,其中A 的质因数至少含有一个2、两个3、两个7,才能满足上述要求。
小学六年级奥数专题5. 最值问题
四初一奥数培训专题4:最值问题四初一班姓名:;例1 .如果2007a=b2,其中a,b为大于0的自然数,则a的最小值是例2.将50拆成10个质数的和,要求其中最大的质数尽可能大,那么这个最大的质数是例3.在1—2007的所有自然数中,挑选出一些数,使它们中的每一个数都不是另外一个数的倍数,而且不会出现对称数(如:22,303,1001),则至多能选出个数例4若甲的身高和体重这两个数量中至少有一个比乙大,则称甲不亚于乙,在10个小伙子中如果某人不亚于其余9人,那么称之为棒小伙子,那么这10个小伙子中棒小伙子最多可以有个。
例5 学校购进作文类,奥数类,英语类,文艺类,科普类图书若干本,能够满足全校数百名学生没人从中任意借两本(同类书不能借两本),则至少有名学生中一定有两人所借的图书种类完全相同。
四初2018级数学竞赛班作业4四初一班姓名:1.六年级的几位同学合拍了一张照片,已知冲洗一张底片需要0.8元,洗一张照片需要0.35元,在每位同学得到一张照片,共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的人至少有多少个?2.某邮局只有1.2元,0.8元,0.6元三种邮票,某人要邮寄一个包裹,其邮资为6.2元,若刚好贴满6.2元,则至少要贴多少张邮票?3.四个人年龄之和是100岁,其中一个年龄正好是他们年龄的平均数,另外三个人的年龄最多相差7岁,最少相差2岁,求这四个人的年龄4.现有分别写着1,2,3,4,5,6六个数字卡片各若干张,从中任取出2010张摆放成一行,然后从这一行卡片中任意取出相邻的两张卡片,让其数字相乘得到一个乘积,那么在这些乘积中至少有多少个相同?5.有形状,长短,质量完全一样的6种颜色的筷子各24根,在黑暗中至少应摸出多少根筷子,才能保证摸出8双筷子(每双筷子的两根颜色相同)6.某校有201人参加数学竞赛,按照百分制计分且得分均为整数,若总分为9999 分,则至少有多少名同学的分数相同?为什么?。
小学六年级奥数计算试题及答案:最值问题(20211003224733)
小学六年级奥数计算试题及答案:最值问题(20211003224733)
小学六年级奥数计算试题及答案:最值问题
这篇【小学六年级奥数计算试题及答案:最值问题】,是专门为大家整理的,供大家学习参照!
一把钥匙只好开一把锁 .此刻有 4 把钥匙 4 把锁,但不知哪把钥匙开哪把锁,最多要试 ()次才能配好所有的钥匙和锁.
剖析:第一把钥匙最坏的状况要试 3 次,把这把钥匙和这把锁拿出;剩下的3 把锁和3 把钥匙,最坏的状况要试2 次,把这把钥匙和这把锁取出 ;剩下的 2 把锁和 2 把钥匙,最坏的状况要试 1 次,把这把钥匙和这把锁取出 ;剩下的 1 把锁和 1 把钥匙就不用试了 .
解: 3+2+1=6(次);
答:最多要试 6 次才能配好所有的钥匙和锁.
故答案为: 6.。
小学奥数趣味学习《最值问题》典型例题及解答
小学奥数趣味学习《最值问题》典型例题及解答在日常生活中,人们常常会遇到“路程最近”“费用最省”“面积最大”“损耗最小”等问题,这些寻求极端结果或讨论怎样实现这些极端情形的问题,最终都归结为:在一定范围内求最大值或最小值的问题,我们称这些问题为最值问题。
数量关系:一般是求最大值或最小值。
解题思路和方法:枚举法,综合法,分析法,公式法,图表法例题1:七个小朋友共折纸花100朵,每个小朋友折的朵数都不相同,其中折的最多的小朋友折了18朵,则折的最少的小朋友至少折了多少朵?解:1、要想最少的尽可能少,那么其他人就要尽可能多。
2、因为求折的最少的小朋友至少折了多少朵,那么其他六位小朋友应折的尽可能多,折的朵数应分别为18、17、16、15、14、13,则折的最少的小朋友至少折了100-18-17-16-15-14-13=7(朵)。
例题2:有22根长都是1厘米的小棒,乐乐用这些小棒围成长方形,围成的长方形面积最大是多少平方厘米,最小是多少方厘米?解:1、题目已知的是周长求面积,可以利用列表的方法解决。
2、周长是22厘米,则长与宽的和是22÷2=11(厘米),我们将可能的情况列表呈现出来。
3、所以围成的长方形面积最大是30平方厘米,最小是10平方厘米。
例题3:有一个73人的旅游团,其中男47人,女26人,住到一个旅馆里。
旅馆里有可住11人,7人,4人的三种房间,经过服务员的安排,这个旅游团的男、女分别住在不同的房间里,而且每个房间都按原定人数住满了旅游团的成员。
服务员最少用了多少个房间?解:1、要使房间用的少,则尽量先用11人间,但是也要考虑每个房间都要住满和性别差异,所以男女分开计算。
2、因为3×11+7×2=47(人),所以男的住了3个11人的房间,2个7人的房间。
又因为11×2+4=26(人),所以女的住了2个11人的房间,1个4人的房间,则服务员最少用了3+2+2+1=8(个)房间。
(小学奥数)容斥原理之最值问题
1. 瞭解容斥原理二量重疊和三量重疊的內容;2. 掌握容斥原理的在組合計數等各個方面的應用.一、兩量重疊問題 在一些計數問題中,經常遇到有關集合元素個數的計算.求兩個集合並集的元素的個數,不能簡單地把兩個集合的元素個數相加,而要從兩個集合個數之和中減去重複計算的元素個數,即減去交集的元素個數,用式子可表示成:A B A B A B =+-(其中符號“”讀作“並”,相當於中文“和”或者“或”的意思;符號“”讀作“交”,相當於中文“且”的意思.)則稱這一公式為包含與排除原理,簡稱容斥原理.圖示如下:A 表示小圓部分,B 表示大圓部分,C 表示大圓與小圓的公共部分,記為:A B ,即陰影面積.圖示如下:A 表示小圓部分,B 表示大圓部分,C 表示大圓與小圓的公共部分,記為:A B ,即陰影面積.包含與排除原理告訴我們,要計算兩個集合A B 、的並集AB 的元素的個數,可分以下兩步進行:第一步:分別計算集合A B 、的元素個數,然後加起來,即先求A B +(意思是把A B 、的一切元素都“包含”進來,加在一起);第二步:從上面的和中減去交集的元素個數,即減去C AB =(意思是“排除”了重複計算的元素個數). 二、三量重疊問題A 類、B 類與C 類元素個數的總和A =類元素的個數B +類元素個數C +類元素個數-既是A 類又是B 類的元素個數-既是B 類又是C 類的元素個數-既是A 類又是C 類的元素個數+同時是A 類、B 類、C 類的元素個數.用符號表示為:A B C A B C A B B C A C A B C =++---+.圖示如下:教學目標知識要點7-7-5.容斥原理之最值問題1.先包含——A B +重疊部分A B 計算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重疊部分A B 減去.在解答有關包含排除問題時,我們常常利用圓圈圖(韋恩圖)來幫助分析思考.【例 1】 “走美”主試委員會為三~八年級準備決賽試題。
小学六年级奥数第25讲 最大最小问题(含答案分析)
第25讲 最大最小问题一、知识要点人们碰到的各种优化问题、高效低耗问题,最终都表现为数学上的极值问题,即小学阶段的最大最小问题。
最大最小问题设计到的知识多,灵活性强,解题时要善于综合运用所学的各种知识。
二、精讲精练【例题1】a 和b 是小于100的两个不同的自然数,求a -ba+b的最大值。
根据题意,应使分子尽可能大,使分母尽可能小。
所以b=1;由b=1可知,分母比分子大2,也就是说,所有的分数再添两个分数单位就等于1,可见应使所求分数的分数单位尽可能小,因此a=99a -b a+b 的最大值是99-199+1 =4950 答:a -b a+b 的最大值是4950 。
练习1:1、 设x 和y 是选自前100个自然数的两个不同的数,求x -yx+y的最大值。
2、 a 和b 是小于50的两个不同的自然数,且a >b ,求a -ba+b的最小值。
3、 设x 和y 是选自前200个自然数的两个不同的数,且x >y ,①求x+yx -y的最大值;②求x+yx -y的最小值。
【例题2】有甲、乙两个两位数,甲数27等于乙数的23。
