车辆动力学仿真中的轮胎模型

合集下载

Magic Formula轮胎模型

Magic Formula轮胎模型

y x Fx Fx 0 , Fy Fy 0 tan 2 2 x y , x , y 1 1
MF模型简介
在Matlab/Simulink中建立的轮胎动力学模型:
工作计划
继续完成仿真工作,完善轮胎模型的参数辨 识; 学习整车模型的建立; 结合FPGA学习卡尔曼算法和非线性观测器。
MF模型简介
Magic Formula 模型:
用特殊正弦函数建立的轮胎纵向力、侧向力和自回正力矩模型。 用一个通过拟合实验数据而得到的三角函数公式来与轮胎实验数 据相吻合, 完全能够表达不同驱动情况时的轮胎特性。 只用一套公式就完整地表达了纯工况下轮胎的力学特性,故称为 魔术公式。 可对轮胎模型的特性进行良好描述,不但可以用函数表述轮胎的 转向力、回复力矩和驱动/制动力,也可以直接利用轮胎实验数据。
MF模型简介
MF公式:
Y=y+Sv y=Dsin{Carctan[Bx-E(Bx-arctanBx)]} x=X+Sh 式中, Y表示侧向力或纵向力,X表示侧偏角α 或滑移率k。 B为刚度因子,C为形状因子,D为峰值因子,E为曲率因子Sv为垂 直偏移,Sh为水平偏移。除C外,该公式中的参数都是垂直载荷Fz 和侧偏角α 的函数。 若计算回正力矩 Mz=-t*Fy+Mzr t(αt)=Dtcos[Ctarctan{Btαt-Et(Btαt-arctan(Btαt))}]cos(α) αt = α + Sht Mz表示回正力矩,t为气胎拖矩,Mzr为残余回正力矩。
3
简化与建立合理的轮胎动力学模型对轮 胎新产品的开发和汽车整车性能的分析 有重要作用。
模型分类
轮胎动力学模型分类
理论模型
经验模型

轮胎模型-PPT精品文档

轮胎模型-PPT精品文档

• 二、 用于耐久性分析的轮胎模型
• 三维接触模型,考虑了轮胎胎侧截面的几何特性,并把轮 胎沿宽度方向离散,用等效贯穿体积的方法来计算垂直力, 可以用于三维路面。该模型是一个单独的License,但是如 果用户只购买Durability TIRE,只能用Fiala模型计算操稳。 • 除了上述两类模型以外,还有环模型,作为子午线轮胎的 近似,研究轮胎本身的振动特性,成为国际上仿真轮胎在 短波不平路面动特性的主流模型,是目前发展比较成熟和 得到商业化应用的轮胎模型,其中具有代表性的是F-tire和 SWIFT轮胎模型。
• SWIFT模型(Short Wave Intermediate Frequency TIRE Model) • SWIFT 模型是由荷兰 Delft 工业大学和 TNO 联合开发的,是 一个刚性环模型,在环模型的基础上只考虑轮胎的 0阶转动 和1阶错动这两阶模态,此时轮胎只作整体的刚体运动而并 不发生变形。在只关心轮胎的中低频特性时可满足要求。由 于不需要计算胎体的变形,刚性环模型的计算效率大大提高, 可用于硬件在环仿真进行主动悬架和ABS的开发。在处理面 外动力学问题时,SWIFT使用了魔术公式。
轮胎模型
一、轮胎模型简介 二 、ADAMS/TIRE 三、轮胎的特性文件
严金霞
2009年1月
• 轮胎是汽车重要的部件,它的结构参数和力学特性决定 着汽车的主要行驶性能。轮胎所受的垂直力、 纵向力、 侧向力和回正力矩对汽车的平顺性、 操纵稳定性和安全 性起重要作用。 • 轮胎模型对车辆动力学仿真技术的发展及仿真计算结果 有很大影响,轮胎模型的精度必须与车辆模型精度相匹 配。因此,选用轮胎模型是至关重要的。由于轮胎具有 结构的复杂性和力学性能的非线性,选择符合实际又便 于使用的轮胎模型是建立虚拟样车模型的关键。

