系统生物质燃烧发电控制方案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ovation系统生物质燃烧发电控制
方案
艾默生过程控制有限公司
公用事业部
2010-9-20
1 项目背景
生物质能是一种重要的可再生能源,利用农业、林业和工业废弃物,如秸秆、树皮等为原材料,采取直接燃烧或者气化方式进行发电。国家发改委已经将生物质直燃发电列为可再生能源产业发展的重要内容。作为节能环保和可再生能源发电的先锋企业,武汉凯迪集团计划在全国范围内建设一批30MW高温超高压生物质电厂项目。锅炉采用凯迪自主设计的1×120t/h高温超高压循环流化床锅炉,汽机采用高温超高压汽轮机。计划第一批项目11台机组的投产顺序为湖北来风、湖北崇阳、湖北松滋、四川眉山(彭山)、湖南临澧、安徽南陵、广西北流、吉林蛟河、吉林汪清(后2个项目为2×30MW机组),未来会增加到30个左右生物质发电项目。
2 生物质直燃发电的控制特点
与常规火电厂不同,生物质发电厂无论在工艺流程,还是运行特点都具有其特殊性,体现在如下几个方面:
●燃料种类多、热值和湿度变化大。生物质发电厂的燃料一般可以分为灰杆
燃料和黄杆燃料两大类,热值各不相同,而且随着燃料水分的变化,热值也会有相应的改变。正常燃烧时,往往会将多种燃料混合进行掺烧;加之燃料收集和运输过程的不确定性和天气环境等因素,导致进入炉膛的燃料热值经常波动。因此,燃烧的自动控制必须考虑热值变动这个重要因素,燃烧控制回路必须具备足够的鲁棒性,才能够真正实现燃烧的自动调节。
●由于生物质发电的环保性,发电机组的负荷特性属于电网基本负荷,不参
与调峰,即“机组能发多少,电网接收多少”。从锅炉和汽轮机发电机的整体来看,汽轮机和发电机部分的控制已经非常成熟,而且响应很快;发电负荷的多少取决于锅炉的燃烧情况和蒸发量。显然,控制策略的设计必须以“机跟炉”为基础来进行,汽轮机则根据锅炉侧的蒸汽流量和压力来自动调节发电出力。负荷控制由锅炉来完成,考虑到生物质燃料热值的频繁变化,锅炉控制应以蒸汽量为核心参量,通过蒸汽量来实现燃料量、风量和氧量的控制。
●生物质燃料的灰分中含有大量碱金属盐,这些成分导致其灰熔点较煤粉
低,容易产生结焦和腐蚀。因此锅炉床温与床压应控制在合理的范围。
显然,生物质直燃发电自动控制的关键技术主要集中在负荷控制、燃烧控制、给料控制等方面,而汽轮机控制、炉膛火焰监视和顺序控制策略则与常规火电机组类似。
3 艾默生控制策略
艾默生结合循环流化床和垃圾焚烧方面的应用经验和生物质直燃发电过程的特点,提出以蒸汽负荷作为主控方式,即:按照蒸汽负荷和燃料热值来计算燃料量,从而得出风量和过量氧量,达到燃烧控制的目的,生物质能直燃发电负荷控制系统原理图见图1.
3.1 负荷控制回路
生物质能电厂与常规火力发电厂最大的区别是燃料的不同,尤其是生物质燃料的水分含量和热值不稳定,进而导致给料方式, 燃烧控制,和负荷控制与常规火力发电厂有着较大区别.
通过操作员设定的负荷值经F(X)转换得到主蒸汽流量设定值,也可以直接输入主蒸汽流量设定值,由蒸汽热值计算模块计算蒸汽热值.根据生物质燃料低位发热量,计算生物质燃料热值需求值.
通过操作员设定的过剩空气设定值, 由基准空气流量计算模块计算出对应锅炉负荷下的基准空气流量值.此基准空气流量值作为风量控制的设定值,分别作为一次风,播料风,流化风的控制依据,在此环节中实际是完成根据锅炉的负荷按一定的比例分配形成一次风, 播料风,流化风。
由生物质燃料热值需求值可求得所需生物质燃料的重量,作为床压控制回路的设定值。按生物质燃料比重可求得所需生物质燃料的体积,从而求得燃料给料机的基准速度,作给料机的转速设定值。一般给料机有多台组成,用平衡模块控制多台给料机,将负荷平均分配到投入自动的给料机上。
从生物质能直燃发电负荷控制系统图中可以看出一系列的计算模块中最为关键的是生物质燃料的热值问题,由于燃料的性质已经决定了其热值不可在线测量的特性,在类似的工程实践中燃料热值的在线计算是切实可行的方案。
负荷控制计算是将蒸汽量作为主控参量,利用热平衡原理,得出各个负荷下对应的蒸汽量、需要的燃料量和送风量以及烟气氧量。蒸汽量的计算公式为:
e zq kD D
式中:zq D 为期望的蒸汽流量,单位t/h ;k 为期望的负荷比例值;为满负荷蒸发量,单位t/h 。
燃料量的计算公式为:
ar gl
gs
bh
zq
pw
zq
gs
zq
Q
h
h
D
D
h
h
B
ηη)
(
)
(-
+
-
=
式中:B为燃料量,单位t/h;为锅炉出口蒸汽焓,单位kJ/kg;为锅炉给水
焓,单位kJ/kg;为锅炉饱和水焓,单位kJ/kg;
pw
η为锅炉排污率;为锅炉效率;为燃料收到基低位发热量,单位kJ/kg。
显然,要从蒸汽量得出燃料量,必须要知道锅炉效率和燃料的低位发热量。锅炉效率可以利用艾默生公司的全局性能计算包中的锅炉效率计算模块或者直接在控制逻辑中根据锅炉设计参数曲线进行实时计算,详见附录1<总体性能计算软件包及锅炉效率计算模块>。
送风量的计算,则可以通过单位标准热值燃料需要的风量,乘以过剩空气系数得出。
根据负荷计算出送风量和给料量后,再根据实际主蒸汽流量和尾部氧量对计算值进行修正,使负荷保持稳定并使过量空气系数保持在较理想的状态,以使锅炉在较高效率下运行。由于实际情况中燃料热值经常在较大范围内变化,因此很难通过调节锅炉燃料量来保持负荷的稳定。本文选择利用蒸汽量反馈调节给风量,利用氧量反馈调节给料量。
主蒸汽流量反馈有较长时间的滞后,是比较慢的调节回路,因此送风量调节需要有较大的时间常数,而氧量反馈相对较快,可以适应燃料热值经常性的波动。
基于蒸汽流量的负荷控制可以确保维持理想的平均负荷,同时可以很大程度地消除由于燃料的随机波动引起的负荷波动。负荷控制和过量空气控制都是PID环节,在前馈环节和消除偏差方面有较强的适应性。
3.2 热值计算
生物质能直燃锅炉燃料热值的正确性,直接影响到锅炉燃料控制系统的自动投入率,为了得到较为正确的燃料热值,可以采用在线计算的方法获得。计算原理见图2
计算原理如下:
Qi1 = W x LHV
LHV =(Qo1+Qo2+Qo3+Qo4+Qo5+Qo6+Qo7-Qi2-Qi3-Qi4-Qi5-Qi6-Qi7-Qi8) / W
其中: