(完整word版)七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)

合集下载

新人教版七年级数学上册一元一次方程应用题专题讲解

新人教版七年级数学上册一元一次方程应用题专题讲解

新人教版七年级数学上册一元一次方程应用题专题讲解七年级上册应用题专题讲解一、解题思路:审题—设未知数—列等量关系—列方程—解方程—写答语二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,生产、做工等各类问题,等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。

一)和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套……”,利用这些关键字列出文字等式,并根据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。

1.倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

2.多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

例如,增长量=原有量×增长率,现在量=原有量+增长量。

例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?二)等积变形问题等积变形是以形状改变而体积不变为前提。

常用等量关系:原料体积=成品体积。

常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变。

例如,圆柱体的体积公式V=底面积×高=S·h=2rh,长方体的体积V=长×宽×高=abc。

例3.现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?三)数字问题1.要搞清数的表示方法:一个三位数,一般可设百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,≤b≤9,≤c≤9),则这个三位数表示为:100a+10b+c。

(完整版)七年级上数学第1讲一元一次方程的解法及应用

(完整版)七年级上数学第1讲一元一次方程的解法及应用

七秋第1讲 一元一次方程的解法及应用一、知识要点一元一次方程:只含有一个未知数,并且未知数的最高次数是1,系数不等于0的整式方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数.解一元一次方程的一般步骤:⑴去分母;⑵去括号;⑶移项;⑷合并同类项;⑸未知数的系数化为1.这五个步骤在解一元一次方程中,有时可能用不到,有时可能重复用,也不一定按从上到下的顺序进行,要根据方程的特点灵活运用.二、例题精选一元一次方程的概念:【例1】 (1) 若(1)5a a x a -+=是关于x 的一元一次方程,则a 的值是 .(2)已知2(23)(23)1m x m x ---=是关于x 的一元一次方程,则m = .(3)方程||(1)2m m x m n -=+是关于x 的一元一次方程,若n 是它的解,则n m -=().A .14 B .54 C .34 D .54-【巩固1】⑴ 若3223k kx k -+=是关于x 的一元一次方程,则k = .⑵ 若23(2)5m m x --=是关于x 的一元一次方程,则m 的值是 .(3)关于x 的方程(m 2-1)x 2-(m-1)x+1=0是一元一次方程,则2m-1=_______.一元一次方程的解:【例2】 若关于x 的方程2x -3=1和3x -k 2x =-k有相同的解,求k 的值.【巩固2】若关于x 的一元一次方程2332x k x k---=1的解为x=-1,则k 的值为( )A .27 B .1 C .-1311 D .0解一元一次方程: 【例3】 ⑴ 方程(32)2(21)0x x +--=去括号正确的是( )A .32210x x +-+=B .32410x x +-+=C .32420x x +--=D .32420x x +-+=⑵ 方程31252x x x -+-=-去分母正确的是( ) A .2(3)25(1)x x x --=-+ B .23201051x x x --=-+C .2(3)20105(1)x x x --=-+D .(3)2010(1)x x x --=-+【巩固3】①解方程1432x x ---=1时,去分母正确的是( ) A .2(x-1)-3(4x-1)=1 B .2x-1-12+x=1C .2(x-1)-3(4-x )=6D .2x-2-12-3x=6②解方程()()()243563221x x x --=--+时,去完括号之后得到的是:___________________________________________________【例4】 ⑴ 解方程12223y y y -+-=- (2) 解方程3221211245x x x +-+-=-【巩固4】解方程31252x x x -+-=-【例5】 解方程:11133312242y ⎧⎫⎛⎫---=⎨⎬ ⎪⎝⎭⎩⎭ 【例6】解方程:1123(23)(32)11191313x x x -+-+=三、回家作业【练习1】 (1)下列选项是一元一次方程的是( ) A .0x = B .3m n = C .1x + D .2x = (2)关于x 的方程2(1)80n x nx x -+-+=是一元一次方程,则n 的值是 . (3)若关于x 的方程2(2||)(2)(52)0m x m x m -+---=是一元一次方程,求m 的解.【练习2】 解方程:()()()243563221x x x --=--+【练习3】 解方程:324514618x x x +---=-【练习4】 解方程:111[(1)6]20343x --+=【练习5】 解方程:113(1)(1)2(1)(1)32x x x x +--=--+。

完整版)人教版七年级上册数学一元一次方程应用题及答案

完整版)人教版七年级上册数学一元一次方程应用题及答案

完整版)人教版七年级上册数学一元一次方程应用题及答案一元一次方程大练列一次方程(组)或分式方程解应用题的基本步骤是:审、设、列、解、答。

常见题型有以下几种情形:1.和、差、倍、分问题,即两数和等于较大的数加上较小的数,较大的数等于较小的数乘以倍数加上增(或减)数;2.行程类问题,即路程等于速度乘以时间;3.工程问题,即工作量等于工作效率乘以工作时间;4.浓度问题,即溶质质量等于溶液质量乘以浓度;5.分配问题,即调配前后总量不变,调配后双方有新的倍比关系;6.等积问题,即变形前后的质量(或体积)不变;7.数字问题,即若个位上数字为a,十位上的数字为b,百位上的数字为c,则这三位数可表示为100c+10b+a等等;8.经济问题,即利息等于本金乘以利率乘以期数;本息和等于本金加上利息等于本金加上本金乘以利率乘以期数;税后利息等于本金乘以利率乘以期数乘以(1减利息税率);商品的利润等于商品的售价减去商品的进价;商品的利润率等于商品的利润除以商品的进价乘以100%等等。