这两个两位数的差最多是多少?甲数:乙数=23:27=7:3,甲数的7份,乙数的3份。
由甲是两位数可知,每份的数量最大是14,甲数与乙数相差4份,所以,甲、乙两数的差是14×(7-3)=56 答:这两个两位数的差最多是56。
练习2:1.有甲、乙两个两位数,甲数的310等于乙数的45。
这两个两位数的差最多是多少?2、甲、乙两数都是三位数,如果甲数的56恰好等于乙数的14。
这两个两位数的和最小是多少?3.加工某种机器零件要三道工序,专做第一、二、三道工序的工人每小时分别能做48个、32个、28个,要使每天三道工序完成的个数相同,至少要安排多少工人?【例题3】如果两个四位数的差等于8921,就是说这两个四位数组成一个数对。
问:这样的数对共有多少个?在这些数对中,被减数最大是9999,此时减数是9999-8921=1078,被减数和剑术同时减去1后,又得到一个满足题意条件的四位数对。
小学奥数讲义6年级-16-最值问题-难版
在日常生活、工作中,经常会遇到有关最短路线、最短时间、最大面积、最大乘积等问题,这就是在一定条件下的最大值或最小值方面的数学问题。
这类问题涉及的知识面广,在生产和生活中有很大的实用价值。
这一讲就来讲解这个问题。
常用结论:两个数的和一定时,差越小,积越大。
【例1】★1~8这八个数字各用一次,分别写成两个四位数,使这两个数相乘的乘积最大。
那么这两个四位数各是多少?【解析】8531和7642。
高位数字越大,乘积越大,所以它们的千位分别是8,7,百位分别是6,5。
两数和一定时,这两数越接近乘积越大,所以一个数的前两位是85,另一个数的前两位是76。
同理可确定十位和个位数.【小试牛刀】当A+B+C =10时(A 、B 、C 是非零自然数)。
A ×B ×C 的最大值是____,最小值是____。
【解析】当为3+3+4时有A ×B ×C 的最大值,即为3×3×4=36;当为1+1+8时有A ×B ×C 的最小值,即为1×1×8=8。
【例2】★两个自然数的积是48,这两个自然数是什么值时,它们的和最小?【解析】48的约数从小到大依次是1,2,3,4,6,8,12,16,24,48。
所以,两个自然数的乘积是48,共有以下5种情况:48=1×48,1+48=49;典型例题知识梳理48=2×24,2+24=26;48=3×16,3+16=19;48=4×12,4+12=16;48=6×8,6+8=14。
两个因数之和最小的是6+8=14。
结论:两个自然数的乘积一定时,两个自然数的差越小,这两个自然数的和也越小。
【小试牛刀】要砌一个面积为72米2的长方形猪圈,长方形的边长以米为单位都是自然数,这个猪圈的围墙最少长多少米?【解析】将72分解成两个自然数的乘积,这两个自然数的差最小的是9-8=1。
小学奥数教程:最值中的数字谜(二)全国通用(含答案)
1. 掌握最值中的数字谜的技巧2. 能够综合运用数论相关知识解决数字谜问题数字谜中的最值问题常用分析方法1. 数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;2. 竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等.3. 数字谜的常用分析方法有:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.4. 除了数字谜问题常用的分析方法外,还会经常采用比较法,通过比较算式计算过程的各步骤,得到所求的最值的可能值,再验证能否取到这个最值.5. 数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型。
模块一、横式数字谜【例 1】 在下面的算式□中填入四个运算符号+、-、⨯、÷、(每个符号只填一次),则计算结果最大是_______.12345□□□□【考点】混合计算中的数字谜 【难度】2星 【题型】填空 【关键词】希望杯,六年级,初赛,第3题,6分 【解析】 为了得到最大结果必须用“×”连接4和5,那么4和5前边一定是“+”,通过尝试得到:112345203-÷+⨯=.【答案】1203【例 2】 将+,-,×,÷四个运算符号分别填入下面的四个框中使该式的值最大。
1111123456□□□□【考点】混合计算中的数字谜 【难度】3星 【题型】填空 【关键词】华杯赛,初赛,第9题 【解析】 题目给出5个数,乘、除之后成3个数,其中减数应尽量小,由两个数合成(相乘或相除)的加数与另一个分数相加应尽量大,,,,;,例题精讲知识点拨教学目标5-1-2-5.最值中的数字谜(二),,;而,,,;其中最小的是,而,,所以最大【答案】最大【例3】将1、3、5、7、9填入等号左边的5个方框中,2、4、6、8填入等号右边的4个方框中,使等式成立,且等号两边的计算结果都是自然数.这个结果最大为.÷++=÷+【考点】混合计算中的数字谜【难度】3星【题型】填空【解析】等号左边相当于三个奇数相加,其结果为奇数,而等号右边的计算结果为奇数时,最大为628487÷+=,又3157987÷++=满足条件(情况不唯一),所以结果的最大值为87.【答案】87【例4】一个电子表用5个两位数(包括首位为0的两位数)表示时间,如15:23:45/06/18表示6月18日15点23分45秒.有一些时刻这个电子表上十个数字都不同,在这些时刻中,表示时间的5个两位数之和最大是.【考点】【难度】星【题型】填空【关键词】迎春杯,高年级,决赛,8题【解析】假设五个两位数的十位数上的数字之和为x,那么个位数上的数字之和为45x-,则五个两位数上的数字之和为1045459x x x+-=+,所以十位数上的数字之和越大,则五个两位数之和越大.显然,五个两位数的十位数字都不超过5,只能是012345,,,,,这五个数字中的五个.如果五个数字是54321,,,,,那么54,只能在“分”、“秒”两个两位数的十位,而3只能在“日期”的十位上,2只能在“时”的十位上,1只能在“月份”的十位上,此时“日期”的个位、“月份”的个位、“时”的个位不能同时满足实际情况.如果五个数字是54320,,,,,那么54,只能在“分”、“秒”两个两位数的十位,而3只能在“日期”的十位上,2只能在“时”的十位上,此时“日期”的个位、“时”的个位不能同时满足实际情况.如果五个数字是54310,,,,,那么54,只能在“分”、“秒”两个两位数的十位,而3只能在“日期”的十位上,则“日期”的个位无法满足情况.如果五个数字是54210,,,,,那么54,只能在“分”、“秒”两个两位数的十位,210,,依次在“日期”的十位上、“时”的十位上、“月份”的十位上容易满足条件.所以最大值为()45954210153+⨯++++=.【答案】153【例5】0.2.0080.A BCC A B∙∙=∙∙,三位数ABC的最大值是多少?【考点】乘除法中的最值问题【难度】3星【题型】填空【关键词】走美杯,六年级,初赛,第4题【解析】 2.008化为分数是251125,可以约分为251125的分数有502250、753375,所以ABC的最大值为753.【答案】753模块二、乘除法中的最值问题【例6】已知一个五位回文数等于45与一个四位回文数的乘积(即45abcba deed=⨯),那么这个五位回文数最大的可能值是________.【考点】乘除法中的最值问题【难度】3星【题型】填空【关键词】迎春杯,五年级,初赛,第7题【解析】 根据题意,45abcba deed =,则abcba 为45的倍数,所以a 应为0或5,又a 还在首位,所以a =5,现在要让abcba 尽可能的大,首先需要位数高的尽可能的大,所以令9b =,8c =,则a b c b a++++=5+9+8+9+5=36是9的倍数,用59895÷45=1331符合条件,所以这个五位回文数最大的可能值是59895.【答案】59895【例 7】 在下面乘法竖式的每个方格中填入一个非零数字,使算式成立。
最值问题(六年级奥数题及答案)
最值问题
阶梯教室座位有10排,每排有16个座位,当有150个人就坐时,某些排坐着的人数就一样多.我们希望人数一样的排数尽可能少,则相同人数的至少有排.
解:至少有4排.
如果排人数各不相同,那么这10排最多分别坐16、15、14、13、……、7人,则最多坐16+15+14+13+12+1பைடு நூலகம்+10+9+8+7=115
(人);
如果最多有2排人数相同,那么最多坐(16+15+14+13+12)×2=140(人);
如果最多有3排人数一样,那么最多坐(16+15+14)×3+13=148(人);
如果最多有4排人数一样,那么最多坐(16+15)×4+14×2=152(人).
由于148<150<152,所以只有3排人数一样的话将不可能坐下150个人,相同人数的至少有4排.
六年级上册奥数试题:第4讲 最大与最小 全国通用(含答案)
第4讲最大与最小知识网络人们经常考虑有关“最”的问题,如最大、最小、最多、最少、最快、最慢等。
这类求最大值、最小值的问题是一类重要典型的问题,我们在实际生产和生活中经常遇到。
在本书的学习中我们经常要用到以下几个重要结论:(1)两个数的和一定,那么当这两个数的差最小时,它们的积最大。
(2)三个数a、b、c,如果a+b+c一定,只有当a=b=c时,a×b×c的积才能最大。
(3)两个数的积一定,那么当两个数的差最小时,它们的和最小。
(4)在所有周长相等的n边形中,以正n边形的面积最大。
(5)在周长相等的封闭平面图形中,以圆的面积为最大。
(6)在棱长的和一定的长方体中,以长、宽、高都相等的长方体,即正方体的体积最大。
(7)在所有表面积一定的几何体中,球体体积最大。
重点·难点本节所涉及的题型较多,但一般都要求根据一个不变量来确定另一变量的最大值或最小值。
如何根据题意,灵活运用不同的方法来求出表达式,再求最值,或直接求最值是本讲的重点。
这就要求我们不能太急于入手,不妨从一些比较简单的现象或数字开始,找出规律,进而解决问题。
学法指导解决本节问题的方法和策略常常因题而异,归纳起来有以下几种常用的方法:(1)从极端情形入手。
(2)枚举比较。
(3)分析推理。
(4)构造。
[例1]不能写成两个不同的奇合数之和的最大偶数为多少?思路剖析两个最小的不同的奇合数为9和15,9+15=24,因此小于24的偶数都不能写成两个不同的奇合数之和。
下面我们只需要考虑大于24的偶数即可。
15后面的一个奇合数为21,9+21=30,所以比24大比30小的偶数也不能写成两个不同的奇合数之和。
32也不能,34=9+25,36=9+27,38不能,40=15+25,42=15=27,44=9+35,…此时初步确定不能写成两个不同的奇合数之和的最大偶数为38。
解答根据以上分析,我们初步确定所求的最大偶数为38,下面我们给予证明。
高斯小学奥数六年级上册含答案第18讲 最值问题二
第十八讲最值问题二一、最值问题中的常用方法a)极端思考在分析某些最值问题时,可以考虑把问题推向“极端”,因为当某一问题被推向“极端”后,往往能排除许多枝节问题的干扰,使问题的“本来面目”清楚地显露出来,从而使问题迅速获解.b)枚举比较根据题目的要求,把可能的答案一一枚举出来,使题目的条件逐步缩小范围,筛选比较出题目的答案.c)分析推理根据两个事物在某些属性上都相同,猜测它们在其他属性上也有可能相同的推理方法.d)构造调整在寻求解题途径难以进展时,构造出新的式子或图形,往往可以取得出奇制胜的效果.二、求最大值和最小值的结论1.和一定的两个数,差越小,积越大;2.积一定的两个数,差越小,和越小;3.两点之间线段最短.例1.用一根长80厘米的铁丝焊接成一个棱长都是整数厘米的长方体框架,这个长方体的体积最大是多少立方厘米?「分析」题目的限制条件是铁丝长为80厘米,要求体积的最大值,通过什么可以把这二者联系起来呢?练习1、(1)用一根长100厘米的铁丝焊接成一个棱长都是整数厘米的长方体框架,这个长方体的体积最大是多少立方厘米?(2)有一根铁丝,它能焊接成的棱长都是整数厘米的最大长方体的体积是36立方厘米,这根铁丝的长度是多少厘米?例2.有5袋糖,其中任意3袋的总块数都超过60.这5袋糖块总共最少有多少块?「分析」每3袋的总块数都超过60,要求5袋的总块数.事实上我们以前做过类似的题:“已知三个数两两的和数,求这三个数的总和.”这样的题大家是怎么处理的呢?它的处理方法能否应用到本题中来呢?练习2、有5个学生参加暑期竞赛班,每人都拿了不少积分(所有积分都是整数).如果其中每三人的积分之和都不少于500分,那这五人的总积分最少是多少?例3.用1、2、3、4、5、6、7、8、9各一个组成3个三位数,使得它们都是9的倍数,并且要求乘积最大,请写出这个乘法算式.「分析」为了让这样的三个数的乘积最大,我们当然要让三个数的首位最大.那么首位应该是多少呢?注意到这三个数都是9的倍数,9的倍数有什么特征呢?它对这三个数提出了怎样的要求?练习3、用1、2、3、4、5、6各一个组成两个三位数,使得它们都是3的倍数,并且要求乘积最大,请写出这个乘法算式.例4.把1至99依次写成一排,行成一个多位数:12349899L .从中划去99个数字,剩下的数字组成一个首位不是0的多位数.请问:剩下的数最大可能是多少?最小可能是多少?「分析」要使得到的数最大,所得的数前面几位应该是什么?如果要最小呢?练习4、把1至20依次写成一排,行成一个多位数:12341920L .从中划去20个数字,剩下的数字组成一个首位不是0的多位数.请问:剩下的数最大可能是多少?最小可能是多少?例5.邮递员送信件的街道如图所示,每一小段街道长1千米.如果邮递员从邮局出发,必须走遍所有的街道,那么邮递员最少需要走多少千米?「分析」如果邮递员恰好没有重复地走遍所有的街道,则这样走的总路程就是最短的.那么邮递员能做到这一点吗?实际上这是一个一笔画问题,同学们回想一下,什么样的图形才能一笔画出来呢?111例6.如图,有一个长方体的柜子,一只蚂蚁要从左下角的A 点出发,沿柜子表面爬到右上角的B 点去取食物,蚂蚁爬行路线的长度最短是多少?一共有几条最短路线?请在图中表示出来.「分析」众所周知,两点之间线段最短.然而在本题中,蚂蚁是不能穿过柜子的,只能在柜子表面爬行.这样一来,我们就要在柜子表面寻找一条从A 到B 的最短路线.可是蚂蚁应该怎么走才能距离最短呢?AB3 31罐头装箱问题作业1.用一根长120厘米的铁丝焊接成一个棱长都是整数厘米的长方体框架,这个长方体的体积最大是多少立方厘米?2.高、娅、莫、萱四人各有若干块高思勋章,其中任意两人的勋章合起来都少于10块,那么这四人的勋章合起来最多有多少块?3.用1、2、3、4、5、6、7、8各一个组成两个四位数,使得它们都是3的倍数,并且要求乘积最大,请写出这个乘法算式.4.把21至40依次写成一排,行成一个多位数:212223243940L.从中划去20个数字,剩下的数字组成一个首位不是0的多位数.请问:剩下的数最大可能是多少?最小可能是多少?5.如果例题5中的街道由“土”字形变成如下所示的形状,那么邮递员从邮局出发,要走遍所有的街道,最少需要走多少千米?第十八讲最值问题二例7.答案:294详解:长方体满足:80420++=÷=长宽高厘米,要使体积最大,就应该使三边长度尽量接近.所以当三边长度分别为7厘米、7厘米和6厘米时,体积最大,为776294⨯⨯=立方厘米.例8.答案:103详解:任意3袋糖果总块数都不少于61,必能取出一袋不少于21块糖果;现在余下4袋,同样可以有糖果数超过21块的袋子,再取走这袋.现在余下三袋了,这三袋糖果总和不少于61,所以总的糖果不少于61+21+21=103块.由于5袋糖果分别有21、21、21、20、20块,是符合要求的,所以103就是最小值.例9.答案:954×873×621详解:每个数都是9的倍数,说明每个数的各位数字之和都是9的倍数.由于1到9总的数字和是45,而且每个数的各位数字之和都不超过7+8+9=24,因而三个数的各位数字之和分别为18、18和9.各位数字之和为9的数最大只能是621.其余两个数乘积要尽量大且各自的各位数字之和是18,百位取9和8,十位取7和5,个位取4和3,有最大乘积954×872,故所求的乘法算式是954×873×621.例10.答案:最大为999997585960...9899;最小是10000012345061626364 (9899)详解:(1)要使剩下的数尽量大,就要让数的最前面剩下尽可能多的9.