细胞信号通路大全
细胞信号通路的基本组成
细胞信号通路的基本组成受体介导细胞信号通路包括:a.CAMP信号通路:由CM上的五种组分组成——激活型激素受体,Rs;与GDP结合的活化型调蛋白,Gs;腺来自苷酸环化酶,c;与G演他攻看很委酒继钢亮DP结合的抑制型调节蛋白,Gi;抑制型激素受体,Ri。
激素配体+Rs→Rs构象改变暴露出与Gs结合位点→与Gs结合→Gs2变化排斥GDP结合GTP360问答而活化→使三聚体Gs解离出α和βγ→暴露出α与腺苷酸环化酶结合位点→与A 环化E结合并使之活化→将ATP→CAMP→激活靶酶和开启基因表达→GTP水解,α恢复构象与A环化酶解离→C的环化作用终止→α和βγ结合回复。
pip2信号通路:胞外signal+膜受体→PIP2IP3+DAG,IP3→内源钙→细胞溶质,胞内Ca2+浓度升高→启动Ca2+信号系统,DAGCM上活化蛋白激酶PKC→DG/PKC信号传递passwa。
细胞信号转导特点是了望析学省却析班:①高度亲和力,②高度特异性,③可饱和性1、受体:位于细胞膜上或细胞内,能特异性识别生物活性分子并与之结合,进而引起生物学效应的特殊蛋白质,膜受体多为镶嵌糖蛋白:胞内受体全部为DNA结合蛋白。
受体在细胞信息传递过程中起极为重要的作用。
2、G蛋白:即鸟苷酸结合蛋白,是一类位于细胞膜胞浆面、能与GDP或GTP结合的外周蛋白,由α、β、γ三个亚基组成。
以三聚体存在并与GDP结合者为非活化型。
当α亚基与GTP结合并导致βγ二聚体脱落时则变成活化型,可作用于面膜受体的不同激素,通过不同的G蛋白介导影响农场慢开你质膜上某些离子通道或酶的活性,继而影响细胞内第二信使浓度和后续的生物学效应。
第一个和第二个都是G蛋白偶连信号通路,第三个是与酶偶连的信号通路1、cAMP信号通路信号分子与受体结合后,通过与GTP结合的调节蛋白(G蛋白)的耦联,在细胞内产生第二信使,从而引起细胞的应答反应。
cAMP信号通路由质膜上的5种成分组成:①激活型激素受体(Rs);②抑制型激素受体(Ri);③与GDP结合的活化型调节蛋白(Gs);④与GDP 的抑制型调节蛋白(Gi);⑤腺苷酸环化酶( C )。
细胞信号通路大全
1 PPAR信号通路:过氧化物酶体增殖物激活受体( PPARs) 是与维甲酸、类固醇和甲状腺激素受体相关的配体激活转录因子超家族核激素受体成员。
它们作为脂肪传感器调节脂肪代谢酶的转录。
PPARs由PPARα、PPARβ和PPARγ 3种亚型组成。
PPARα主要在脂肪酸代谢水平高的组织,如:肝、棕色脂肪、心、肾和骨骼肌表达。
他通过调控靶基因的表达而调节机体许多生理功能包括能量代谢、生长发育等。
另外,他还通过调节脂质代谢的生物感受器而调节细胞生长、分化与凋亡。
PPARa同时也是一种磷酸化蛋白,他受多种磷酸化酶的调节包括丝裂原激活蛋白激酶( ERK-和p38.M APK) ,蛋白激酶A和C( PKA,PKC) ,AM PK和糖原合成酶一3( G SK3) 等调控。
调控PPARa生长信号的酶报道有M APK、PKA和G SK3。
PPARβ广泛表达于各种组织,而PPAR γ主要局限表达在血和棕色脂肪,其他组织如骨骼肌和心肌有少量表达。
PPAR-γ在诸如炎症、动脉粥样硬化、胰岛素抵抗和糖代谢调节,以及肿瘤和肥胖等方面均有着举足轻重的作用,而其众多生物学效应则是通过启动或参与的复杂信号通路予以实现。
鉴于目前人们对PPAR—γ信号通路尚不甚清,PPARs通常是通过与9-cis维甲酸受体( RXR)结合实现其转录活性的。
2 MAPK信号通路:mapk简介:丝裂原激活蛋白激酶(mitogen—activated protein kinase,MAPK)是广泛存在于动植物细胞中的一类丝氨酸/苏氨酸蛋白激酶。
作用主要是将细胞外刺激信号转导至细胞及其核内,并引起细胞的生物化学反应(增殖、分化、凋亡、应激等)。
MAPKs家族的亚族 :ERKs(extracellular signal regulated kinase):包括ERK1、ERK2。
生长因子、细胞因子或激素激活此通路,介导细胞增殖、分化。
JNKs(c-Jun N-terminal kinase)包括JNK1、JNK2、JNK3。
细胞信号通路
Cell Signalling Pathways--Michael J. Berridge--module 2 胞内信号通路可分为两类,大多数的信号通路受细胞表面的胞外信号刺激,通常以化学信号的形式,如神经递质、激素及生长因子等;其他类的信号通路是由细胞内产生的信号激活的。
胞内信号主要来自内质网或代谢物。
一、环腺苷酸信号通路(Cyclic AMP signalling pathway)环腺苷酸是广泛存在的一种第二信使,其形成依赖于GPCR的活化,GPCR通过异质三聚体激活放大器AC(腺苷酸环化酶)。
cAMP的信号效应器有PKA、EPACs等可激活小GTP连接蛋白Rap1及环核苷酸门控通道(CNGCs),这些效应器负责进行cAMP信号功能。
cAMP 的许多功能取决于PKA的准确定位,而A激酶锚定蛋白(AKAPs)家族约定了PKA及其他许多信号组分的细胞定位。
Cyclic AMP formation环腺苷酸的形成可被许多细胞刺激活化,主要是神经递质和激素,这些刺激可被G蛋白偶联受体通过异质三聚体G蛋白检测到。
在腺苷酸环化酶刺激下,外部刺激结合到G蛋白偶联受体上,作为鸟苷酸交换因子(GEF)用GTP替代GDP,从而使得异质三聚体G蛋白分裂成Gβᵞ和Gα亚基。
Gα亚基和GTP的复合体激活腺苷酸环化酶,然而抑制性GαGTP 抑制AC。
Gα亚基具有GTP酶活性,可水解GTP成GDP,因而停止其对AC的作用。
Adenylyl cyclase (AC)AC家族由十个亚型组成,前九个为膜结合的,另外一个是水溶性的。
AC1-9的域结构具有两个含六个转膜区的区域。
大的细胞浆域C1和C2含有催化区,形成异质二聚体使得ATP 转化成AMP。
Cyclic AMP signalling effectorsEPACs、CNGCs等,cAMP的大多数作用都是通过PKA发挥作用的。
Protein kinase A (PKA)PKA由两个调节亚基(R)和两个催化亚基(C)组成。
细胞通讯系统:五大分子信号通路
胆固醇等脂质时,它们可以轻易穿过细胞膜,在 细胞质内与目的受体相结合; 一是当信号分子是多肽时,它们只能与细胞膜上 的蛋白质等受体结合,这些受体大都是跨膜蛋白, 通
过构象变化,将信号从膜外结构域传到膜内结构 域,然后再与下一级别受体作用,通过磷酸化等 修饰化激活下一级别通路。
Notch信号通路 Notch基因最早发现
各种动物细胞中。Notch信号途径对于多种组织 和细胞命运非常重要,包括表皮、神经、血液和 肌肉等。在本期的封面文章中,研究人员发现, 敲除MaSC富集细胞群当中的规
范Notch效应子Cbf-1,将导致干细胞活性的增强, 并产生异常的结构。以上发现表明,内生的 Notch信号对于限制MaSC扩展起到了一定作用。 [详细] WNT
调节基因表达。 Wnt信号通路 Wnt是一类分泌型糖蛋白,通过自分泌或旁分泌 发挥作用。在小鼠中,肿瘤病毒整合在Wnt之后 而导致乳腺癌。卷曲蛋白(Frz)作为
Wnt受体,其胞外N端具有富含半胱氨酸的结构 域,Frz作用于胞质内的蓬乱蛋白(Dsh),Dsh 能切断β-catenin的降解途径,从而使β-catenin在 细胞
示,Hh浓度梯度信号所引发的Smo磷酸化水平的 升高,能够通过Smo与Cos2之间的动态相互作 用将Cos2/Fu复合物招募到质膜上,从而诱导Fu 二聚化。二聚化的F
u通过自我磷酸化激活并进而磷酸化其底物Cos2 与Sufu而将Hh信号传递至下游。这一过程将促使 全长的转录因子Ci155由Cos2及Sufu动态解离出 来并进入细胞
异引起,所以我们对于Wnt细胞信号转导通路与 肺癌有莫大关系也非常惊讶。”论文通讯作者琼 马萨格博士表示。[详细] 我国科学家在Hedgehog信号通路传递研究方
向取得新进展 CellResearch在线发表了中科院上海生命科学研 究院生化与细胞所赵允和张雷研究组在研究 Hedgehog信号通路传递方面的新进展。通过研 究揭
细胞生物学信号通路
细胞生物学信号通路,是指细胞对外界信号作出的反应,并将其传递至其他细胞或组织的过程。
以下是一些常见的细胞生物学信号通路:
1.MAPK信号通路:该通路是介导细胞增殖和分化的主要途径。
当细胞受到生长因子或其它外部刺激时,MAPK信号通路会被激活,引发一系列的信号传递事件,最终导致细胞增殖或分化。
2.PI3K信号通路:该通路是介导细胞生长、增殖和存活的重要途径。
当细胞受到生长因子或其它外部刺激时,PI3K信号通路会被激活,产生磷酸化的磷脂酰肌醇,从而触发一系列的信号传递事件,最终导致细胞生长、增殖或存活。
3.Notch信号通路:该通路是介导细胞分化、发育和凋亡的重要途径。
当Notch受体与配体结合时,Notch信号通路会被激活,产生一系列的信号传递事件,最终导致细胞分化、发育或凋亡。
4.Wnt信号通路:该通路是介导细胞增殖和凋亡的重要途径。
当Wnt受体与配体结合时,Wnt信号通路会被激活,产生一系列的信号传递事件,最终导致细胞增殖或凋亡。
5.TGF-β信号通路:该通路是介导细胞分化、凋亡和细胞外基质重塑的重要途径。
当TGF-β受体与配体结合时,TGF-β信号通路会被激活,产生一系列的信号传递事件,最终导致细胞分化、凋亡或细胞外基质重塑。
这些信号通路在细胞生命活动中发挥着至关重要的作用,参与了细胞的多种生理和病理过程。
细胞信号通路大全
1PPAR信号通路:过氧化物酶体增殖物激活受体(PPARs)是与维甲酸、类固醇和甲状腺激素受体相关的配体激活转录因子超家族核激素受体成员。
它们作为脂肪传感器调节脂肪代谢酶的转录。
PPARs由PPARα、PPARβ和PPARγ3种亚型组成。
PPARα主要在脂肪酸代谢水平高的组织,如:肝、棕色脂肪、心、肾和骨骼肌表达。
他通过调控靶基因的表达而调节机体许多生理功能包括能量代谢、生长发育等。
另外,他还通过调节脂质代谢的生物感受器而调节细胞生长、分化与凋亡。
PPARa同时也是一种磷酸化蛋白,他受多种磷酸化酶的调节包括丝裂原激活蛋白激酶(ERK-和p38.MAPK),蛋白激酶A和C(PKA,PKC),AMPK和糖原合成酶一3(GSK3)等调控。
调控PPARa生长信号的酶报道有MAPK、PKA和GSK3。
PPARβ广泛表达于各种组织,而PPARγ主要局限表达在血和棕色脂肪,其他组织如骨骼肌和心肌有少量表达。
PPAR-γ在诸如炎症、动脉粥样硬化、胰岛素抵抗和糖代谢调节,以及肿瘤和肥胖等方面均有着举足轻重的作用,而其众多生物学效应则是通过启动或参与的复杂信号通路予以实现。
鉴于目前人们对PPAR—γ信号通路尚不甚清,PPARs通常是通过与9-cis维甲酸受体(RXR)结合实现其转录活性的。
2MAPK信号通路:mapk简介:丝裂原激活蛋白激酶(mitogen—activatedproteinkinase,MAPK)是广泛存在于动植物细胞中的一类丝氨酸/苏氨酸蛋白激酶。
作用主要是将细胞外刺激信号转导至细胞及其核内,并引起细胞的生物化学反应(增殖、分化、凋亡、应激等)。
MAPKs家族的亚族:ERKs(extracellularsignalregulatedkinase) :包括ERK1、ERK2。
生长因子、细胞因子或激素激活此通路,介导细胞增殖、分化。
JNKs(c-JunN-terminalkinase)包括JNK1、JNK2、JNK3。
细胞信号转导通路梳理
细胞信号转导通路梳理在我们的身体中,细胞就像是一个个小社会,它们之间不断地进行着信息交流和传递,以协调各种生理活动和应对外界环境的变化。
这种细胞之间的信息传递过程,被称为细胞信号转导。
细胞信号转导通路就像是一条条复杂的“信息高速公路”,将各种信号从细胞外传递到细胞内,引发一系列的反应,从而影响细胞的命运和功能。
细胞信号转导通路可以大致分为三类:离子通道型受体介导的信号转导通路、G 蛋白偶联受体介导的信号转导通路和酶联型受体介导的信号转导通路。
离子通道型受体介导的信号转导通路相对较为直接。
这类受体本身就是离子通道,当配体与受体结合后,通道的构象发生改变,导致离子的跨膜流动,从而快速地将信号传递到细胞内。
比如,神经细胞中的乙酰胆碱受体就是一种离子通道型受体。
当乙酰胆碱与受体结合时,钠离子迅速内流,引发神经冲动的传递。
G 蛋白偶联受体介导的信号转导通路则要复杂一些。
G 蛋白偶联受体位于细胞膜上,当配体与受体结合后,受体发生构象变化,从而激活与之偶联的 G 蛋白。
G 蛋白是由α、β、γ三个亚基组成的三聚体,根据α亚基的不同,可以分为 Gs、Gi、Gq 等多种类型。
激活后的 G蛋白可以进一步激活或抑制下游的效应酶,如腺苷酸环化酶、磷脂酶C 等,从而产生第二信使,如 cAMP、IP3、DAG 等。
这些第二信使再进一步激活蛋白激酶等信号分子,最终将信号传递到细胞内的各个部位,调节细胞的生理功能。
以 cAMP 信号通路为例,当配体与 G 蛋白偶联受体结合后,激活Gs 蛋白,Gs 蛋白激活腺苷酸环化酶,使细胞内的ATP 转化为cAMP。
cAMP 作为第二信使,可以激活蛋白激酶 A(PKA),PKA 可以磷酸化多种靶蛋白,从而调节细胞的代谢、基因表达等生理过程。
酶联型受体介导的信号转导通路则更加多样化。
这类受体的胞内段具有酶的活性,或者与酶相偶联。
常见的酶联型受体包括受体酪氨酸激酶(RTK)、受体丝氨酸/苏氨酸激酶、受体酪氨酸磷酸酯酶、受体鸟苷酸环化酶等。
细胞常见信号通路图片合集
细胞常见信号通路图片合集目录actin肌丝 (5)Wnt/LRP6 信号 (7)WNT信号转导 (7)West Nile 西尼罗河病毒 (8)Vitamin C 维生素C在大脑中的作用 (10)视觉信号转导 (11)VEGF,低氧 (13)TSP-1诱导细胞凋亡 (15)Trka信号转导 (16)dbpb调节mRNA (17)CARM1甲基化 (19)CREB转录因子 (20)TPO信号通路 (21)Toll-Like 受体 (22)TNFR2 信号通路 (24)TNFR1信号通路 (25)IGF-1受体 (26)TNF/Stress相关信号 (27)共刺激信号 (29)Th1/Th2 细胞分化 (30)TGF beta 信号转导 (32)端粒、端粒酶与衰老 (33)TACI和BCMA调节B细胞免疫 (35)T辅助细胞的表面受体 (36)T细胞受体信号通路 (37)T细胞受体和CD3复合物 (38) Cardiolipin的合成 (40)Synaptic突触连接中的蛋白 (42)HSP在应激中的调节的作用 (43)Stat3 信号通路 (45)SREBP控制脂质合成 (46)酪氨酸激酶的调节 (48)Sonic Hedgehog (SHH)受体ptc1调节细胞周期 (51) Sonic Hedgehog (Shh) 信号 (53)SODD/TNFR1信号 (56)AKT/mTOR在骨骼肌肥大中的作用 (58)G蛋白信号转导 (59)IL1受体信号转导 (60)acetyl从线粒体到胞浆过程 (62)趋化因子chemokine在T细胞极化中的选择性表达 (63) SARS冠状病毒蛋白酶 (65)SARS冠状病毒蛋白酶 (67)Parkin在泛素-蛋白酶体中的作用 (69)nicotinic acetylcholine受体在凋亡中的作用 (71)线粒体在细胞凋亡中的作用 (73)MEF2D在T细胞凋亡中的作用 (74)Erk5和神经元生存 (75)ERBB2信号转导 (77)GPCRs调节EGF受体 (78)BRCA1调节肿瘤敏感性 (79)Rho细胞运动的信号 (81)Leptin能逆转胰岛素抵抗 (82)转录因子DREAM调节疼敏感 (84)PML调节转录 (86)p27调节细胞周期 (88)MAPK信号调节 (89)细胞因子调节造血细胞分化 (91)eIF4e和p70 S6激酶调节 (92)eIF2调节 (93)谷氨酸受体调节ck1/cdk5 (94)BAD磷酸化调节 (95)plk3在细胞周期中的作用 (96)Reelin信号通路 (97)RB肿瘤抑制和DNA破坏 (98)NK细胞介导的细胞毒作用 (99)Ras信号通路 (100)Rac 1细胞运动信号 (101)PTEN依赖的细胞生长抑制和细胞凋亡 (103)蛋白激酶A(PKA)在中心粒中的作用 (104)notch信号通路 (106)蛋白酶体Proteasome复合物 (108)Prion朊病毒的信号通路 (109)早老素Presenilin在notch和wnt信号中的作用 (110) 淀粉样蛋白前体信号 (112)mRNA的poly(A)形成 (113)PKC抑制myosin磷酸化 (114)磷脂酶C(PLC)信号 (115)巨噬细胞Pertussis toxin不敏感的CCR5信号通路 (116) Pelp1调节雌激素受体的活性 (117)PDGF信号通路 (118)p53信号通路 (120)p38MAPK信号通路 (121)Nrf2是氧化应激基本表达的关键基因 (122)OX40信号通路 (123)hTert转录因子的调节作用 (124)hTerc转录调节活性图 (125)AIF在细胞凋亡中的作用 (126)Omega氧化通路 (127)核受体在脂质代谢和毒性中的作用 (129)NK细胞中NO2依赖的IL-12信号通路 (131) TOR信号通路 (133)NO信号通路 (134)NF-kB信号转导通路 (135)NFAT与心肌肥厚的示意图 (137)神经营养素及其表面分子 (139)神经肽VIP和PACAP防止活化T细胞凋亡图 (141) 神经生长因子信号图 (142)细胞凋亡信号通路 (144)MAPK级联通路 (144)MAPK信号通路图 (145)BCR信号通路 (146)蛋白质乙酰化示意图 (147)wnt信号通路 (148)胰岛素受体信号通路 (149)细胞周期在G2/M期的调控机理图 (151)细胞周期G1/S检查点调控机理图 (152)Jak-STAT关系总表 (153)Jak/STAT 信号 (155)TGFbeta信号 (156)NFkappaB信号 (157)p38 MAPK信号通路 (159)SAPK/JNK 信号级联通路 (160)从G蛋白偶联受体到MAPK (161)MAPK pathwayMAPK级联信号图 (162)eIF-4E和p70 S6激酶调控蛋白质翻译 (163)eif2蛋白质翻译 (164)蛋白质翻译示意图 (165)线粒体凋亡通路 (167)死亡受体信号通路 (168)凋亡抑制通路 (170)细胞凋亡综合示意图 (171)Akt/Pkb信号通路 (172)MAPK/ERK信号通路 (174)哺乳动物MAPK信号通路 (175)Pitx2多步调节基因转录 (176)IGF-1R导致BAD磷酸化的多个凋亡路径 (177) 多重耐药因子 (179)mTOR信号通路 (180)Msp/Ron受体信号通路 (181)单核细胞和其表面分子 (182)线粒体的肉毒碱转移酶(CPT)系统 (183)。
细胞信号通路大全
1 PPAR信号通路:过氧化物酶体增殖物激活受体( PPARs) 是与维甲酸、类固醇和甲状腺激素受体相关的配体激活转录因子超家族核激素受体成员。
它们作为脂肪传感器调节脂肪代谢酶的转录。
PPARs由PPARα、PPARβ和PPARγ 3种亚型组成。
PPARα主要在脂肪酸代谢水平高的组织,如:肝、棕色脂肪、心、肾和骨骼肌表达。
他通过调控靶基因的表达而调节机体许多生理功能包括能量代谢、生长发育等。
另外,他还通过调节脂质代谢的生物感受器而调节细胞生长、分化与凋亡。
PPARa同时也是一种磷酸化蛋白,他受多种磷酸化酶的调节包括丝裂原激活蛋白激酶( ERK-和p38.M APK) ,蛋白激酶A和C( PKA,PKC) ,AM PK和糖原合成酶一3( G SK3) 等调控。
调控PPARa生长信号的酶报道有M APK、PKA和G SK3。
PPARβ广泛表达于各种组织,而PPAR γ主要局限表达在血和棕色脂肪,其他组织如骨骼肌和心肌有少量表达。
PPAR-γ在诸如炎症、动脉粥样硬化、胰岛素抵抗和糖代谢调节,以及肿瘤和肥胖等方面均有着举足轻重的作用,而其众多生物学效应则是通过启动或参与的复杂信号通路予以实现。
鉴于目前人们对PPAR—γ信号通路尚不甚清,PPARs 通常是通过与9-cis维甲酸受体( RXR)结合实现其转录活性的。
2 MAPK信号通路:mapk简介:丝裂原激活蛋白激酶(mitogen—activated protein kinase,MAPK)是广泛存在于动植物细胞中的一类丝氨酸/苏氨酸蛋白激酶。
作用主要是将细胞外刺激信号转导至细胞及其核内,并引起细胞的生物化学反应(增殖、分化、凋亡、应激等)。
MAPKs家族的亚族 :ERKs(extracellular signal regulated kinase):包括ERK1、ERK2。
生长因子、细胞因子或激素激活此通路,介导细胞增殖、分化。
JNKs(c-Jun N-terminal kinase)包括JNK1、JNK2、JNK3。
专题二 常见的细胞信号转导通路
结构域是“假”激酶区、
JH6和JH7是受体结合区域
JAK-STAT信号通路
转录因子STAT
• 信号转导子和转录激活子(signal transducer and
