金属材料的制备冶金

合集下载

冶金工程中的金属材料制备与处理

冶金工程中的金属材料制备与处理

冶金工程中的金属材料制备与处理冶金工程是研究和应用金属材料的学科,涉及金属材料的制备、加工以及性能改善等方面。

金属材料是冶金工程中的核心,其制备与处理技术的发展对于现代工业的进步有着重要意义。

本文将从金属材料制备的基本原理,常见的制备方法,以及处理技术等方面进行论述。

一、金属材料制备的基本原理金属材料制备过程中的基本原理主要包括金属的途径形成和结晶行为。

金属的形成途径有两种,一种是地质过程,如矿石的形成;另一种是冶金过程,如金属的提取和冶炼。

金属在固态状态下具有晶体结构,通过加热和冷却等方式可以控制其晶体形貌和晶粒尺寸。

二、金属材料制备的常见方法1. 粉末冶金法:粉末冶金法是将金属或合金粉末压制成型,再进行烧结或热处理的一种制备方法。

其优点是可以得到具有高纯度和均匀组织的材料。

粉末冶金法广泛应用于金属粉末冶金制品、金属陶瓷制品和各种复合材料的制备。

2. 液相冶金法:液相冶金法是指将金属或合金在液态下进行熔化和制备的方法。

常见的液相冶金法有熔模铸造法、凝固锭法等。

这些方法可以制备大型和复杂形状的金属制品。

三、金属材料的处理技术金属材料制备完成后,还需要进行一系列的处理技术以改善其性能和使用价值。

常见的处理技术有热处理、表面处理和变形处理等。

1. 热处理:热处理是通过控制金属材料的加热和冷却过程,改变其组织结构和性能的一种方法。

常见的热处理方法包括退火、淬火、回火等。

热处理可以提高金属的硬度、强度和耐腐蚀性能。

2. 表面处理:表面处理是指对金属材料表面进行物理、化学或机械上的处理,以改变其表面特性的方法。

常见的表面处理方法有电镀、喷涂、陶瓷涂层等。

表面处理可以提高金属的耐磨性、耐腐蚀性和装饰性。

3. 变形处理:变形处理是通过塑性变形改变金属材料的组织结构和性能。

常见的变形处理方法有压力加工、轧制、拉伸等。

变形处理可以提高金属的强度、韧性和塑性。

综上所述,冶金工程中的金属材料制备与处理是冶金学的重要内容。

粉末冶金的生产过程

粉末冶金的生产过程

粉末冶金的生产过程
粉末冶金是一种通过粉体材料制造金属和合金的技术。

生产过程包括如下几个步骤:
1.材料粉碎: 通过研磨机将原材料粉碎成粉末状。

2.混合: 将不同的金属粉末混合在一起,以达到所需的化
学成分。

3.压坯: 通过压坯机将粉末压成坯体。

4.烧结: 将坯体置于高温炉中,经过高温烧结,使粉末粘
合在一起并形成金属块。

5.成型: 将烧结后的金属块加工成所需的形状,可以使用
铣削、钻孔、镗削等工艺。

6.热处理: 将金属块置于高温炉中进行热处理,以调整金
属的组织结构和性能。

7.淬火: 将金属块置于高温炉中进行淬火,以提高金属的
硬度和耐磨性。

8.深火: 将金属块置于高温炉中进行深火,以提高金属的
韧性。

9.清理: 将金属块清理干净,以确保其表面干净无杂质。

10.检测: 对金属块进行检测,以确保其质量符合标准。

第一篇 金属材料的制备与加工工艺

第一篇    金属材料的制备与加工工艺

一、生铁冶炼
2、高炉设备及工艺过程
一、生铁冶炼
2、高炉设备及工艺过程
图 5-4 高炉内型示意图
炼 铁 高 炉 的 结 构
炼铁工业设备图
炼铁工业设备图
一、生铁冶炼
铁 矿 石 熔 剂 焦 炭
2、高炉设备及工艺过程
上料机
喷吹 燃料罐
燃料 高炉
热风 热风炉
冷风 鼓风机
空气
炉渣
生铁
煤气
水 渣
渣 棉
矿石中的磷主要以(CaO)3P2O5[Ca3(PO4)2]的形 式存在,磷酸钙在1200~1500℃以固体碳为还原剂 发生直接还原反应,反应为: (CaO)3P2O5+5C=3CaO+2P+5CO 而SiO2存在,又能与磷酸钙中的CaO相结合, 使P2O5游离出来,从而加速磷酸钙的还原,反应为: 2(3CaO· 2O5)+3SiO2=3(2CaO· 2)+2P2O5 P SiO 2P2O5+10C=4P+10CO 被还原出来的磷除小部分挥发外都溶入铁中, 还原出来的磷与铁结合生成Fe2P或Fe3P并溶于生铁 中,因此控制生铁含磷量的唯一方法是控制炉料的 含磷量。
一、生铁冶炼
1、炼铁的原料
(2)熔剂


作用:
降低脉石熔点,生成熔渣; 去硫


种类:
通常用碱性熔剂石灰石
要求:
碱性氧化物高(CaO+MgO)>50%,酸性氧化物低(SiO2+Al2O3) ≤3.5% P、S低,强度高,粒度均匀,一般25~75mm,最好与矿石粒度一 致
一、生铁冶炼
1、炼铁的原料
一、生铁冶炼
(2) 高炉渣

现代金属材料的制备与成型技术

现代金属材料的制备与成型技术

现代金属材料的制备与成型技术一、金属材料的制备技术:1.熔炼法:熔炼法是制备金属材料最常用的方法之一、它通过将金属原料加热至熔化状态,然后通过冷却凝固形成所需形状的材料。

熔炼法可分为电熔法、真空熔炼法、坩埚熔炼法等。

2.粉末冶金法:粉末冶金是一种将金属粉末通过成形与烧结来制备金属材料的方法。

该方法不需要熔化金属,可直接使用金属粉末,在高压下成型成所需形状,然后通过烧结得到金属材料。

3.化学法:化学法是一种利用化学反应来制备金属材料的方法。

常见的化学法包括电解法、沉积法和溶液法等。

这些方法通过将溶解金属离子的溶液与适当的反应剂反应,使金属离子还原成金属固体。

4.气相沉积法:气相沉积法是一种利用高温高压条件下,使金属原料气化后沉积在衬底上的方法。

这种方法可以制备薄膜、纤维等金属材料。

二、金属材料的成型技术:1.锻造成型:锻造是一种将金属材料加热至一定温度后施以一定的力使金属发生塑性变形,从而得到所需形状的方法。

锻造可分为自由锻造、模锻造和挤压锻造等。

2.压力成型:压力成型是一种利用压力来使金属材料发生塑性变形,从而得到所需形状的方法。

常见的压力成型包括挤压、拉伸、连续模锻等。

3.粉末冶金成型:粉末冶金成型技术是指利用金属粉末进行成型的方法。

通过将金属粉末与适当的粘结剂混合,然后在高压下成形。

最后通过烧结将金属粉末与粘结剂固化在一起,得到所需形状的金属成品。

4.焊接与连接:焊接是一种将两个或多个金属材料通过加热、溶解或者高压连接在一起的方法。

常见的焊接方法有电弧焊接、气焊、激光焊接等。

除了焊接外,还有螺纹连接、铆接和胶粘连接等方法。

三、现代金属材料的设备与工具:1.熔炉:熔炉是用于将金属原料熔化的设备,它可以提供高温条件,使金属原料达到熔点,进行熔炼制备。

2.成型机床:成型机床是用于金属材料成型的机床设备,如锻压机、冲床、拉伸机等。

它们通过施加力或者压力,使金属发生塑性变形,得到所需形状。

3.烧结炉:烧结炉是用于粉末冶金制备的设备,它可以将金属粉末在高温条件下烧结成一体。

金属材料工程与冶金工程

金属材料工程与冶金工程

金属材料工程与冶金工程金属材料工程与冶金工程是两个紧密相关的学科,都是研究金属材料的制备、加工、性能、应用等方面的科学。

它们是现代工业中不可或缺的学科,对于推动国民经济的发展和科技进步有着举足轻重的作用。

金属材料工程主要研究金属材料的制备、加工和性能等方面。

金属材料是现代工业生产中最为重要的材料之一,广泛用于制造航空、汽车、电子、建筑等各个领域。

金属材料工程的研究内容包括金属材料的物理、化学性质,金属材料的加工工艺,金属材料的性能优化等方面。

工程师们通过研究金属材料的结构、组织、性能等方面的信息,来提高金属材料的使用性能和降低生产成本。

金属材料工程是一门综合性学科,涉及到的知识领域非常广泛,需要工程师们具备扎实的理论基础和丰富的实践经验。

冶金工程则是研究冶炼金属的工程学科。

冶金工程的研究领域包括冶炼原理、冶炼工艺、冶金设备的设计与制造、冶金工业的自动化控制等方面。

在冶金工程中,工程师们需要通过研究金属材料的物理、化学性质,来确定最优的冶炼工艺和冶炼设备的设计参数。

冶金工程是一门具有挑战性的学科,需要工程师们具备一定的创新能力和实践经验。

金属材料工程和冶金工程是相辅相成的,它们之间的关系非常密切。

在金属材料工程中,工程师们需要研究金属材料的制备工艺和性能,而这些工艺离不开冶金工程中提供的金属冶炼技术。

同时,在冶金工程中,工程师们需要研究金属材料的物理、化学性质,来确定最优的冶炼工艺和冶炼设备的设计参数。

除了在实践应用中,金属材料工程和冶金工程也有很多的理论研究。

例如,金属材料工程中研究金属材料的组织和性能之间的关系,以及不同加工工艺对金属材料性能的影响等方面的问题;而冶金工程中则研究金属材料的冶炼原理、冶炼工艺、金属材料的相变等方面的问题。

金属材料工程和冶金工程是两门极其重要的学科,它们的研究内容涉及到金属材料的制备、加工、性能、应用等方方面面,对于推动现代工业的发展和科技进步有着不可替代的作用。

金属材料制备工艺

金属材料制备工艺

金属材料制备工艺一、引言金属材料是工业生产中应用广泛的材料之一,其制备工艺对材料的性能和质量具有重要影响。

本文将介绍金属材料制备的一般工艺流程及常见的制备方法。

二、金属材料制备工艺流程金属材料的制备工艺一般包括原料准备、熔炼、铸造、加热处理和成形等环节。

1. 原料准备金属材料的原料通常是金属矿石或金属化合物。

在原料准备环节,需要对原料进行选矿、破碎、粉碎等处理,以获得具备一定纯度和颗粒度的原料。

2. 熔炼熔炼是将金属原料加热至熔点并使其熔化的过程。

常用的熔炼方法包括电弧炉熔炼、电感炉熔炼、氩弧熔炼等。

通过熔炼,可以得到液态金属。

3. 铸造铸造是将熔融金属倒入预先准备好的铸型中,并使其冷却凝固,获得所需形状的金属制品。

铸造方法主要包括砂型铸造、金属型铸造、压铸等。

铸造工艺的选择与所需制品的形状、尺寸和性能要求密切相关。

4. 加热处理加热处理是指对铸件或其他金属制品进行加热和冷却处理,以改变其组织结构和性能。

常用的加热处理方法有退火、淬火、正火等。

加热处理可以提高金属制品的硬度、强度、耐磨性等性能。

5. 成形成形是通过机械加工或其他方法将金属材料加工成所需形状和尺寸的工艺。

常见的成形方法有锻造、轧制、拉伸、冲压等。

成形工艺可以进一步改善金属材料的性能,并满足不同应用的需求。

三、常见的金属材料制备方法除了一般的工艺流程外,金属材料的制备还有一些特殊的方法和技术。

1. 粉末冶金粉末冶金是指利用金属粉末作为原料,通过混合、压制和烧结等工艺制备金属制品的方法。

粉末冶金可以制备出具有特殊形状和复杂结构的金属制品,并具有较高的密度和机械性能。

2. 电化学方法电化学方法是利用电解池中的电流和电解质溶液对金属进行电解、沉积或溶解的方法。

通过电化学方法可以制备出具有高纯度、均匀性好的金属材料。

3. 薄膜制备薄膜制备是一种制备薄膜材料的方法,常用于制备金属薄膜、合金薄膜等。

常见的薄膜制备方法有物理气相沉积、化学气相沉积、溅射沉积等。

金属材料的冶炼ppt课件

金属材料的冶炼ppt课件
▪ 粗铅的熔化法是将固体粗 铅缓慢加热,当温度略高 于铅的熔点时,铅便从粗 铅中熔出,铜呈固体上浮 到熔体铅的表面上。分层 后,如前所述采用不同的 物理方法使其分离。
▪ 粗铅熔析除铜所得到的铜 含铅要高于0.06%。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
➢ 主要讲解钢铁冶炼和有色金 属冶炼。
概述
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
第1章
金属材料的制备
冶金工艺
1.1 冶金工艺
金属冶金按其原理可划分为:火法冶金(又称干 法冶金) 、湿法冶金、电冶金三大基本类型。
第1章 金属材料的制备
1.2 钢铁冶金
钢铁冶炼
铸造生铁
铁矿石
炼铁
炼钢
铸锭
轧制
钢材
一 炼铁: 铁矿石(化合态)→铁单质(游离态)
(1)基本反应原理: 3CO+
高温
Fe2O3=====2Fe+3CO2
利用氧化还原反应,在高温下,用还原剂(主要 是CO)从铁矿石中还原出铁。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
2 . 固-液分离:将浸出液与残渣分离成液相和固相。 3. 溶液净化 :分离掉杂质,净化和富集溶液。 4. 提取金属或化合物:利用电解、化学置换和加压氢还原
等方发提取金属或化合物。
▪ 在有色金金属、稀有金属及贵金属的冶金中占重要地位。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么