首先,最开头的12345678这8个数字是要去掉的,留下了第一个9;然后去掉1011121314151617181共19个数字,留下了第二个9;再去掉3次的19个数,使得剩下第3、4、5个9.现在已经去掉了一共8+19×4=84个数,剩下的数前5个数字都是9,然后是50515253545556575859一直写到9899,还能再去掉15个数.但我们到下一个9要去掉19个数,到下一个8要去掉17个数,到下一个7要去掉15个数,于是最后结果的第6个数字最大是7,应该去掉的15个数字为505152535455565.所以剩下的数最大为999997585960…9899.(2)要使剩下的数尽量小,就要让数的首位是1,第二位起是尽量多的0.首位上的1取第一个数字1就行了.然后去掉234567891共9个数,留下第一个0;再去掉1112131415161718192共19个数,留下第2个0;再去掉3次的19个数,就能得到第3、4、5个0.现在一共去掉了个数,剩下的数前六个数字是1、0、0、0、0、0,余下的部分是515253545556575859一直写到9899,还能再去掉14个数.下一位取不到0了,只能去掉一个5,留下1;再下一位连1都取不到,只能去掉1个5,取2;再去掉一个5,留下3;去掉一个5,留下4.现在还能再去掉10个数字,而剩下的是55565758596061……,接下来11个数中最小的数是5,所以取一个5.然后剩下的数前11个数字为55657585960,因而我们去掉10个数字5565758596,使下一位达到最小数字0.所以最后剩下的数最小是10000012345061626364…9899.例11. 答案:26详解:如图1,由于的A 、B 两点连出的边是3条,也就是奇数条,仅当A 与B 为出发点和终点时,才能一笔画.我们不能从邮局出发一笔把这个图画出,即邮递员不能只把每条街道走一遍就回到邮局,他至少应该多走1千米街道,最小是26千米.在图2中,我们给出了邮递员走26千米走遍所有街道的一种方法.例12. 答案:最短的长度是5;4详解:为了表示方便,我们把长方体的各个顶点都标上字母,如图3.蚂蚁要从A 处爬到B 处,途中必须经过两个相邻的面,两个相邻面的交线必是EH 、HF 、FG 、GC 、CD 、DE 六条线段中的一条.一共六种情况,但由对称性,可分为三类,每类两种:交线是FG 、DE 的情形为一类,交线是HE 、GC 的情形为一类,交线是FH 、DC 的情形为一类.919485+⨯=邮局图1邮局图2情况1:如果蚂蚁所经过的两相邻面是ACGF 和FGBH ,那么我们可以沿着它们的交线FG 把这两个面展开到同一个平面上,如图4.这样蚂蚁的整个行走路线就在这一个平面上,而且以A 为起点,B 为终点.此时从A 到B 的最短连线就是A 、B 两点的连线,它恰好直角三角形ABC 的斜边.由于3AC =,314BC =+=,因此5AB =.情况2:如果两相邻面的交线是GC .同样我们也可以沿着GC ,把两个相邻面展开到同一个平面上,如图5.此时A 、B 两点的连线是直角三角形ABD 的斜边.由于3BD =,314AD =+=,因此5AB =.情况3:如果两相邻面的交线是DC .同样我们也可以沿着DC ,把两个相邻面展开到同一个平面上,如图6.此时A 、B 两点的连线是直角三角形AGB 的斜边,一定比直角边AG 长.而AG 的长度是336+=,所以AB 一定大于6.其余三种情况的最短路线与上面的情况1、2、3对应相同.所以爬行路线长度最少是5,(1)和(2)的情形都符合要求,加上与它们对应的两种,所以一共会有4条最短路线.把展开图还原到原来的图中,就是所求的最短路线(如图7).因此在长方体表面,从A 到B 的最短路线的长度是5,一共有4条满足要求.AC G33图6图7 AB 331 C DE FGH A B331C DE F GHAB331 C DE F GH 图33 图43 BA 1 C D图5练习1、答案:576简答:100425889⨯⨯=.÷==++,889576练习2、答案:834简答:总积分最少是167167500834++=,此时5人分数可以是166、167、167、167、167.练习3、答案:642×531简答:6和5分别放在两个数的百位上,结合各位数字之和是3的倍数,可得到乘积最大的算式⨯.642531练习4、答案:95617181920;10111111110简答:同例4,由于题目中数位较少枚举即可,注意计算的准确性.作业6.答案:1000简答:120430101010÷==++,1010101000⨯⨯=.7.答案:17简答:必有两人的勋章数都不多于4块,余下两人勋章数之和不多于9块,因而最多只能有44917++=块.8.答案:85327641⨯简答:首位要尽量大,取8和7,次位也尽量大,取6和5,然后是十位要尽量大,从4和3里取.也就是前三位分别取853和764能使乘积最大.但还要保证都是3的倍数,故只能是8532和7641,所⨯.求的乘法算式是853276419.答案:93333334353637383940;1012333435363738394010.答案:36简答:这个图是可以一笔画画出的,最少路程等于街道全程36千米.。
小学奥林匹克数学 竞赛数学 六年级上 第8讲最值问题
我们已经在四年级的时候接触过最值问题,并学习了两个重要的结论:(1)两个数的和一定,它们差最小时乘积最大;(2)几个数的和一定,它们越接近乘积越大.我们先通过例题1来复习一下这个结论.分析 题目的限制条件是铁丝长为80厘米,要求体积的最大值,怎样把这二者用一根长80厘米的铁丝焊接成一个棱长都是整数厘米的长方体框架,这个长方体的体积最大是多少立方厘米?例题1联系起来呢?练习1. (1)用一根长100厘米的铁丝焊接成一个棱长都是整数厘米的长方体框架,这个长方体的体积最大是多少立方厘米?(2)有一根铁丝,它能焊接成的棱长都是整数厘米的最大长方体的体积是36立方厘米,这根铁丝的长度是多少厘米?除了上面的两个重要结论以外,我们最重要的还是学习了几种分析最值问题的方法:枚举法、调整法、极端思考、整体思维等.本讲我们将进一步学习这些思想,并作一些综合性的运用.分析 每3袋的总块数都超过60,要求5袋的总块数.事实上我们以前做过类似的题:“已知三个数两两的和数,求这三个数的总和.”这样的题大家是怎么处理的呢?它的处理方法能否应用到本题中来呢?练习2. 有5个学生参加暑期竞赛班,每人都拿了不少积分(所有积分都是整数).如果其中每三人的积分之和都不少于500分,那这五人的总积分最少是多少? 罐头装箱问题 我们经常遇到把圆柱形罐头放入长方体包装箱的问题,怎么摆放才能最有效地利用总共最少有多少块?包装箱内的空间呢?一种显而易见的办法是把各圆排列成矩形的形状,像图1这样.它是一种较优排法,但不是最优的办法.它没有最大限度地利用空间,浪费不少,圆的面积只占总共的78.5%.比上述办法好得多的办法,是将罐头摆放成图2不难算出,正六边形内圆所覆盖的面积超过了90%.实际上,数学家已经证明了如果空间是无限延展的,这种六边形摆放法是最紧密的包装方式.但是正六边形摆法的最紧密性质是有条件的,尤其在盒子不太大的时候.例如要放9个罐头,正六边形摆法需要的正方形不是最小的.如图3,它的放法就不比图4好.当罐头数目增加时,放罐头的最佳包装法会不断变化,越来越倾向于正六边形排法.比如,13个罐头的最优包装法,用边长大约为圆直径3.7倍的正方形就够了.如图5,虽然它看上去乱糟糟,但已被证明为最优解.我们可以看到,12个罐头紧紧地靠在一起,而第13个(黄色的那个)则自由自在地放在中间.最后,大家思考一个问题:设1角钱硬币的直径为a厘米,那么我们在边长为10a厘米的正方形中,最多可以不重叠地放入多少枚硬币呢?是100枚吗?能否放进去更多?有些最值问题同时也是数论、数字谜问题.这类问题在求最值时,一定要注意同数论、数字谜的知识联系起来.图2图3图4图5么首位应该是多少呢?注意到这三个数都是9的倍数,9的倍数有什么特征呢?它对这三个数提出了怎样的要求?练习3. 用1、2、3、4、5、6各一个组成两个三位数,使得它们都是3的倍数,并且要求乘积最大,请写出这个乘法算式.分析 要使得到的数最大,所得的数前面几位应该是什么?如果要最小呢?练习4. 把1至20依次写成一排,形成一个多位数:12341920 .