activator of transcription)。 • 自第一1991年个STAT蛋白Stat1被纯化出来以后,目 前已发现STAT家族的七个成员,即STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, STAT6,含有734 851个氨基酸不等,分子量约为84-113KD。 • 所有STAT蛋白分子由7个不同的功能结构域组成:N端保守序列、螺旋结构域、DNA结合区、连接区域、 SH3结构域、SH2结构域、C-端的转录激活区。
IKK复合物的激酶
• TAK1(TGFβ激活性激酶1)、 • NIK(NF-κB诱导激酶)
NF-κB信号通路
TRAFs:TNF受体相关因子
• TRAFs家族成员是一大类胞内接头蛋白,能直接或间接
与多种TNFR和IL-1/TLR受体家族成员结合,连接到多种 下游信号通路的信号因子,包括NF-κB的信号通路,从 而影响细胞的生存、增殖、分化等,并参与多个生物学 过程的调控。 • 在几乎所有NF-κB的信号通路中,都是关键的信号中间 物。 • TRAF蛋白家族 • TRAF蛋白家族一共有7个成员,分别是TRAF1、TRAF2 、TRAF3、TRAF4、TRAF5、TRAF6、TRAF7。
JAK-STAT信号通路
• 受体的二聚化可以是同源的也可以是异源的。在发生 同源受体二聚化时,只有JAK2被激活;相反,由不同 亚基组成的异源受体二聚化,却可以激活多种JAK。 一旦被激活,JAK便磷酸化受体的亚基以及其他底物 。
细胞信号通路大全
信号通路与免疫系统疾病
自身免疫疾病
自身免疫疾病患者体内免疫细胞信号通路异 常激活,如T细胞、B细胞等信号通路,导致 自身免疫反应过度。
炎症性疾病
炎症性疾病患者体内炎症细胞信号通路异常激活, 如NF-κB、MAPK等信号通路,导致炎症反应过度 或持续。
感染性疾病
感染性疾病患者体内病原微生物通过干扰免 疫细胞信号通路,如细菌、病毒等,逃避免 疫细胞的攻击。
PI3K-Akt信号通路
PI3K-Akt信号通路是细胞生存和增殖的关键信号转导途径。
PI3K-Akt信号通路在细胞生长、代谢、存活和凋亡等过程中发挥重要作用。当细胞受到生长因子、激素等刺激时,PI3K被激 活,进而催化生成PIP3,后者与Akt结合并使其磷酸化,从而激活Akt。Akt可以进一步调控下游的靶蛋白,参与细胞增殖、 迁移、代谢等过程。
JAK-STAT信号通路
JAK-STAT信号通路是细胞因子信号转导的重要途径之一。
JAK-STAT信号通路在细胞因子信号转导中发挥关键作用。当细胞因子与受体结合后,JAK被激活并催 化受体酪氨酸磷酸化,进而招募并磷酸化STAT蛋白。STAT蛋白形成二聚体并进入细胞核,调控靶基 因的表达,参与细胞生长、分化、免疫调节等过程。
信号通路的自调节
信号通路的正反馈调节
自调节的一种形式是正反馈调节,它通过增 加某个关键信号分子的数量或活性,进一步 增强自身的信号传递。例如,某些生长因子 可以诱导自身受体的表达,形成一个正反馈 环路,不断放大信号传递。
信号通路的负反馈调节
另一种自调节形式是负反馈调节,它通过降 低某个关键信号分子的数量或活性,来抑制 自身的信号传递。例如,某些激素可以通过 诱导产生拮抗性激素或受体,从而抑制自身 的信号传递。
细胞的4类8种信号通路
细胞的4类8种信号通路
细胞的信号通路主要包括以下四种类型:
1. GPCR-cAMP-PKA 和 RTK-Ras-MAPK 信号通路:通过活化受体导致胞质蛋白激酶的活化,活化的胞质蛋白激酶转位到核内并磷酸化特异的核内转录因子,进而调控基因转录。
2. TGF-β-smad和JAK-STAT信号通路:通过配体与受体结合激活受体本身或偶联激酶的活性,然后直接或间接导致胞质内特殊转录因子的活化,进而影响核内基因的表达。
3. Wnt受体和Hedgehog受体介导的信号通路:通过配体与受体结合引发胞质内多蛋白复合物去装配,从而释放转录因子,转录因子再转位到核内调控基因表达。
4. NF-κB和Notch信号通路:通过抑制物或受体本身的蛋白切割作用,释放活化的转录因子,转录因子再转位到核内调控基因表达。
常见的细胞信号转导通路
常见的细胞信号转导通路细胞信号转导是细胞内外信息传递的过程,通过一系列信号转导通路来调控细胞的生理功能。
常见的细胞信号转导通路包括激酶受体信号转导、G蛋白偶联受体信号转导和细胞因子信号转导等。
本文将就这些常见的细胞信号转导通路进行详细介绍。
一、激酶受体信号转导通路激酶受体是一类跨膜蛋白,具有细胞外配体结合结构域和细胞内酪氨酸激酶结构域。
当配体与激酶受体结合后,激酶受体发生构象变化,激活其酪氨酸激酶活性,进而激活下游的信号分子。
激酶受体信号转导通路在细胞生长、增殖、分化和细胞凋亡等生理过程中起着重要的调控作用。
二、G蛋白偶联受体信号转导通路G蛋白偶联受体是一类跨膜蛋白,具有七个跨膜结构域。
当配体与G蛋白偶联受体结合后,G蛋白发生构象变化,使其α亚单位与βγ亚单位解离。
α亚单位或βγ亚单位进一步激活下游的信号分子,如腺苷酸环化酶、蛋白激酶C等,从而调控细胞内的生理功能。
G蛋白偶联受体信号转导通路广泛参与调控细胞的生理过程,如细胞增殖、分化、迁移以及细胞的内分泌等。
三、细胞因子信号转导通路细胞因子是一类多样化的分子信号物质,例如细胞生长因子、细胞因子和激素等。
细胞因子通过与细胞膜上的受体结合,激活下游的信号分子,最终调控细胞的生理功能。
细胞因子信号转导通路参与调控细胞的生长、增殖、分化、凋亡等重要过程,对维持机体的稳态具有关键作用。
在细胞信号转导通路中,还存在着多种交叉和调控机制。
例如,激酶受体和G蛋白偶联受体信号转导通路可以相互作用和调控,形成复杂的信号网络。
此外,细胞信号转导通路还可以与细胞周期、细胞骨架、细胞黏附等细胞内部结构相互作用,共同调控细胞的生理功能。
细胞信号转导通路的研究对于深入了解细胞生理功能的调控机制具有重要意义。
通过揭示细胞信号转导通路的调控机制,可以为疾病的防治提供新的靶点和治疗策略。
同时,细胞信号转导通路的研究也为药物研发提供了重要的理论基础,通过干预细胞信号转导通路,可以研发出更加高效和精准的药物。
细胞信号转导通路
细胞信号转导通路细胞信号转导通路是一系列分子事件的链式反应,在细胞内传递外界刺激和信息,以调节细胞的生理和生化过程。
这些通路对于维持正常的细胞功能、细胞增殖、分化以及细胞周期的调控都起到关键作用。
本文将介绍细胞信号转导通路的基本概念,主要讨论常见的细胞信号转导通路及其相关机制。
一、G蛋白偶联受体(GPCR)信号转导通路G蛋白偶联受体是一类广泛存在于细胞膜上的受体,激活后能够与G蛋白结合,并进一步传递信号。
这类受体广泛参与调节细胞内钙离子浓度、细胞内二等信号分子的合成和释放等细胞生理过程。
例子包括β肾上腺素受体(β-AR)、肾上腺素α受体(α-AR)等。
在G蛋白偶联受体信号转导通路中,咕噜二磷酸鸟苷酸(GTP)结合蛋白G蛋白在受体激活后发生构象变化,从而介导下游信号分子的激活。
二、酪氨酸激酶信号转导通路酪氨酸激酶信号转导通路主要参与细胞的生长、分化以及细胞凋亡等过程。
这类通路的激活依赖于酪氨酸激酶受体,如胰岛素受体、表皮生长因子受体等。
在酪氨酸激酶信号转导通路中,受体的激活会引起受体自身磷酸化,进而激活下游的信号转导蛋白激酶,最终调节细胞的生理功能。
三、蛋白激酶A(PKA)信号转导通路蛋白激酶A信号转导通路是细胞内磷酸化过程中的重要通路之一。
在这一通路中,细胞外的信号分子作用于受体,触发受体激活后,导致PKA活性上升,进而磷酸化下游靶蛋白,如离子通道蛋白和转录因子等。
这些磷酸化事件将调节细胞代谢、细胞增殖和基因表达等过程,对于维持细胞正常功能至关重要。
四、MAPK信号转导通路MAPK(Mitogen-activated protein kinase)信号转导通路参与细胞的增殖、分化和存活等过程。
这一通路主要由MAPK激酶级联反应组成,经历一系列的磷酸化和解磷酸化过程,最终激活转录因子和核酸酶,影响基因表达和细胞生物学效应。
总结:细胞信号转导通路通过一系列分子事件,将细胞外的信号转化为细胞内的生理和生化过程。
细胞常见信号通路图片
目录actin肌丝...........................................................Wnt/LRP6?信号.......................................................WNT信号转导.........................................................West?Nile?西尼罗河病毒..............................................Vitamin?C?维生素C在大脑中的作用....................................视觉信号转导........................................................VEGF,低氧..........................................................TSP-1诱导细胞凋亡...................................................Trka信号转导........................................................dbpb调节mRNA .......................................................CARM1甲基化.........................................................CREB转录因子........................................................TPO信号通路.........................................................Toll-Like?受体......................................................TNFR2?信号通路......................................................TNFR1信号通路.......................................................IGF-1受体...........................................................TNF/Stress相关信号..................................................共刺激信号..........................................................Th1/Th2?细胞分化....................................................TGF?beta?信号转导...................................................端粒、端粒酶与衰老..................................................TACI和BCMA调节B细胞免疫...........................................T辅助细胞的表面受体.................................................T细胞受体信号通路...................................................T细胞受体和CD3复合物............................................... Cardiolipin的合成...................................................Synaptic突触连接中的蛋白............................................HSP在应激中的调节的作用.............................................Stat3?信号通路......................................................SREBP控制脂质合成...................................................酪氨酸激酶的调节....................................................Sonic?Hedgehog?(SHH)受体ptc1调节细胞周期...........................Sonic?Hedgehog?(Shh)?信号...........................................SODD/TNFR1信号......................................................AKT/mTOR在骨骼肌肥大中的作用........................................G蛋白信号转导.......................................................IL1受体信号转导.....................................................acetyl从线粒体到胞浆过程............................................趋化因子chemokine在T细胞极化中的选择性表达........................SARS冠状病毒蛋白酶..................................................SARS冠状病毒蛋白酶..................................................Parkin在泛素-蛋白酶体中的作用....................................... nicotinic?acetylcholine受体在凋亡中的作用........................... 线粒体在细胞凋亡中的作用............................................ MEF2D在T细胞凋亡中的作用........................................... Erk5和神经元生存.................................................... ERBB2信号转导....................................................... GPCRs调节EGF受体................................................... BRCA1调节肿瘤敏感性................................................. Rho细胞运动的信号................................................... Leptin能逆转胰岛素抵抗.............................................. 转录因子DREAM调节疼敏感............................................ PML调节转录......................................................... p27调节细胞周期..................................................... MAPK信号调节........................................................ 细胞因子调节造血细胞分化............................................ eIF4e和p70?S6激酶调节.............................................. eIF2调节............................................................ 谷氨酸受体调节ck1/cdk5 .............................................. BAD磷酸化调节....................................................... plk3在细胞周期中的作用.............................................. Reelin信号通路...................................................... RB肿瘤抑制和DNA破坏................................................ NK细胞介导的细胞毒作用.............................................. Ras信号通路......................................................... Rac?1细胞运动信号................................................... PTEN依赖的细胞生长抑制和细胞凋亡.................................... 蛋白激酶A(PKA)在中心粒中的作用.................................... notch信号通路....................................................... 蛋白酶体Proteasome复合物........................................... Prion朊病毒的信号通路............................................... 早老素Presenilin在notch和wnt信号中的作用......................... 淀粉样蛋白前体信号.................................................. mRNA的poly(A)形成.................................................. PKC抑制myosin磷酸化................................................ 磷脂酶C(PLC)信号.................................................. 巨噬细胞Pertussis?toxin不敏感的CCR5信号通路....................... Pelp1调节雌激素受体的活性........................................... PDGF信号通路........................................................ p53信号通路......................................................... p38MAPK信号通路..................................................... Nrf2是氧化应激基本表达的关键基因.................................... OX40信号通路........................................................ hTert转录因子的调节作用............................................. hTerc转录调节活性图................................................. AIF在细胞凋亡中的作用............................................... Omega氧化通路.......................................................