超疏水表面上的微纳结构汇总

合集下载

等离子体处理的超疏水表面制备研究

等离子体处理的超疏水表面制备研究

等离子体处理的超疏水表面制备研究近年来,超疏水表面材料的研究备受关注。

这种材料在许多领域如防污、防腐、液体传输等都有着广泛的应用前景。

然而,超疏水表面的制备并不容易,需要借助高新技术,其中等离子体处理技术尤为重要。

一、什么是等离子体处理?等离子体是一种高能量状态下的气体,其中气体分子存在离子和自由电子。

人们利用等离子体处理技术对材料表面进行设计和改性,以获取理想的物性和表面性质。

二、等离子体处理的作用等离子体处理技术不仅可以使表面化学成分发生变化,还可使表面形貌产生改变,从而使材料表面具有不同的性能和功能。

此外,等离子体技术还可以用于表面去污等领域的处理。

三、等离子体处理在超疏水表面制备中的应用对于超疏水材料的制备,等离子体处理技术发挥了重要作用。

它可以对材料表面进行精细的设计,提高其表面形貌的复杂性和多样性。

通过合理的等离子体处理方法,可以使材料表面形成具有微纳结构的特殊形貌,从而达到超疏水效果。

四、等离子体处理在超疏水表面制备中的具体应用案例(a) 利用等离子体处理制备超疏水玻璃材料:在玻璃材料表面进行等离子体处理,可使玻璃表面形成一定的微纳结构。

这些微纳结构可以增加玻璃表面的粗糙度,从而增强超疏水性能。

(b) 利用等离子体处理制备超疏水聚合物材料:在聚合物材料表面进行等离子体处理,可使其表面形成类似纳米柱状的微纳结构。

这些微纳结构可以增加材料表面的接触角,从而增强超疏水性能。

(c) 利用等离子体处理制备超疏水陶瓷材料:在陶瓷材料表面进行等离子体处理,可制备出具有微纳结构的陶瓷超疏水表面。

这些微纳结构可以加强表面的粗糙度,从而使其表面具有超疏水特性。

总之,等离子体处理技术是超疏水表面制备的重要工具。

通过合理的等离子体处理方法,可以设计出不同形貌和性能的超疏水材料,进一步推动超疏水材料在实际工程中的应用。

向大自然学习-自然界中的超疏水微结构

向大自然学习-自然界中的超疏水微结构

向大自然学习-自然界中的超疏水微结构固体表面对于液体的润湿性,又称浸润性,是固体一个非常重要的性质。

它在工业、农业以及日常生活中发挥着非常重要地作用,自然界中植物根部对水的吸收,建筑物玻璃外墙上的水渍和眼镜上的水雾等,都与其表面润湿性能有关,润湿性能的应用极为广泛,包括微电子工业、印刷工业、造纸工业、交通行业乃至新材料应用、新型防水服装面料等方面无不与润湿性能有着密切的关系。

从科学研究的角度来讲,对润湿问题的研究不仅具有重要的理论意义,而且具有重大的实际应用价值。

对于固体来说,当液滴接触其表面时,液滴会保持它部分的形状或者在固体表面铺展开来,从而形成一层薄的液膜,这一性质通常是通过测量接触角来描述。

当水滴或者油滴在固体表面上所形成的接触角接近0°时,这样的固体表面分别被称作为超亲水或者超亲油表面,而当水滴或者油滴在固体表面上所形成的接触角大于150°时,这样的固体表面分别被称作为超疏水或者超疏油表面。

作为固体表面润湿性的一个极端特例,超疏水/油性或者超疏水/油材料由于其在防水、防腐蚀、自净、减阻降噪、光电材料、绿色印刷等方面有极其广阔的应用前景,因此,近年来一直受到材料科学研究者的广泛关注和极大兴趣。

笔者因为探索绿色印刷工艺技术,在最近的几年里更是深入其中,尤为对大自然中的动植物物具备的超疏水现象及其背后的科学原理惊叹不已,神奇的大自然为功能性印版超疏材料的研发提供了许多重要的信息。

人们对超疏水现象最简单的认识起源于对自然界中一些植物茎、叶表面以及一些动物羽毛表面的疏水和自洁净现象。

地球上的生物经过了亿万年的繁衍,在这一过程中通过不断的进化、演化和优化,其结构和功能为了适应环境而不断地发生着改进。

许多生物体为了适应其生存环境,表层已逐渐形成各种规则的粗糙结构,这种结构具有疏水、自洁脱附、减阻、抗磨、防雪、防雾和抗氧化等功能,除此之外,有些生物体表面还具有隐形、拟态、降噪和稳定等功能。

具有微纳米结构超疏水表面润湿性的研究

具有微纳米结构超疏水表面润湿性的研究
摘 要 本文综述了近年来具有微纳米结构超疏水表面的研究进展 。介绍了具有微纳米结构超疏水表 面的制备方法 ,表面结构对超疏水性能的影响 ,周期性结构表面超疏水的条件 ,超疏水表面接触角滞后以及 功能化超疏水表面等方面的研究 ,探讨了这一领域存在的问题及可能的发展方向 。
关键词 接触角 超疏水表面 微纳米结构表面 接触角滞后 中图分类号 : O64715 文献标识码 : A 文章编号 : 10052281X(2006) 1121425209
第 11 期
徐建海等 具有微纳米结构超疏水表面润湿性的研究
·1427 ·
溶液 ,通过气致相分离的方法使 PDMS 链段在表面 富集 ,从而得到了超疏水性表面[47] 。
3 微纳米结构超疏水表面润湿性能研究
311 微纳米结构对表面润湿的影响 影响固体表面润湿性的因素很多 ,主要有固体
表面的性质 、温度 、湿度等 。在测试液 、温度和湿度 条件选定时 ,固体表面化学结构和几何结构是影响 固体表面接触角的主要因素 。对于具有微纳米结构 的表面来说 ,表面几何结构 (粗糙度 、孔隙率 、结构尺 寸 、结晶等) 对润湿性能有着很大的影响 。
Key words contact angle ; superhydrophobic surfaces ; surfaces with micro2 and nano2structures ; contact angle hyste质之一 ,通常用液 体在固体表面的接触角来表征 。一般把水的接触角 大于 150°的固体表面称为超疏水表面 。已经证明一 种简单而又有效的达到超疏水性的方法是在固体表 面制备微纳米结构[1 —3] 。许多植物叶表面的疏水性 非常强 ,水滴落上之后会滚落且不留痕迹 。最典型 的是荷叶表面 , 水滴与叶面之间的接触角平均为 160°,水滴很容易滚落 ,这种强疏水性现象被称为荷 叶效应 (lotus effect) 。早在 20 世纪 70 年代 ,人们就 发现荷叶表面微米尺度的粗糙结构是其具有疏水性 与自清洁功能的关键 。江雷研究组发现在荷叶表面