从中划去20个数字,剩下的数字组成一个首位不是0的多位数.请问:剩下的数最大可能是多少?最小可能是多少?最后,我们来考虑两个图形方面的最值问题,求解这类问题往往需要灵活运用一些最基本的图形性质.从中划去99个数字,剩下的数字组成一个首位不是下的数最大可能是多少?最小可能是多少?例题4小段街道长所有的街道,那么邮递员最少需要走多少千米?分析 如果邮递员恰好没有重复地走遍所有的街道,则这样走的总路程就是最短的.那么邮递员能做到这一点吗?实际上这是一个一笔画问题,同学们回想一下,什么样的图形才能一笔画出来呢?练习5. 由于城市扩建,例题字形.现在邮递员从邮局出发,要走遍所有的街道,最少需要走多少 分析 众所周知,两点之间线段最短.然而在本题中,蚂蚁是不能穿过柜子的,只能在柜子表面爬行.这样一来,我们就要在柜子表面寻找一条从A 到B 的最短路线.可是蚂蚁应该怎么走才能距离最短呢?练习6. 如图,有一个正方体的柜子,一只蚂蚁要从左下角的A 沿柜子表面爬到右上角的B 点去取食物,一共有几条最短路线?蚁要从左下角的点去取食物,蚂蚁爬行路线的长度最短是多少?一共有几条最短路线?请在图中表示出来.例题6本讲知识点汇总一、几个数的和一定,它们越接近乘积越大.二、用极端思想与整体思维解最值问题.三、与数论有关的最值问题.四、与几何有关的最值问题.作业1. 用一根长120厘米的铁丝焊接成一个棱长都是整数厘米的长方体框架,这个长方体的体积最大是多少立方厘米?2. 小高、卡莉娅、墨莫、萱萱四人各有若干枚高思勋章,其中任意两人的勋章合起来都少于10枚,那么这四人的勋章合起来最多有多少枚?5个方格内,使得每列两数之差(大减小)的显示的3. 用1、2、3、4、5、6、7、8各一个组成两个四位数,使得它们都是3的倍数,并且要求乘积最大,请写出这个乘法算式.4.把21至40依次写成一排,形成一个多位数:212223243940.从中划去20个数字,剩下的数字组成一个首位不是0的多位数.请问:剩下的数最大可能是多少?最小可能是多少?5.如果例题5中的街道由“土”字形变成如下所示的形状,那么邮递员从邮局出发,要走遍所有的街道,最少需要走多少千米?。
六年级奥林匹克数学十九 最值问题(一)
十九、最值问题(一)1.一把钥匙只能开一把锁.现在有4把钥匙4把锁,但不知哪把钥匙开哪把锁,最多要试次才能配好全部的钥匙和锁.2.用长和宽分别是4厘米和3厘米的长方形小木块,拼成一个正方形,最少要用这样的木块块.3.一个一位小数用四舍五入法取近似值50000.在取近似值以前,这个数的最大值是 .4.100个自然数,它们的总和是10000,在这些数里,奇数的个数比偶数的个数多,那么这些数里至多有个偶数.5.975⨯935⨯972⨯( ),要使这个连乘积的最后四个数字都是零.在括号内最小应填 .6.有三个连续自然数,它们依次是12、13、14的倍数,这三个连续自然数中(除13外)是13倍数的那个数最小是 .7.下图九个数中取出三个数来,这三个数都不在同一横行,也不在同一纵行.问:怎样取才能使这三个数之和最大,最大数是 .8.农民叔叔阿根想用20块长2米,宽1.2米的金属网建一个靠墙的长方形鸡窝.为了防止鸡飞出,所建鸡窝的高度不得低于2米,要使鸡窝面积最大,长方形的长和宽分别应是 .9.一个三角形的三条边长是三个两位的连续偶数,它们的末位数字和能被7整除,这个三角形的最大周长等于 .10.农场计划挖一个面积为432m2的长方形养鱼池,鱼池周围两侧分别有3m和4m的堤堰如图所示,要想占地总面积最小,水池的长和宽应为 .11.下图中,已知a、b、c、d、e、f是不同的自然数,且前面标有两个箭头的每一个数恰等于箭头起点的两数的和(如b=a+d),那么图中c最小应为多少?a b cd ef12.唐老鸭与米老鼠进行一万米赛跑,米老鼠的速度是每分钟125米,唐老鸭的速度是每分钟100米.唐老鸭手中掌握着一种迫使米老鼠倒退的电子遥控器,通过这种遥控器发出第n 次指令,米老鼠就以原速度的n 10%倒退一分钟,然后再按原来的速度继续前进,如果唐老鸭想在比赛中获胜,那么它通过遥控器发出指令的次数至少应是多少次?13.某游泳馆出售冬季学生游泳卡,每张240元,使用规定:不记名,每卡每次只限一人,每人只限一次.某班有48名学生,老师打算组织学生集体去游泳,除需购买若干张游泳卡,每次游泳还需包一辆汽车,无论乘坐多少名学生,每次的包车费均为40元.若要使每个同学游8次,每人最少交多少钱?14.某商店需要制作如图所示的工字形架100个,每个由铝合金型材长为 2.3米,1.7米,1.3米各一根组装而成.市场上可购得该铝合金型材的原料长为6.3米.问:至少要买回多少根原材料,才能满足要求(不计损耗)?十九、最值问题(一)(答案)第[1]道题答案:6第一把钥匙最坏的情况要试3次,第二把要试2次,第三把要试1次,共计6次.12因4和3的最小公倍数为12,故最少需这样的木块12块.第[3]道题答案:50000.4第[4]道题答案:48一共有100个自然数,其中奇数应多于50个,因为这100个自然数的总和是偶数,所以奇数的个数是偶数,至少有52个,因而至多有48个.第[5]道题答案:20因975=39⨯52,935=187⨯5,972=243⨯22,要使其积为1000的倍数,至少应乘以5⨯22=20.第[6]道题答案:1105因为12、13、14的公倍数分别加上12、13、14后才依次是12、13、14倍数的连续自然数,故要求是13的倍数的最小自然数,只须先求12、13、14的最小公倍数为1092,再加上13得1105.第[7]道题答案:20第一横行取6,第二横行取7,第三横行取7.第[8]道题答案:12米,6米.金属网应竖着放,才能使鸡窝高度不低于2米.如图,设长方形的长和宽分别是x 米和y 米,则有x +2y =1.2⨯20=24.长方形的面积为S =xy =()y x 221⨯.因为x 与2y 的和等于24是一个定值,故它们的乘积当它们相等时最大,此时长方形的面积S 也最大,于是有:x =12,y =6.第[9]道题答案:264依题意,末位数字和能被7整除的只有7、14、21等三种.但三个两位的连续偶数相加其和也一定是偶数,故符合题意的只有14.这样三个最大的两位连续偶数.它们的末位数字又能被7整除的,便是90、88、86,它们的和即三角形最大周长为90+88+86=264.24m ,18m.如图,设水池边长为xm ,宽为ym ,则有xy =432,占地总面积S =(x +8)(y +6)m 2于是S =xy +6x +8y +48=6x +8y +480.因6x×8y =48⨯432为定值,故当6x =8y 时,S 最小,此时x =24,y =18.第[11]道题答案:依题意,d 应当取最小值1,那么a 和f 只能一个为2,另一个为 4.这样,根据b =a +d ,e =d +f ,b 和e 便只能一个为3,另一个为5,而c =b +e .所以c 最小应为3+5=8.第[12]道题答案:米老鼠跑完全程用的时间为10000÷125=80(分),唐老鸭跑完全程的时 间为10000÷100=100(分).唐老鸭第n 次发出指令浪费米老鼠的时间为n n 1.01125%101251+=⨯⨯+.当n 次取数为1、2、3、4…13时,米老鼠浪费时间为1.1+1.2+1.3+1.4+…+2.3=22.1(分)大于20分.因为米老鼠早到100-80=20分,唐老鸭要想获胜,必须使米老鼠浪费的时间超过20分钟,因此唐老鸭通过遥控器至少要发13次指令才能在比赛中获胜.第[13]道题答案:设一共买了x 张卡,一共游泳y 次,则共有xy =48⨯8=384(人次),总费用为:(240x +40y )元.因240x ⨯40y =240⨯40⨯384是一定值,故当240x =40y ,即y =6x 时和最小,此时可求得x =8,y =48.总费用为240⨯8+40⨯48=3840(元),平均每人最少要交3840÷48=80(元).第[14]道题答案:每根原材料的切割有下表的七种情况:显然④⑤⑥三种方案损耗较小. ④⑤⑥⑦方案依次切割原材料42根、14根、29根和1根共用原材料42+14+29+1=86(根).。
高斯小学奥数六年级上册含答案第18讲最值问题二
( 2)有一根铁丝,它能焊接成的棱长都是整数厘米的最大长方体的体积是
36 立方厘米,
这根铁丝的长度是多少厘米?