核受体在脂质代谢和毒性中的作用...................................... NK细胞中NO2依赖的IL-12信号通路.................................... TOR信号通路......................................................... NO信号通路.......................................................... NF-kB信号转导通路................................................... NFAT与心肌肥厚的示意图.............................................. 神经营养素及其表面分子.............................................. 神经肽VIP和PACAP防止活化T细胞凋亡图.............................. 神经生长因子信号图.................................................. 细胞凋亡信号通路.................................................... MAPK级联通路........................................................ MAPK信号通路图...................................................... BCR信号通路......................................................... 蛋白质乙酰化示意图.................................................. wnt信号通路......................................................... 胰岛素受体信号通路.................................................. 细胞周期在G2/M期的调控机理图....................................... 细胞周期G1/S检查点调控机理图....................................... Jak-STAT关系总表.................................................... Jak/STAT?信号....................................................... TGFbeta信号......................................................... NFkappaB信号........................................................ p38?MAPK信号通路.................................................... SAPK/JNK?信号级联通路............................................... 从G蛋白偶联受体到MAPK .............................................. MAPK pathwayMAPK级联信号图.......................................... eIF-4E和p70?S6激酶调控蛋白质翻译................................... eif2蛋白质翻译...................................................... 蛋白质翻译示意图.................................................... 线粒体凋亡通路...................................................... 死亡受体信号通路.................................................... 凋亡抑制通路........................................................ 细胞凋亡综合示意图.................................................. Akt/Pkb信号通路..................................................... MAPK/ERK信号通路.................................................... 哺乳动物MAPK信号通路............................................... Pitx2多步调节基因转录............................................... IGF-1R导致BAD磷酸化的多个凋亡路径.................................. 多重耐药因子........................................................ mTOR信号通路........................................................ Msp/Ron受体信号通路................................................. 单核细胞和其表面分子................................................ 线粒体的肉毒碱转移酶(CPT)系统..................................... METS影响巨噬细胞的分化.............................................. Anandamide,内源性大麻醇的代谢...................................... 黑色素细胞(Melanocyte)发育和信号..................................DNA甲基化导致转录抑制的机理图....................................... 蛋白质的核输入信号图................................................ PPARa调节过氧化物酶体的增殖......................................... 对乙氨基酚(Acetaminophen)的活性和毒性机理......................... mCalpain在细胞运动中的作用.......................................... MAPK信号图.......................................................... MAPK抑制SMRT活化................................................... 苹果酸和天门冬酸间的转化............................................ 低密度脂蛋白(LDL)在动脉粥样硬化中的作用........................... LIS1基因在神经细胞的发育和迁移中的作用图............................ Pyk2与Mapk相连的信号通路........................................... galactose代谢通路................................................... Lectin诱导补体的通路................................................ Lck和Fyn在TCR活化中的作用......................................... 乳酸合成图.......................................................... Keratinocyte分化图.................................................. 离子通道在心血管内皮细胞中的作用.................................... 离子通道和佛波脂(Phorbal?Esters)信号.............................. 内源性Prothrombin激活通路.......................................... Ribosome内化通路.................................................... 整合素(Integrin)信号通路.......................................... 胰岛素(Insulin)信号通路........................................... Matrix?Metalloproteinases ........................................... 组氨酸去乙酰化抑制剂抑制Huntington病............................... Gleevec诱导细胞增殖................................................. Ras和Rho在细胞周期的G1/S转换中的作用.............................. DR3,4,5受体诱导细胞凋亡........................................... AKT调控Gsk3图...................................................... IL-7信号转导........................................................ IL22可溶性受体信号转导图............................................ IL-2活化T细胞图.................................................... IL12和Stat4依赖的TH1细胞发育信号通路.............................. IL-10信号通路....................................................... IL?6信号通路........................................................ IL?5信号通路........................................................actin肌丝Mammalian cell motility requires actin polymerization in the direction of movement to change membrane shape and extend cytoplasm into lamellipodia. The polymerization of actin to drive cell movement also involves branching of actin filaments into a network oriented with the growing ends of the fibers near the cell membrane. Manipulation of this process helps bacteria like Salmonella gain entry into cells they infect. Two of the proteins involved in the formation of Y branches and in cell motility are Arp2 and Arp3, both members of a large multiprotein complex containing several other polypeptides as well. The Arp2/3 complex is localized at the Y branch junction and induces actin polymerization. Activity of this complex is regulated by multiple different cell surface receptor signaling systems, activating WASP, and Arp2/3 in turn to cause changes in cell shape and cell motility. Wasp and its cousin Wave-1 interact with the Arp2/3 complex through the p21 component of the complex. The crystal structure of the Arp2/3 complex has revealed further insights into the nature of how the complex works.Activation by Wave-1, another member of the WASP family, also induces actin alterations in response to Rac1 signals upstream. Wave-1 is held in an inactive complex in the cytosol that is activated to allow Wave-1 to associate with Arp2/3. While WASP is activated by interaction with Cdc42, Wave-1, is activated by interaction with Rac1 and Nck. Wave-1 activation by Rac1 and Nck releases Wave-1 with Hspc300 to activate actin Y branching and polymerization by Arp2/3. Different members of this gene family may produce different actin cytoskeletal architectures. The immunological defects associated with mutation of the WASP gene, the Wiskott-Aldrich syndrome for which WASP was named, indicates the importance of this system for normal cellular function.Cory GO, Ridley AJ. Cell motility: braking WAVEs. Nature. 2002 Aug 15;418(6899):732-3. No abstract available.Eden, S., et al. (2002) Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418(6899), 790-3Falet H, Hoffmeister KM, Neujahr R, Hartwig JH. Normal Arp2/3 complex activation in platelets lacking WASp. Blood. 2002 Sep 15;100(6):2113-22.Kreishman-Deitrick M, Rosen MK, Kreishman-Deltrick M. Ignition of a cellular machine. Nat Cell Biol. 2002 Feb;4(2):E31-3. No abstract available.Machesky, L.M., Insall, R.H. (1998) Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr Biol 8(25), 1347-56 Robinson, R.C. et al. (2001) Crystal structure of Arp2/3 complex. Science 294(5547), 1679-84Weeds A, Yeoh S. Structure. Action at the Y-branch. Science. 2001 Nov 23;294(5547):1660-1. No abstract available.Wnt/LRP6?信号Wnt glycoproteins play a role in diverse processes during embryonic patterning in metazoa through interaction with frizzled-type seven-transmembrane-domain receptors (Frz) to stabilize b-catenin. LDL-receptor-related protein 6 (LRP6), a Wnt co-receptor, is required for this interaction. Dikkopf (dkk) proteins are both positive and negative modulators of this signalingWNT信号转导West?Nile?西尼罗河病毒West Nile virus (WNV) is a member of the Flaviviridae, a plus-stranded virus family that includes St. Louis encephalitis virus, Kunjin virus, yellow fever virus, Dengue virus, and Japanese encephalitis virus. WNV was initially isolated in 1937 in the West Nile region of Uganda and has become prevalent in Africa, Asia, and Europe. WNV has rapidly spread across the United States through its insect host and causes neurological symptoms and encephalitis, which can result in paralysis or death. Since 1999 about 3700 cases of West Nile virus (WNV) infection and 200 deaths have been recorded in United States. The viral capsid protein likely contributes to theWNV-associated deadly inflammation via apoptosis induced through the mitochondrial pathway.WNV particles (50 nm in diameter) consist of a dense core (viral protein C encapsidated virus RNA genome) surrounded by a membrane envelope (viral E and M proteins embedded in a lipid bilayer). The virus binds to a specific cell surface protein (not yet identified), an interaction thought to involve E protein with highly sulfated neperan sulfate (HSHS) residues that are present on the surfaces of many cells and enters the cell by a process similar to that of endocytosis. Onceinside the cell, the genome RNA is released into the cytoplasm via endosomal release, a fusion process involving acidic pH induced conformation change in the E protein. The RNA genome serves as mRNA and is translated by ribosomes into ten mature viral proteins are produced via proteolytic cleavage, which include three structural components and seven different nonstructural components of the virus. These proteins assemble and transcribe complimentary minus strand RNAs from the genomic RNA. The complimentary minus strand RNA in turns serves as template for the synthesis of positive-stranded genomic RNAs. Once viral E, preM and C proteins have accumulated to sufficient level, they assemble with the genomic RNA to form progeny virions, which migrate to the cell surface where they are surrounded with lipid envelop and released.Vitamin?C?