姚朝晖-微纳结构超疏水表面的湍流减阻机理研究

姚朝晖-微纳结构超疏水表面的湍流减阻机理研究

第35卷第4期力学与实践2013年8月微纳结构超疏水表面的湍流减阻机理研究1)卢思姚朝晖2)郝鹏飞傅承诵(清华大学航天航空学院工程力学系,北京100084)摘要超疏水表面的优异性质使其在现代生活和工业生产中具有十分广泛的潜在应用价值.本文采用了碳纳米管缠绕技术和聚氟硅氧烷疏水化处理方法制备了具有二级微纳米结构的超疏水表面.测量了由该超疏水表面构建的槽道中的流动压降,将其与普通表面构建的槽道内的流动压降进行比较,发现在层流情况下,流动阻力减小最多达到了22.8%.在湍流的情况下,超疏水表面的减阻比例约为53.3%,减阻效果比层流更加明显.利用PIV (particle image velocimetry)技术测量了具有超疏水表面的槽道内的速度场,通过超疏水表面速度滑移和湍动脉动场信息,分析了湍流减阻效果比层流更加明显的物理机制.关键词超疏水表面,二级微纳米复合结构,湍流,减阻,壁面滑移中图分类号:O357.1文献标识码:ADOI :10.6052/1000-0879-13-098DRAG REDUCTION IN TURBULENT FLOWS OVERSUPERHYDROPHOBIC SURF ACES WITH MICRO-NANO TEXTURES 1)LU SiYAO Zhaohui 2)HAO Pengfei FU Chengsong(Department of Engineering Mechanics,School of Aerospace,Tsinghua University,Beijing 100084,China)Abstract The superhydrophobic surfaces have a very wide range of potential applications in the modern life and industrial production due to their excellent properties.In this paper,a kind of superhydrophobic surface was fabricated by pasting micro-nano particles onto an aluminium or PMMA (polymethylmethacrylate)substrate.The micro-nano particles were obtained by carbon nanotubes winding technology and hydrophobic processing.The pressure drop measurements were carried out in the channel with superhydrophobic surfaces pared with the common surface channel,the flow resistance decreases by about 22.8%at most in the laminar flow.In the turbulent flow,the drag reduction can reach 53.3%.The velocity field in the channel with such superhydrophobic surfaces was measured by particle image velocimetry (PIV)technology.Through the slip velocities in the superhydrophobic surface and the turbulent fluctuations,the physical mechanism is revealed to show that the turbulent friction reduction effects are apparently better than in cases of laminar flows.Key words superhydrophobic surface,micro-nano dual-scale structures,turbulent flow,drag reduction,slip velocity引言超疏水表面的优异性质使其在现代生活和工业生产中具有十分广泛的潜在应用价值,如利用其自清洁性[1],疏水材料可以作为防污材料[2]、防腐蚀材料和管道减阻,近些年来将超疏水材料用于水中运输工具或水下潜艇上[3],以减小水的阻力,提高2013–03–21收到第1稿,2013–06–03收到修改稿.1)国家自然科学基金资助项目(11272176).2)姚朝晖,博士,副教授,研究方向为微流动.E-mail:yaozh@第4期卢思等:微纳结构超疏水表面的湍流减阻机理研究21行驶速度也开始得到人们的关注.Ou 等[4-5]在一系列高76µm <H <254µm ,宽高比W/H =20,长度L =50mm 的微管道中,发现超疏水表面构成的槽道对层流具有减阻效应,最大减阻甚至达到了40%.而减阻的效应随着超疏水表面的微结构的尺寸不同而变化.Watanabe 等[6]研究了直径6mm和12mm 具有高疏水壁面的管道流动,由于表面覆盖了一层10µm ∼20µm 的微沟槽,在500<Re <10000的流动状态下,流动阻力减少了14%.Choi 等[7]采用500nm 高230nm 间距纳米柱结构形成超疏水表面,将其应用于3µm 的微管道中,压降较普通微管道降低20%∼30%.在我们前期的研究[8]中,利用由碳纳米制成的无序缠绕碳纳米管构建成的超疏水表面进行流动阻力实验,发现对于层流而言,由二级微纳米复合结构构成的超疏水表面比仅仅具有一级结构的疏水表面具有更好的减阻效应.超疏水表面不仅对层流能够产生减阻效用[9-11],而且对湍流的流动阻力也有影响.2006年,Krupenkin [12]先后利用两种具有不同微结构(纳米草和微米砖)的超疏水表面进行实验,发现相比层流而言,拥有微结构的超疏水表面对湍流具有更加明显的减阻效应.Daniello 等[13]利用具有沿流向微槽道结构的超疏水表面进行了流动实验,当流动在层流范围内时(0<Re <2200)在超疏水表面的流动阻力并没有减小,但是随着雷诺数的增加,当流动开始由层流变为湍流的时候,流动阻力开始明显地减小.并且随着雷诺数的增加,减阻的比例越来越高.但是当雷诺数增加到一定程度时,减阻的比例就不再减小.Woolford 等[14]采用光刻蚀技术制备的具有微脊结构的超疏水表面进行了湍流流动实验,并利用PIV (particle image velocimetry)对槽道内的流动速度进行了测量,发现当微脊沿着流动方向的时候,该超疏水表面能够有效地减小流动阻力,但是当微脊的方向与流动方向相垂直的时候,流动阻力反而增加了.前人的超疏水表面基本上是微米或纳米一级结构,对具有微纳二级结构的超疏水表面进行流动减阻和机理研究尚少有报道.1超疏水表面的制备本文所采用的超疏水表面的制备方法是首先以单体的形式制备出超疏水表面上的微米尺度的微纳米复合结构单元,又叫无序缠绕碳纳米管,然后再采用涂敷工艺,将碳纳米管复合颗粒粉体粘结在表面上,构成微纳米复合结构表面,如图1所示.无序缠绕碳纳米管的制备方法见参考文献[8],将无序缠绕碳纳米管粉体放入聚氟硅氧烷溶液中进行疏水化处理,聚氟硅氧烷的化学学名叫做十七氟癸基三乙氧基硅烷,化学式C 8F 17C 2H 4Si(OCH 3)3,是一种无色至淡黄色透明液体.有良好的透气性能,能够耐高温、耐氧化、耐紫外线辐射,而且具有疏水疏油性质.经过疏水处理过的二级微纳米结构表面具有超疏水性.采用接触角测量仪(JC2000CD1)对表面进行接触角和滚动角测量,得到该超疏水表面接触角为151◦,滚动角为0.9◦.图1超疏水表面制备示意图2实验方法与过程2.1流动阻力实验本流动阻力实验的实验示意图见图2,槽道尺寸长240mm 、宽12mm 、高0.96mm ,在槽道上表面的两端端口处各有一个小孔作为入水口和出水口,从入口端向内60mm 处以及出口向内40mm 处,则是压力传感器安装的位置,用来测量这两点之间的压差,而这两个测量孔处的流动,经过模拟计算,在该测点间流动已经进入充分发展区了.在实验中质量流量由精密天平测量得到.图2流动阻力实验示意图对于层流流动,在矩形槽道内的普通流动中,沿程阻力系数[15]f =∆p (L/D H )2ρU 2=92Re(1)其中,∆p 为两侧点间压差(压降),ρ为流体密度,L 为压差测量两点之间的距离,U 为槽道内流体的平均速度,通过流量与槽道横截面积可以算出.Re =ρUD H /µ,D H 为水力直径D H =4A/P(2)22力学与实践2013年第35卷假定在超疏水表面构建的槽道中,沿程阻力常数为C f−SuperHyd,那么其沿程阻力系数满足f SuperHyd=∆p(L/D H)2ρU2=C f−SuperHydRe(3)在实验过程中只要测量出两点之间的压差,就能够计算出该流动中的沿程阻力系数,进而把普通槽道内的流动与超疏水表面槽道内的阻力进行比较.2.2PIV实验为了确定在超疏水表面流动减阻的机理,利用PIV技术对槽道中的流场进行细致测量.在PIV实验中,片光源和CCD相机分别在槽道的正上方和正前方,利用片光源照亮待测槽道中心截面,如图3所示.槽道长为600mm,宽20mm,深3.5mm(为了使流场细节更加清晰,放大了槽道尺寸),其基底为有机玻璃,槽道的下表面是超疏水表面,上表面采用透明的有机玻璃盖板,以方便测量.示踪粒子采用镀银的空心玻璃微珠,其型号为900875,粒径在14µm左右,密度与水接近,具有很好的跟随性.水泵是微型磁力潜水泵,最大流量为2800ml/min.图3PIV实验示意图3数据处理与分析3.1流动阻力实验结果在湍流研究中,分别测量了具有相同槽道尺寸(长240mm,宽12mm,高0.96mm)的光滑槽道和带超疏水表面的槽道从层流到湍流的流动压降和相应的质量流量,采用沿程阻力系数计算公式得到了各流动雷诺数下的沿程阻力系数与雷诺数的关系曲线如图4所示.图4普通槽道与超疏水材料槽道沿程阻力系数比较从图4可以看到,在普通槽道中,当雷诺数达到1300∼1400的时候,流动压降急剧增加,沿程阻力系数随着雷诺数的增加而增大,这表明在普通槽道中流动由层流向湍流过渡.而在由无序缠绕碳纳米管构成的超疏水表面的槽道内,当雷诺数达到1300∼1400的时候,沿程阻力系数仍然随着雷诺数的增加而减少,这说明具有微纳米结构的超疏水表面能够增大槽道内流动的转捩雷诺数,使得流动更不容易进入湍流状态,从而达到减阻的效果.对于层流,根据实验测得压降,由式(3)可以计算出经聚氟硅氧烷疏水化处理的槽道沿程阻力系数常数为C f−SuperHyd=71,其减阻达到了22.8%.对于湍流而言,由于目前还没有解析解也没有相对应的经验公式,因此在这里我们根据槽道中压降随雷诺数变化的趋势来评估湍流情况下超疏水表面构建的槽道内的减阻效应.根据图4中的数据结果,估算出在本实验最大Re工况下,与普通槽道实验结果相比,利用聚氟硅氧烷进行疏水化处理之后的超疏水表面的减阻比例约为53.3%.从实验的结果来看,在具有超疏水表面的槽道中,湍流情况下的流动减阻比层流情况下的流动减阻效果更加明显.3.2PIV实验结果在PIV实验中,对于某一个雷诺数下的流动,在槽道中选定某一沿流向的竖直平面,CCD相机两次曝光间隔时间为0.5ms,一共拍摄200对共计400幅图,可以计算出200个瞬时速度场,两两速度场的时间间隔是400ms.