一元一次方程应用题知能点1:市场经济、打折销售问题1.商品利润等于商品售价减去商品成本价;商品利润率等于商品利润除以商品成本价乘以100%;商品销售额等于商品销售价乘以商品销售量;商品的销售利润等于(销售价减成本价)乘以销售量;商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售。

下面是几道应用题:1.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售。

已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为:A。

(完整word版)七年级一元一次方程解决实际问题及分析答案

(完整word版)七年级一元一次方程解决实际问题及分析答案

1、列方程解行程问题例1:甲乙两地相距1500千米,两辆汽车同时从两地相向而行,其中吉普车每小时60千米,是另一辆客车的1.5倍。

①几小时后两车相遇?②若吉普车先开40分钟,那客车开出多长时间两车相遇?分析:若两车同时出发,则等量关系为:吉普车的路程+客车的路程=1500①解:设两车X小时后相遇,根据题意得60x (60 1.5)x 1500解得:x 15答:15小时后两车相遇。

②分析:吉普车先出发40分钟,则等量关系式为:吉普车先行路程+吉普车后行路程+客车行驶路程=1500, 即吉普车行驶路程+ 客车行驶路程=1500。

解:设客车开出X小时后两车相遇,根据题意得60 (2 x) (60 1.5)x 15003解得x 14.6答:客车开车14.6小时后两车相遇。

例2、甲乙两名同学练习百米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,那么甲经过几秒可以追上乙?分析:甲让乙先跑1秒,则等量关系为:乙先跑的路程+乙后跑的路程=甲跑到路程,也就是乙跑的路程=甲跑的路程。

解:设甲经过X秒追上乙,根据题意得6.5(x 1) 7x解:得x 13答:甲经过13秒后追上乙。

例3、小明、小亮两人相距40km,小明先出发1.5h,小亮再出发,小明在后小亮在前,两人同向而行,小明的速度是8km/h,小亮的速度是6km/h,小明出发后几小时追上小亮?分析:小明快,小亮慢,两人同向而行,等量关系式为:小明走的路程一小亮走的路程=相距路程解:设小明出发后x小时追上小亮,根据题意得8x 6(x 1.5) 40解得x 15.5答:小明出发后15.5小时追上小亮例4、一艘船从甲码头到乙码头顺水行驶,用了2小时,从乙码头返回甲码头,逆水行驶,用了 2.5小时, 已知水流速度是3千米/时,求船在静水中的速度。

分析:水流存在如下相等关系:顺水速度=船在静水中的速度+水流速度,逆水速度=船在静水中的速度-水流速度。

由顺水行程=逆水行程可列方程.解:设船在静水中的速度为x千米/时,则船在顺水中的速度为( x 3 )千米/时,船在逆水中的速度为(x 3 )千米/时,根据题意得2(x 3) 2.5(x 3)解得x 27答:船在静水中的速度为27千米/时。

(完整word版)一元一次方程应用题专题

(完整word版)一元一次方程应用题专题

一元一次方程应用题专题1.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.2。

和差倍分问题增长量=原有量×增长率现在量=原有量+增长量3。

等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h= r2h②长方体的体积V=长×宽×高=abc4.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润×100%商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18.储蓄问题×100%利息=本金×利率×期数利率=每个期数内的利息本金经典例题基础练习:1、列方程表示下列语句所表示的等量关系:①某校共有学生1049人,女生占男生的40%,求男生的人数.②两个村共有834人,甲村的人数比乙村的人数的一半还少111人,两村各有多少人?(3)某人共用142元买了两种水果共20千克,已知甲种水果每千克8元,乙水果每千克6元,问这两种水果各有多少千克?2.(1)将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?(2)、一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共话12天完成,问乙做了几天?3.(1)兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?(2)、小强比他叔叔小30岁,而两年前,小强的年龄是他叔叔的1/3 ,求小强叔叔今年的年龄。