例 2. 有 5 袋糖,其中任意 3 袋的总块数都超过 60 .这 5 袋糖块总共最少有多少块? 「分析」 每 3 袋的总块数都超过 60 ,要求 5 袋的总块数.事实上我们以前做过类似的 题:“已知三个数两 两的和数, 求这三个数的总和. ”这样的题大家是怎么处理的呢?它 的处理方法能否应用到本 题中来呢?
那么邮递员从邮局出发,要走
1 1 1 邮局 111
第十八讲 最值问题二
例 7. 答 案: 294 详解: 长方体满足: 长 宽 高 80 4 20 厘米,要使体积最大,就应该使三边长度 尽量接近 . 所 以当三边长度分别为 7 厘米、 7 厘米和 6 厘米时,体积最大,为 7 7 6 294 立方厘米 .
( 2)要使剩下的数尽量小,就要让数的首位是
1,第二位起是尽量多的 0.首位上的 1
取第一个数字 1 就行了 . 然后去掉
234567891 共 9 个数,留下第一个
0; 再去掉
1112131415161718192 共 19 个数,留下第 2 个 0; 再去掉 3 次的 19 个数,就能得到第
3、4、5 个 0. 现在一共去掉了 9 19 4 85 个数,剩下的数前六个数字是
「分析」 为了让这样的三个数的乘积最大, 我们当然要让三个数的首位最大. 那么首位 应该
是多少呢?注意到这三个数都是
9 的倍数, 9 的倍数有什么特征呢?它对这三个数
提出了怎样的要求?
练习 3、用 1、2、 3、4、 5、6 各一个组成两个三位数,使得它们都是 要求乘积最大,请写出这个乘法算式.
六年级奥数——最大与最小问题(附习题及解答)
第六讲最大与最小问题先看一个简单的问题妈妈让小明给客人烧水沏茶.洗开水壶要用1分钟烧开水要用15分钟洗茶壶要用1分钟洗茶杯要用1分钟拿茶叶要用2分钟小明估算了一下完成这些工作要花20分钟.为了使客人早点喝上茶按你认为最合理的安排多少分钟就能沏茶了这个题目取材于华罗庚教授1965年发表的《统筹方法平话》. 开水壶不洗不能烧开水因而洗开水壶是烧开水的先决条件没开水、没茶叶、不洗壶杯则不能泡茶这些又是泡茶的先决条件.因此我们可以列出它们的相互关系图从上图中很容易看出最省时间的办法是先洗开水壶用1分钟接着烧开水用15分钟在等待水开的过程中可以完成洗茶壶、洗茶杯、拿茶叶水开了就沏茶这样仅用16分钟就能沏茶了这是没有“窝工”的最合理的安排用最少的时间完成了工作. 像这样研究某种量或几种量在一定条件下取得最大值或最小值的问题我们称为最大与最小问题. 在日常生活、科学研究和生产实践中存在大量的最大与最小问题.如把一些物资从一个地方运到另一个地方怎样运才能使路程尽可能短运费最省一项或多项工作如何安排调配才能使工期最短、效率最高等等都是最大与最小问题.这里贯穿了一种统筹的数学思想-最优化原则.概括起来就是要在尽可能节省人力、物力和时间的前提下争取获得在可能范围内的最佳效果.这一原则在生产、科学研究及日常生活中有广泛的应用. 一、数、式、方程组中的最大最小问题例1 把14拆成几个自然数的和再求出这些数的乘积如何拆可以使乘积最大分析与解答这要考虑到一些隐含着的限制条件可以这样思考①要使14拆成的自然数的乘积最大所拆成的数的个数要尽可能多多一个可以多乘一次但1不应出现因为1与任何数的积仍为原数. ②拆出的加数不要超过4例如5它还可以拆成2和3而2×35所以加数大于4的数还要继续拆小. ③由于422又42×2因此拆出的加数中可以不出现4. ④拆出的加数中2的个数不能多于两个.例如拆成三个2不如拆成两个3.因为三个2的积为8两个3的积为9这就是说应尽可能多拆出3. 页码1/7第六讲最大与最小问题2011-10-28ada99:11241_SR.HTM 因为143×42所以把14拆成3、3、3、3、2时积为3×3×3×3×2162最大. 对最大与最小问题一要注意变化规律即弄清思路又要注意限制条件对于字母则要根据其特点进行讨论分析. 例2 已知p·q-1x其中p、q为质数且均小于1000x是奇数那么x的最大值是____. 分析与解答由p·q-1xx为奇数可知q·px1是偶数又因为p、q为质数所以p、q中必有一个为偶质数2.不妨设p2. 为了使x尽可能大只须取q为最大的三位质数997.这时x达到最大值2×997-11993. 方程中有参数和其他条件也可能出现最大或最小问题. 的根为自然数则最小自然数a____. 分析与解答由原方程可得例4 求同时满足abc62a-bc3且b≥c≥0的a的最大值及最小值. 分析既然是求a的最大值及最小值就要想办法将b及c用a的代数式表示出来再根据b≥c≥0来求.求b及c可将abc62a-bc3看作含b、c的二元一次方程组页码2/7第六讲最大与最小问题2011-10-28ada99:11241_SR.HTM 二、统筹方法中教学思想方法的初步应用在开始引例中引用了华罗庚教授《统筹方法平话》中的例子统筹方法是生产建设和企业管理中合理安排工作的一种科学方法它对于进行合理调度、加快工作进展、提高工作效率、保证工作质量是十分有效的所用数学思想是朴素而精彩的. 例5 5个人各拿一个水桶在自来水龙头前等候打水他们打水所需的时间分别是1分钟、2分钟、3分钟、4分钟和5分钟.如果只有一个水龙头试问怎样适当安排他们的打水顺序使所有人排队和打水时间的总和最小并求出最小值. 分析这是我们经常遇到而不去思考的问题其中却有着丰富的数学思想.5个人排队一共有5×4×3×2×1120种顺序要把所有情形的时间总和都计算出来加以比较就太繁琐了.凭直觉应该把打水时间少的人排在前面所费的总时间会省些.试用“逐步调整”法求解. 解首先证明要使所用总时间最省应该把打水时间需1分钟的人排在第一位置. 假如第一位置的人打水时间要a分钟其中2≤a≤5而打水需1分钟的人排在第b位其中2≤b≤5我们将这两个人位置交换其他三人位置不动.这样调整以后第b位后面的人排队和打水所费时间与调整前相同并且前b个人打水所费时间也未受影响但第二位至第b位的人排队等候的时间都减少了a-1分钟这说明调整后五个人排队和打水时间的总和减少了.换言之要使所费时间最省就要把打水需1分钟的人排在第一位置. 其次根据同样的道理再将打水需2分钟的人调整到第二位置将打水需3、4、5分钟的人逐次调整到三、四、五位.所以将五人按照打水所需时间由少到多的顺序排队所费的总时间最省得出5人排队和打水时间总和的最小值是1×52×43×34×25×135分钟. 本题所用的逐步调整法是一个很朴素的数学思想它使我们思考问题过程简化更有趣味. 例6 一个水池底部安有一个常开的排水管上部安有若干个同样粗细的进水管当打开4个进水管时需要5小时才能注满水池当打开2个进水管时需要15小时才能注满水池现在需要在2小时内将水池注满那么至少要打开多少个进水管分析本题没给出排水管的排水速度因此必须找出排水管与进水管之间的数量关系才能确定至少要打开多少个进水管. 页码3/7第六讲最大与最小问题2011-10-28ada99:11241_SR.HTM 解本题是具有实际意义的工程问题因没给出注水速度和排水速度故需引入参数.设每个进水管1小时注水量为a排水管1小时排水量为b根据水池的容量不变我们得方程4a-b×52a-b×15化简得4a-b6a-3b即ab. 这就是说每个进水管1小时的注水量等于排水管1小时的排水量. 再设2小时注满水池需要打开x个进水管根据水池的容量列方程得xa-a×22a-a×15 化简得2ax-2a15a 即2xa17a.a≠0 所以x8.5 因此至少要打开9个进水管才能在2小时内将水池注满. 