调整水泵的转速,可以进行不同雷诺数下的槽道内流场测量.现以雷诺数Re=2441的流场为例,进行流动减阻机理研究.图5给出了槽道内的平均速度场,其中X为槽道流动方向无量纲长度(X=x/L,L为槽道长度),第4期卢思等:微纳结构超疏水表面的湍流减阻机理研究23 Y为槽道深度方向无量纲长度(Y=y/H,H为槽道深度),图6给出了剖面上X方向的无量纲速度分布图,从两图上可以看出来,在Y=0,即超疏水表面的固壁处,流体的速度要大于普通表面附近的速度,因此存在一定的速度滑移.而在Y=1处,即普通光滑有机玻璃表面的固壁处,流体速度近似为0.图5槽道内的平均速度场图6剖面上X方向的无量纲速度U图7为剖面上X方向的无量纲速度脉动均方根量随着Y的分布.图8和图9表示槽道内剖面上的无量纲雷诺切应力和无量纲总剪切应力.在湍流状态下,超疏水表面附近的雷诺切应力以及总剪切应力比较小,在普通表面附近,雷诺切应力以及总剪切应力都比超疏水表面附近对应的物理量大,这是因为在超疏水表面的速度滑移抑制了壁面附近的速度脉动,进而减少了由脉动动量输运而产生的雷诺应力和湍动能的生成.图7剖面上X方向的无量纲速度脉动均方根量图8剖面上无量纲雷诺应力图9剖面上无量纲总剪切应力4结论超疏水表面的优异性质使其在现代生活和工业生产中具有十分广泛的潜在应用价值.本文采用了碳纳米管缠绕技术和聚氟硅氧烷疏水化处理方法制备了具有二级微纳米结构的超疏水表面.测量了由该超疏水表面构建的槽道中的流动压差,将其与普通表面构建的槽道内的流动压差进行比较,发现在层流情况下,流动阻力减小最多达到了22.8%.24力学与实践2013年第35卷在湍流的情况下,超疏水表面的最大减阻比例约为53.3%,减阻效果比层流更加明显.利用PIV技术测量了具有超疏水表面的槽道内的速度场,研究发现在超疏水表面的速度滑移抑制了壁面附近的速度脉动,进而减少了由脉动动量输运而产生的雷诺应力和湍动能的生成,这可能是湍流减阻效果比层流更加明显的物理机制.参考文献1Barthlott W,Neinhuis C.Purity of the sacred lotus or es-cape from contamination in biological surfaces.Planta, 1997,202(1):1-82Neinhuis C,Barthlott W.Characterization and distribu-tion of water-repellent,self-cleaning plant surfaces.Annals of Botany,1997,79(6):667-6773Jiang CG,Xin SC,Wu CW.Drag reduction of a miniature boat with superhydrophobic grille bottom.AIP Advances, 2011,1(3):0321484Ou J,Perot B,Rothstein minar drag reduction in microchannels using ultrahydrophobic surfaces.Physics of Fluids,2004,16(12):4635-46435Ou J,Rothstein JP.Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces.Physics of Fluids,2005,17(10):1036066Watanabe K,Yanuar H,Udagawa H.Drag reduction of Newtonianfluid in a circular pipe with highly water-repellent wall.J Fluid Mech,1999,381:225-2387Choi CH,Ulmanella U,Kim J,et al.Effective slip and friction reduction in nanograted super-hydrophobic mi-crochannels.Physics of Fluids,2006,18(8):0871058Lu S,Yao ZH,Hao PF,et al.Drag reduction in ultrahy-drophobic channels with micro-nano structured surfaces.Science China,2010,53(7):1298-13059Truesdell R,Mammoli A,VorobieffP,et al.Drag reduction on a patterned superhydrophobic surface.Phys Rev Lett, 2006,97(4):04450410Maynes D,Jeffs K,Woolford B,et minarflow in a mi-crochannel with hydrophobic surface patterned microribs oriented parallel to theflow direction.Physics of Fluids, 2007,19(9):09360311Su Bin,Li Mei,Lu Qinghua.Toward understanding whether superhydrophobic surfaces can really decreaseflu-idic friction ngmuir,2010,26(8):6048-605212Krupenkin TN.Turbulent drag reduction using superhy-drophobic surfaces.In:3rd AIAA Flow Control Confer-ence,San Francisco,200613Daniello RJ,Waterhouse NE,Rothstein JP.Drag reduction in turbulentflows over superhydrophobic surfaces.Physics of Fluids,2009,21(8):08510314Woolford B,Prince J,Maynes D,et al.Particle image ve-locimetry characterization of turbulent channelflow with rib patterned superhydrophobic walls.Physics of Fluids, 2009,21(8):08510615Blevins RD.Applied Fluid Dynamics Handbook.New York:Van Nostrand Reinhold,1984(责任编辑:胡漫)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(上接第30页)8Dabiri S,Sirignano WA.Effects of cavitation on the breakup of liquid jets:Bubble growth,distortion,and col-lapse in an orificeflow.In:Proceedings of the47th AIAA Aerospace Science Meeting,Florida,America,20099颜开,王宝寿.出水空泡流动的一些研究进展.见:第二十一届全国水动力学研讨会,济南,2008(Yan Kai,Wang Baoshou.Some research progress of water-exit cavity.In:Proceed-ings of the21st National Conference on Hydrodynamics, Jinan,200810郑帮涛.潜射导弹出水过程水弹道及流体动力研究进展.导弹与航天运载技术,2010,(5):8-12(Zheng Bangtao.Overview on hydroballistics andfluid dynamics of submarine-based missiles.Missiles and Space Vehicles,2010,(5):8-12(in Chinese))11尹云玉,吕海波.潜射火箭出水过程横向响应载荷研究.导弹与航天运载技术,2007,(6):12-16(Yin Yunyu,L¨u Haibo.Transverse responding load analysis of submarine rockets while moving out of water.Missiles and Space Vehicles,2007,(6):12-16(in Chinese))12闵景新,魏英杰.潜射导弹垂直发射过程流体动力特性数值模拟.兵工学报,2010,31(10):1303-1309(Min Jingxin,Wei Yingjie.Numerical simulation on hydrodynamic character-istics of submarine missiles in the vertical launch process.Acta Armamentaria,2010,31(10):1303-1309(in Chinese)) 13王一伟,黄晨光,杜特专等.航行体垂直出水载荷与空泡溃灭机理分析.力学学报,2012,44(1):39-48(Wang Yiwei,Huang Chenguang,Du Tezhuan,et al.Mechanism analysis about cavitation collapse load of underwater vehihles in a verti-cal launching process.Chinese Journal of Theoretical and Applied Mechanics,2012,44(1):39-48(in Chinese))14匡兴华.美国新型战略武器发展综述.国防科技,2008,(1): 21-32(Kuang Xinghua.A survey on American new-style strategic weapons.National Defense Science&Technol-ogy,2008,(1):21-3215刘荣贺.基于NASTRAN优化的某导弹结构模型修正.现代防御技术,2011,39(6):106-110(Liu Ronghe.Missile struc-ture model updating based on NASTRAN optimization.Modern Defense Technology,2011,39(6):106-110(in Chi-nese))16李贤兵.基于NASTRAN的红外整流罩组件结构分析.航空兵器,2012,(3):41-43(Li Xianbing.The structural analysis of infrared dome subassembly based on NASTRAN.Aero Weaponry,2012,(3):41-43(in Chinese))(责任编辑:刘希国)。