维生素C在大脑中的作用Vitamin C (ascorbic acid) was first identified by virtue of the essential role it plays in collagen modification, preventing the nutritional deficiency scurvy. Vitamin C acts as a cofactor for hydroxylase enzymes that post-translationally modify collagen to increase the strength and elasticity of tissues. Vitamin C reduces the metal ion prosthetic groups of many enzymes, maintaining activity of enzymes, also acts as an anti-oxidant. Although the prevention of scurvy through modification of collagen may be the most obvious role for vitamin C, it is not necessarily the only role of vitamin C. Svct1 and Svct2 are ascorbate transporters for vitamin C import into tissues and into cells. Both of these transporters specifically transport reduced L-ascorbic acid against a concentration gradient using the intracellular sodium gradient to drive ascorbate transport. Svct1 is expressed in epithelial cells in the intestine, upregulated in cellular models for intestinal epithelium and appears to be responsible for the import of dietary vitamin C from the intestinal lumen. The vitamin C imported from the intestine is present in plasma at approximately 50 uM, almost exclusively in the reduced form, and is transported to tissues to play a variety of roles.Svct2 imports reduced ascorbate from the plasma into very active tissues like the brain. Deletion in mice of the gene for Svct2 revealed that ascorbate is required for normal development of the lungs and brain during pregnancy. A high concentration of vitamin C in neurons of the developing brain may help protect the developing brain from free radical damage. The oxidized form of ascorbate, dehydroascorbic acid, is transported into a variety of cells by the glucose transporter Glut-1.Glut-1, Glut-3 and Glut-4 can transport dehydroascorbate, but may not transport significant quantities of ascorbic acid in vivo.视觉信号转导The signal transduction cascade responsible for sensing light in vertebrates is one of the best studied signal transduction processes, and is initiated by rhodopsin in rod cells, a member of the G-protein coupled receptor gene family. Rhodopsin remains the only GPCR whose structure has been resolved at high resolution. Rhodopsin in the discs of rod cells contains a bound 11-cis retinal chromophore, a small molecule derived from Vitamin A that acts as the light sensitive portion of the receptor molecule, absorbing light to initiate the signal transduction cascade. When light strikes 11-cis retinal and is absorbed, it isomerizes to all-trans retinal, changing the shape of the molecule and the receptor it is bound to. This change inrhodopsin抯 shape alters its interaction with transducin, the member of theG-protein gene family that is specific in its role in visual signal transduction. Activation of transducin causes its alpha subunit to dissociate from the trimer and exchange bound GDP for GTP, activating in turn a membrane-bound cyclic-GMP specific phosphodiesterase that hydrolyzes cGMP. In the resting rod cell, high levels of cGMP associate with a cyclic-GMP gated sodium channel in the plasma membrane, keeping the channels open and the membrane of the resting rod cells depolarized. This is distinct from synaptic generation of action potentials, in which stimulation induces opening of sodium channels and depolarization. When cGMP gated channels in rod cells open, both sodium and calcium ions enter the cell, hyperpolarizing the membrane and initiating the electrochemical impulse responsible for conveying the signal from the sensory neuron to the CNS. The rod cell in the resting state releases high levels of the inhibitory neurotransmitter glutamate, while the release of glutamate is repressed by the hyperpolarization in the presence of light to trigger a downstream action potential by ganglion cells that convey signals to the brain. The calcium which enters the cell also activates GCAP, which activates guanylate cyclase (GC-1 and GC-2) to rapidly produce more cGMP, ending the hyperpolarization and returning the cell to its resting depolarized state. A protein called recoverin helps mediate the inactivation of the signal transduction cascade, returning rhodopsin to its preactivated state, along with the rhodopsin kinase Grk1. Phosphorylation of rhodopsin by Grkl causes arrestin to bind, helping to terminate the receptor activation signal. Dissociation and reassociation of retinal, dephosphorylation of rhodopsin and release of arrestin all return rhodopsin to its ready state, prepared once again to respond to light.VEGF,低氧Vascular endothelial growth factor (VEGF) plays a key role in physiological blood vessel formation and pathological angiogenesis such as tumor growth and ischemic diseases. Hypoxia is a potent inducer of VEGF in vitro. The increase in secreted biologically active VEGF protein from cells exposed to hypoxia is partly because of an increased transcription rate, mediated by binding of hypoxia-inducible factor-1 (HIF1) to a hypoxia responsive element in the 5'-flanking region of theVEGF gene. bHLH-PAS transcription factor that interacts with the Ah receptor nuclear translocator (Arnt), and its predicted amino acid sequence exhibits significant similarity to the hypoxia-inducible factor 1alpha (HIF1a) product. HLF mRNA expression is closely correlated with that of VEGF mRNA.. The high expression level of HLF mRNA in the O2 delivery system of developing embryos and adult organs suggests that in a normoxic state, HLF regulates gene expression of VEGF, various glycolytic enzymes, and others driven by the HRE sequence, and may be involved in development of blood vessels and the tubular system of lung. VEGF expression is dramatically induced by hypoxia due in large part to an increase in the stability of its mRNA. HuR binds with high affinity and specificity to the VRS element that regulates VEGF mRNA stability by hypoxia. In addition, an internal ribosome entry site (IRES) ensures efficient translation of VEGF mRNA even under hypoxia. The VHL tumor suppressor (von Hippel-Lindau) regulates also VEGF expression at apost-transcriptional level. The secreted VEGF is a major angiogenic factor that regulates multiple endothelial cell functions, including mitogenesis. Cellular and circulating levels of VEGF are elevated in hematologic malignancies and are adversely associated with prognosis. Angiogenesis is a very complex, tightly regulated, multistep process, the targeting of which may well prove useful in the creation of novel therapeutic agents. Current approaches being investigated include the inhibition of angiogenesis stimulants (e.g., VEGF), or their receptors, blockade of endothelial cell activation, inhibition of matrix metalloproteinases, and inhibition of tumor vasculature. Preclinical, phase I, and phase II studies of both monoclonal antibodies to VEGF and blockers of the VEGF receptor tyrosine kinase pathway indicate that these agents are safe and offer potential clinical utility in patients with hematologic malignancies.TSP-1诱导细胞凋亡As tissues grow they require angiogenesis to occur if they are to be supplied with blood vessels and survive. Factors that inhibit angiogenesis might act as cancer therapeutics by blocking vessel formation in tumors and starving cancer cells. Thrombospondin-1 (TSP-1) is a protein that inhibits angiogenesis and slows tumor growth, apparently by inducing apoptosis of microvascular endothelial cells that line blood vessels. TSP-1 appears to produce this response by activating a signaling pathway that begins with its receptor CD36 at the cell surface of the microvascular endothelial cell. The non-receptor tyrosine kinase fyn is activated by TSP-1 through CD36, activating the apoptosis inducing proteases like caspase-3 and p38 protein kinases. p38 is a mitogen-activated kinase that also induces apoptosis in some conditions, perhaps through AP-1 activation and the activation of genes that lead to apoptosis.Trka信号转导Nerve growth factor (NGF) is a neurotrophic factor that stimulates neuronal survival and growth through TrkA, a member of the trk family of tyrosine kinase receptors that also includes TrkB and TrkC. Some NGF responses are also mediated or modified by p75LNTR, a low affinity neurotrophin receptor. Binding of NGF to TrkA stimulates neuronal survival, and