完整版)人教版七年级上数学一元一次方程经典题型讲解及答案

完整版)人教版七年级上数学一元一次方程经典题型讲解及答案

完整版)人教版七年级上数学一元一次方程经典题型讲解及答案1.为了吸引顾客,某商店开张时所有商品都按八折优惠出售。

已知一种皮鞋的进价为60元一双,商家按八折出售后获得40%的利润率。

问这种皮鞋的标价和优惠价各是多少元?2.一家商店将某种服装的进价提高40%后标价,再按八折优惠卖出,每件仍获得15元的利润。

问这种服装的进价是多少元?3.一家商店将一种自行车的进价提高45%后标价,再按八折优惠卖出,每辆仍获得50元的利润。

问这种自行车的进价是多少元?4.某商品的进价为800元,出售时标价为1200元。

由于积压,商店准备打折出售,但要保持利润率不低于5%。

问最多可以打几折?5.一家商店将某种型号的彩电的原售价提高40%,然后打广告写上“大酬宾,八折优惠”。

经过顾客投诉,被罚款2700元,罚款是非法收入的10倍。

问每台彩电的原售价是多少元?6.甲独自完成一项工作需要10天,乙独自完成需要8天,两人合作几天可以完成?7.甲独自完成一项工程需要15天,乙独自完成需要12天。

现在甲、乙合作3天后,甲有其他任务,剩下的工程由乙单独完成。

问乙还需要几天才能完成全部工程?8.一个蓄水池有甲、乙两个进水管和一个丙排水管。

单独开甲管6小时可注满水池,单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空。

现在先将甲、乙管同时开放2小时,然后打开丙管。

问打开丙管后几小时可以注满水池?9.输入一批工业最新动态信息到管理储存网络中,甲独自完成需要6小时,乙独自完成需要4小时。

甲先做了30分钟,然后甲、乙一起完成。

问甲、乙一起完成还需要多少小时?10.某车间有16名工人,每人每天可以加工甲种零件5个或乙种零件4个。

已知每加工一个甲种零件可以获得16元的利润。

现在一部分工人加工甲种零件,其余的加工乙种零件。

请问加工甲种零件的工人有多少人?1.这个车间一天可以获利60个乙种零件,因为每个乙种零件可以获利24元,而总获利是1440元。

最新七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)

最新七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)

七年级上册应用题专题讲解列方程解应用题,是初中数学的重要内容之一。

许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。

因此我们要努力学好这部分知识。

一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解—解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。

(一)和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套,, ”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1.倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率,, ”来体现。

2.多少关系:通过关键词语“多、少、和、差、不足、剩余,, ”来体现。

增长量=原有量×增长率现在量=原有量+增长量例1.某单位今年为灾区捐款 2 万5 千元,比去年的 2 倍还多1000 元,去年该单位为灾区捐款多少元?解:设去年该单位为灾区捐款x 元,则2x+1000=250002x=24000x=12000答:去年该单位为灾区捐款12000 元.例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少 1 公斤,求油箱里原有汽油多少公斤?解:设油箱里原有汽油x 公斤,则x-[25%x+40% ×(1-25%)x]+1=25%x+40% ×(1-25%)x即10%x=1x=10答:油箱里原有汽油10 公斤.(二)等积变形问题等积变形是以形状改变而体积不变为前提。

最新七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)(1)

最新七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)(1)

七年级上册应用题专题讲解列方程解应用题,是初中数学的重要内容之一。

许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。

因此我们要努力学好这部分知识。

一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解—解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。

(一)和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套,, ”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1.倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率,, ”来体现。

2.多少关系:通过关键词语“多、少、和、差、不足、剩余,, ”来体现。

增长量=原有量×增长率现在量=原有量+增长量例1.某单位今年为灾区捐款 2 万5 千元,比去年的 2 倍还多1000 元,去年该单位为灾区捐款多少元?解:设去年该单位为灾区捐款x 元,则2x+1000=250002x=24000x=12000答:去年该单位为灾区捐款12000 元.例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少 1 公斤,求油箱里原有汽油多少公斤?解:设油箱里原有汽油x 公斤,则x-[25%x+40% ×(1-25%)x]+1=25%x+40% ×(1-25%)x即10%x=1x=10答:油箱里原有汽油10 公斤.(二)等积变形问题等积变形是以形状改变而体积不变为前提。