“两面神”薄膜:一面超疏水一面超亲水

“两面神”薄膜:一面超疏水一面超亲水

“两⾯神”薄膜:⼀⾯超疏⽔⼀⾯超亲⽔⾃然界中,荷叶、稻叶等材料表⾯呈现出不同超疏⽔特性。

道法⾃然,⼈们基于仿⽣策略实现了系列材料超疏⽔表⾯的构筑。

然⽽,荷叶表⾯除具有超疏⽔特性——“荷叶效应”之外,还呈现出表⾯超疏⽔、底⾯亲⽔的“两⾯神(Janus)”润湿特性。

荷叶的两⾯神润湿特性模拟荷叶表⾯这种特性进⾏具有显著润湿性差异Janus膜表⾯构筑。

近⽇,⼀个⼟⽿其—德国联合研究团队以滤纸为多孔基底,通过单⾯修饰聚⼆甲硅氧烷(PDMS)/⽆机微纳颗粒,简便构筑了具有超疏⽔/亲⽔显著润湿性差异的“两⾯神”膜。

这种Janus膜具有优异的化学稳定性、机械稳定性和柔韧性,同时保持良好的透⽓性,在伤⼝处理等⽅⾯具有较⼤的应⽤前景。

荷叶疏⽔表⾯的微观结构研究⼈员选⽤Whatman No. 1滤纸和实验室⼯程棉滤纸为基底材料,将PDMS、硅纳⽶颗粒以及玻璃微球混合均匀后采⽤喷涂技术涂覆到基底表⾯,经过120 ℃加热交联处理后PDMS共价接枝到滤纸表⾯。

该侧滤纸表⾯呈现出超疏⽔特性(接触⾓163.1°± 1.2°)。

同时,研究表明混⼊掺杂三种不同尺⼨的⽆机颗粒(9−13µm、20−60µm、数纳⽶)对于超疏⽔表⾯的构筑⼗分必要,微⽶级尺⼨和纳⽶尺度的⽆机颗粒协同提供微纳粗糙表⾯。

Janus膜的制备及表⾯形貌研究发现加热处理使得PDMS与基底产⽣共价键连接,进⼀步对“两⾯神”膜的内部结构进⾏表征,结果表明在涂层制备过程中涂层组分渗透扩散⾄多孔滤纸内部形成梯度化学改性结构;这⼀结构特性有效地保证了“两⾯神”膜的溶剂/⽔稳定性。

“两⾯神”膜基于底部保持亲⽔特性,其整体保持较⾼的吸⽔率(80 g/m2)。

基于滤纸、表⾯硅橡胶涂层组分优异的柔韧性以及基底与涂层存在共价键连接界⾯,结合⽆机微纳颗粒杂化改性,使得该“两⾯神”膜表⾯具有优异的超疏⽔润湿稳定性。

在循环弯曲以及摩擦测试后,该涂层仍能维持其优异的超疏⽔特性。

超疏水表面微结构对其疏水性能的影响及应用

超疏水表面微结构对其疏水性能的影响及应用

超疏水表面微结构对其疏水性能的影响及应用一、本文概述超疏水表面,也称为超防水表面或荷叶效应表面,是指具有极高水接触角和低滑动角的固体表面。

这种特殊的表面性质使水滴在其上几乎无法附着,即使附着也能轻易滚落,因此具有自清洁、防腐蚀、防结冰、防雾等独特功能。

超疏水表面的这些特性在材料科学、物理学、化学、生物学、机械工程、航空航天、建筑等领域具有广泛的应用前景。

超疏水表面的特性主要来源于其独特的微结构,这些微结构可以在微米甚至纳米尺度上影响水滴与固体表面的接触行为。

因此,研究超疏水表面微结构对其疏水性能的影响,对于理解超疏水表面的作用机制、优化超疏水表面的制备工艺、拓展超疏水表面的应用领域具有重要的理论价值和实际意义。

本文旨在全面系统地探讨超疏水表面微结构对其疏水性能的影响,包括微结构的类型、尺寸、分布等因素对超疏水性能的影响机制。

本文还将介绍超疏水表面的制备方法、应用领域以及存在的挑战和未来的发展方向。

通过本文的研究,我们期望能够为超疏水表面的进一步研究和应用提供有益的理论支持和实践指导。

二、超疏水表面微结构的基本原理超疏水表面,也称为超防水表面或荷叶效应表面,是一种具有特殊微纳米结构的表面,其水接触角大于150°,滚动角小于10°。

这种表面具有优异的防水性能,水珠在其表面难以停留,极易滚动脱落。

超疏水表面的微结构原理主要基于两个方面:表面粗糙度和表面化学组成。

表面粗糙度对超疏水性能的影响至关重要。

通过构建微纳米尺度的粗糙结构,可以大大增加固体表面的实际面积,从而在表面与水滴之间捕获更多的空气,形成稳定的空气垫。

这种空气垫的存在显著减少了固体表面与水滴的直接接触面积,降低了表面能,从而提高了表面的疏水性能。

表面化学组成也对超疏水性能产生重要影响。

通过引入低表面能的物质,如氟硅烷、长链烷烃等,可以降低固体表面的自由能,进一步提高其疏水性能。

这些低表面能物质可以在微纳米结构表面形成一层自组装单分子层,进一步减少水滴与固体表面的接触,增强超疏水效果。

超疏水表面上的微纳结构

超疏水表面上的微纳结构

7
超疏水表面结构
超疏水的荷叶和表面结构
(a)球形的水滴滴在荷叶表面 (b)荷叶表面大面积的微结构 (c)荷叶表面单个乳突 (d)荷叶表面的纳米结构
8
超疏水表面结构
通过实验测试,水滴在荷叶表面的接触角和滚动角分别为161.0°左右和2º 左右 。这使得荷叶具有了很好的自清洁能力。 由于荷叶微纳结构的存在,大量空气储存在这些微小的凹凸之间,使得水珠只 与荷叶表面乳突上面的蜡质晶体毛茸相接触,显著减小了水珠与固体表面的接 触面积,扩大了水珠与空气的界面,因此液滴不会自动扩展,而保持其球体状 ,这就是荷叶表面具有超疏水性的原因所在。
1维:指在空间有两维处于纳米尺度,如纳米丝、纳米棒、纳米管等
2维:指在3维空间中有1维在纳米尺度,如超薄膜多层膜,超晶格等。
3
微纳结构
2.什么是微纳结构?
4
超疏水表面结构
1.什么是超疏水?
接触角 θ<90̊ 的固体表面称之为亲水表面 接触角 90̊<θ<150̊ 的固体表面称之为疏水表面 接触角 θ>150̊ 的固体表面称之为超疏水表面
9
10
20 °C, 25 °C, 30 °C and 35 °C温度下 铜箔表面的微纳结构(扫描电镜下观察而得 )
超疏水表面结构(超疏水结构性能检测)
铜箔不同结构和润湿性表面结露情况对比 (a) 未处理平铜箔
(b) 具有微米结构的铜箔
(c) 具有纳米结构的铜箔 (d)具有微纳复合结构的铜箔.
凝结速度不同 液滴分布不同 液滴开始冻结的时间不同
微纳结构的应用
轮船船底涂料
轮 船 底 部 的 低 表 面 能 防 污 涂 料
请各位老师同学批评指正
THANK YOU!

超疏水 低表面能物质

超疏水 低表面能物质

超疏水是一种特殊的表面浸润性,表现为水滴在表面张力作用下,会形成一个球,仿佛被表面排斥。

这种特性常见于荷叶表面、蝴蝶翅膀等自然生物。

而实现超疏水性,需要两个关键要素:一是表面有微纳结构的凸起,其上还有更细小的结构;二是低表面能的物质,如生物蜡等,它能够加强微纳结构的疏水效果。

低表面能物质则是指那些表面能较低的物质,其特性是难以被其他物质所润湿。

这种物质常常被用于防水材料、自清洁材料、防雾材料等领域。

常见的低表面能物质有氟化物、硅油、聚合物等。

结合这两者,可以进一步优化和拓展超疏水材料的应用。

比如在PTFE、氟化聚乙烯、氟碳蜡或其它合成含氟聚合物等涂层中,引入低表面能物质,可以进一步提升材料的超疏水性能。

这种技术在水下油下超疏水领域、防污防腐领域、自清洁领域等有着广泛的应用前景。

仿生纳米超疏水表面 (1)

仿生纳米超疏水表面 (1)