also proliferation. Pathways coupled to these responses are linked to TrkA through association of signaling factors with specific amino acids in the TrkA cytoplasmic domain. Cell survival through inhibition of apoptosis is signaled through activation of PI3-kinase and AKT. Ras-mediated signaling and phospholipase C both activate the MAP kinase pathway to stimulate proliferation.dbpb调节mRNAEndothelial cells respond to treatment with the protease thrombin with increased secretion of the PDGF B-chain. This activation occurs at the transcriptional level and a thrombin response element was identified in the promoter of the PDGF B-chain gene. A transcription factor called the DNA-binding protein B (dbpB) mediates the activation of PDGF B-chain transcription in response to thrombin treatment. DbpB is a member of the Y box family of transcription factors and binds to both RNA and DNA. In the absence of thrombin, endothelial cells contain a 50 kD form of dbpB that binds RNA in the cytoplasm and may play a role as a chaperone for mRNA. The 50 kD version of dbpB also binds DNA to regulate genes containing Y box elements in their promoters. Thrombin activation results in the cleavage of dbpB to a 30 kD form. The proteolytic cleavage releases dbpB from RNA in the nucleus, allowing it to enter the nucleus and binds to a regulatory element distinct from the site recognized by the full length 50 kD dbpB. The genes activated by cleaved dbpB include the PDGF B chain. Dephosphorylation of dbpB also regulates nuclear entry and transcriptional activation.RNA digestion in vitro can release dbpB in its active form, suggesting that the protease responsible for dbpB may be closely associated in a complex. Identification of the protease that cleaves dbpB, the mechanisms of phosphorylation and dephosphorylation, and elucidation of the signaling path by which thrombin induces dbpB will provide greater understanding of this novel signaling pathway.CARM1甲基化Several forms of post-translational modification regulate protein activities. Recently, protein methylation by CARM1 (coactivator-associated arginine methyltransferase 1) has been observed to play a key role in transcriptional regulation. CARM1 associates with the p160 class of transcriptional coactivators involved in gene activation by steroid hormone family receptors. CARM1 also interacts with CBP/p300 transcriptional coactivators involved in gene activation by a large variety of transcription factors, including steroid hormone receptors and CEBP. One target of CARM1 is the core histones H3 and H4, which are also targets of the histone acetylase activity of CBP/p300 coactivators. Recruitment of CARM1 to the promoter region by binding to coactivators increases histone methylation and makes promoter regions more accessible for transcription. Another target of CARM1 methylation is a coactivator it interacts with, CBP. Methylation of CBP by CARM1 blocks CBP from acting as a coactivator for CREB and redirects the limited CBP pool in the cell to be available for steroid hormone receptors. Other forms ofpost-translational protein modification such as phosphorylation are reversible in nature, but as of yet a protein demethylase is not known.CREB转录因子The transcription factor CREB binds the cyclic AMP response element (CRE) and activates transcription in response to a variety of extracellular signals including neurotransmitters, hormones, membrane depolarization, and growth and neurotrophic factors. Protein kinase A and the calmodulin-dependent protein kinases CaMKII stimulate CREB phosphorylation at Ser133, a key regulatory site controlling transcriptional activity. Growth and neurotrophic factors also stimulate CREB phosphorylation at Ser133. Phosphorylation occurs at Ser133 via p44/42 MAP Kinase and p90RSK and also via p38 MAP Kinase and MSK1. CREB exhibit deficiencies in spatial learning tasks, while flies overexpressing or lacking CREB show enhanced or diminished learning, respectively.。
细胞信号通路大全
1 PPAR信号通路:过氧化物酶体增殖物激活受体( PPARs) 是与维甲酸、类固醇和甲状腺激素受体相关的配体激活转录因子超家族核激素受体成员。
它们作为脂肪传感器调节脂肪代谢酶的转录。
PPARs由PPARα、PPARβ和PPARγ 3种亚型组成。
PPARα主要在脂肪酸代谢水平高的组织,如:肝、棕色脂肪、心、肾和骨骼肌表达。
他通过调控靶基因的表达而调节机体许多生理功能包括能量代谢、生长发育等。
另外,他还通过调节脂质代谢的生物感受器而调节细胞生长、分化与凋亡。
PPARa同时也是一种磷酸化蛋白,他受多种磷酸化酶的调节包括丝裂原激活蛋白激酶( ERK-和p38.M APK) ,蛋白激酶A和C( PKA,PKC) ,AM PK和糖原合成酶一3( G SK3) 等调控。
调控PPARa生长信号的酶报道有M APK、PKA和G SK3。
PPARβ广泛表达于各种组织,而PPAR γ主要局限表达在血和棕色脂肪,其他组织如骨骼肌和心肌有少量表达。
PPAR-γ在诸如炎症、动脉粥样硬化、胰岛素抵抗和糖代谢调节,以及肿瘤和肥胖等方面均有着举足轻重的作用,而其众多生物学效应则是通过启动或参与的复杂信号通路予以实现。
鉴于目前人们对PPAR—γ信号通路尚不甚清,PPARs 通常是通过与9-cis维甲酸受体( RXR)结合实现其转录活性的。
2 MAPK信号通路:mapk简介:丝裂原激活蛋白激酶(mitogen—activated protein kinase,MAPK)是广泛存在于动植物细胞中的一类丝氨酸/苏氨酸蛋白激酶。
作用主要是将细胞外刺激信号转导至细胞及其核内,并引起细胞的生物化学反应(增殖、分化、凋亡、应激等)。
MAPKs家族的亚族 :ERKs(extracellular signal regulated kinase):包括ERK1、ERK2。
生长因子、细胞因子或激素激活此通路,介导细胞增殖、分化。
JNKs(c-Jun N-terminal kinase)包括JNK1、JNK2、JNK3。
单细胞生物的细胞内信号转导通路有哪些
单细胞生物的细胞内信号转导通路有哪些在神奇的生命世界中,单细胞生物虽然结构简单,却也拥有精妙的细胞内信号转导通路,以感知和响应周围环境的变化,并协调自身的生理活动。
这些通路如同微小而高效的信息高速公路,让单细胞生物能够在复杂多变的环境中生存和繁衍。
其中,常见的细胞内信号转导通路之一是环腺苷酸(cAMP)信号通路。
cAMP 作为细胞内的重要第二信使,在单细胞生物中发挥着关键作用。
例如在某些细菌中,当外界环境中的营养物质缺乏时,细胞会通过一系列反应产生 cAMP。
cAMP 与特定的受体蛋白结合,从而改变这些受体蛋白的活性,进而调控相关基因的表达,使细胞能够适应营养匮乏的环境。
另一个重要的信号转导通路是钙离子(Ca²⁺)信号通路。
在单细胞生物中,Ca²⁺浓度的变化可以传递各种信号。
比如在一些原生动物中,外界的刺激可能导致细胞内储存的 Ca²⁺释放,从而引起细胞的收缩、运动或者分泌等反应。
这种迅速而灵敏的信号响应机制,帮助单细胞生物能够及时应对外界的威胁或者捕捉食物。
受体酪氨酸激酶(RTK)信号通路在单细胞生物中也有存在。
尽管单细胞生物的 RTK 结构和功能可能与多细胞生物有所不同,但它们同样能够通过受体的酪氨酸磷酸化来启动下游的信号级联反应。
这可能涉及到细胞的生长、分裂以及对环境信号的感知和适应。
再者,丝裂原活化蛋白激酶(MAPK)信号通路在单细胞生物中也扮演着重要角色。
MAPK 通路可以将细胞表面受体接收到的信号传递到细胞核内,从而调节基因的表达。
对于单细胞生物来说,这有助于它们在环境变化时调整自身的代谢、生理状态和生存策略。
还有磷脂酰肌醇信号通路。
在单细胞生物中,磷脂酶 C 可以将磷脂酰肌醇二磷酸(PIP₂)水解为肌醇三磷酸(IP₃)和二酰甘油(DAG)。
IP₃可以促使细胞内钙库释放 Ca²⁺,而 DAG 则可以激活蛋白激酶 C,从而引发一系列的细胞反应。
此外,一氧化氮(NO)信号通路在一些单细胞生物中也被发现。
细胞信号通路大全.pdf
1 PPAR信号通路:过氧化物酶体增殖物激活受体( PPARs) 是与维甲酸、类固醇和甲状腺激素受体相关的配体激活转录因子超家族核激素受体成员。
它们作为脂肪传感器调节脂肪代谢酶的转录。
PPARs由PPARα、PPARβ和PPARγ 3种亚型组成。
PPARα主要在脂肪酸代谢水平高的组织,如:肝、棕色脂肪、心、肾和骨骼肌表达。
他通过调控靶基因的表达而调节机体许多生理功能包括能量代谢、生长发育等。
另外,他还通过调节脂质代谢的生物感受器而调节细胞生长、分化与凋亡。
PPARa同时也是一种磷酸化蛋白,他受多种磷酸化酶的调节包括丝裂原激活蛋白激酶( ERK-和p38.M APK) ,蛋白激酶A和C( PKA,PKC) ,AM PK和糖原合成酶一3( G SK3) 等调控。
调控PPARa生长信号的酶报道有M APK、PKA和G SK3。
PPARβ广泛表达于各种组织,而PPAR γ主要局限表达在血和棕色脂肪,其他组织如骨骼肌和心肌有少量表达。
PPAR-γ在诸如炎症、动脉粥样硬化、胰岛素抵抗和糖代谢调节,以及肿瘤和肥胖等方面均有着举足轻重的作用,而其众多生物学效应则是通过启动或参与的复杂信号通路予以实现。
鉴于目前人们对PPAR—γ信号通路尚不甚清,PPARs 通常是通过与9-cis维甲酸受体( RXR)结合实现其转录活性的。
2 MAPK信号通路:mapk简介:丝裂原激活蛋白激酶(mitogen—activated protein kinase,MAPK)是广泛存在于动植物细胞中的一类丝氨酸/苏氨酸蛋白激酶。
作用主要是将细胞外刺激信号转导至细胞及其核内,并引起细胞的生物化学反应(增殖、分化、凋亡、应激等)。
:包括ERK1、MAPKs家族的亚族 :ERKs(extracellular signal regulated kinase)ERK2。
生长因子、细胞因子或激素激活此通路,介导细胞增殖、分化。
JNKs(c-Jun N-terminal kinase)包括JNK1、JNK2、JNK3。
细胞常见信号通路图片合集
•·NGF信号通路(2004-8-16)•·TGF beta 信号转导(2004-8-16)•·细胞凋亡信号(2004-8-16)•·线粒体输入信号(2004-8-16)•·ROS信号(2004-8-16)•·Toll-Like 受体家族(2004-8-16)•·Toll-Like 受体(2004-8-16)•·actin肌丝(2004-8-16)•·Wnt/LRP6 信号(2004-8-16)•·WNT信号转导(2004-8-16)•·West Nile 西尼罗河病毒(2004-8-16)•·Vitamin C 维生素C在大脑中的作用(2004-8-16)•·视觉信号转导(2004-8-16)•·VEGF,低氧(2004-8-16)•·TSP-1诱导细胞凋亡(2004-8-16)•·Trka信号转导(2004-8-16)•·dbpb调节mRNA (2004-8-16)•·CARM1甲基化(2004-8-16)•·CREB转录因子(2004-8-16)•·TPO信号通路(2004-8-16)•·Toll-Like 受体(2004-8-16)•·TNFR2 信号通路(2004-8-16)•·TNFR1信号通路(2004-8-16)•·TNF/Stress相关信号(2004-8-16)•·IGF-1受体(2004-8-16)•·共刺激信号(2004-8-16)•·Th1/Th2 细胞分化(2004-8-16)•·TGF beta 信号转导(2004-8-16)•·端粒、端粒酶与衰老(2004-8-16)•·TACI和BCMA调节B细胞免疫(2004-8-16)•·T辅助细胞的表面受体(2004-8-16)•·T细胞受体信号通路(2004-8-16)•·T细胞受体和CD3复合物(2004-8-16)•·Cardiolipin的合成(2004-8-16)•·Synaptic突触连接中的蛋白(2004-8-16)•·HSP在应激中的调节的作用(2004-8-16)•·Stat3 信号通路(2004-8-16)•·SREBP控制脂质合成(2004-8-16)•·酪氨酸激酶的调节(2004-8-16)•·Sonic Hedgehog (SHH)受体ptc1调节细胞周期(2004-8-16)•·Sonic Hedgehog (Shh) 信号(2004-8-16)•·SODD/TNFR1信号(2004-8-16)•·AKT/mTOR在骨骼肌肥大中的作用(2004-8-16)•·G蛋白信号转导(2004-8-16)•·肝细胞生长因子受体信号(2004-8-16)•·IL1受体信号转导(2004-8-16)•·acetyl从线粒体到胞浆过程(2004-8-16)•·趋化因子chemokine在T细胞极化中的选择性表(2004-8-16)•·SARS冠状病毒蛋白酶(2004-8-16)•·Parkin在泛素-蛋白酶体中的作用(2004-8-16)•·nicotinic acetylcholine受体在凋亡中的作用(2004-8-16)•·线粒体在细胞凋亡中的作用(2004-8-16)•·MEF2D在T细胞凋亡中的作用(2004-8-16)•·Erk5和神经元生存(2004-8-16)•·ERBB2信号转导(2004-8-16)•·GPCRs调节EGF受体(2004-8-16)•·BRCA1调节肿瘤敏感性(2004-8-16)•·Rho细胞运动的信号(2004-8-16)•·Leptin能逆转胰岛素抵抗(2004-8-16)•·转录因子DREAM调节疼敏感(2004-8-16)•·PML调节转录(2004-8-16)•·p27调节细胞周期(2004-8-16)•·MAPK信号调节(2004-8-16)•·细胞因子调节造血细胞分化(2004-8-16)•·eIF4e和p70 S6激酶调节(2004-8-16)•·eIF2调节(2004-8-16)•·谷氨酸受体调节ck1/cdk5 (2004-8-16)•·plk3在细胞周期中的作用(2004-8-1)•·BAD磷酸化调节(2004-8-1)•·Reelin信号通路(2004-8-1)•·RB肿瘤抑制和DNA破坏(2004-8-1)•·NK细胞介导的细胞毒作用(2004-8-1)•·Ras信号通路(2004-8-1)•·Rac 1细胞运动信号(2004-8-1)•·PTEN依赖的细胞生长抑制和细胞凋亡(2004-8-1)•·notch信号通路(2004-8-1)•·蛋白激酶A(PKA)在中心粒中的作用(2004-8-1)•·蛋白酶体Proteasome复合物(2004-8-1)•·Prion朊病毒的信号通路(2004-8-1)•·早老素Presenilin在notch和wnt信号中的作用(2004-8-1)•·mRNA的poly(A)形成(2004-8-1)•·淀粉样蛋白前体信号(2004-8-1)•·PKC抑制myosin磷酸化(2004-8-1)•·磷脂酶C(PLC)信号(2004-8-1)•·巨噬细胞Pertussis toxin不敏感的CCR5信号通(2004-8-1)•·Pelp1调节雌激素受体的活性(2004-8-1)•·PDGF信号通路(2004-8-1)•·p53信号通路(2004-8-1)•·p38MAPK信号通路(2004-8-1)•·Nrf2是氧化应激基本表达的关键基因(2004-8-1)•·OX40信号通路(2004-8-1)•·hTerc转录调节活性图(2004-8-1)•·hTert转录因子的调节作用(2004-8-1)•·AIF在细胞凋亡中的作用(2004-8-1)•·Omega氧化通路(2004-8-1)•·核受体在脂质代谢和毒性中的作用(2004-8-1)•·NK细胞中NO2依赖的IL-12信号通路(2004-8-1)•·TOR信号通路(2004-8-1)•·NO信号通路(2004-8-1)•·NF-kB信号转导通路(2004-8-1)•·NFAT与心肌肥厚的示意图(2004-8-1)•·神经营养素及其表面分子(2004-8-1)•·神经肽VIP和PACAP防止活化T细胞凋亡图(2004-8-1)•·神经生长因子信号图(2004-8-1)•·线虫和哺乳动物的MAPK信号比较(2004-7-17)•·细胞内信号总论(2004-7-17)•·细胞凋亡信号通路(2004-7-17)•·MAPK级联通路(2004-7-17)•·MAPK信号通路图(2004-7-17)•·BCR信号通路(2004-7-17)•·蛋白质乙酰化示意图(2004-7-17)•·wnt信号通路(2004-7-17)•·胰岛素受体信号通路(2004-7-17)•·细胞周期在G2/M期的调控机理图(2004-7-17)•·细胞周期G1/S检查点调控机理图(2004-7-17)•·Jak-STAT关系总表(2004-7-17)•·Jak/STAT 