(完整版)七年级上数学第1讲一元一次方程的解法及应用

(完整版)七年级上数学第1讲一元一次方程的解法及应用

七秋第1讲一元一次方程的解法及应用11一、 知识要点一元一次方程:只含有一个未知数,并且未知数的最高次数是 1,系数不等于0的整式方程叫做一元一次方程,这里的“元” 是指未知数,"次”是指含未知数的项的最高次数.解一元一次方程的一般步骤:⑴去分母;⑵去括号;⑶移项;⑷合并同类项;⑸未知数的系数化为 1.这五个步骤在解一元一次方程中,有时可能用不到,有时可能重复用,也不一定按从上到下的顺序进行,要根 据方程的特点灵活运用.二、 例题精选一元一次方程的概念:【例1】(1)若(a 1)x 冋a 5是关于x 的一元一次方程,则 a 的值是 ____________________________ .【巩固1】⑴若kx 3 2k 2k 3是关于x 的一元一次方程,则k2⑵ 若(m 2)x m 3 5是关于x 的一元一次方程,则 (3)关于 x 的方程(m-1 ) x 2- (m-1) x+1=0 是一元 元一次方程的解:k -3x有相同的解,求k 的值.【例2】若关于x 的方程2x-3=1和【巩固2】若关于x 的一元一次方程 2x313 x 3k =1的解为x=-1,则k 的值为() 2(2)已知(2 m 3)x 2 (2 3m)x 1是关于x 的一元一次方程,则 m(3)方程(m 1)x lm| 1 A.—4 2n 是关于x 的一元 B . 54 次方程,若 n 是它的解,贝U n m ().D. ? 4 C. 3 4 m 的值是次方程,则 2m-1 =七秋第1讲一元一次方程的解法及应用11解一元一次方程:【例3】⑴ 方程(3x 2) 2(2 x 1)0去括号正 1确的是 ( )A . 3x 22x 1 0 B . 3x 2 4x 1 0C. 3x 24x 2 0 D . 3x 2 4x 2 0⑵ 方程x 32 x 1 x 去分母正确 的是( )5 2 A . 2(x 3) 2 x 5(x :1) B . 2x 3 20 10x 5x 1C . 2(x 3) 20 10x 5(x 1)D . (x 3) 20 10x (x 1) x 14 x 【巩固3】①解方程 =1时,去分母正确的是( )32 A. 2 (x-1 ) -3 (4x-1 ) =1 B . 2x-1-12+x=1 C . 2 (x-1 ) -3 (4-x ) =6 D . 2x-2-12-3x=6②解方程2 4x 3 5 6 3x 22 x 1时,去完括号之后得到的是:【巩固4】解方程5【例5】解方程:1丄丄y ? 33 1 2 24 2【例4】⑴解方程y 口 2 口23⑵解方程专1专 2x 1 5解一元一次方程:1 12 【例6】解方程:一(2x 3) (3 2x) x11 19 133 13三、回家作业【练习1】(1)下列选项是一元一次方程的是( )A. x 0B. m 3nC. x 1D. x 2(2)关于x的方程(n 1)x2 nx x 8 0是一元一次方程,则n的值是___________________________⑶若关于x的方程(2 |m|)x2 (m 2)x (5 2m) 0是一元一次方程,求m的解.【练习2] 解方程:2 4x 3 5 6 3x 2 2 x 1【练习3] 解方程:△4— 14 6 18【练习4] 解方程:1) 6] 2 03 4 3【练习5] 解方程:3(x 1) [(x 1) 2(x 1) -(x 1)3 2。

最新人教版七年级上册数学 一元一次方程(基础篇)(Word版 含解析)

最新人教版七年级上册数学 一元一次方程(基础篇)(Word版 含解析)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数________;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.试探索:①:若|x-8|=2,则x =________.②:|x+12|+|x-8|的最小值为________.(3)动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,A,P两点之间的距离为2;(4)动点P,Q分别从O,B两点,同时出发,点P以每秒5个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.【答案】(1)﹣12(2)6或10;0(3)1.2或2(4)3.2或1.6【解析】【解答】(1)数轴上B表示的数为8-20=﹣12;(2)①因为互为相反数的两个数绝对值相同,所以由│x-8│=2可得x-8=2或﹣(x-8)=2,解得x=6或10;②因为绝对值最小的数是0,所以│x+12│+│x-8│的最小值是0;(3)根据│A点在数轴上的位置-t秒后P点在数轴上的位置│=A、P两点间的距离列式得│8-5t│=2,因为互为相反数的两个数绝对值相同,所以8-5t=2或﹣(8-5t)=2,解得t=1.2或2;(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离列式得│﹣12+10t-5t│=4,因为互为相反数的两个数绝对值相同,所以﹣12+10t-5t=4或﹣(﹣12+10t-5t)=4,解得t=3.2或1.6.【分析】(1)抓住已知条件:B是数轴上位于点A左侧一点,且AB=20,且点A表示的数是8,就可求出OB的长,从而可得出点B表示的数。

七年级数学上册一元一次方程应用题行程类专题讲解

七年级数学上册一元一次方程应用题行程类专题讲解
逆水(风)速度=静水(风)速度-水流(风)速度 顺速–逆速 = 2 水速;顺速 + 逆速 = 2 船速 顺水的路程 = 逆水的路程
注意:抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系。 常见的还有:相背而行;环形跑道问题。
一、行程(相遇)问题 A.基础训练 1. 小李和小刚家距离 900 米,两人同时从家出发相向行,小李每分走 60 米,小刚每分走 90 米,几分
5. 一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以 18 米/分的速度从队头至 队尾又返回,已知队伍的行进速度为 14 米/分。问:若已知队长 320 米,则通讯员几分钟返回? 若已知通讯员用了 25 分钟,则队长为多少米?
6. 一架飞机在两个城市之间飞行,风速为 24 千米/小时,顺风飞行需要 2 小时 50 分,逆风飞行需要 3 小时,求两个城市之间的飞行路程?
2
2. 一条环形的跑道长 800 米,甲练习骑自行车平均每分钟行 500 米,乙练习赛跑,平均每分钟跑 200 米,两人同时同地出发。 (1)若两人背向而行,则他们经过多少时间首次相遇 (2)若两人同向而行,则他们经过多少时间首次相遇?
3. 甲乙二人沿 400 米的圆形跑道跑步,他们从同一地点同时出发,背向而行。当两人第一次相遇后, 甲的速度比原来提高 2 米/秒,乙的速度比原来降低 2 米/秒,结果两人都用 24 秒回到原地。求甲原 来的速度?
三、行程(行船、飞行)问题 1. 一架飞机飞行在两个城市之间,风速为 24 千米/时. 顺风飞行需要 2 小时 50 分,逆风飞行需要 3 小
时. 求飞机在无风时的速度及两城之间的飞行路程.
2. 一艘轮船航行于两地之间,顺水要用 3 小时,逆水要用 4 小时,已知船在静水中的速度是 50 千米/小时,求 水流的速度.