仿生纳米超疏水表面1 固体表面的润湿现象与超疏水表面1.1 静态润湿当液体与固体接触时,液体会沿着固体表面向外扩展,同时系统中原来的固气界面和液气界面逐渐地被新的固液界面取代,这一过程称为润湿。

到达平衡时,在气、液、固三相交界处,气-液界面和固-液界面之间的夹角称为接触角,用θ表示。

它实际是液体表面张力和液-固界面张力间的夹角。

接触角的大小是由在气、液、固三相交界处,三种界面张力的相对大小所决定的。

从接触角的数值可看出液体对固体润湿的程度,习惯上将液体在固体表面上的接触角θ=90°时定义为润湿与否的标准,θ>90°为不润湿,θ<90°则为润湿,接触角θ越小,润湿性能越好。

特别地,静态接触角小于100静态接触角大于150°的固体表面称为超疏水表面。

图1 固体表面的润湿图2 几种不同类型的润湿情况图3 几种不同的润湿状态的接触角1.2 动态润湿(动态接触角滞后反映液滴在平面上滑动的难易程度)图4 动态润湿(粘贴到PPT中能动)对于在倾斜的固体表面上运动的液滴而言,在运动方向前后液滴的动态接触角存在着差异,前面的动态接触角最大,称为前进接触角θa,后面的动态接触角最小,称为后退接触角θr;水滴滚动所需的固体表面最小倾斜角称为滚动角α,如图4所示。

图5 滚动角与动态接触角的关系固体表面静态接触角的大小介于前进接触角和后退接触角之间,前进接触角和后退接触角的差值称为动态接触角滞后(Contact angle hysteresis,Δθ)滚动角与动态接触角的数量关系可用如下公式描述:mgsinα=γ(cosθr−cosθa)(1)w式中:m —液滴质量W —液滴宽度g —重力加速度γ— 气液界面表面张力从(1)式中可以看出固体表面的动态接触角滞后Δθ越小,滚动角α越小。

固体表面的动态接触角滞后和滚动角的大小反应了固体表面对液体的亲和力或者固体表面的剪应力,动态接触角滞后和滚动角越大说明固体表面对液体的亲和力或者固体表面的剪应力越大。

210984073_微纳超疏水钛合金表面的制备及其性能研究

210984073_微纳超疏水钛合金表面的制备及其性能研究

表面技术第52卷第3期微纳超疏水钛合金表面的制备及其性能研究赵欣,黄成超,李梦,杨华荣,赵皓东(中国民用航空飞行学院 航空工程学院,四川 广汉 618307)摘要:目的制备超疏水自清洁的Ti6Al4V合金表面。

方法首先使用飞秒激光在Ti6Al4V合金表面预制备微米级结构,然后将预制备的样品置于1.0 mol/L的氢氧化钠溶液中,在超声水浴状态下进行电化学去合金,获得微纳米复合结构。

经表面改性后,得到微纳超疏水钛合金表面。

结果经复合制备的微纳超疏水表面结构由微米级的梯形凸柱阵列,以及通过电化学去合金形成的三维纳米孔洞骨架和沉积的微米或亚微米金属氧化物组成。

经过表面改性后,该微纳复合结构表面呈现优异的超疏水性,其接触角可达162.5°,滚动角低至3.4°。

自清洁性能测试结果表明,该微纳超疏水钛合金表面展现出优异的低黏附性和自清洁性,1滴水对表面的清洁效率达到99.8%。

激光加工参数与静态水接触角之间的关系表明,接触角与扫描间距呈负相关,与能量密度、重复次数呈正相关。

结论飞秒激光结合电化学去合金方法制备的具有微纳结构的钛合金表面呈现出优异的超疏水自清洁性能,通过改变激光加工参数能够有效增大表面的静态水接触角,为后续研究提供了一定参考。

关键词:激光技术;飞秒激光;超疏水表面;微纳复合结构;低黏附性;自清洁中图分类号:TB17;V261.8 文献标识码:A 文章编号:1001-3660(2023)03-0360-10DOI:10.16490/ki.issn.1001-3660.2023.03.034Fabrication and Properties of Micro-nano SuperhydrophobicTitanium Alloy SurfaceZHAO Xin, HUANG Cheng-chao, LI Meng, YANG Hua-rong, ZHAO Hao-dong (College of Aeronautical Engineering, Civil Aviation Flight University of China, Sichuan Guanghan 618307, China)ABSTRACT: Superhydrophobic surfaces have attracted great attention from researchers in China and abroad due to their low adhesion, self-cleaning, anti-corrosion, drag reduction, and good anti-icing properties. The work aims to adopt a novel femtosecond laser composite dealloying method to prepare superhydrophobic self-cleaning Ti6Al4V alloy surfaces.Firstly, 800# sandpaper was used for grinding, and after ultrasonic cleaning and drying, the micron-scale structure was pre-prepared on the surface of Ti6Al4V alloy via femtosecond laser in a 90° vertical cross-scanning manner. The laser processing parameters were as follows: laser fluence 0.30 J/cm2, repetition frequency 200 kHz, scanning speed 200 mm/s, scanning spacing 20 μm, and 6 times of repetition. Then, the pre-prepared surface samples were placed in 1.0 mol/L收稿日期:2022–02–08;修订日期:2022–05–23Received:2022-02-08;Revised:2022-05-23基金项目:结冰与防除冰国家重点实验室开放课题项目(IADL20190407);中国民用航空飞行学院重点项目科研基金(ZJ2020–06);国家大学生创新性实验计划(S202110624166)Fund:Open Project of the State Key Laboratory of Icing and Deicing (IADL20190407); Research Fund for Key Projects of Civil Aviation Flight University of China (ZJ2020-06); National Undergraduate Innovative Experimental Program Project (S202110624166)作者简介:赵欣(1978—),男,博士,教授,主要研究方向为民用航空新材料与新技术。

