集合知识点总结及习题

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合

123412n x A x B A B A B A n A ∈∉⎧⎪

⎪⎨⎪⎪⎩

∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪

⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。

真子集:若且(即至少存在但),则是的真子集。集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪

⎪⎪

⎧⎪

⎪⎪

⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎨⎪⎪⎪⎪

⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪

⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩

一、集合有关概念

1. 集合的含义

2. 集合的中元素的三个特性:

(1)元素的确定性如:世界上最高的山

(2)元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y}

(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合

3.元素与集合的关系——(不)属于关系

(1)集合用大写的拉丁字母A、B、C…表示

元素用小写的拉丁字母a、b、c…表示

(2)若a是集合A的元素,就说a属于集合A,记作a∈A;

若不是集合A的元素,就说a不属于集合A,记作a A;

4.集合的表示方法:列举法与描述法。

(1)列举法:将集合中的元素一一列举出来,写在大括号内

表示集合的方法

格式:{ a,b,c,d }

适用:一般元素较少的有限集合用列举法表示

(2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

格式:{x |x满足的条件}

例如:{x R| x-3>2} 或{x| x-3>2}

适用:一般元素较多的有限集合或无限集合用描述法表示

注意:常用数集及其记法:

非负整数集(即自然数集)记作:N={0,1,2,3,…}

正整数集 N*或 N+ = {1,2,3,…}

整数集Z {…,-3,-2,-1,0,1,2,3,…}

有理数集Q

实数集R

有时,集合还用语言描述法和Venn图法表示

例如:语言描述法: {不是直角三角形的三角形}

Venn图:

4、集合的分类:

(1)有限集含有有限个元素的集合

(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合例:{x∈R|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

定义:若对任意的x∈A,都有x∈B,则称集合A是集合B的子集,

记为B

A⊆(或B⊇A)

注意:①B

A⊆有两种可能(1)A是B的一部分,;(2)A 与B是同一集合。

②符号∈与⊆的区别

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A

2.“相等”关系:A=B

定义:如果A B 同时 B A 那么A=B

实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”

3.真子集:如果A B,且存在元素x∈B,但x∉A,那么就说集合A是集合B的真子集,记作A B(或B A)

4.性质

①任何一个集合是它本身的子集。A A

②如果 A B, B C ,那么 A C

③如果A B 同时 B A 那么A=B

5. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集,空集是任何非空集合的真子

集。

有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算

交集并集补集

定义由所有属于A且属

于B的元素所组成

的集合,叫做A,B的

交集.记作A B(读

作‘A交B’),即

A B={x|x∈A,且

x∈B}.

由所有属于集合A

或属于集合B的

元素所组成的集

合,叫做A,B的并

集.记作:A B(读

作‘A并B’),

即A B ={x|x∈A,

或x∈B}).

设S是一个集合,A是S的一

个子集,由S中所有不属于A

的元素组成的集合,叫做S

中子集A的补集(或余集)

记作A

C

S

,即

C S A=}

,

|

{A

x

S

x

x∉

∈且

韦恩图A B

图1

A B

图2

S

相关文档
最新文档