注意x8.5这里若开8个水管达不到2小时内将水池注满的要求开8.5个水管不切实际.因此至少开9个进水管才行. 例7 在一条公路上每隔100千米有一个仓库共5个.一号仓库存货10吨二号仓库存货20吨五号仓库存货40吨三、四号仓库空着.现在要把所有的货物集中存放在一个仓库里如果每吨货物运输1千米需要0.8元运费那么最少要花多少运费分析与解答由于运费是以每吨货物运输1千米为单位即吨·千米计量的因此要使运费最省就要把所有货物运往离货物最多的仓库适当近的地方集中. 我们依次计算以一、二、…、五号仓库为集中点所需的运费0.8×20×10040×40014400元0.8×10×10040×30010400元0.8×100×20020×10040×2009600元0.8×10×30020×20040×1008800元0.8×10×40020×3008000元. 因此把所有货物集中到五号仓库所需的运费最少运费为8000元. 说明①由例7的枚举解法中我们可以看出如果某处货物的重量大于或等于货物总重量的一半那么把货物往此处集中花的运费是最少或最少之一的.这可以叫做“小往大处靠”原则. 可以解释如下.把各个仓库用A1A2…An表示Ai中的货物重量为mi把所有页码4/7第六讲最大与最小问题2011-10-28ada99:11241_SR.HTM货物集中到Ai的运输吨·千米数为ai它与集中货物到A所需的运输费用成正比货物总重量为Mm1m2…mn. a1相比较把货物集中到Ai2≤i≤n的运输吨·千米数ai所增加的至少是m1·A1Ai所减少的至多是m2m3…mn·A1Ai这里A1Ai表示A1与Ai之间的距离. ∴ai≥a1. 这说明了“小往大处靠”原则是正确的. 处靠”原则不成立.例如.在例7中一、二、五号仓库中的存货如果分别为30吨、10吨、30吨那么容易知道把货物集中到二号仓库运费最少. 例8 若干箱货物总重19.5吨每箱重量不超过353千克今有载重量为1.5吨的汽车至少需要几辆才能把这些箱货物一次全部运走分析与解答如果认为19.5÷1.513因此只需13辆汽车就可以把这些箱货物一次全部运走这就把题意理解错了.因为货物是整箱装的每辆汽车不一定都能满载.请先看一个反例它说明甚至15辆车都不一定能一次运完. 例如这批货物共装有65只箱子其中64箱的重量都是301千克不超过353千克另一箱的重量是236千克那么总重量为301×6423619500千克. 恰好符合总重为19.5吨的要求由于301×51505千克即5只重量为301千克的箱子的总和超过1.5吨因此每辆汽车最多只能装4只重量为301千克的箱子15辆汽车最多只能装4×1560只重量为301千克的箱子这样必然有4只重量为301千克的箱子无法再装运了. 既然15辆汽车无论如何无法一次运完上例中的65只箱子那么16辆汽车能不能一次运完这些货物呢答案是肯定的.事实上301×42361440千克不超过1.5吨这就是说第16辆汽车可以装余下的4只重量为301千克的箱子和1只重量为236千克的箱子.所以16辆汽车可以一次运完这些箱货物. 页码5/7第六讲最大与最小问题2011-10-28ada99:11241_SR.HTM 问题到这里仍然没有彻底解决.因为每箱货物的重量只要求不超过353千克除此别无具体数量的限制所以我们还应该对于一般情况上例仅是一种特殊情况来验证16辆汽车确实能一次运完全部箱子. 首先让12辆汽车装货刚刚超过1.5吨即若取下最后装的一只箱子就不超过1.5吨再从这12辆汽车上把每辆车最后装的那只箱子卸下来并把这12只箱子分别装上另外3辆空车每车4箱由于每车4箱总重量不超过4×3531412千克. 因此也不超过1.5吨.这时12315辆车就装完原来前12辆车上全部货物总重量超过1.5×1218吨. 而且每辆车载重不超过1.5吨于是剩下来装车的箱子总重量不足19.5-181.5吨可以把它们全部装在第16辆车上运走. 三、最短的路线几何中的最大最小问题例9 下图直线l表示一条公路A、B表示公路同一侧的两个村子现在要在公路l上修建一个汽车站问这个汽车站建在哪一点时A村与B村到汽车站的距离之和最短分析与解答如果A、B两个村子在公路l的两侧问题就简单了只要把A、B两点连接起来与公路l 的交点就是建站的地方因为两点之间线段最短. A、B两村在公路l的同侧的情形我们用“对称”的方法来解决先求出A点关于l的对称点A连结AB与l交点于C点则C点就是汽车站应建的那个点. 为什么ACBC是距离最短呢我们假设不选C点而选择C外的一点C显然有ACCBACCBAB ACCBACCB. 根据“连接两点的线中直线段最短”有ACCBAB所以选择C点能使ACCB距离最短. 利用这种对称原理可以解决很多复杂的问题. 例10 设牧马营地在M每天牧马人要赶着马群先到河边饮水再到草地吃草然后回营地.问怎样的放牧路程最短页码6/7第六讲最大与最小问题2011-10-28ada99:11241_SR.HTM 分析与解答依题意每一条放牧路线都是一个三角形的三条边我们设法把这条路线变成两个固定点之间的连线. 根据“对称”原理设草地的边线是l1河流的岸线是l2下图.令M关于l1、l2的对称点分别是M1、M2连结MM 分别交l1、l2于A、B则路线M→B→A→M就是最短路线读者可自己证明其路线最短. 几何中的最大与最小问题很多待学习一些知识后将有很多有趣的最大与最小的问题等待你去解决. ??页码7/7第六讲最大与最小问题2011-10-28ada99:11241_SR.HTM习题六且不大于2则n的最大值是____. 2.赵师傅要加工某项工程五个相互无关的部件急需的5个零件如果加工零件A、B、C、D、E所需时间分别是5分钟、3分钟、7分钟、4分钟、6分钟.问应该按照什么次序加工使工程各部件组装所需要的总时间最少这个时间是多少3.下图小明住在甲村奶奶住在乙村星期天小明去看奶奶先在北山坡打一捆草又在南山坡砍一捆柴给奶奶送去.请问小明应选择怎样的路线使路程最短 4.某车场每天有4辆汽车经过A1、A2、A3、A4、A5、A6六个点组织循环运输如图.在A1点装货需6个工人在A2点卸货需4个工人在A3点装货需8个工人在A4点卸货需5个工人在A5点装货需3个工人在A6点卸货需4个工人.若每个点固定工人太多会造成人力浪费我们可以让装卸工人跟车走.这样有人跟车有人固定问最少要安排多少名装卸工人??页码1/1习题六2011-10-28ada99:11242_SR.HTM习题六解答1.510.2.65分钟.加工顺序为B、D、A、E、C.3.如下图用“对称”方法找出甲和乙连接甲乙后交北山坡于A交南山坡于B.小明应在A处打草在B处砍柴.4.22名. ??页码1/1习题六解答2011-10-28ada99:11243_SR.HTM。
奥数题最大值的答案及解析
奥数题最大值的答案及解析
奥数题最大值的答案及解析
自然数m除13511,13903和14589的余数都相同.则m的最大值是()
答案与解析:
一个数除其他不同的数所得的余数相等,那么这个数一定能整除这些其他不同数的差,根据这个性质,解决这道题便迎刃而解了。
由于m除13511,13903和14589的.余数都相同,所以m整除13903-13511=392;m整除14589-14903=686;m整除14589-1351 Nhomakorabea=1078。
所以,m一定是392、686、1078的公约教.要求m的最大值,就是求392,686,1078的最大公约数.