超疏水表面微纳二级结构对冷凝液滴最终状态的影响

超疏水表面微纳二级结构对冷凝液滴最终状态的影响

超疏水表面微纳二级结构对冷凝液滴最终状态的影响刘天庆;孙玮;孙相彧;艾宏儒【摘要】从超疏水表面(SHS)上初始冷凝液核长大、合并、形成初始液斑开始,分析计算了冷凝液斑变形成为Wenzel或Cassie液滴过程中界面能量的变化,并以界面能曲线降低、是否取最小值为判据,确定冷凝液滴的最终稳定状态.计算结果表明:在只有微米尺度的粗糙结构表面上,冷凝液滴的界面能曲线一般都是先降低再升高,呈现Wenzel状态;而当表面具有微纳米二级粗糙结构,且纳米结构的表面空气面积分率较高时,冷凝液滴的能量曲线持续降低,直至界面能最小的Cassie状态,因此可以自发地形成Cassie液滴.还计算了文献中具有不同结构参数的SHS上冷凝液滴的状态和接触角,并与实验结果进行了比较,结果表明,计算的冷凝液滴状态与实验观察结果完全吻合.因此,微纳二级结构是保持冷凝液滴在SHS上呈现Cassie状态的重要因素.【期刊名称】《物理化学学报》【年(卷),期】2010(026)011【总页数】8页(P2989-2996)【关键词】超疏水表面;微纳结构;表面;界面;自由能;冷凝【作者】刘天庆;孙玮;孙相彧;艾宏儒【作者单位】大连理工大学化工学院,辽宁,大连116024;大连理工大学化工学院,辽宁,大连116024;大连理工大学化工学院,辽宁,大连116024;大连理工大学化工学院,辽宁,大连116024【正文语种】中文【中图分类】O647Abstract: The interface free energy of a local condensate from the growth and combination of numerous initial condensation nuclei was calculated during its shape changes from an early flat shape to a Wenzel or Cassie state on the super-hydrophobic surface(SHS).The final state of the condensed drop was determined according to whether the interface free energy continuously decreased or it had a minimum value.Our calculations indicate that condensation drops on a surface only with micro roughness display Wenzel state because the interface free energy curve of a condensed drop first decreases and then increases,existing a minimum value corresponding to Wenzel drop.On a surface with appropriate hierarchical roughness,however,the interface energy curve of a condensed drop will constantly decline until it reaches the Cassie state.Therefore,a condensed drop on a hierarchical roughness surface can spontaneously reach the Cassie state.In addition,the states and apparent contact angles of condensed drops on a SHS with different structural parameters were calculated and compared with experimental observations.Results show that the calculated condensed drop states agree well with the experimental results.It can be concluded that micro and nano hierarchical roughness is the key structural factor responsible for sustaining condensed drops in the Cassie state on a SHS.Key Words: Super-hydrophobic surface; Micro and nano hierarchicalstructure; Surface; Interface; Free energy;Condensation滴状冷凝具有很高的传热系数,可比常见的膜状冷凝传热系数高几十倍.冷凝传热在石油化工和发电等工业生产中以及空调和制冷等过程中被大量采用,如果能在这些过程中均实现滴状冷凝,则必定会大大减少换热设备的面积与尺寸,降低能源消耗,从而带来显著的社会和经济效益.滴落在超疏水表面(SHS)上的液滴可以呈现表观接触角大于150°,且滚动角很小的Cassie形态.这很容易使我们联想到蒸气会在SHS上形成良好的滴状冷凝,即SHS 应该能成为实现滴状冷凝的理想表面.然而现有为数不多的SHS上冷凝实验结果却表明,在只有微米粗糙结构的表面上所形成的冷凝液滴往往失去超疏水性[1],液滴一般呈现Wenzel状态[2-5]或Wenzel 与Cassie的混合状态[6-7],滴状冷凝传热效果不理想[8-9].而当表面具有微纳米尺度二级结构或只有纳米粗糙结构时,冷凝液滴就能够呈现Cassie状态[10-12],并易于滚动脱落.冷凝液滴为什么只有在具有微纳二级结构或纳米粗糙结构的表面才能保持超疏水状态?冷凝过程中最初的微小液滴合并后经过怎样的演变过程最终形成稳定的冷凝液滴?冷凝液滴的最终状态与SHS的微纳粗糙结构参数的定量关系是什么?所有这些问题都尚未明确,需要从理论上进行分析.为此,本文从液滴界面能量计算入手,对冷凝液滴在其形态改变时的界面能量变化曲线进行计算,按液滴能量减小并直至达到极小值为判据,确定各种粗糙结构的SHS上冷凝液滴的最终稳定状态.在液滴表面自由能计算方面,已经有若干研究者针对滴落在SHS上尺度较大的液滴进行了研究,分析了液滴的表观接触角和接触角滞后[13-17]、液滴呈现的状态与转换及其能量势垒[13,18-20]、表面结构参数的影响[13-21]等问题.但所有这些研究均不是针对冷凝液滴进行的,而事实是冷凝液滴在SHS上的形态和行为与滴落的液滴行为差异很大,SHS上冷凝形成的液滴行为与其表面自由能的关系尚未见文献报道.具有微纳二级结构表面上液滴表观接触角的计算公式推导如下.以图1所示的长方体微纳米粗糙结构为例,首先定义以下参数,Cassie粗糙系数:式中f、fn分别是SHS微、纳米结构凸起肋固体所占的投影面积分率;r、rn分别是微、纳米结构实际面积与投影面积之比;l、ln分别为微、纳米结构凸起肋间空隙宽度;L、Ln分别为微、纳米结构凸起肋间距;H、Hn分别是微、纳米结构凸起肋高度.(1)Cassie或Cassie与Wenzel中间状态的液滴如图2(a)所示,具有微纳二级结构SHS上的液滴根部与微米凸起肋上部及部分侧面上的纳米尺度凸起固相相接触,其余部分均与气体接触.按照分析微米尺度上液滴界面能[13]相似的方法,在现在的微纳二级结构表面上选定不变投影面积Atotal,则Atotal内包括某个液滴的总界面能为式中Esurf是选定系统的总界面能,Eext为液滴上方外表面的气-液界面能,Ebase 是液滴底部所包括的各种界面能,而E(Atotal-Abase)是液滴以外的固-气界面能,其中液滴上方外表面的气液界面能为其中Aext是液滴上部的外表面积,σlg为气-液界面张力.液滴底部所包括的各种界面能为其中Abase是液滴底部的投影面积,σsl、σsg分别为固-液和固-气界面张力,h是液滴嵌入SHS微米结构凸起肋间的深度.液滴以外的固气界面能为整理以上各种界面能后可以得到总界面能为其中式中θn为液滴在纳米表面上的表观接触角,而θ0是其在光滑表面的本征接触角.式(5)可以整理成其中非润湿状态系数Ccomp为再将液滴外表面积和底面积表达成液滴体积V与表观接触角θ的关系:代入界面能表达式(6):对cosθ求导并取极值可以获得对应的液滴能量最小时的表观接触角为可见,只需将只有微米结构的Cassie或Cassie与Wenzel的中间状态方程中的θ0一项换成纳米表面的表观接触角θn,就成为微纳二级结构时的表观接触角方程. (2)Wenzel状态的液滴如图2(b)所示,液滴根部与全部微米尺度的肋表面接触,在纳米尺度上液体只与纳米凸起肋的上部固相相接触,而不能进入纳米凸起肋的内部,即液滴在纳米粗糙结构上永远呈Cassie状态.此时液滴底部所包括的各种界面能为或者:液滴上方外表面和液滴以外固气界面的界面能同上.于是,整理各种界面能后可以得到总界面能为其中润湿状态系数CWenzel为类似前面的分析,将液滴外表面积和底面积表达成液滴体积与接触角的关系并代入界面能表达式中,并对cosθ求导和取极值可以获得对应的液滴能量最小时的表观接触角为可见,只需将只有微米结构的Wenzel方程中的θ0一项换成纳米表面的表观接触角θn,就成为具有微纳二级结构时的Wenzel表观接触角方程.SHS上冷凝液滴的形成过程如图3所示.初始形成的纳米尺度微小液滴长大到液滴临界尺度后开始合并,众多小液滴合并的结果将在SHS部分区域填满微米结构的凹陷处,形成上部较为平缓的冷凝液滴斑[1-2].冷凝液的这种状态能量较高,将会自发的向Wenzel或Cassie状态变化.但是具体向哪种状态变化,需要根据液滴能量的计算进行判断,即液滴形态将向其能量减小的方向改变,并当液滴能量降低至极值时即为液滴的最终稳定状态.图3(d)所示的初期冷凝液斑向Wenzel和Cassie状态变化可以通过不断减小液滴底半径的方式进行,如果液滴底半径减小到某一数值时其能量到达极小值,这时液滴所呈现的Wenzel状态就是冷凝液滴的最终状态;如果在液滴半径减小的过程中其能量持续降低,直到Cassie状态,那么液滴的最终状态就是Cassie状态.初期冷凝液斑或Wenzel液滴向Cassie状态转变的另一途径是液滴底半径不变、但液滴根部离开超疏水微米结构的底部并向上移动.但是文献[20]及本文的计算结果均表明,液滴根部在离开表面底部时其能量会突然升高,形成能垒,不会自发地通过这种途径变成Cassie状态.因此本文以下主要计算了液滴底半径减小的过程中其能量的变化.不同状态时冷凝液滴能量的计算公式Cassie状态为式(6),Wenzel状态为式(14),冷凝液斑尚未填满微米凸起肋空间时:式中4/(L-l)的意义为微米凸起肋的周长与其截面积之比,只需将其它几何形状凸起肋的f、r、周长和截面积比等参数代入,就可以获得其它几何形状SHS液滴相关界面能的计算公式.SHS不同的微纳二级结构参数下冷凝液滴典型的能量变化曲线如图4所示(以液斑初始状态为基准计算自由能差).本文是针对初期冷凝液斑只占满80%微米肋沟的条件下做的计算,因此,在液滴底半径减小、液位上升的过程中其能量一开始在不断减小,但当液滴上表面漫过凸起肋上表面时,其能量会有不同程度的突然增加.然而,对于实际的冷凝过程,液斑并不需要克服这个能垒,因为冷凝在不断发生,即使初始液斑没有占满肋沟,也会由于冷凝液的不断形成而填满整个凸起肋.