最新七年级上册一元一次方程(基础篇)(Word版 含解析)

最新七年级上册一元一次方程(基础篇)(Word版 含解析)

一、初一数学一元一次方程解答题压轴题精选(难)1.已知关于a的方程2(a+2)=a+4的解也是关于x的方程2(x-3)-b=7的解.(1)求a、b的值;(2)若线段AB=a,在直线AB上取一点P,恰好使 =b,点Q为PB的中点,请画出图形并求出线段AQ的长.【答案】(1)解:2(a-2)=a+4,2a-4=a+4a=8,∵x=a=8,把x=8代入方程2(x-3)-b=7,∴2(8-3)-b=7,b=3(2)解:①如图:点P在线段AB上,=3,AB=3PB,AB=AP+PB=3PB+PB=4PB=8,PB=2,Q是PB的中点,PQ=BQ=1,AQ=AB-BQ=8-1=7,②如图:点P在线段AB的延长线上,=3,PA=3PB,PA=AB+PB=3PB,AB=2PB=8,PB=4,Q是PB的中点,BQ=PQ=2,AQ=AB+BQ=8+2=10.所以线段AQ的长是7或10.【解析】【分析】(1)根据题意可得两个方程的解相同,所以根据第一个方程的解,可求出第二个方程中的b。

(2)分类讨论,P在线段AB上,根据,可求出PB的长,再根据中点的性质可得PQ的长,最后根据线段的和差可得AQ;P在线段AB的延长线上,根据,可求出PB的长,再根据中点的性质可得BQ的长,最后根据线段的和差可得AQ.2.温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州厂运往南昌的机器为x台,(1)用含x的代数式来表示总运费(单位:元)(2)若总运费为8400元,则杭州厂运往南昌的机器应为多少台?(3)试问有无可能使总运费是7800元?若有可能请写出相应的调动方案;若无可能,请说明理由.【答案】(1)解:总费用为:400(6-x)+800(4+x)+300x +500(4-x)=200x+7600(2)解:由题意得200x+7600=8400,解得x=4,答:杭州运往南昌的机器应为4台(3)解:由题意得200x+7600=7800,解得x=1. 符合实际意义,答:有可能,杭州厂运往南昌的机器为1台.【解析】【分析】(1)根据总费用=四条线路的运费之和(每一条线路的费用=台数×运费),列式后化简即可。

(完整word版)初一数学一元一次方程应用题专项讲解

(完整word版)初一数学一元一次方程应用题专项讲解

一元一次方程解应用题专项讲义一、和、差问题1. 2004年与1988年奥运会我国共获91枚奖牌,其中2004年比1988年的2倍多7枚,问:1988年我国获得几枚奖牌?2.一台拖拉机耕一块地,第一天耕了这块地的四分之一,第二天耕了这块地的五分之一,第三天耕了10亩,第四天耕了这块地的三分之一,这时还剩下3亩没耕完,求这块地共有多少亩?3.为了把2008年的北京奥运办成一届绿色奥运 ,五中和十中的同学积极参加绿化工程劳动,两校共绿化了290亩的土地,十中绿化的面积比五中绿化面积的2倍少10亩,这两所中学分别绿化了多少面积?二、调配问题(一)人数调配1.某厂一车间有64人,二车间有56人。

现因工作需要,要求第一车间人数是第二车间人数的一半。

问需从第一车间调多少人到第二车间?2.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15人。

求甲、乙两队原有人数各多少人?(二)物品调配1、甲车队有15辆汽车,乙车队有28辆汽车,现调来10辆汽车分给两个车队,使甲车队车数比乙车队车数的一半多2辆,应分配到甲乙两车队各多少辆车?2、甲仓库储粮35吨 ,乙仓库储粮19吨,现调粮食15吨,应分配给两仓库各多少吨,才能使得甲仓库的粮食数量是乙仓库的两倍?3、甲、乙两个仓库共有20吨货物,从甲仓库调出101到乙仓库后,甲仓库中的货物比乙仓库中的货物多16吨.问甲、乙两仓库中原来各有多少吨货物?三、分配问题:1.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。

求房间的个数和学生的人数。

2.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?3.小明看书若干日,若每日读书32页,尚余31页;若每日读36页,则最后一日需要读39页,才能读完,求书的页数。

四、配套问题:1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?2.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?3.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。

七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)教程文件

七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)教程文件

七年级上册应用题专题讲解一、列方程解应用题解题思路:审—设—列—解—答二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。

(一)和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套……”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1.倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

2.多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

增长量=原有量×增长率现在量=原有量+增长量例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?(二)等积变形问题等积变形是以形状改变而体积不变为前提。

常用等量关系:原料体积=成品体积。

常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h=2r h②长方体的体积V=长×宽×高=abc例3.现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?(三)数字问题1.要搞清楚数的表示方法:一个三位数,一般可设百位数字为a ,十位数字是b ,个位数字为c (其中a 、b 、c 均为整数,且1≤a ≤9, 0≤b ≤9, 0≤c ≤9),则这个三位数表示为:100a+10b+c .2.数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n —1表示。

七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)

七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)