冶金工程专业课程

冶金工程专业课程

冶金工程专业课程冶金工程是一门研究金属材料加工与利用的学科,其专业课程涵盖了金属材料的性能、制备、加工、应用等方面。

本文将从不同角度介绍冶金工程专业课程的内容和意义。

一、金属材料性能课程金属材料性能课程是冶金工程专业的基础课之一。

该课程主要介绍金属材料的基本性能,包括机械性能、物理性能、化学性能等方面。

学生通过学习金属材料的性能特点,能够理解金属材料的内在规律,为后续的课程打下基础。

二、金属材料制备课程金属材料制备课程是冶金工程专业的核心课程之一。

该课程主要介绍金属材料的制备方法,包括冶炼、铸造、热处理等方面。

学生通过学习金属材料的制备过程,掌握金属材料的制备技术,能够根据不同的需求选择合适的制备方法。

三、金属材料加工课程金属材料加工课程是冶金工程专业的实践课程之一。

该课程主要介绍金属材料的加工方法,包括锻造、轧制、拉伸等方面。

学生通过学习金属材料的加工过程,掌握金属材料的加工技术,能够根据不同的需求选择合适的加工方法,提高金属材料的性能。

四、金属材料应用课程金属材料应用课程是冶金工程专业的综合课程之一。

该课程主要介绍金属材料的应用领域,包括航空航天、汽车制造、建筑等方面。

学生通过学习金属材料的应用案例,了解金属材料在实际工程中的应用情况,能够根据不同的应用需求选择合适的金属材料。

五、金属材料检测课程金属材料检测课程是冶金工程专业的实验课程之一。

该课程主要介绍金属材料的检测方法,包括金相显微镜、扫描电镜等方面。

学生通过学习金属材料的检测技术,能够对金属材料进行有效的检测和评估,确保金属材料的质量。

六、金属材料理论课程金属材料理论课程是冶金工程专业的理论基础课程之一。

该课程主要介绍金属材料的理论知识,包括晶体结构、相变规律等方面。

学生通过学习金属材料的理论知识,能够深入理解金属材料的本质,为后续的研究和创新提供理论支持。

通过以上介绍,我们可以看出,冶金工程专业课程的内容非常丰富多样。

这些课程不仅涵盖了金属材料的基本性能、制备、加工、应用等方面,还包括了实验和理论两个方面的内容。

冶金材料的制备和性能研究

冶金材料的制备和性能研究

冶金材料的制备和性能研究随着人们对新材料的需求日益增强,冶金材料的制备和性能研究也成为了一个重要的研究领域。

冶金材料是指在冶金过程中对各种金属、合金、金属氧化物等进行制备和处理的工程材料。

它不仅在工业生产中有重要的应用价值,同时也是实现高效能、绿色环保的重要途径之一。

一、冶金材料制备中的基础工艺冶金材料的制备离不开一系列的基础工艺。

其中最重要的一项是冶金反应。

化学反应发生在反应炉中,反应炉中的温度和其他反应条件都是价格巨大且至关重要的因素。

化学反应的结果是不稳定的,因此需要进行其他的处理,如热处理、淬火、压力处理等。

在反应的过程中,材料的形态也会发生变化,因此还需要进行固相反应等制备工艺。

二、冶金材料的特性研究冶金材料的性能研究也是非常重要的一环。

它不仅涉及到材料的物理特性,还包括材料的化学特性和机械特性。

通过对材料的特性做深入研究,可以为材料的制备提供更为准确的方法和指南。

而且,这些特性的细节研究也是解析材料在特定条件下被破坏、磨损甚至氧化的原因的一个重要手段。

三、常见的冶金材料1、钢钢是一种铁碳合金,含有较高的碳含量及其他一些合金元素,使其伸长度、强度和韧性都较其他材料好。

钢是目前最被广泛应用的金属材料,其制作工艺已较为成熟。

2、人造晶体人造晶体又被称为单晶体。

它以晶体生长技术为基础,利用单晶生长整合了多种单晶材料,并通过磁场与光束的控制来部分改变材料中的原子排列,从而使得单个材料的性能得到优化。

由于人造晶体的光学和导电性能都非常优秀,所以被广泛应用于电子、光电、激光、光纤通信和半导体等技术领域。

3、金属陶瓷材料金属陶瓷材料是指在金属-非金属之间的复合材料。

这种材料的设计目的是将金属的韧性与非金属的硬度结合在一起。

由于其强度高,耐磨性强,因此在飞机、汽车、机械和电子等领域都发挥着重要作用。

四、总结冶金材料的制备和性能研究是一个大而复杂的领域。

在不断的研发过程中,科学家们发现了许多声名远扬的高性能材料,如钢、人造晶体和金属陶瓷材料。

材料工程基础-第1章金属材料的制备--冶金

材料工程基础-第1章金属材料的制备--冶金
㈠、火法冶金的基本过程
①矿石准备
选矿 焙烧 烧结(球化) 不加添加剂的焙烧,也称煅烧: I、分解矿石,如石灰石化学加工制成氧化钙,同时 制得二氧化碳气体; II、活化矿石,目的在于改变矿石结构,使其易于分 解,例如:将高岭土焙烧脱水,使其结构疏松多孔, 易于进一步加工生产氧化铝;
1.1 冶金工艺
1.2 钢铁冶炼
一、生铁冶炼 ㈠炼铁的原料 ①铁矿石 ②熔剂,用于除去SiO2CaOHgOAlO3。熔炼时,熔剂 和杂质生产密度较低的炉渣,浮于铁水表面 ③耐火材料。耐火度不低于1580℃的无机非金属材料 ④燃料。主要是焦炭,提供热量和还原剂
1.2 钢铁冶炼
一、生铁冶炼 ㈠炼铁的原料①铁矿石
1.2 钢铁冶炼
的化合物析出或造
渣。
◆ 物理法 基于在两相平衡时杂质和主金属在两相
间分
配比的不同。
◇ 利用粗金属凝固或熔化过程中,粗金属中的杂质和主金
属在液–固两相间分配比的不同——熔析精炼、区域精
炼(区域熔炼)。
◇ 利用杂质和主金属蒸气压的不同,因而粗金属蒸发过程
中,其易蒸发的组份将主要进入气相,与难蒸发组分分
离——蒸馏精炼、升华精炼。
1.1 冶金工艺
㈠、火法冶金的基本过程 ③精炼
利用主金属与杂质的物理和化学性质的差异, ◆ 形成与主金属不同的新相,将杂质富集于其中;
◆ 或者:将主金属全部转移至新相,而使杂质残留下
来。
1.1 冶金工艺
㈡、火法冶金的主要方法
◆ 化学法 基于杂质与主金属化学性质的不同,加
入某
种反应剂使之形成某种难溶于金属
1.1 冶金工艺
三、电冶金 ㈠电热熔炼 ②电磁熔炼 以电磁热流体力学理论为基础,研究冶金过程和 材料制备的科学。它是借助电流、磁场所形成的 电磁力,对冶金(材料制备)过程中金属的表面 形态、流动、传质、化学反应、结晶等过程施加 影响,以便控制其变化或反应过程。