因此我们只需要考虑在液斑填满整个凸起肋高度以后液滴的形态和能量的变化.从图4可以看出,在冷凝液斑充满凸起肋以后,液滴的能量就开始不断下降,在很多参数条件下,液滴能量会在某一液滴底半径时不再下降,而在某些参数条件下,液滴能量会持续下降,直至底半径为0的Cassie状态.总体上看,SHS的微纳米结构对液滴能量有明显影响,微米凸起肋之间的距离越小,液滴能量变化越明显,液滴越容易形成Cassie状态;而随着纳米凸起肋间距的增大,液滴能量在减小,液滴也更容易转变成Cassie状态.其它结构参数和液滴体积时的冷凝液滴能量变化曲线规律类似.根据以上液滴在不同状态时的能量曲线,可以确定液滴最终的稳定状态:在液滴底半径减少的过程中如果其能量持续降低,或者能量曲线的斜率一直大于0,则该液滴最终呈Cassie状态;否则,在能量曲线的斜率出现0值时所对应的液滴为Wenzel状态.在确定了液滴的最终状态的同时,其接触角等参数也同时获得.按照以上方法,本文对具有不同微纳尺度结构参数的疏水表面上冷凝液滴的最终状态和相应的接触角进行了计算,结果分别如图5的(A1)-(A3)和(B1)-(B3)所示.可见,当ln为0或很小时,即疏水表面没有纳米二级结构时,冷凝液滴需要在较小的l/L或较大的H值条件下才能成为Cassie状态,并且这时的接触角均小于150°,因此液滴虽然呈Cassie状态,但并非属超疏水液滴.随着ln的增加,即疏水表面的纳米二级结构越来越明显时,冷凝液滴更容易呈Cassie状态,并且相应的接触角在不断增加.为了表达冷凝液滴呈Cassie并且为超疏水状态,本文又计算了能同时满足Cassie条件和接触角大于等于150°时所需的表面粗糙结构参数,如图5的(C1)-(C3)所示.因此,当表面具有明显的微纳二级粗糙结构时,冷凝液滴容易成为超疏水状态的Cassie 液滴.而当没有纳米结构时,只有当H很大、适宜的l/L取值范围之内的条件下,冷凝液滴才能呈现超疏水的Cassie状态.从图5还可以发现另一项有趣的计算结果,出现在l/L较大的情况下,此时无论表面是否具有纳米二级结构,冷凝液滴都呈现Wenzel状态,并且接触角较小,特别是在ln/Ln也较小的条件下,表观接触角可以小到低于本征接触角的程度.众所周知,在本征接触角大于90°的条件下,粗糙表面上Wenzel液滴的表观接触角按照Wenzel 方程不可能小于本征接触角,但是本计算却揭示冷凝所形成的液滴其最终状态有可能完全不符合Wenzel公式,这时的液滴接触角低于Wenzel方程所确定的数值.原因在于在冷凝液滴的尺度下(100 μm左右),超疏水微米粗糙结构内的水体积相对于整个液滴体积已经不可忽略,因此,Wenzel方程不再适用于尺度很小的冷凝液滴. 本文对文献报道的SHS上的冷凝液滴状态和接触角进行了计算并与实验结果进行比较,如表1所示.可见本文所计算的冷凝液滴形态与所有实验结果都吻合.首先仅有的三篇具有微纳二级结构或只有纳米结构的表面上的冷凝实验都表明[10-12],微纳米结构表面上冷凝形成的液滴能呈现易于滚落的Cassie液滴,而本计算也表明,表面具有适宜微纳米二级结构时,冷凝液滴易于形成接触角大于150°的Cassie状态.此外,文献[6-7]均观察到同一表面上可以形成Wenzel和Cassie两种液滴或混合型液滴.本计算结果表明在所观察的冷凝液滴尺度范围内,较小的液滴呈现Wenzel状态,而相对较大的液滴则可能呈现Cassie状态,于是表面上确有可能形成两种形态的液滴.对于文献[1-3]的表面结构参数,则对各种液滴体积其形态均为Wenzel状态,计算结果也与实测情况完全符合.关于接触角,有两篇文献的实测结果与计算结果不符合.其中文献[7]对于较大液滴(体积在μL)的实测接触角远低于本文的计算结果或Wenzel公式.在液滴尺度较大时,液滴根部在凸起肋间的液体体积可以忽略,此时液滴的接触角应该符合Wenzel 方程,并且当表面材料的本征接触角大于90°时,表观接触角不可能低于本征接触角.文献[7]给出的本征接触角为117.3°,但是其所测量的表观接触角都小于该数值,这是难以解释的.除非冷凝实验过程中表面上的疏水涂层被破坏,而该文献并没有说明冷凝实验后其表面的本征接触角是否改变.另一方面,文献[3]所报道的接触角都明显高于本计算值或Wenzel公式对应的接触角.经过仔细观察该文献的冷凝液滴照片,我们发现他们所形成的冷凝液滴底部半径都非常小,所覆盖的凸起肋个数只有几个,而且接触角大的液滴下部的凸起肋个数都是最多的,其实照片上也有很多接触角较小的液滴,只是他们没有测量而已.事实上,当液滴小到其下部只覆盖几个凸起肋时,液滴的接触角将对其所在的具体位置非常敏感,当液滴根部大部分位于凸起肋间时,接触角将会较小,而根部大部分位于凸起肋之上时,接触角将会较大.本文的计算模型只适用于液滴根部覆盖的凸起肋数目较多的情况.本计算没有考虑液滴变形过程中三相线经过微米尺度凸起肋时界面自由能的微小波动[14-17].Yamamoto等[14]的计算结果表明,该波动能量的数量级为10-10J或更低,而本文计算的液滴变化过程中的界面能数量级在10-8J.因此,三相线经过凸起肋引起的能量波动可以忽略不计,因为微小的震动能量或液滴变形的惯性就可以克服这个能量波动造成的微小能垒.而且当表面上有纳米二级粗糙结构以后,这种能量波动将会变得更小.此外,由于冷凝液滴的体积非常小,液滴的重力可以忽略不计,因此本计算也没有考虑液滴的重力势能.另外,本文的计算结果表明,具有适宜微纳二级粗糙结构的SHS上的冷凝液滴可以自发地从Wenzel状态变成Cassie状态.Zheng等[22]在原位观测荷叶上的冷凝液滴行为时发现,Wenzel态的冷凝液滴会从乳突根部向上迁移形成Cassie状态,他们把这种迁移归结为荷叶乳突表面存在“润湿梯度”,即乳突根部更不润湿,而乳突上部相对润湿,从而造成推动力.但是乳突表面的这种“润湿梯度”是否存在尚未被证明.本计算表明,荷叶上具有的微纳二级粗糙结构可以自发地使Wenzel状态的液滴向Cassie状态的液滴转变,并不需要这种“润湿梯度”带来的推动力.最后,本文就SHS上理想的滴状冷凝过程进行如下描述:初始冷凝液核在微米粗糙结构内到处都形成,液核长大后进行不断的合并直至冷凝液充满微米粗糙面的部分区域形成冷凝液斑,其体积一般在0.1-1.0 nL,液斑进而开始收缩底半径向Wenzel状态变化并变成Cassie状态液滴,最后Cassie状态液滴滚落脱离壁面.这个过程非常快,并且表面上有无数个这样的液滴形成和脱落,从而大大强化冷凝传热过程.文献[23]为了实现Cassie状态的冷凝液滴,采用控制凸起肋上端面较为润湿而凸起肋侧面和底面不润湿的策略,使得冷凝液滴只在凸起肋上部形成.但是这种方法只利用了粗糙表面的少部分面积,而没有充分利用所有的冷凝表面,因此冷凝传热速率将受到抑制.(1)在具有微纳二级尺度的SHS上,较大尺度液滴的表观接触角仍服从Cassie或Wenzel公式,只需将原来的本征接触角换成纳米结构表面上液滴的表观接触角. (2)SHS上初始冷凝的微小液滴在微尺度结构内部合并并充满微结构高度后,将沿着液滴底半径减小、液滴能量降低的方向变化,当液滴能量不再降低时就是液滴的最终稳定状态,可能是Wenzel也可以是Cassie状态,取决于表面的微纳米结构特征.(3)在只有微米尺度粗糙结构的表面上,冷凝液滴很难形成接触角高于150°的Cassie状态,只有当表面具有微纳米二级粗糙结构,且纳米结构的表面空气面积分率较高时,冷凝液滴才能成为超疏水状态.(4)SHS上的冷凝液滴由于尺度较小,Wenzel状态的液滴在其底部粗糙结构内的液体体积已经不可忽略,因此,Wenzel状态的冷凝液滴不再符合Wenzel方程. (5)表面的微纳米粗糙结构对于冷凝液滴的最终状态、接触角、滚动和脱落等均具有重要影响,需要适宜设计SHS的微纳米二级粗糙结构,才能实现理想的滴状冷凝过程.【相关文献】1 Wier,K.A.;McCarthy,ngmuir,2006,22(6):24332 Narhe,R.D.;Beysens,ngmuir,2007,23(12):64863 Jung,Y.C.;Bhushan,B.Journal of Microscopy,2008,229(1):1274 Narhe,R.D.;Beysens,D.A.Phys.Rev.Lett.,2004,93(7):0761035 Narhe,R.D.;Beysens,D.A.Europhys.Lett.,2006,75(1):986 Dorrer,C.;Ruhe,ngmuir,2007,23(7):38207 Chen,X.L.;Lu,T.Science in China Series G-Physics Mechanics andAstronomy,2009,52(2):2338 Song,Y.J.;Ren,X.G.;Ren,S.M.;Wang,H.Journal of Engineering Thermophysics,2007,28(1):95 [宋永吉,任晓光,任绍梅,王虹.工程热物理学报,2007,28(1):95]9 Chen,L.;Liang,S.Q.;Yan,R.S.;Cheng,Y.J.;Huai,X.L.;Chen,S.L.Journal of ThermalScience,2009,18(2):16010Chen,C.H.;Cai,Q.J.;Tsai,C.L.;Chen,C.L.;Xiong,G.Y.;Yu,Y.;Ren,Z.F.Appl.Phys.Lett.,2007,90(17):17 310811 Dorrer,C.;Ruhe,J.Advanced Materials,2008,20(1):15912Lau,K.K.S.;Bico,J.;Teo,K.B.K.;Chhowalla,M.;Amaratunga,G.A.J.;Milne,W.I.;McKinley,G.H.;Gleas on,K.K.Nano Letters,2003,3(12):170113 Barbieri,L.;Wagner,E.;Hoffmann,ngmuir,2007,23:172314 Yamamoto,K.;Ogata,S.Journal of Colloid and Interface Science,2008,326(2):47115 Li,W.;Amirfazli,A.Journal of Colloid and Interface Science,2005,292(1):19516 Li,W.;Amirfazli,A.Advances in Colloid and Interface Science,2007,132(2):5117 Li,W.;Cui,X.S.;Fang,ngmuir,2010,26(5):319418 Carbone,G.;Mangialardi,L.The European Physical Journal E,2005,16(1):6719 Werner,O.;Wagberg,L.;Lindstrom,ngmuir,2005,21(26):1223520 Patankar,ngmuir,2004,20(17):709721 Patankar,ngmuir,2004,20(19):820922 Zheng,Y.M.;Han,D.;Zhai,J.;Jiang,L.Appl.Phys.Lett.,2007,92(8):08410623 Varanasi,K.K.;Hsu,M.;Bhate,N.;Yang,W.S.;Deng,T.Appl.Phys.Lett.,2009,95(9):094101。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