七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)七年级上册应用题专题讲解一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解—解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学(一)和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套……”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1.倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

2.多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

增长量=原有量某增长率现在量=原有量+增长量例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?解:设去年该单位为灾区捐款某元,则2某+1000=250002某=24000某=12000答:去年该单位为灾区捐款12000元.例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?解:设油箱里原有汽油某公斤,则某-[25%某+40%某(1-25%)某]+1=25%某+40%某(1-25%)某即10%某=1某=10答:油箱里原有汽油10公斤.(二)等积变形问题等积变形是以形状改变而体积不变为前提。

人教版七年级上册数学3.4 实际问题与一元一次方程--销售问题(word、含答案)

人教版七年级上册数学3.4 实际问题与一元一次方程--销售问题(word、含答案)

人教版七年级上册数学第三章一元一次方程应用题--销售问题1.某种自创品牌的服装打折销售.如果每件服装按标价的6折出售,可盈利80元;若每件服装按标价的5折出售,则亏损80元.(1)每件服装的标价为多少元?(2)若这种服装一共库存80件.按着标价7.5折出售一部分后,将余下服装按标价的5折全部出售,结算时发现共获利5600元,求按7.5折出售的服装有多少件?2.天誉百货商场经销甲、乙两种服装,甲种服装每件进价500元,售价800元;乙种服装每件售价1200元,可盈利50%.(1)每件甲种服装利润率为______,乙种服装每件进价为______元;(2)若该商场同时购进甲、乙两种服装共40件,恰好总进价用去27500元,求商场销售完这批服装,共盈利多少?3.某商场销售的一款空调每台的标价是3270元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价;(2)在这次促销活动中,商场销售了这款空调共100台,问盈利多少元?4.某服装店,打折销售服装,若每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元.(1)每件服装的标价多少元?每件服装的成本价多少元?(2)为了尽快减少库仔,又要保证不亏本,商家最多能打几折?5.某年级一位老师带部分学生去旅游,甲旅行社说:“如果这位老师买全票,则其余学生可享受五价优惠.”乙旅行社说:“包括这位老师在内全部按全票价的六折优惠.”(1)学生多少人时,甲、乙两家旅行社收费一样多?(2)根据学生人数讨论哪一旅行社更合算.6.某商店投入4600元资金购进甲、乙两种节能灯共500只,成本价和销售价如表所示:(1)该商店购进甲、乙两种节能灯各多少只?(2)全部售完500只节能灯,该商场共获得利润多少元?7.某店卖出甲、乙两套服装,每套均售得a元,其中甲服装亏本10%,乙服装盈利10%.(1)用代数式表示甲、乙服装的成本价;(2)设此店在这两笔交易中的总盈亏为p元,请求出用a表示p的代数式,并说明a 时的盈亏情况.1988.某商场销售的一款空调机每台的标价是1375元,在一次促销活动中,按标价的八折销可盈利10%.(1)求这款空调每台的进价;(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?9.目前节能灯已基本普及,某商场计划购进甲、乙两种节能灯共1200只,这两种节能灯的进价、售价如下图所示:(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时恰好获利30%,此时利润为多少元?10.某超市用6800元购进A、B两种型号计算器共120台,进价、标价如表:(1)这两种计算器各购进多少台?(2)如果A型计算器每台按标价的九折出售,B型计算器每台按能获利20%的价格出售,那么这批计算器全部售出后,超市共获利多少元?11.某商店用41000元购买甲、乙两种服装共500件,服装的成本价与销售单价如下表所示.(1)该商店购买甲、乙两种服装各多少件?(2)若将这500件衣服全部售完,可获利多少元?12.互联网“微商”经营已成为沾化冬枣销售的一种重要途径,某微信平台上一盒“二代”冬枣的标价为200元,按标价的五折销售仍可获利20元.(1)一盒“二代”冬枣的成本价是多少钱?(2)一盒“二代”冬枣几折销售可获得利润80元?13.有一旅客携带了25千克行李乘某航空公司的飞机,按该航空公司规定,旅客最多可免费携带20千克的行李,超重部分每千克按飞机票价的1.5%购买行李托运票,现该旅客购买的飞机票和行李托运票共645元.(1)该旅客需要购买 千克的行李托运票;(2)该旅客购买的飞机票是多少元?14.某服装城共购入了两批A 、B 两款袜子.第一批购入A 、B 两款袜子共2500双,A 款袜子售价为每双16元,B 款袜子售价为每双24元,全部售出后的销售总额为52000元.服装城把2500双袜子全部售出后马上购入第二批袜子已知第二批袜子中,A 款袜子的进货量比第一批减少了2m 双,售价不变;B 款袜子的进货量比第一批减少了%3m ,售价比原售价降低了16,两批袜子全部售出后的销售总额为94040元. (1)服装城第一批购入的A 、B 两款袜子各多少双?(2)该服装城第二批购进A 款袜子多少双?15.某商场第一季度销售甲、乙两种冰箱若干台,其中乙种冰箱的数量比甲种冰箱多销售40台,第二季度甲种冰箱的销量比第一季度增加10%,乙种冰箱的销量比第一季度增加20%,且第二季度两种冰箱的总销量达到554台.求:(1)该商场第一季度销售甲种冰箱多少台?(2)若每台甲种冰箱的利润为250元,每台乙种冰箱的利润为300元,则该商场第二季度销售冰箱的总利润是多少元?16.为了拉动内需,促进国内经济大循环,某超市在“元旦”期间搞促销活动,购物不的,其中500元按9折优惠,超过部分按8折优惠.小明两次购物分别用了156元和478元.(1)若超市不搞促销活动,利用方程求出小明两次购物共值多少钱?(2)若小明将这两次购物合为一次购买是否更节省?节省多少钱?17.某市百货商场元旦搞促销活动,购物不超过200元不给优惠;超过200元不足500元的优惠10%;超过500元的,其中500元的部分按九折优惠,超过500元部分按八折优惠;某人两次购物分别用了134元和466元,问:(1)此人两次购物其物品如果不打折,一共需付多少钱?(2)在这次活动中他节省了多少钱?(3)若此人将两次购物合为一次购物是否更省钱?为什么?18.某电器店为了抓住市民的心理,在冬季购进甲、乙两种电暖气,已知购进乙种电暖气的数量是甲种电暖气数量的2倍,若两种电暖气全部按标价售出后共可获利1600元.这两种电暖气的进价、标价如下表所示:(1)求这两种电暖气各购进了多少个;(2)如果甲种电暖气按标价的8折出售,乙种电暖气按标价的7折出售,那么这批电暖气全部售完后,该电器店利润比按标价出售少收入多少元?19.目前节能灯在各地区基本普及使用,某市一商场为响应号召,推广销售,该商场(1)求甲、乙两种型号节能灯各进多少只?(2)全部售完120只节能灯后,该商场获利多少元?20.某校学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了香蕉和苹果共80千克,了解到这些水果的种植成本共720元,还了解到如下信息(1)求采摘的香蕉和苹果各多少千克?(2)若把这80kg的水果按照上表给的售价全部销售完毕,那么总共可赚多少元?参考答案:1.(1)1600元(2)30件2.(1)60%,800;(2)14500元.3.(1)这款空调每台的进价为2400元;(2)盈利21600元4.(1)每套服装的标价为200元,成本价为120元;(2)服装最多打6折.5.(1)4人;6.(1)300只,200只;(2)2200元7.(1)甲服装的成本为109a元,乙服装的成本为1011a元;(2)299p a=-,亏4元8.(1)1000元;(2)10000元.9.(1)购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)商场购进甲型节能灯450只,购进乙型节能灯750只时利润为13500元10.(1)A型号计算器购进40台,则B型号计算器购进80台;(2)这批计算器全部售出后,超市共获利1720元.11.(1)甲种服装200件,乙种服装300件;(2)12000元12.(1)80,(2)八.13.(1)5;(2)600元14.(1)第一批购入的A款袜子1000双、B款袜子1500双;(2)该服装城第二批购进A 款袜子940双.15.(1)220台;(2)154100元.16.(1)共值691元;(2)是,节省了31.2元17.(1)此人两次购物不打折一共需付654元;(2)在这次活动中他节省了54元;(3)此人将两次购物合为一次购物更省钱18.(1)甲种电暖气购进10个,乙种电暖气购进20个;(2)电器店利润比按标价出售少收入1160元.19.(1)甲种型号节能灯进了80只,乙种型号的节能灯进了40只;(2)该商场获利1000元.20.(1)香蕉60kg,苹果20kg(2)176元。