金属材料及制备加工工艺

金属材料及制备加工工艺

金属材料及制备加工工艺金属材料是一种常见的工程材料,被广泛应用于建筑、汽车、航空航天等领域。

它具有优异的力学性能、导电性能和热传导性能,同时也可以通过不同的加工工艺进行制备和加工。

本文将介绍金属材料的基本概念、常见的金属制备工艺以及加工工艺,并探讨其对材料性能的影响。

一、金属材料的基本概念金属是一类化学元素,具有典型的金属特性,如良好的导电性、热导性、延展性和可塑性。

金属材料由纯金属和合金两类组成。

纯金属指的是仅由一种金属元素组成的材料,如铜、铁、铝等。

而合金是由两个或多个金属元素以及非金属元素组成的材料,如不锈钢、合金钢等。

二、金属材料的制备工艺金属材料的制备主要分为两大类:冶金法和物理法。

1. 冶金法冶金法是指利用冶金工艺将金属矿石等进行熔炼、抽取、精炼等过程,制得纯金属或合金的方法。

常见的冶金法包括高炉法、电解法和氧化铝电解法等。

高炉法适用于铁矿石的冶炼,通过高温熔炼将矿石中的杂质去除,得到纯净的铁原料。

电解法适用于锌、铝等金属的冶炼,利用电解原理将金属从其盐类中析出。

氧化铝电解法则用于铝的冶炼,通过电解熔融的氧化铝制得纯铝。

2. 物理法物理法是指通过物理手段改变金属材料的晶体结构和形态,从而改善其性能。

常见的物理法包括挤压、轧制、拉伸和锻造等。

挤压是将金属材料置于挤压机中,利用压力将其挤压成所需的形状。

轧制则是通过辊轧将金属材料加工成板、带、条等形状。

拉伸是将金属材料置于拉伸机中,利用拉力使其产生塑性变形,从而改变其形状和性能。

锻造是将金属材料加热至一定温度后,利用冲击或挤压力将其塑性变形成所需形状。

三、金属材料的加工工艺金属材料经过制备后需要进行进一步的加工才能满足实际需求。

常见的金属加工工艺包括切割、焊接、冲压和铸造等。

1. 切割切割是指将金属材料切割成所需尺寸和形状的工艺。

常见的切割方法有机械切割、火焰切割和激光切割等。

机械切割适用于较薄的金属材料,通过切割机械进行锯切、剪切等。

火焰切割则是利用高温火焰将金属材料局部加热至熔化,并利用氧气吹切割缝隙,实现切割目的。

金属冶金原理

金属冶金原理

金属冶金原理
金属冶金原理是指将金属矿石经过一系列的物理、化学和冶金过程,将其中的金属元素提取出来,制成各种金属材料的过程。

这个过程是非常复杂的,需要多种技术和设备的支持。

金属冶金原理的第一步是选矿。

选矿是指从矿石中分离出有用的金属矿物,去除其中的杂质。

这个过程需要利用物理和化学方法,如重选、浮选、磁选、化学浸出等。

通过这些方法,可以将矿石中的金属矿物分离出来,为后续的冶金过程做好准备。

第二步是冶炼。

冶炼是指将选矿后的金属矿物进行加热、熔化、分离和精炼的过程。

这个过程需要利用高温、高压和化学反应等方法,将金属矿物中的金属元素提取出来,并去除其中的杂质。

冶炼的方法有很多种,如火法冶炼、电解冶炼、氧化还原冶炼等。

不同的冶炼方法适用于不同的金属矿物和金属元素。

第三步是制品加工。

制品加工是指将冶炼后的金属材料进行加工和处理,制成各种金属制品。

这个过程需要利用机械加工、热处理、表面处理等方法,将金属材料加工成所需的形状和性能。

金属制品的种类非常多,如钢材、铝材、铜材、锌材等,每种金属材料都有其特定的加工方法和应用领域。

金属冶金原理是将金属矿石转化为各种金属制品的过程,是现代工业生产中不可或缺的一环。

随着科技的不断进步,金属冶金技术也
在不断发展和创新,为人类的生产和生活带来了更多的便利和贡献。

冶金生产工艺

冶金生产工艺

冶金生产工艺冶金生产工艺指的是将矿石经过冶金过程进行提炼和加工,使其转化为金属材料的工艺流程。

在冶金行业中,工艺的规范、规程和标准非常重要,它们能够确保冶金生产的安全、高效和质量。

本文将从冶金生产工艺的基本流程、各个环节的规范和标准以及工艺改进等方面展开论述。

一、冶金生产工艺的基本流程冶金生产工艺的基本流程包括原料准备、矿石预处理、冶炼与精炼、成品制备等环节。

在这个过程中,需要遵守一系列的规范和标准,以确保生产的顺利进行。

1. 原料准备原料准备是冶炼生产过程的第一步,它涉及到采矿、矿石选矿等环节。

在原料准备过程中,需要确保原料的质量和含量符合冶炼要求,避免使用低质量或污染的原料。