信号(2004-7-17)•·TGFbeta信号(2004-7-17)•·NFkappaB信号(2004-7-17)•·p38 MAPK信号通路(2004-7-17)•·SAPK/JNK 信号级联通路(2004-7-17)•·从G蛋白偶联受体到MAPK (2004-7-17)•·MAPK级联信号图(2004-7-17)•·eIF-4E和p70 S6激酶调控蛋白质翻译(2004-7-17)•·eif2蛋白质翻译(2004-7-17)•·蛋白质翻译示意图(2004-7-17)•·线粒体凋亡通路(2004-7-17)•·死亡受体信号通路(2004-7-17)•·凋亡抑制通路(2004-7-17)•·细胞凋亡综合示意图(2004-7-17)•·Akt/Pkb信号通路(2004-7-17)•·MAPK/ERK信号通路(2004-7-17)•·哺乳动物MAPK信号通路(2004-7-17)•·Pitx2多步调节基因转录(2004-7-17)•·IGF-1R导致BAD磷酸化的多个凋亡路径(2004-7-17)•·多重耐药因子(2004-7-17)•·mTOR信号通路(2004-7-17)•·Msp/Ron受体信号通路(2004-7-17)•·单核细胞和其表面分子(2004-7-17)•·线粒体的肉毒碱转移酶(CPT)系统(2004-7-17)•·METS影响巨噬细胞的分化(2004-7-17)•·Anandamide,内源性大麻醇的代谢(2004-7-17)•·黑色素细胞(Melanocyte)发育和信号(2004-7-17)•·DNA甲基化导致转录抑制的机理图(2004-7-17)•·蛋白质的核输入信号图(2004-7-17)•·PPARa调节过氧化物酶体的增殖(2004-7-17)•·对乙氨基酚(Acetaminophen)的活性和毒性机(2004-7-17)•·mCalpain在细胞运动中的作用(2004-7-17)•·MAPK信号图(2004-7-17)•·MAPK抑制SMRT活化(2004-7-17)•·苹果酸和天门冬酸间的转化(2004-7-17)•·低密度脂蛋白(LDL)在动脉粥样硬化中的作用(2004-7-17)•·LIS1基因在神经细胞的发育和迁移中的作用图(2004-7-17)•·Pyk2与Mapk相连的信号通路(2004-7-17)•·galactose代谢通路(2004-7-17)•·Lectin诱导补体的通路(2004-7-17)•·Lck和Fyn在TCR活化中的作用(2004-7-17)•·乳酸合成图(2004-7-17)•·Keratinocyte分化图(2004-7-17)•·离子通道在心血管内皮细胞中的作用(2004-7-17)•·离子通道和佛波脂(Phorbal Esters)信号(2004-7-17)•·内源性Prothrombin激活通路(2004-7-17)•·Ribosome内化通路(2004-7-17)•·整合素(Integrin)信号通路(2004-7-17)•·胰岛素(Insulin)信号通路(2004-7-17)•·Matrix Metalloproteinases (2004-7-17)•·组氨酸去乙酰化抑制剂抑制Huntington病(2004-7-17)•·Gleevec诱导细胞增殖(2004-7-17)•·Ras和Rho在细胞周期的G1/S转换中的作用(2004-7-17)•·DR3,4,5受体诱导细胞凋亡(2004-7-17)•·AKT调控Gsk3图(2004-7-17)•·IL-7信号转导(2004-7-17)•·IL22可溶性受体信号转导图(2004-7-17)•·IL-2活化T细胞图(2004-7-17)•·IL12和Stat4依赖的TH1细胞发育信号通路(2004-7-17)•·IL-10信号通路(2004-7-17)•·IL 6信号通路(2004-7-17)•·IL 5信号通路(2004-7-17)•·IL 4信号通路(2004-7-17)•·IL 3信号通路(2004-7-17)•·IL 2 信号通路(2004-7-17)•·IL 18信号通路(2004-7-17)•·IL 17信号通路(2004-7-17)•·IGF-1信号通路(2004-7-17)•·IFN gamma信号通路(2004-7-17)•·INF信号通路(2004-7-17)•·低氧诱导因子(HIF)在心血管中的作用(2004-7-17)•·低氧和P53在心血管系统中的作用(2004-7-17)•·人类巨细胞病毒和MAP信号通路(2004-7-17)•·孕酮如何促进卵细胞成熟?(2004-7-17)•·How does salmonella hijack a cell (2004-7-17)•·Hop通路在心脏发育中的作用(2004-7-17)•·HIV-I Nef:负性调节fas和TNF (2004-7-17)•·HIV-1防止宿主细胞耐受的机理(2004-7-17)•·HIV诱导T细胞凋亡图(2004-7-17)•·血红素的伴侣分子(2004-7-17)•·g-Secretase介导ErbB4信号通路(2004-7-17)•·生物激素信号(2004-7-17)•·Granzyme A介导的凋亡信号通路(2004-7-17)•·G蛋白偶联信号需要Tubby支持(2004-7-17)•·糖酵解通路(2004-7-17)•·Ghrelin:食物吸收和能量平衡的调控者(2004-7-17)•·PS1能产生beta淀粉样蛋白导致老年性痴呆(2004-7-17)•·GATA3部分参与TH2细胞因子基因的表达(2004-7-17)•·GABA受体的代谢图(2004-7-17)•·FXR和LXR调节胆固醇代谢(2004-7-17)•·SLRP在骨骼中的作用(2004-7-17)•·自由基诱导细胞凋亡信号(2004-7-17)•·FOSB与药物成瘾(2004-7-17)•·fMLP诱导趋化因子基因表达(2004-7-17)•·Fibrinolysis通路(2004-7-17)•·糖酵解通路(2004-7-17)•·Fc Epsilon Receptor I信号(2004-7-17)•·FAS信号通路(2004-7-17)•·外源性Prothrombin激活通路(2004-7-17)•·真核细胞蛋白质翻译示意图(2004-7-17)•·雌激素反应蛋白EFP控制乳腺癌细胞的细胞周期(2004-7-17)•·EPO介导神经保护作用与NF-kB相关(2004-7-17)•·Erythrocyte分化通路(2004-7-17)•·Erk1/Erk2 Mapk 信号通路(2004-7-17)•·Erk和PI-3K在细胞外间质中的作用(2004-7-17)•·内质网相关的蛋白质降解通路示意图(2004-7-17)•·EPO售转导机制图(2004-7-17)•·血小板凝聚示意图(2004-7-17)•·NDK动力学(2004-7-17)•·线粒体的电子传递链示意图(2004-7-17)•·Eicosanoid代谢(2004-7-17)•·EGF信号通路(2004-7-17)•·calcineurin对Keratinocyte分化的影响(2004-7-17)•·E2F1信号通路(2004-7-17)•·MTA-3在雌激素不敏感性乳腺癌中下调(2004-7-17)•·双链RNA诱导基因表达示意图(2004-7-17)•·Dicer信号通路(RNAi机理)(2004-7-17)•·CDK5在老年性痴呆中的调节作用(2004-7-17)•·树突状细胞调节TH1和TH2发育示意图(2004-7-17)•·RAR和RXR被蛋白酶体降解通路(2004-7-17)•·D4-GDI信号通路示意图(2004-7-17)•·细胞因子和炎症反应示意图(2004-7-9)•·细胞因子网络调控图(2004-7-9)•·CFTR和beta 2肾上腺素受体通路(2004-7-9)•·Cyclin和细胞周期调控图(2004-7-9)•·Ran核质循环转运图(2004-7-9)•·Cyclin E降解通路图(2004-7-9)•·CXCR4信号通路图(2004-7-9)•·CTL介导的免疫反应图(2004-7-9)•·CTCF:第一个多价核因子(2004-7-9)•·皮质激素和心脏保护(2004-7-9)•·骨骼肌的成肌信号图(2004-7-9)•·VitD调控基因表达信号图(2004-7-9)•·补体信号通路(2004-7-9)•·线粒体和过氧化物酶体中β氧化的比较图(2004-7-9)•·经典的补体信号通路图(2004-7-9)•·心律失常的分子机制图(2004-7-9)•·hSWI/SNF ATP依赖的染色体重塑(2004-7-9)•·碳水化合物和cAMP调节ChREBP图(2004-7-9)•·分子伴侣调节干扰素信号图(2004-7-9)•·Ceramide信号图(2004-7-9)•·局部急性感染的细胞与分子信号(2004-7-9)•·细胞与细胞粘附信号(2004-7-9)•·细胞周期G2/M调控点信号调节(2004-7-9)•·细胞周期 G1/S调控点信号图(2004-7-9)•·CDK调节DNA复制(2004-7-9)•·cdc25和chk1在DNA破坏中的作用图(2004-7-9)•·CD40L信号通路图(2004-7-9)•·CCR3信号图(2004-7-9)•·CBL下调EGF受体的信号转导图(2004-7-9)•·一些氨基酸的代谢通路图 3 (2004-7-9)•·一些氨基酸的代谢通路图 2 (2004-7-9)•·一些氨基酸的代谢通路图(2004-7-9)•·Catabolic pathway for asparagine and asp (2004-7-9)•·Caspase 信号级联通路在细胞凋亡中的作用(2004-7-9)•·CARM1和雌激素的信号转导调控(2004-7-9)•·抗氧自由基的心脏保护作用信号转导图(2004-7-9)•·乙肝病毒中的钙信号调控(2004-7-9)•·镉诱导巨噬细胞的DNA合成和增殖(2004-7-9)•·Ca2+/CaM依赖的激活(2004-7-9)•·B细胞活化机理图(2004-6-9)•·BTG家族蛋白和细胞周期的调节(2004-6-9)•·BRCA1作用机理(2004-6-9)•·骨重塑示意图(2004-6-9)•·Botulinum Toxin阻断神经递质释放示意图(2004-6-9)•·缬氨酸的生物合成图(2004-6-9)•·Tryptophan在植物和细菌内的生物合成(2004-6-9)•·苏氨酸和蛋氨酸的体内合成示意图(2004-6-9)•·sphingolipids生物合成(2004-6-9)•·spermidine和spermine生物合成(2004-6-9)•·细菌体内合成脯氨酸的示意图(2004-6-9)•·苯丙氨酸和酪氨酸的生物合成(2004-6-9)•·神经递质的合成示意图(2004-6-9)•·赖氨酸生物合成图(2004-6-9)•·亮氨酸的体内生物合成图(2004-6-9)•·异亮氨酸的生物合成图(2004-6-9)•·甘氨酸和色氨酸的生物合成(2004-6-9)•·Cysteine在哺乳动物中的合成图(2004-6-9)•·Cysteine在细菌和植物内生物合成图(2004-6-9)•·Chorismate在细菌和植物内的生物合成(2004-6-9)•·Arginine在细菌内的生物合成(2004-6-9)•·生物活性肽诱导的通路(2004-6-9)•·脂肪酸的β氧化通路(2004-6-9)•·BCR信号通路示意图(2004-6-9)•·SUMOylation基本机理(2004-6-9)•·PPAR影响基因表达的基本信号机制图(2004-6-9)•·B淋巴细胞表面分子示意图(2004-6-9)•·B细胞生存信号通路(2004-6-5)•·B细胞信号通路的复杂性(2004-6-5)•·GPCR信号的衰减的机理(2004-6-4)•·ATM信号通路(2004-6-4)•·阿斯匹林的抗凝机理(2004-6-4)•·细胞凋亡信号调节DNA片段化(2004-6-4)•·细胞凋亡DNA片段化与组织稳态的机理(2004-6-4)•·反义核酸的作用机理---RNA polymerase III (2004-6-4)•·抗原递呈与处理信号图(2004-6-4)•·Antigen依赖的B细胞激活(2004-6-4)•·Anthrax Toxin Mechanism of Action (2004-6-4)•·血管紧张素转换酶2调节心脏功能(2004-6-4)•·Angiotensin II 介导JNK信号通路的激活(2004-6-4)•·Alternative Complement Pathway (2004-6-4)•·Alpha-synuclein和Parkin在怕金森病中的作用(2004-6-4)•·ALK在心肌细胞中的功能图(2004-6-4)•·AKT信号通路(2004-6-4)•·AKAP95在有丝分裂中的作用图(2004-6-4)•·Ahr信号转导图(2004-6-4)•·Agrin突触后的功能图(2004-6-4)•·ADP-Ribosylation 因子(2004-6-4)•·淋巴细胞粘附分子信号图(2004-6-4)•·Adhesion and Diapedesis of Lymphocytes (2004-6-4)•·Adhesion and Diapedesis of Granulocytes (2004-6-4)•·急性心肌梗死信号转导图(2004-6-4)•·src蛋白质激活图(2004-6-4)•·PKC与G蛋白耦联受体的关系(2004-6-4)•·cAMP依赖的CSK抑制T细胞功能示意图(2004-6-4)•·PKA功能示意图(2004-6-4)•·一氧化氮(NO)在心脏中的功能示意图(2004-6-4)•·RelA 在细胞核内乙酰化和去乙酰化(2004-6-4)actin肌丝Mammalian cell motility requires actin polymerization in the direction of movement to change membrane shape and extend cytoplasm into lamellipodia. The polymerization of actin to drive cell movement also involves branching of actin filaments into a network oriented with the growing ends of the fibers near the cell membrane. Manipulation of this process helps bacteria like Salmonella gain entry into cells they infect. Two of the proteins involved in the formation of Y branches and in cell motility are Arp2 and Arp3, both members of a large multiprotein complex containing several other polypeptides as well. The Arp2/3 complex is localized at the Y branch junction and induces actin polymerization. Activity of this complex is regulated by multiple different cell surface receptor signaling systems, activating WASP, and Arp2/3 in turn to cause changes in cell shape and cell motility. Wasp and its cousin Wave-1 interact with the Arp2/3 complex through the p21 component of the complex. The crystal structure of the Arp2/3 complex has revealed further insights into the nature of how the complex works.Activation by Wave-1, another member of the WASP family, also induces actin alterations in response to Rac1 signals upstream. Wave-1 is held in an inactive complex in the cytosol that is activated to allow Wave-1 to associate with Arp2/3. While WASP is activated by interaction with Cdc42, Wave-1, is activated by interaction with Rac1 and Nck. Wave-1 activation by Rac1 and Nck releases Wave-1 with Hspc300 to activate actin Y branching and polymerization by Arp2/3. Different members of this gene family may produce different actin cytoskeletal architectures. The immunological defects associated with mutation of the WASP gene, theWiskott-Aldrich syndrome for which WASP was named, indicates the importance of this system for normal cellular function.Cory GO, Ridley AJ. Cell motility: braking WAVEs. Nature. 2002 Aug 15;418(6899):732-3. No abstract available.Eden, S., et al. (2002) Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418(6899), 790-3Falet H, Hoffmeister KM, Neujahr R, Hartwig JH. Normal Arp2/3 complex activation in platelets lacking WASp. Blood. 2002 Sep 15;100(6):2113-22.Kreishman-Deitrick M, Rosen MK, Kreishman-Deltrick M. Ignition of a cellular machine. Nat Cell Biol. 2002 Feb;4(2):E31-3. No abstract available.Machesky, L.M., Insall, R.H. (1998) Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr Biol 8(25), 1347-56Robinson, R.C. et al. (2001) Crystal structure of Arp2/3 complex. Science 294(5547), 1679-84Weeds A, Yeoh S. Structure. Action at the Y-branch. Science. 