人教版七年级数学上第三章一元一次方程知识点总结及应用题详细解析

人教版七年级数学上第三章一元一次方程知识点总结及应用题详细解析

一元一次方程知识点总结及应用题详细解析1.等式:用“=”号连接而成的式子叫等式.2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程解法的一般步骤:化简方程----------分数基本性质去分母----------同乘(不漏乘)最简公分母去括号----------注意符号变化移项----------变号合并同类项--------合并后注意符号系数化为1---------未知数细数是几就除以几知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?解:设这种皮鞋标价是x元8/10x=60×(1+40%)解得:x=105105×8/10=84(元)答:这种皮鞋标价是105元,优惠价是84元3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为( B )A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 50解析: 因为自行车按进价提高45%后标价,已经设过自行车进价是X元了所以X(1+45%)=145%X ——也就是标价因为(标价)又以八折优惠卖出所以标价×八折=销售价145%X × 0.8 = 1.16 X 因为结果每辆获利50元(获益= 销售价- 进价)所以获利的50元= 销售价1.16X元- 进价X元上为解题思路,得到方程:145%X • 0.8 - X =504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.解析:按最少利润为800*5%=40,则出售价为800+40=840,则打折为840/1200=70%,最低可以打七折5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.解:设每台彩电零售价为x.[(1+40%)×80%]x-x=2700÷10x=2250答:每台彩电零售价为2250元.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?方案三获利多方案一:140*4500=630000方案二:15*6=90 90*7500=675000 (140-90)*1000=50000 675000+50000=725000方案三:设粗加工x天16*x+6*(15-x)=140 x=5天精加工15-5=10天5*16*4500+10*6*7500=360000+450000=8100007.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?(1)全球通:50+0.2*X神州行:0.4X(2) 50+0.2X=0.4X 得X=250(3)50+0.2*120=740.4*120=48选择神州行更优惠!8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(完整word版)七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。