2. 矿石预处理矿石预处理是将原料中的有用金属与其他杂质分离的过程。

这一步主要包括破碎、磁选、浮选等操作。

在矿石预处理过程中,需要遵循正确的操作规范,确保矿石有效分离,减少杂质对冶炼和精炼环节的影响。

3. 冶炼与精炼冶炼与精炼是将矿石中的金属元素通过化学反应和物理操作转化为金属的过程。

这一步包括熔炼、浸取、电解等不同的冶炼方法。

在冶炼与精炼过程中,需要控制合适的温度、压力和化学药剂的使用量,以满足金属产品的工艺要求。

4. 成品制备成品制备是将冶炼得到的金属材料进一步进行加工,制成符合要求的成品。

这一步主要包括铸造、热处理、成形等环节。

在成品制备过程中,需遵循正确的工艺参数和操作规范,保证成品的质量和性能。

二、各个环节的规范和标准为了确保冶金生产工艺的顺利进行,各个环节都有相应的规范和标准,以指导操作和管理。

以下是一些常见的规范和标准:1. 矿石质量标准矿石质量标准规定了矿石中金属元素的含量、杂质元素的限制以及颗粒度等要求。

通过对矿石进行化验和分析,可以确定矿石是否符合冶炼要求。

2. 冶炼工艺参数标准冶炼工艺参数标准规定了冶炼过程中的温度、压力、反应时间、化学药剂的加入量等参数。

依据这些标准,可以控制冶炼过程的稳定性和高效性,确保金属产品的质量。

金属材料的制备冶金

金属材料的制备冶金

第一章金属材料的制备—冶金.本章内容及要求1. 本章共三节,教授课时2 学时,通过本章学习,要掌握金属材料的三种冶金方法的工艺过程、特点及应用。

1.1 冶金工艺1.2 钢铁冶金1.3 有色金属冶炼2. 重点是生铁冶炼的过程(包括冶炼的方法,使用的原料及各自的作用,主要装置,以及主要的物理化学过程)和炼钢的基本过程(元素的氧化,脱硫,脱磷,脱氧,合金化)。

3. 难点:生铁冶炼过程中高炉中发生的物理化学变化。

4. 要求:①掌握常用的冶金方法,以及各自的特点;②掌握生铁冶炼的过程;③掌握炼钢的基本过程;④了解铜的冶炼工艺过程;⑤了解金属铝电冶金的原因和工艺过程。

具体内容第一节冶金工艺1.1.1冶金冶金的定义:关于矿产资源的开发利用和金属材料生产加工过程的工程技术。

冶金的原因和目的:地球上已发现86 种金属元素,除金、银、铂等金属元素能以自然状态存在外,其他绝大多数金属元素都以氧化物(例如Fe2O3)、硫化物(例如CuS)、砷化物(例如NiAs )、碳酸盐(例如FeCQ)、硅酸盐(例如CuSiO3 2H2O)、硫酸盐(例如CuSO4 5H2O)等形态存在于各类矿物中。

因此,要获得各种金属及其合金材料,必须首先通过各种方法将金属元素从矿物中提取出来,接着对粗炼金属产品进行精炼提纯和合金化处理,然后浇注成锭,轧制成材,才能得到所需成分、结构、性能和规格的金属材料。

1.1.2冶金的方法冶金工艺可以分为火法冶金、湿法冶金和电冶金三大类1.1.2.1火法冶金火法冶金:利用高温从矿石中提取金属或其化合物的方法。

特点:火法冶金是生产金属材料的重要方法,钢铁及大多数有色金属(铝、铜、镍、铅、锌等)材料主要靠火法冶金工艺生产。

用火法冶金方法提取金属的成本较低,所以,火法冶金是生产金属材料的主要方法。

缺点:火法冶金存在的主要问题是污染环境。

1.火法冶金的基本过程火法冶金通常包括矿石准备、冶炼和精炼三个过程。

(1)矿石准备采掘的矿石含有大量无用的脉石,需要经过选矿以获得含有较多金属元素的精矿。

冶金的原理

冶金的原理

冶金的原理
冶金的原理是通过物质的熔炼和热处理等工艺,将金属矿石中的金属元素提取出来,并通过改变其化学成分和物理性质,进而获得所需的金属材料。

冶金的主要原理包括矿石选别、矿石还原和提纯、金属合金化以及热处理等过程。

首先,矿石选别是根据矿石的成分和质量特点将其分离和分类处理,以提取目标金属。

其次,矿石还原和提纯是通过化学反应、物理分离等方法,将金属元素从矿石中分离出来,减少杂质含量,达到提纯的目的。

提取的金属元素常常需要进行合金化处理,即将其与其他金属或非金属元素混合,以改善金属的性能和机械性能,使其适应不同的工艺要求。

合金的形成常常需要控制合金元素的比例和添加方式,以达到所需的物理和化学性能。

最后,热处理在冶金工艺中起到重要的作用,通过控制金属材料的加热和冷却过程,改变其晶粒结构和组织,从而调整材料的力学性能(如硬度、韧性等)和组织性能(如晶粒大小、相变等)。