人教版小学六年级奥数题及答案-最大值:因为392=7×2,686=7×2,1078=7×2×13
所以(392,686,1078)=7×2=98
即m的最大值为98.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最值问题
内容概述
均值不等式,即和为定值的两数的乘积随着两数之差的增大而减小.各种求最大值或最小值的问题,解题时宜首先考虑起主要作用的量,如较高数位上的数值,有时局部调整和枚举各种可能情形也是必要的.
典型问题
2.有4袋糖块,其中任意3袋的总和都超过60块.那么这4袋糖块的总和最少有多少块?
【分析与解】方法一:设这4袋为A、B、C、D,为使4袋糖块的总和最少,则每袋糖应尽量平均,有A、B、C袋糖有20、20、21块糖.
则当A、B、D三袋糖在一起时,为了满足条件,D袋糖不少于21块,验证A、B、C、D 这4袋糖依次有20,20,2l,2l时满足条件,且总和最少.
这4袋糖的总和为20+20+21+21=82块.
方法二:设这4袋糖依次有a、b、c、d块糖,
有
61
61
61
61
a b c
a b d
a c d
b c d
++≥
⎧
⎪++≥
⎪
⎨
++≥
⎪
⎪++≥
⎩
①
②
③
④
,①+②+③+④得:3(a+b+c+d)≥244,所以a+b+c+d≥81
1
3
,因为
a+b+c+d均是整数,所以a+b+c+d的和最小是82.
评注:不能把不等式列为
a b c60
a+b+d60
a+c+d60
b+c+d60
++〉
⎧
⎪〉
⎪
⎨
〉
⎪
⎪〉
⎩
①
②
③
④
,如果这样将①+②+③+④得到
3(a+b+c+d)>240,a+b+c+d>80,因为a、b、c、d均是整数,所以a+b+c+d的和最小是81.至于为什么会出现这种情况.如何避免,希望大家自己解决.
4.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用O,2,4,6,8这5个数字组成一个三位数FGH和一个两位数IJ.求算式ABC×DE-FGH×IJ的计算结果的最大值.
【分析与解】为了使ABC×DE-FGH×IJ尽可能的大,ABC×DE尽可能的大,FGH×IJ 尽可能的小.
则ABC×DE最大时,两位数和三位数的最高位都最大,所以为7、9,然后为3、5,最后三位数的个位为1,并且还需这两个数尽可能的接近,所以这两个数为751,93.
则FGH×IJ最小时,最高位应尽可能的小,并且两个数的差要尽可能的大,应为468×20.
所以AB C×DE-FG H×IJ的最大值为751×93-468×20=60483.
评注:类似的还可以算出FGH×IJ-ABC×DE的最大值为640×82-379×15=46795.
6.将6,7,8,9,10按任意次序写在一圆周上,每相邻两数相乘,并将所得5个乘积相加,那么所得和数的最小值是多少?
【分析与解】我们从对结果影响最大的数上人手,然后考虑次大的,所以我
们首先考虑10,为了让和数最小,10两边的数必须为6和7.
然后考虑9,9显然只能放到图中的位置,最后是8,8的位置有两个位置可放,而且也不能立即得到哪个位置的乘积和最小,所以我们两种情况都计算.
8×7+7×10+10×6+6×9+9×8=312;
9×7+7×10+10×6+6×8+8×9=313.
所以,最小值为312.
8.一个两位数被它的各位数字之和去除,问余数最大是多少?
【分析与解】设这个两位数为ab=lOa+b,它们的数字和为a+b,因为lOa+b=(a+b)+9a,所以lOa+b≡9a(moda+b),
设最大的余数为k,有9a≡k(mod a+b).
特殊的当a+b为18时,有9a=k+18m,因为9a、18m均是9的倍数,那么k也应是9的倍数且小于除数18,即0,9,也就是说余数最大为9;
所以当除数a+b不为18,即最大为17时,
:余数最大为16,除数a+b只能是17,此时有9a=15+17m,有
m=7+9t a=15+17t ⎧
⎨
⎩
(t为可取0的自然数),而a是一位数,显然不满足;
:余数其次为15,除数a+b只能是17或16,
除数a+b=17时,有9a=15+17m,有
m=6+9t
a=13+17t
⎧
⎨
⎩
,(t为可取0的自然数),a是一位数,
显然也不满足;
除数a+b=16时,有9a=15+16m,有
m=3+9t
a=7+16t
⎧
⎨
⎩
(t为可取0的自然数),因为a是一位数,
所以a只能取7,对应b为16-7=9,满足;
所以最大的余数为15,此时有两位数79÷(7+9)=4……15.
10.用1,2,3,4,5,6,7,8,9这9个数字各一次,组成一个被减数、减数、差都是三位数的正确的减法算式,那么这个算式的差最大是多少?
【分析与解】考虑到对差的影响大小,我们先考虑百位数,为了让差最大,被减数的百位为
9,减数的百位为1,如果差的百位为8,那算式就是如下形式:剩下的6个数字为2、3、4、5、6、7,因为百位数字为8,所以我们可以肯定被减数的十位数字比减数要大,而且至少大2,因为1已经出现在算式中了,算式的可能的形式如下:
得数的十位只可能是减数和被减数的十位数字之差,或者小1,可能的算式形式如下:
但这时剩下的数都无法使算式成立.再考虑差的百位数字为7的情况,这时我们可以肯定减数的十位数比被减数要大,为了使差更大,我们希望差值的十位为8,因此,算式可能的形式为:
再考虑剩下的三个数字,可以找到如下几个算式:
,所以差最大为784.
12. 4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?
【分析与解】设这四个分数为上
1
2m
、
1
2n
、
1
2a+1
、
1
2b+1
(其中m、n、a、b均为非
零自然数)
有
1
2m
+
1
2n
=
1
2a+1
+
1
2b+1
,则有
1
2m
-
1
2b+1
=
1
2a+1
-
1
2n
,
我们从m=1,b=1开始试验:
1 2=
1
6
+
1
3
=
1
4
+
1
4
,
1
3
=
1
12
+
1
4
=
1
6
+
1
6
,
1 4=
1
20
+
1
5
=
1
8
+
1
8
,
1
5
=
1
30
+
1
6
=
1
10
+
1
10
,
1 6=
1
5
+
1
10
=
1
12
+
1
12
,﹍
我们发现,1
5
和
1
6
分解后具有相同的一项
1
10
,而且另外两项的分母是满足一奇一偶,
满足题中条件:
1 5+
1
15
=
1
6
+
1
10
,所以最小的两个偶数和为6+10=16.
14.有13个不同的自然数,它们的和是100.问其中偶数最多有多少个?最少有多少个?
【分析与解】 13个整数的和为100,即偶数,那么奇数个数一定为偶数个,则奇数最少为2个,最多为12个;对应的偶数最多有11个,最少有1个.
但是我们必须验证看是否有实例符合.
当有11个不同的偶数,2个不同的奇数时,11个不同的偶数和最小为2+4+6+8+10+12+14+16+18+20+22=132,而2个不同的奇数和最小为1+3=4.它们的和最小为132+4=136,显然不满足:
当有9个不同的偶数,4个不同的奇数时,9个不同的偶数和最小为2+4+6+8+10+12+14+16+18=90,而4个不同的奇数和最小为1+3+5+7=16,还是大于100,仍然不满足;
当有7个不同的偶数,6个不同的奇数时,7个不同的偶数和最小为2+4+6+8+10+12+14=56,6个不同的奇数和为1+3+5+7+9+11:36,满足,如2,4,6,8,10,
12,22,1,3,5,7,9,11的和即为100.
类似的可知,最少有5个不同的偶数,8个不同的奇数,有2,4,8,10,16,1.3.5,7,9,11,13,15满足.
所以,满足题意的13个数中,偶数最多有7个,最少有5个.。