下面是本文详细内容。

最后最您生活愉快 ~O(∩_∩)O ~七年级上册应用题专题讲解一、列方程解应用题解题思路:审—设—列—解—答二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。

(一)和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套……”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1.倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

2.多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

增长量=原有量×增长率现在量=原有量+增长量例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?(二)等积变形问题等积变形是以形状改变而体积不变为前提。

常用等量关系:原料体积=成品体积。

常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h=2r h②长方体的体积V=长×宽×高=abc例3.现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?(三)数字问题1.要搞清楚数的表示方法:一个三位数,一般可设百位数字为a ,十位数字是b ,个位数字为c (其中a 、b 、c 均为整数,且1≤a ≤9, 0≤b ≤9, 0≤c ≤9),则这个三位数表示为:100a+10b+c .2.数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n —1表示。

例4.有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。

例5.一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数 是十位上的数的3倍,求这个三位数.[分析]由已知条件给出了百位和个位上的数的关系,若设十位上的数为x ,则百位上的数为x+7,个位上的数是3x ,等量关系为三个数位上的数字和为17。

(四)商品利润问题(市场经济问题或利润赢亏问题)(1)销售问题中常出现的量有:进价(或成本)、售价、标价(或定价)、利润等。

(2)利润问题常用等量关系:商品利润=商品售价-商品进价=商品标价×折扣率-商品进价%100⨯=商品进价商品利润商品利润率%100-⨯=商品进价商品进价商品售价 (3)商品销售额=商品销售价×商品销售量 商品的销售利润=(销售价-成本价)× 销售量(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.即商品售价=商品标价×折扣率.例6:一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获 利15元,进价 折扣率 标价 优惠价 利润x元8折(1+40%)X元80%(1+40%)X15元等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15例7:某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折?(五)行程问题——画图分析法1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度水流速度=(顺水速度-逆水速度)÷2(4)环路问题甲乙同时同地背向而行:甲路程—乙路程=环路一周的距离甲乙同时同地同向而行:快者的路程—慢者的路程=环路一周的距离抓住两码头间距离不变,水流速和船速不变的特点考虑相等关系.即顺水逆水问题常用等量关系:顺水路程=逆水路程.常见的还有:相背而行;行船问题;环形跑道问题。

例8:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

)例9:一轮船在甲、乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2千米/时,求甲、乙两码头之间的距离。

(六)工程问题1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间=工作总量工作效率工作时间=工作总量工作时间工作效率2.经常在题目中未给出工作总量时,设工作总量为单位1。

即完成某项任务的各工作量的和=总工作量=1.工程问题常用等量关系:先做的+后做的=完成量.例10:将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?例11:一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?例12:一项工程甲单独做需要10天,乙需要12天,丙单独做需要15天,甲、丙先做3天后,甲因事离去,乙参与工作,问还需几天完成?(七)储蓄问题1.顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.2.储蓄问题中的量及其关系为:利息=本金×利率×期数 本息和=本金+利息%100⨯=本金利息利率 利息税=利息×税率(20%)例13:某同学把250元钱存入银行,整存整取,存期为半年。

半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)(八)配套问题:这类问题的关键是找对配套的两类物体的数量关系。

例14:某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?例15:机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?(九)劳力调配问题这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。

例16.某厂一车间有64人,二车间有56人。

现因工作需要,要求第一车间人数是第二车间人数的一半。

问需从第一车间调多少人到第二车间?例17.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。

求房间的个数和学生的人数。

(十)比例分配问题比例分配问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。

常用等量关系:各部分之和=总量。

例18:甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件?(十一)年龄问题例19:兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?例20:三位同学甲乙丙,甲比乙大1岁,乙比丙大2岁,三人的年龄之和是41,求乙同学的年龄。

(十二)比赛积分问题例21:某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。

已知某人有5道题未作,得了103分,则这个人选错了道题。

例22:某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。

某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?(十三)方案选择问题例23:某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A 种每台1500元,B 种每台2100元,C 种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A 种电视机可获利150元,销售一台B 种电视机可获利200元,销售一台C 种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?(十四)古典数学问题例24:100个和尚100个馍,大和尚每人吃两个,小和尚两人吃一个,问有多少大和尚?多少小和尚?例25:有若干只鸡和兔子,他们共有88个头,244只脚,鸡和兔各有多少只?(十五)增长率问题例26:民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票。

一名旅客带了35千克行李乘机,机票连同行李费共付了1323元,求该旅客的机票票价。

(十六)浓度问题常用等量关系式: 溶液的质量溶质的质量浓度 .例27:有含盐20%的盐水5千克,要配制成含盐8%的盐水,需加水 7.5 千克。

某化工厂现有浓度为15%的稀硫酸175千克,要把它配成浓度为25%的硫酸,需要加入浓度为50%的硫酸多少千克?例28:有甲、乙两种铜和银的合金,甲种合金含银25%,乙种合金含银37.5%,现在要熔制含银30%的合金100千克,两种合金应各取多少?结尾处,小编送给大家一段话。

相关文档
最新文档