综上所述,冶金的原理涉及矿石选别、还原和提纯、金属合金化以及热处理等过程,旨在提取金属元素、改善其性能和实现特定的结构。

通过这些原理,可以生产出各种不同的金属材料,广泛应用于工业制造、建筑、交通运输、电子等领域。

粉末冶金工艺流程

粉末冶金工艺流程

粉末冶金工艺流程粉末冶金是一种利用金属粉末或者金属粉末与非金属粉末混合后,再经过成形和烧结等工艺制备金属材料的工艺方法。

粉末冶金工艺流程包括原料制备、混合、成型、烧结和后处理等几个主要步骤。

首先,原料制备是粉末冶金工艺流程的第一步。

在原料制备过程中,需要选择合适的金属粉末和非金属粉末作为原料,并对原料进行粉碎、筛分和混合等处理,以保证原料的均匀性和适应性。

接下来是混合步骤。

在混合过程中,将金属粉末和非金属粉末按一定的配比混合均匀,以确保成品的化学成分和性能达到要求。

混合过程中需要注意控制混合时间和混合方式,以避免原料的分层和堆积现象。

成型是粉末冶金工艺流程的第三步。

在成型过程中,将混合后的粉末通过压制或注射成型等方式,制备成所需形状的坯料。

成型过程中需要注意控制成型压力、温度和速度等参数,以保证坯料的密度和形状的精度。

烧结是粉末冶金工艺流程的第四步。

在烧结过程中,将成型后的坯料在高温条件下进行烧结,使粉末颗粒之间发生扩散和结合,最终形成致密的金属材料。

烧结过程中需要控制烧结温度、气氛和时间等参数,以确保成品的密度和性能达到要求。

最后是后处理步骤。

在后处理过程中,对烧结后的成品进行表面处理、热处理和精密加工等工艺,以提高成品的表面质量和机械性能,最终得到符合要求的粉末冶金制品。

总的来说,粉末冶金工艺流程包括原料制备、混合、成型、烧结和后处理等几个主要步骤。

通过精心控制每个步骤的工艺参数,可以制备出具有优异性能和复杂形状的金属材料,广泛应用于汽车、航空航天、医疗器械和电子等领域。

粉末冶金工艺的发展将为材料制备和加工领域带来新的机遇和挑战。

金属材料的制备工艺和技术

金属材料的制备工艺和技术

金属材料的制备工艺和技术一、金属材料的分类1.金属元素:铁、铜、铝、锡、铅等2.合金:由两种或两种以上的金属与非金属经一定方法合成二、金属材料的制备工艺a.火法冶炼:如高炉炼铁、反射炉炼铜等b.湿法冶炼:如硫酸化法炼铜、氰化法炼金等2.铸造:将熔化的金属倒入模具中,冷却凝固成一定形状3.锻造:在高温下对金属进行拉伸、压缩等力的作用,使其产生塑性变形4.热处理:通过加热、保温和冷却,改变金属的组织结构和性能5.焊接:将两个金属部件熔接在一起,形成牢固的连接三、金属材料的制备技术1.粉末冶金:将金属粉末和/或金属粉末与非金属粉末混合,经过成型和烧结,制造金属材料2.3D打印:利用计算机控制技术,按构件形状逐层打印金属粉末,制造复杂形状的金属部件3.电镀:通过电流传递,在金属或非金属表面镀上一层金属4.热喷涂:将金属或金属陶瓷粉末加热至熔点以上,喷射到基体表面,形成涂层5.阳极氧化:在电解质溶液中,金属表面产生氧化层,提高耐腐蚀性和外观效果四、金属材料的性能与应用1.机械性能:强度、韧性、硬度、耐磨性等2.物理性能:导电性、导热性、磁性等3.化学性能:耐腐蚀性、抗氧化性等4.应用:建筑、航空、汽车、电子、珠宝等行业五、金属材料制备过程中的质量控制1.原材料的选择:确保原材料的纯度和性能符合要求2.工艺参数控制:严格控制冶炼、铸造、锻造等过程中的温度、压力等参数3.产品质量检测:对制备的金属材料进行机械性能、物理性能、化学性能等检测4.环境与安全:加强冶炼、加工等过程中的环境保护和劳动保护六、我国金属材料产业的发展现状与趋势1.发展现状:我国金属材料产量居世界第一,但产品结构有待优化2.发展趋势:绿色制造、智能制造、高性能金属材料研发等七、金属材料制备相关的科研机构与上市公司1.科研机构:中国科学院金属研究所、北京科技大学等2.上市公司:宝钢股份、中国铝业、江西铜业等以上内容仅供参考,具体知识点以教材和课本为准。

金属制备总结报告范文(3篇)

金属制备总结报告范文(3篇)

第1篇一、引言金属作为一种重要的材料,广泛应用于各个领域。

金属制备技术的研究与发展,对于提高金属材料的性能、降低生产成本、满足社会需求具有重要意义。

本报告旨在总结金属制备技术的研究现状、发展趋势以及存在的问题,为我国金属制备技术的发展提供参考。

二、金属制备技术的研究现状1. 传统金属制备技术(1)熔炼法:熔炼法是金属制备的基本方法,主要包括熔融还原法、熔盐电解法、真空熔炼法等。

其中,熔融还原法是最常用的方法,广泛应用于铁、铜、铅、锌等金属的制备。

(2)热还原法:热还原法是利用还原剂将金属氧化物还原为金属的方法,主要包括高炉法、鼓风炉法、反射炉法等。

高炉法是钢铁工业中最常用的热还原法。

(3)电解法:电解法是利用电解质溶液中的离子在电极上发生氧化还原反应制备金属的方法,主要包括熔盐电解法、水溶液电解法等。

熔盐电解法在铝、镁等金属的制备中具有广泛应用。

2. 新型金属制备技术(1)激光熔覆技术:激光熔覆技术是利用激光束将金属粉末熔化,并在基体表面形成一层均匀、致密的金属涂层的方法。

该技术具有制备速度快、涂层质量好等优点。

(2)等离子体喷涂技术:等离子体喷涂技术是利用等离子体高温高速喷射金属粉末,使其在基体表面形成一层金属涂层的方法。

该技术具有制备涂层均匀、涂层厚度可控等优点。

(3)化学气相沉积(CVD)技术:CVD技术是利用化学反应在高温下将气体转化为固体,制备金属薄膜的方法。

该技术在制备高性能、高纯度金属薄膜方面具有广泛应用。

三、金属制备技术的发展趋势1. 高效、低耗、环保的制备技术随着能源、环保等方面的要求不断提高,高效、低耗、环保的金属制备技术将成为未来发展的主要趋势。

如:采用清洁能源、开发新型还原剂、提高熔炼效率等。

2. 金属复合材料制备技术金属复合材料具有优异的综合性能,如高强度、耐腐蚀、耐磨等。

因此,金属复合材料制备技术将成为未来研究的热点。

3. 高性能、高纯度金属制备技术随着科学技术的发展,高性能、高纯度金属的需求不断增加。

冶金工业的详细生产流程

冶金工业的详细生产流程

冶金工业的详细生产流程冶金工业是一门重要的工业领域,涉及到金属材料的提取、制备和加工等过程。

下面将详细介绍冶金工业的生产流程。

1. 原料准备冶金工业的第一步是准备原料。

原料可以是矿石、废料或合金等。

矿石是冶金工业中最常见的原料之一,其含有金属元素,需要经过破碎、磨矿和分类等步骤,得到适合冶炼的粒度和成分。

废料和合金也需要进行预处理,去除杂质和控制成分。

2. 提取金属提取金属是冶金工业的核心环节。

常见的提取方法包括熔炼、化学法、电解和浸出等。

熔炼是最常见的提取金属的方法,通过高温将原料加热熔化,使金属与非金属分离。

化学法则是利用化学反应将金属与非金属分离,例如用化学溶剂溶解非金属,从而得到纯金属。

电解是利用电流通过电解液,使金属离子还原为金属沉积在电极上。

浸出则是利用溶剂将金属从矿石中溶解出来。

3. 精炼和合金制备提取金属后,还需要对金属进行精炼和合金制备。

精炼是为了去除金属中的杂质,提高纯度。

常见的精炼方法包括火法精炼、湿法精炼和气体精炼等。

火法精炼是利用高温将金属加热,使杂质氧化或挥发,从而提高金属纯度。

湿法精炼则是利用溶剂将杂质溶解掉,从而分离出纯金属。

合金制备则是将两种或多种金属混合在一起,以改变金属的性质和性能。

4. 材料加工提取金属和制备合金后,需要对金属进行加工。

常见的材料加工方法包括锻造、轧制、拉伸、焊接和冲压等。

锻造是利用压力或冲击力改变金属形状和性能的加工方法。

轧制是通过机械辊将金属压制成板材、线材或型材等。

拉伸则是将金属材料拉长,使其变细。

焊接是将两个金属材料通过高温或压力连接在一起。

冲压则是利用冲压模具对金属进行冲击,使其成型。

5. 表面处理材料加工后,还需要对金属进行表面处理,以提高金属的耐腐蚀性、美观性和功能性。

常见的表面处理方法包括镀层、喷涂和热处理等。

镀层是将金属浸入含有金属离子的溶液中,通过电流或化学反应使金属离子还原为金属沉积在金属表面。

喷涂则是将涂料喷洒在金属表面,形成保护层。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章金属材料的制备—冶金一.本章内容及要求1.本章共三节,教授课时2学时,通过本章学习,要掌握金属材料的三种冶金方法的工艺过程、特点及应用。