请各位老师同学批评指正
THANK YOU!
【2】张友法,余新泉,周荃卉,李康宁. 超疏水低粘着铜表面制备及其防覆冰性能[J]. 物理化学学报 ,2010,05:1457-1462.
【3】梁彩华,汪峰,吕艳,范晨,吴春晓,张小松,张友法. 翅片表面特性对结霜过程影响的实验研究[J]. 东南大学学报(自然科学版),2014,04:745-750.
7
超疏水表面结构
超疏水的荷叶和表面结构
(a)球形的水滴滴在荷叶表面 (b)荷叶表面大面积的微结构 (c)荷叶表面单个乳突 (d)荷叶表面的纳米结构
8
超疏水表面结构
通过实验测试,水滴在荷叶表面的接触角和滚动角分别为161.0°左右和2º左右 。这使得荷叶具有了很好的自清洁能力。
由于荷叶微纳结构的存在,大量空气储存在这些微小的凹凸之间,使得水珠只
凝结速度不同 液滴分布不同 液滴开始冻结的时间不同
微纳结构的应用
新型超疏水材料的应用将十分广泛:
➢ 沙漠集水 ➢ 远洋轮船船底涂料,可以达到防污、防腐的效果 ➢ 室外天线上,建筑玻璃,汽车、飞机挡风玻璃上,可以防积雪,自清洁 ➢ 冰箱、冷柜等制冷设备的内胆表面上,凝聚水、结霜 、结冰现象 ➢ 天然气、石油管道内壁表面超疏水分子膜 ➢ 用于微量注射器针尖,可以完全消除昂贵的药品在针尖上的黏附及由此带来的
0维:指在空间3维尺度均在纳米尺度,如纳米尺度颗粒,原子团簇等;
1维:指在空间有两维处于纳米尺度,如纳米丝、纳米棒、纳米管等
2维:指在3维空间中有1维在纳米尺度,如超薄膜多层膜,超晶格等。
3
微纳结构
2.什么是微纳结构?
4
超疏水表面结构
1.什么是超疏水? 接触角 θ<90̊ 的固体表面称之为亲水表面 接触角 90̊<θ<150̊ 的固体表面称之为疏水表面 接触角 θ>150̊ 的固体表面称之为超疏水表面
超疏水表面上的微纳结构
报告人:刘粒祥 学院:材料科学与工程学院 学号:12012328
2014.10.09
➢微纳结构 ➢超疏水表面结构 ➢微纳结构的应用
超疏水结构 概念
超疏水结构 制备
超疏水结构 性能检测
2
微纳结构
1.什么是纳米结构?
纳米结构(nanostructure)通常是指尺寸在100nm以下的微小结构。也就是以纳米尺度的物质单 元为基础,按一定规律构筑或组装一种新的体系。
ห้องสมุดไป่ตู้
化学改性
预处理铜 箔
溶液配制
恒温密封 反应7h
NaOH洗 涤
氟硅烷乙 醇溶液洗

真空干燥
10
11
20 °C, 25 °C, 30 °C and 35 °C温度下 铜箔表面的微纳结构(扫描电镜下观察而得

超疏水表面结构(超疏水结构性能检测)
铜箔不同结构和润湿性表面结露情况对比 (a) 未处理平铜箔 (b) 具有微米结构的铜箔 (c) 具有纳米结构的铜箔 (d)具有微纳复合结构的铜箔.
与荷叶表面乳突上面的蜡质晶体毛茸相接触,显著减小了水珠与固体表面的接 触面积,扩大了水珠与空气的界面,因此液滴不会自动扩展,而保持其球体状 ,这就是荷叶表面具有超疏水性的原因所在。
9
超疏水表面结构
铜箔超疏 水表面结 构的制备
丙酮
预处稀理盐酸
乙醇 去离子水
4M 微KO纳H结构 构建
0.5M Zn(NO3)2 • 6H 2O
【4】Yongmei Xia, Youfa Zhang*, Xinquan Yu, Feng Chen. Direct solution phase fabrication of ZnO nanostructure arrays on copper at near room temperature. CrystEngComm. 2014, 16, 5394-5401 (IF: 3.879)
对针尖的污染 ➢ 防水和防污处理
微纳结构的应用
轮船船底涂料
轮 船 底 部 的 低 表 面 能 防 污 涂 料
微纳结构的应用
具有抗露、防霜、 自洁功能的新型节 能空调换热器
展望
微纳超疏水表面结构材料涉及表面科学、纳 米科技、材料科技等众多领域,是一种工业上非 常重要的技术,在医药 、生物技术 、化学机工程 领域也具有广阔的应用前景 、是纳米科技的应用 体现之一。
接触角:就是液滴在固体表面达到热力学平衡状态时,气液界面与固液界面所夹的角度 滚动角:液滴在倾斜表面上刚好发生滚动时,倾斜表面与水平面所形成的临界角度
5
超疏水表面结构
2 超疏水表面结构与微纳结构的关系
6
超疏水表面结构
蝉翼表面由规则排列的纳米 柱状结构组成.纳米柱的直 径大约在80 nm,纳米柱的间 距大约在180 nm.规则排列 纳米突起所构建的粗糙度使 其表面稳定吸附了一层空气 膜,诱导了其超疏水的性质 ,从而确保了自清洁功能。
待解决问题:机械稳定性问题 、老化问题 、成
本、制备工艺,工业化、产业化、商业化,以及 更深层次的理论研究。
参考文献
【1】张友法,余新泉,周荃卉,李康宁. 超疏水铜表面的制备[A]. 中国机械工程学会表面工程分会.第 八届全国表面工程学术会议暨第三届青年表面工程学术论坛论文集(七)[C].中国机械工程学 会表面工程分会:,2010:1.
相关文档
最新文档