2001 Nov 23;294(5547):1660-1. No abstract available.Wnt/LRP6 信号Wnt glycoproteins play a role in diverse processes during embryonic patterning in metazoa through interaction with frizzled-type seven-transmembrane-domain receptors (Frz) to stabilize b-catenin. LDL-receptor-related protein 6 (LRP6), a Wnt co-receptor, is required for this interaction. Dikkopf (dkk) proteins are both positive and negative modulators of this signalingWNT信号转导West Nile 西尼罗河病毒West Nile virus (WNV) is a member of the Flaviviridae, a plus-stranded virus family that includes St. Louis encephalitis virus, Kunjin virus, yellow fever virus, Dengue virus, and Japanese encephalitis virus. WNV was initially isolated in 1937 in the West Nile region of Uganda and has become prevalent in Africa, Asia, and Europe. WNV has rapidly spread across the United States through its insect host and causes neurological symptoms and encephalitis, which can result in paralysis or death. Since 1999 about 3700 cases of West Nile virus (WNV) infection and 200 deaths have been recorded in United States. The viral capsid protein likely contributes to the WNV-associated deadly inflammation via apoptosis induced through the mitochondrial pathway.WNV particles (50 nm in diameter) consist of a dense core (viral protein C encapsidated virus RNA genome)surrounded by a membrane envelope (viral E and M proteins embedded in a lipid bilayer). The virus binds to a specific cell surface protein (not yet identified), an interaction thought to involve E protein with highly sulfated neperan sulfate (HSHS) residues that are present on the surfaces of many cells and enters the cell by a process similar to that of endocytosis. Once inside the cell, the genome RNA is released into the cytoplasm via endosomal release, a fusion process involving acidic pH induced conformation change in the E protein. The RNA genome serves as mRNA and is translated by ribosomes into ten mature viral proteins are produced via proteolytic cleavage, which include three structural components and seven different nonstructural components of the virus. These proteins assemble and transcribe complimentary minus strand RNAs from the genomic RNA. The complimentary minus strand RNA in turns serves as template for the synthesis of positive-stranded genomic RNAs. Once viral E, preM and C proteins have accumulated to sufficient level, they assemble with the genomic RNA to form progeny virions, which migrate to the cell surface where they are surrounded with lipid envelop and released.Vitamin C 维生素C在大脑中的作用Vitamin C (ascorbic acid) was first identified by virtue of the essential role it plays in collagen modification, preventing the nutritional deficiency scurvy. Vitamin C acts as a cofactor for hydroxylase enzymes thatpost-translationally modify collagen to increase the strength and elasticity of tissues. Vitamin C reduces the metal ion prosthetic groups of many enzymes, maintaining activity of enzymes, also acts as an anti-oxidant. Although the prevention of scurvy through modification of collagen may be the most obvious role for vitamin C, it is not necessarily the only role of vitamin C. Svct1 and Svct2 are ascorbate transporters for vitamin C import into tissues and into cells. Both of these transporters specifically transport reduced L-ascorbic acid against a concentration gradient using the intracellular sodium gradient to drive ascorbate transport. Svct1 is expressed in epithelial cells in the intestine, upregulated in cellular models for intestinal epithelium and appears to be responsible for the import of dietary vitamin C from the intestinal lumen. The vitamin C imported from the intestine is present in plasma at approximately 50 uM, almost exclusively in the reduced form, and is transported to tissues to play a variety of roles. Svct2 imports reduced ascorbate from the plasma into veryactive tissues like the brain. Deletion in mice of the gene for Svct2 revealed that ascorbate is required for normal development of the lungs and brain during pregnancy. A high concentration of vitamin C in neurons of the developing brain may help protect the developing brain from free radical damage. The oxidized form of ascorbate, dehydroascorbic acid, is transported into a variety of cells by the glucose transporter Glut-1. Glut-1, Glut-3 and Glut-4 can transport dehydroascorbate, but may not transport significant quantities of ascorbic acid in vivo.视觉信号转导信息来源:本站原创生物谷网站The signal transduction cascade responsible for sensing light in vertebrates is one of the best studied signal transduction processes, and is initiated by rhodopsin in rod cells, a member of the G-protein coupled receptor gene family. Rhodopsin remains the only GPCR whose structure has been resolved at high resolution. Rhodopsinin the discs of rod cells contains a bound 11-cis retinal chromophore, a small molecule derived from Vitamin A that acts as the light sensitive portion of the receptor molecule, absorbing light to initiate the signal transduction cascade. When light strikes 11-cis retinal and is absorbed, it isomerizes to all-trans retinal, changing the shape of the molecule and the receptor it is bound to. This change in rhodopsin抯shape alters its interaction with transducin, the member of the G-protein gene family that is specific in its role in visual signal transduction. Activation of transducin causes its alpha subunit to dissociate from the trimer and exchange bound GDP for GTP, activating in turn a membrane-bound cyclic-GMP specific phosphodiesterase that hydrolyzes cGMP. In the resting rod cell, high levels of cGMP associate with a cyclic-GMP gated sodium channel in the plasma membrane, keeping the channels open and the membrane of the resting rod cells depolarized. This is distinct from synaptic generation of action potentials, in which stimulation induces opening of sodium channels and depolarization. When cGMP gated channels in rod cells open, both sodium and calcium ions enter the cell, hyperpolarizing the membrane and initiating the electrochemical impulse responsible for conveying the signal from the sensory neuron to the CNS. The rod cell in the resting state releases high levels of the inhibitory neurotransmitter glutamate, while the release of glutamate is repressed by the hyperpolarization in the presence of light to trigger a downstream action potential by ganglion cells that convey signals to the brain. The calcium which enters the cell also activates GCAP, which activates guanylate cyclase (GC-1 and GC-2) to rapidly produce more cGMP, ending the hyperpolarization and returning the cell to its resting depolarized state. A protein called recoverin helps mediate the inactivation of the signal transduction cascade, returning rhodopsin to its preactivated state, along with the rhodopsin kinase Grk1. Phosphorylation of rhodopsin by Grkl causes arrestin to bind, helping to terminate the receptor activation signal. Dissociation and reassociation of retinal, dephosphorylation of rhodopsin and release of arrestin all return rhodopsin to its ready state, prepared once again to respond to light.VEGF,低氧信息来源:本站原创生物谷网站Vascular endothelial growth factor (VEGF) plays a key role in physiological blood vessel formation and pathological angiogenesis such as tumor growth and ischemic diseases. Hypoxia is a potent inducer of VEGF in vitro. The increase in secreted biologically active VEGF protein from cells exposed to hypoxia is partly because of an increased transcription rate, mediated by binding of hypoxia-inducible factor-1 (HIF1) to a hypoxia responsive element in the 5'-flanking region of the VEGF gene. bHLH-PAS transcription factor that interacts with the Ah receptor nuclear translocator (Arnt), and its predicted amino acid sequence exhibits significant similarity to the hypoxia-inducible factor 1alpha (HIF1a) product. HLF mRNA expression is closely correlated with that of VEGF mRNA.. The high expression level of HLF mRNA in the O2 delivery system of developing embryos and adult organs suggests that in a normoxic state, HLF regulates gene expression of VEGF, various glycolytic enzymes, and others driven by the HRE sequence, and may be involved in development of blood vessels and the tubularsystem of lung. VEGF expression is dramatically induced by hypoxia due in large part to an increase in the stability of its mRNA. HuR binds with high affinity and specificity to the VRS element that regulates VEGF mRNA stability by hypoxia. In addition, an internal ribosome entry site (IRES) ensures efficient translation of VEGF mRNA even under hypoxia. The VHL tumor suppressor (von Hippel-Lindau) regulates also VEGF expression at a post-transcriptional level. The secreted VEGF is a major angiogenic factor that regulates multiple endothelial cell functions, including mitogenesis. Cellular and circulating levels of VEGF are elevated in hematologic malignancies and are adversely associated with prognosis. Angiogenesis is a very complex, tightly regulated, multistep process, the targeting of which may well prove useful in the creation of novel therapeutic agents. Current approaches being investigated include the inhibition of angiogenesis stimulants (e.g., VEGF), or their receptors, blockade of endothelial cell activation, inhibition of matrix metalloproteinases, and inhibition of tumor