1.1 冶金工艺1.2 钢铁冶金1.3 有色金属冶炼2.重点是生铁冶炼的过程(包括冶炼的方法,使用的原料及各自的作用,主要装置,以及主要的物理化学过程)和炼钢的基本过程(元素的氧化,脱硫,脱磷,脱氧,合金化)。

3.难点:生铁冶炼过程中高炉中发生的物理化学变化。

4.要求:①掌握常用的冶金方法,以及各自的特点;②掌握生铁冶炼的过程;③掌握炼钢的基本过程;④了解铜的冶炼工艺过程;⑤了解金属铝电冶金的原因和工艺过程。

具体内容第一节冶金工艺1.1.1冶金冶金的定义:关于矿产资源的开发利用和金属材料生产加工过程的工程技术。

冶金的原因和目的:地球上已发现86种金属元素,除金、银、铂等金属元素能以自然状态存在外,其他绝大多数金属元素都以氧化物(例如Fe2O3)、硫化物(例如CuS)、砷化物(例如NiAs)、碳酸盐(例如FeCO3)、硅酸盐(例如CuSiO3·2H2O)、硫酸盐(例如CuSO4·5H2O)等形态存在于各类矿物中。

因此,要获得各种金属及其合金材料,必须首先通过各种方法将金属元素从矿物中提取出来,接着对粗炼金属产品进行精炼提纯和合金化处理,然后浇注成锭,轧制成材,才能得到所需成分、结构、性能和规格的金属材料。

1.1.2冶金的方法冶金工艺可以分为火法冶金、湿法冶金和电冶金三大类。

1.1.2.1火法冶金火法冶金:利用高温从矿石中提取金属或其化合物的方法。

特点:火法冶金是生产金属材料的重要方法,钢铁及大多数有色金属(铝、铜、镍、铅、锌等)材料主要靠火法冶金工艺生产。

用火法冶金方法提取金属的成本较低,所以,火法冶金是生产金属材料的主要方法。

缺点:火法冶金存在的主要问题是污染环境。

1.火法冶金的基本过程火法冶金通常包括矿石准备、冶炼和精炼三个过程。

(1)矿石准备采掘的矿石含有大量无用的脉石,需要经过选矿以获得含有较多金属元素的精矿。

经过选矿后,有时还需对矿石进行焙烧、球化或烧结等。

(2)冶炼将处理好的矿石,用气体或固体还原剂还原为金属的过程称为冶炼。

金属冶炼所采用的还原剂包括焦炭、氢和活泼金属等。

以金属热还原法为例,用Ca,Mg,Al,Na等化学性质活泼的金属,可以还原出一些其他金属的化合物。

例如,利用Al可以从Cr2O3还原出金属Cr:Cr2O3+Al → Al2O3+Cr同样,利用Mg可以从TiCl 4还原出金属Ti:TiCl4+Mg → MgCl2+Ti但是活泼金属比较贵,在自然界也是以化合态存在,作为还原剂成本太高,氢气成本高,作为可燃性气体安全系数不高。

CO虽然在自然界存在很少,却可以用廉价的焦炭制取,所以是最佳的还原剂。

(3)精炼冶炼所得到的金属含有少量的杂质, 需要进一步处理以去除杂质,这种对冶炼的金属进行去除杂质提高纯度的处理过程称为精炼。

2.火法冶金的主要方法火法冶金的主要方法有提炼冶金、氯化冶金、喷射冶金和真空冶金等。

(1)提炼冶金提炼冶金是指由焙烧、烧结、还原熔炼、氧化熔炼、造渣、造硫、精炼等单元过程按照需要所构成的冶金方法。

提炼冶金是火法冶金中应用最广泛的方法。

(2)氯化冶金通过氯化物提取金属的方法称为氯化冶金。

氯化冶金主要依据不同金属氯化物的物理化学性质,来有效实现金属的分离、提取和精炼。

轻金属和稀有金属的提取多采用火法氯化冶金。

(3)喷射冶金利用气泡、液滴、颗粒等高度弥散系统来提高冶金反应效率的冶金过程称为喷射冶金。

喷射冶金是70年代由钢包中喷粉精炼发展起来的新工艺。

(4)真空冶金在真空条件下完成金属和合金的熔炼、精炼、重熔、铸造等冶金单元操作,以及使金属液在真空下脱氧、脱气、挥发、减免二次玷污等的工艺原理和方法称为真空冶金。

真空冶金是提高金属材料质量,保证高技术所必需的特殊材料生产的重要方法。

1.1.2.2湿法冶金湿法冶金:是利用一些溶剂的化学作用,在水溶液或非水溶液中进行包括氧化、还原、中和、水解和络合等反应,对原料、中间产物或二次再生资源中的金属进行提取和分离的冶金过程。

湿法冶金包括浸取、固—液分离、溶液的富集和从溶液中提取金属或化合物等四个过程。

1.浸取浸取是选择性溶解的过程。

通过选择合适的溶剂使被处理过的矿石中包含的一种或几种有价值的金属选择性地溶解进入溶液,从而与其他不溶物质分离。

根据所用的浸取液的不同,可分为酸浸、碱浸、氨浸、氰化物浸取、有机溶剂浸取等。

在选择浸取液时,不仅要考虑它应具有高的浸取率和选择性好,而且要考虑它应易于过滤和回收。

2.固—液分离固—液分离包括过滤、洗涤或离心分离等操作。

在固—液分离的过程中,一方面要将浸取的溶液与残渣分离,另一方面还要将留存在残渣中的溶剂和金属离子等回收利用。

3.溶液的富集富集是对浸取溶液的净化和浓集过程。

富集的方法有化学沉淀、离子沉淀、溶剂萃取、膜分离或其他方法。

4.提取金属或化合物在金属材料的生产中,常采用电解、化学置换和加氢还原等方法来提取金属或化合物。

例如用电解法从净化液中提取Au,Ag,Cu,Zn,Ni,Co等纯金属;而Al,W,Mo,V等多数以含氧酸的形式存在于净化液中,一般先析出其氧化物,然后用氢还原或熔盐电解制取金属。

湿法冶金在有色金属、稀有金属及贵金属等生产中占有重要地位。

世界上全部的氧化铝、氧化铀、约74%的锌、12%的铜及多数稀有金属都是用湿法冶金方法生产的。

湿法冶金的最大优点是对环境的污染较小,能处理低品位的矿石。

1.1.2.3电冶金利用电能从矿石或其他原料中提取、回收、精炼金属的冶金过程称为电冶金。

电冶金主要包括电热熔炼、水溶液电解和熔盐电解三个方面。

1.电热熔炼用电加热生产金属的冶金方法称为电热熔炼。

铁合金冶炼及用废钢炼钢主要采用电热熔炼。

电热熔炼包括电弧熔炼、等离子冶金和电磁冶金等。

(1)等离子冶金等离子是清洁能源,是电能转换为热能的最有效途径。

等离子弧有非常高的能量密度,为超高温冶金提供了有力条件。

等离子弧可以方便地控制气氛。

无论是在大规模熔炼铁合金或有色金属、快速加热钢液或高炉风口方面,还是在惰性气氛下重熔或熔铸金属方面,都有广阔的发展前景。

(2)电磁冶金利用电磁感应在金属熔体内产生可控流动的冶金过程称为电磁冶金。

早期利用电磁力对钢包和连铸坯的钢液进行搅拌以改善钢的质量;近来又发展了悬浮熔炼、冷坩埚熔炼、电磁铸造等。

电磁冶金对于防止耐火材料污染金属、熔炼难熔及活泼金属具有重要作用。

2.水溶液电解在电冶金中,应用水溶液电解精炼金属称为电解精炼或可溶阳极电解;而应用水溶液电解从浸取液中提取金属称为电解提取或不溶阳极电解,如图1-1所示。

(1)电解精炼以铜的电解精炼为例,将火法精炼制得的铜板作为阳极,以电解产出的薄铜片为阴极,置两极于充满电解液的电解槽中。

在两极间通以低电压大电流直流电。

这时,阳极将发生电化学溶解:Cu→2e+Cu2+阳极反应使得电解液中Cu2+浓度增大,由于其电极电位大于零,故纯铜在阴极上沉积:Cu2++2e→Cu被精炼的铜中包含的比铜电极电位高的稀贵金属和杂质将以粒子形式落入电解槽底部或附于阳极形成阳极泥,比铜电极电位低的杂质元素以离子形态留于电解液中。

这种方法也可以看作对火法冶炼铜的精炼。

金、银、铜、钴和镍等金属大都采用这种电解方法进行精炼。

(2)电解提取电解提取是从富集后的浸取液中提取金属或化合物的过程。

这种方法采用不溶性电极,溶剂可以经过再生后作为浸取液重复使用。

3.熔盐电解铝、镁、钠等活泼金属无法在水溶液中电解,必须选用具有高导电率、低熔点的熔盐(通常为几种卤化物的混合物)作为电解质在熔盐中进行电解。

熔盐电解时,阴极反应是金属离子的还原:M n++ne→M通常用碳作为阳极。

例如电解MgCl2时阳极的反应如下:2C1—→C12↑+2eAl2O3在冰晶石中电解时,阳极将生成CO2:2O2—+C→CO2↑+4e第二节钢铁冶炼钢铁冶炼包括从开采铁矿石到使之变成供制造零件所使用的钢材和铸造生铁为止的全过程。

其基本过程如图1-2所示。

1.2.1生铁的冶炼生铁是用铁矿石在高炉中经过一系列的物理化学过程冶炼出来的。

高炉炼铁的本质是铁的还原过程,即使用焦炭做燃料和还原剂,在高温下将铁矿石或含铁原料中的铁从氧化物或矿物状态(如Fe2O3、Fe3O4、Fe2SiO3、Fe3O4·TiO2等)还原为液态生铁。

高炉炼铁的基本过程如图1-3所示。

1. 炼铁的原料炼铁的原料主要包括铁矿石、熔剂及焦炭。

焦炭作为燃料和还原剂,是主要能源;熔剂,如石灰石,主要用来助熔、造渣;铁矿石则是冶炼的对象。

这些原料是高炉冶炼的物质基础,其质量对冶炼过程及冶炼效果影响极大。

(1)铁矿石铁矿石的工业类型铁矿石是由一种或几种含铁矿物和脉石所组成。

含铁矿物是具有一定化学成分和结晶构造的化合物,脉石也是由各种矿物加石英、长石等组成并以化合物形态存在的,所以,铁矿石实际是由各种化台物所组成的机械混合物。

自然界含铁矿物很多,而具有经济价值的矿床,一般认为有四类:赤铁矿(Fe2O3)、磁铁矿(Fe3O4)、褐铁矿(2Fe2O3·3H2O)和菱铁矿(FeCO3),其基本特性列于表1中。

表1.铁矿物类型对铁矿石的要求a. 含铁量愈高愈好铁矿石中铁的含量在很大的范围内(30%~70%) 变动,按其铁含量可分为贫矿[ω(Fe)<45%] 和富矿[ω(Fe) >45%]两种。

工业上使用的铁矿石,富矿的含铁量较多,杂质较少,可直接进行冶炼,因而其价值较高;贫矿在冶炼前需要进行选矿,以提高其含铁量,然后制成烧结矿或球团矿,才好进行冶炼,因而其价值较低。

b. 还原性要好铁矿石还原性是指铁矿石被还原性气体CO或H2还原的难易程度,是评价铁矿石质量的重要指标。

矿石还原性好,有利于降低焦比,提高产量。

改善矿石还原性(或采用易还原矿石)是强化高炉冶炼的重要措施之一。

影响铁矿石还原性的因素主要有矿物组成、矿石结构的致密程度、粒度和气孔率等。

c. 粒度和强度入炉铁矿石应具有适宜的粒度和足够的强度。

粒度过大会减小煤气与铁矿石的接触面积,使铁矿石不易还原;过小则增加气流阻力,同时易吹出炉外形成炉尘损失;粒度大小不均,则严重影响料柱透气性。

因此,大块应破碎,粉末应筛除,粒度应适宜而均匀。

一般要求矿石粒度在5~40mm范围,并力求缩小上下限粒度差。

铁矿石的强度是指铁矿石耐冲击、耐摩擦的强弱程度。

随着高炉容积不断扩大,入炉铁矿石的强度也要相应提高。

否则易生成粉末、碎块,一方面增加炉尘损失,另一方面使高炉料柱透气性变坏,引起炉况不顺。

d. 脉石成分脉石中含有碱性脉石,如CaO、MgO;有酸性脉石,如SiO2、Al2O3。

一般铁矿石含酸性脉石者居多,即其中SiO2高,需加入相当数量的石灰石造成碱度ω(CaO)/ ω(SiO2)为1.0左右的炉渣,才能满足冶炼工艺的需求。

相关文档
最新文档