vasculature. Preclinical, phase I, and phase II studies of both monoclonal antibodies to VEGF and blockers of the VEGF receptor tyrosine kinase pathway indicate that these agents are safe and offer potential clinical utility in patients with hematologic malignancies.TSP-1诱导细胞凋亡信息来源:本站原创生物谷网站As tissues grow they require angiogenesis to occur if they are to be supplied with blood vessels and survive. Factors that inhibit angiogenesis might act as cancer therapeutics by blocking vessel formation in tumors and starving cancer cells. Thrombospondin-1 (TSP-1) is a protein that inhibits angiogenesis and slows tumor growth, apparently by inducing apoptosis of microvascular endothelial cells that line blood vessels. TSP-1 appears to produce this response by activating a signaling pathway that begins with its receptor CD36 at the cell surface of the microvascular endothelial cell. The non-receptor tyrosine kinase fyn is activated by TSP-1 through CD36, activating the apoptosis inducing proteases like caspase-3 and p38 protein kinases. p38 is a mitogen-activated kinase that also induces apoptosis in some conditions, perhaps through AP-1 activation and the activation of genes that lead to apoptosis.Trka信号转导信息来源:本站原创生物谷网站Nerve growth factor (NGF) is a neurotrophic factor that stimulates neuronal survival and growth through TrkA, a member of the trk family of tyrosine kinase receptors that also includes TrkB and TrkC. Some NGF responses are also mediated or modified by p75LNTR, a low affinity neurotrophin receptor. Binding of NGF to TrkA stimulates neuronal survival, and also proliferation. Pathways coupled to these responses are linked to TrkAthrough association of signaling factors with specific amino acids in the TrkA cytoplasmic domain. Cell survival through inhibition of apoptosis is signaled through activation of PI3-kinase and AKT. Ras-mediated signaling and phospholipase C both activate the MAP kinase pathway to stimulate proliferation.dbpb调节mRNA信息来源:本站原创生物谷网站Endothelial cells respond to treatment with the protease thrombin with increased secretion of the PDGF B-chain. This activation occurs at the transcriptional level and a thrombin response element was identified in the promoter of the PDGF B-chain gene. A transcription factor called the DNA-binding protein B (dbpB) mediates the activation of PDGF B-chain transcription in response to thrombin treatment. DbpB is a member of the Y box family of transcription factors and binds to both RNA and DNA. In the absence of thrombin, endothelial cells contain a 50 kD form of dbpB that binds RNA in the cytoplasm and may play a role as a chaperone for mRNA. The 50 kD version of dbpB also binds DNA to regulate genes containing Y box elements in their promoters. Thrombin activation results in the cleavage of dbpB to a 30 kD form. The proteolytic cleavage releases dbpB from RNA in the nucleus, allowing it to enter the nucleus and binds to a regulatory element distinct from the site recognized by the full length 50 kD dbpB. The genes activated by cleaved dbpB include the PDGF B chain. Dephosphorylation of dbpB also regulates nuclear entry and transcriptional activation.RNA digestion in vitro can release dbpB in its active form, suggesting that the protease responsible for dbpB may be closely associated in a complex. Identification of the protease that cleaves dbpB, the mechanisms of phosphorylation and dephosphorylation, and elucidation of the signaling path by which thrombin induces dbpB will provide greater understanding of this novel signaling pathway.CARM1甲基化信息来源:本站原创生物谷网站Several forms of post-translational modification regulate protein activities. Recently, protein methylation by CARM1 (coactivator-associated arginine methyltransferase 1) has been observed to play a key role in transcriptional regulation. CARM1 associates with the p160 class of transcriptional coactivators involved in gene activation by steroid hormone family receptors. CARM1 also interacts with CBP/p300 transcriptional coactivators involved in gene activation by a large variety of transcription factors, including steroid hormone receptors and CEBP. One target of CARM1 is the core histones H3 and H4, which are also targets of the histone acetylase activity of CBP/p300 coactivators. Recruitment of CARM1 to the promoter region by binding to coactivators increases histone methylation and makes promoter regions more accessible for transcription. Another target of CARM1 methylation is a coactivator it interacts with, CBP. Methylation of CBP by CARM1 blocks。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 PPAR 信号通路:过氧化物酶体增殖物激活受体( PPARs) 是与维甲酸、类固醇和甲状腺激素受体相关的配体激活转录因子超家族核激素受体成员。
它们作为脂肪传感器调节脂肪代谢酶的转录。
PPARs由PPAR a、PPAR B和PPAR 丫3种亚型组成。
PPAR a主要在脂肪酸代谢水平高的组织,如:肝、棕色脂肪、心、肾和骨骼肌表达。
他通过调控靶基因的表达而调节机体许多生理功能包括能量代谢、生长发育等。
另外,他还通过调节脂质代谢的生物感受器而调节细胞生长、分化与凋亡。
PPARa 同时也是一种磷酸化蛋白,他受多种磷酸化酶的调节包括丝裂原激活蛋白激酶(ERK-和p38 . M APK),蛋白激酶A和C( PKA , PKC) , AM PK和糖原合成酶一3( G SK3) 等调控。
调控PPARa 生长信号的酶报道有M APK 、PKA和G SK3。
PPAR B广泛表达于各种组织,而PPAR 丫主要局限表达在血和棕色脂肪,其他组织如骨骼肌和心肌有少量表达。
PPAR- 丫在诸如炎症、动脉粥样硬化、胰岛素抵抗和糖代谢调节,以及肿瘤和肥胖等方面均有着举足轻重的作用,而其众多生物学效应则是通过启动或参与的复杂信号通路予以实现。
鉴于目前人们对PPAR―丫信号通路尚不甚清,PPARs通常是通过与9-cis维甲酸受体(RXR) 结合实现其转录活性的。
2 MAPK信号通路:mapk简介丝裂原激活蛋白激酶(mitogen —activatedprotein kinase ,MAPK )是广泛存在于动植物细胞中的一类丝氨酸/苏氨酸蛋白激酶。
作用主要是将细胞外刺激信号转导至细胞及其核内,并引起细胞的生物化学反应(增殖、分化、凋亡、应激等)。
MAPKs 家族的亚族:ERKs (extracellular signal regulated kinase) :包括ERK1、ERK2。
生长因子、细胞因子或激素激活此通路,介导细胞增殖、分化。
JNKs(c-Jun N-terminal kinase) 包括JNK1、JNK2、JNK3。
此亚族成员能使Jun 转录因子N 末端的两个氨基酸磷酸化而失活,因此称为Jun N 末端激酶(JNKs)。
物理、化学的因素引起的细胞外环境变化以及致炎细胞因子调节此通路。
P38 MAPKs :丝氨酸/ 络氨酸激酶,包括p38 a、p38 B、p38 丫、p38 3。
p38MAP K 参与多种细胞内信息传递过程,能对多种细胞外刺激发生反应,可磷酸化其它细胞质蛋白,并能从胞浆移位至细胞核而调节转录因子的活性来改变基因的表达水平,从而介导细胞生长、发育、分化及死亡的全过程。
ERK5:是一种非典型的MAPK通路,也叫大MAPK通路,只有一个成员。
它可被各种刺激因素激活。
不仅可以通过磷酸化作用使底物活化,并且通过 C 端的物理性结合作用激活底物。
3 ERBB信号途径:ErbB蛋白属于跨膜酪氨酸激酶的EGF受体家族成员。
ErbB的命名来源于在禽红白血病B( v-Erb-B) 发现的EGF 受体的突变体,因而EGF 受体亦称为“ ErbB1 ” 。
人源ErbB2 称为HER2, 特指人的EGF 受体。
ErbB 家族的另外两个成员是ErbB3 和ErbB4, 它们是通过同源克隆技术被发现的。
ErbB2 、ErbB3和ErbB4分别编码相对分子质量为185 X 103、160 X 103和180 X103 的蛋白酪氨酸激酶。
ErbB 受体的结构包括胞外结合区结构域( 含有两个保守的半胱氨酸富集区) 、一个跨膜结构域、一个酪氨酸激酶结构域以及C-末端结构域。
ErbB2的酪氨酸激酶区与EGF 受体相比有高达80% 的同源性, 在总体上同源性达到50% 。
而且, EGF 受体、ErbB2 和ErbB4 在结构上更为相似, 与ErbB3 则有较大差异。
ErbB 蛋白之间需形成同源或异源二聚体后才能与NRG 结合。
ErbB2( HER2/neu) 缺乏能够使其激活配体, NRG1 介导ErbB2 受体的活化需ErbB3 或ErbB4 的参与, 形成异源性二聚体, 所以ErbB2 又称为共受体。
ErbB3 虽然能与NRG 结合, 但是其本身只有很低的激酶活性。
在ErbB2 的协同作用下,这一活性可提高100 倍。
所以ErbB3 必须依赖异源二聚体的形成通过反式酪氨酸磷酸化激活。
而ERBB4 既可以与ERBB2、ERBB3 形成异源二聚体,也可以自身形成ERBB4/ERBB4 同源二聚体。
二聚体的形成并不是一个随机的过程, 如含有ErbB2 的二聚体倾向于形成ErbB2/ErbB3 或ErbB2/ErbB4 异源二聚体, 它们与NRGs 的亲和力超过了其他类型的二聚体。
与NRG 结合后ErbB 形成同源或者异源二聚体, 二聚体细胞内的酪氨酸残基发生自身磷酸化, 触发了一个复杂的连续分子间的相互作用。
磷酸化位点可以与一些接头蛋白结合,如生长因子受体结合蛋白2、She、Sos、磷脂酶C 丫、磷脂酰肌醇 3 激酶( phosphatidylinositol 3-kinase, PI3K ) 的p85 亚基和Src,从而引起了下游信号级联反应, 如PI3K /Akt 、促分裂素原活化蛋白激酶(mitogen-activated protein ki-nases, MAPK) /Ras/Erk1/2 、磷脂酶C 丫和成簇黏附激酶, 进而直接改变细胞质中的反应进程和基因表达。
其中MAPK 和PI3K 信号通路最为重要, 并且两条通路有着相似的作用。
4 泛素—蛋白酶体途径( upp ) : 蛋白质的降解是一个精细控制的过程,首先有待降解的蛋白质被一种多肽(称之为泛素)所标记,接着这些蛋白质进入细胞的蛋白酶复合体中,蛋白酶复合体是一个上下有盖的圆桶状酵素,它们如同细胞的垃圾桶,专门负责蛋白质的分解及再循环利用,泛素在这一过程中释出讯号,让蛋白酶复合体分辨出有待降解的蛋白质泛素—蛋白酶体途径( upp ) 由泛素( ubiquitin, ub) 以及一系列相关的酶组成。
除泛素以外还包括 4 种酶家族:泛素活化酶( ubiquitin - activating enzyme, E1 ) 泛素偶连酶( ubiquitin - conjugating enzymes, E2 s) 也称泛素载体蛋白( ubiquitin -carrier protein) 、泛素-蛋白连接酶( ubiquitin - ligating enzymes, E3 s)和蛋白酶体(proteasome)。
蛋白的泛素化和去泛素化都需要多种酶介导, upp 既有高度底物多样性又具有针对不同调控机制的多样性。
由泛素介导的蛋白水解过程,分为 2 个阶段第一阶段:多个泛素分子与靶蛋白共价结合。
首先,泛素经泛素活化酶E1活化,泛素上76位的Gly与泛素活化酶上特殊的Cys残基形成一个高能硫酯键,并伴有ATP 水解;然后,通过转酯作用,泛素从泛素活化酶转移到泛素结合酶E2的Cys上,形成泛素结合酶-泛素;最后,在泛素连接酶E3参与下,泛素又从泛素结合酶转移到受体蛋白(靶蛋白)的Lys残基上,形成泛素-靶蛋白,使靶蛋白发生泛素化。
多个遍泛素分子重复地附加到靶蛋白上,则形成分枝的多Ub链。
泛素共有7个Lys残基,在多聚泛素链结构中,其中一个泛素的C -末端Gly与相邻的泛素之间通过Lys48、Lys63 或Lys29 连接。
第二阶段:靶蛋白在26 s蛋白酶体的作用下,由泛素介导的蛋白水解过程。
经泛素活化的底物蛋白被展平后,通过两个狭孔,进入26 s蛋白酶体的催化中心,蛋白降解在20 s蛋白酶体内部发生。
进入26 s蛋白酶体的底物蛋白质被多次切割,最后形成3〜22个氨基酸残基的小肽。
5溶酶体:溶酶体是由一个单位膜围成的球状体。
主要化学成分为脂类和蛋白质。
溶酶体内富含水解酶,由于这些酶的最适pH值为酸性,因而称为酸性水解酶。
其中酸性磷酸酶为溶酶体的标志酶。
由于溶酶体外面有膜包着,使其中的消化酶被封闭起来,不致损害细胞的其他部分。
否则膜一旦破裂,将导致细胞自溶而死亡。
溶酶体可分成两种类型:一是初级溶酶体,它是由高尔基囊的边缘膨大而出来的泡状结构,因此它本质上是分泌泡的一种,其中含有种种水解酶。
这些酶是在租面内质网的核糖体上合成并转运到高尔基囊的。
初级溶酶体的各种酶还没有开始消化作用,处于潜伏状态。
二是次级溶酶体,它是吞噬泡和初级溶酶体融合的产物,是正在进行或已经进行消化作用的液泡。
有时亦称消化泡。
在次级溶酶体中把吞噬泡中的物质消化后剩余物质排出细胞外。
吞噬泡有两种,异体吞噬泡和自体吞噬泡,前者吞噬的是外源物质,后者吞噬的是细胞本身的成分。
溶酶体第一方面的功能是参与细胞内的正常消化作用。
大分子物质经内吞作用进入细胞后,通过溶酶体消化,分解为小分子物质扩散到细胞质中,对细胞起营养作用。
第二个方面的作用是自体吞噬作用。
溶酶体可以消化细胞内衰老的细胞器,其降解的产物重新被细胞利用。
第三个作用是自溶作用。
在一定条件下,溶酶体膜破裂,其内的水解酶释放到细胞质中,从而使整个细胞被酶水解、消化,甚至死亡,发生细胞自溶。
细胞自溶在个体正常发生过程中有重要作用。
如无尾两栖类尾巴的消失等溶酶体的生物发生:溶酶体的形成是一个相当复杂的过程,涉及的细胞器有内质网、高尔基体和内体等。
比较清楚的是甘露糖-6-磷酸途径(mannose 6-phosphate sorting pathway ):溶酶体的酶类在内质网上起始合成,跨膜进入内质网的腔, 在顺面高尔基体带上甘露糖6-磷酸标记后在高尔基体反面网络形成溶酶体分泌小泡,最后还要通过脱磷酸才成为成熟的溶酶体•大多数溶酶体的酶在寡糖链上含有甘露糖,在顺面高尔基网络转变成甘露糖-6-磷酸。
新形成的溶酶体的酶通过高尔基复合体,在高尔基体反面网络与膜受体结合后被包进溶酶体分泌小泡,通过出芽形成自由的分泌泡。
通过H+-质子泵调节溶酶体分泌小泡中的pH,使溶酶体的酶同受体脱离,受体再循环,溶酶体酶脱磷酸后成为成熟的初级溶酶体。
6吞噬体:吞噬体是一类病毒,原指细菌病毒,近年来发现真菌、藻类都有吞噬体。
吞噬体体积微小,只有在电子显微镜下才能看见,是一种非细胞结构的生命,只有进入宿主细胞才具有生命特征,并具有寄主专一性。
吞噬体结构简单,包括蛋白质外壳和包裹在蛋白质内的遗传物质——一个核酸分子( DNA或RNA )。
在遗传上研究得比较清楚的是大肠杆菌的T系吞噬体,其外形一般呈蝌蚪状,只相当于他的寄主大肠杆菌体积的1/1000,每个吞噬体大约是由等量的蛋白质和核酸组成。
吞噬体展示是一种非常有效的体外筛选技术。
把一个小肽或蛋白质通过基因工程的方法融合到吞噬体外壳蛋白上,从而使融合蛋白展示在吞噬体颗粒的外部,而编码融合蛋白的DNA则位于病毒颗粒内部。