轮胎模型

轮胎模型
• 5)Fiala模型 是弹性基础上的梁模型,不考虑外倾和松弛长 度。当不把内倾角作为主要因数且把纵向滑移和横向滑移分 开对待的情况下,对于简单的操纵性分析可得到合理的结果。 • 适用范围:有效频率到0.5Hz,可以用于二维和三维路面, 当与2D路面作用时是点接触;当与3D路面作用时,等效贯 穿体积的方法来计算垂直力。
• 一、轮胎模型简介 • 轮胎建模的方法分为三种: • 1)经验—半经验模型 针对具体轮胎的某一具体特性。目 前广泛应用的有Magic Formula公式和吉林大学郭孔辉院 士利用指数函数建立的描述轮胎六分力特性的统一轮胎半 经验模型UniTire,其主要用于车辆的操纵动力学的研究。 • 2)物理模型 根据轮胎的力学特性,用物理结构去代替轮 胎结构,用物理结构变形看作是轮胎的变形。比较复杂的 物理模型有梁、弦模型。 • 特点是具有解析表达式,能探讨轮胎特性的形成机理。缺 点是精确度较经验—半经验模型差,且梁、弦模型的计算 较繁复。
• 以下的路面模型需要各自软件的安装环境和许可证 • 所有Adams软件中的.xml路面文件;所有的 Simpack™ 路面 模型 ;所有由TYDEX/STI给出的标准道路格式文件;IPG路 面( IPG汽车公司提供的);URM道路(利用简单的程序编 程的道路模型);用户自定义的模型 。 • FTire是高分辨率物理轮胎模型,需要每秒数百万次评价路 面,为了实现空间和时间分辨率,路面模型选择很重要。 RGR路面(规则的栅格路面)是一个高分辨率的路面模型, 它采用等距网格避免寻找三角单元的节点,可选带有弧形中 心线,是特别适合以满足需求的效率,准确性和灵活性的路 面模型。因此,除了简单的几何参数的障碍路面模型,RGR 路面是FTire的首选路面描述方法。
• FTire的优点 • 具有完全的非线性;频率可达120-150Hz甚至更高;对波 长降到轮胎接地尺寸一半的小障碍物,能够得出有效的结 果;具有高精度的轮胎稳态特性;当通过凹凸不平的路面 时,能提供很高的精度;计算时间为实时5-20倍;能识别 很多不同格式的路面文件。

轮胎模型 PPT课件

轮胎模型 PPT课件
• 所有Adams软件中的.xml路面文件;所有的 Simpack™ 路面 模型 ;所有由TYDEX/STI给出的标准道路格式文件;IPG路 面( IPG汽车公司提供的);URM道路(利用简单的程序编 程的道路模型);用户自定义的模型 。
• FTire是高分辨率物理轮胎模型,需要每秒数百万次评价路 面,为了实现空间和时间分辨率,路面模型选择很重要。 RGR路面(规则的栅格路面)是一个高分辨率的路面模型, 它采用等距网格避免寻找三角单元的节点,可选带有弧形中 心线,是特别适合以满足需求的效率,准确性和灵活性的路 面模型。因此,除了简单的几何参数的障碍路面模型,RGR 路面是FTire的首选路面描述方法。
• 5)Fiala模型 是弹性基础上的梁模型,不考虑外倾和松弛长 度。当不把内倾角作为主要因数且把纵向滑移和横向滑移分 开对待的情况下,对于简单的操纵性分析可得到合理的结果。
• 适用范围:有效频率到0.5Hz,可以用于二维和三维路面, 当与2D路面作用时是点接触;当与3D路面作用时,等效贯 穿体积的方法来计算垂直力。
二维路面、三维路面,还支持3D三角网格路面;RGR路面 文件(规则的栅格路面);所有COSIN/ev 路面模型,包括 大量的被参数化的障碍定义的路面文件、滚筒的旋转鼓路 面和空间的试验场地 。 • 这些路面模型可在所有环境中的支持FTire ,且不需要单独 的许可证。
• 以下的路面模型需要各自软件的安装环境和许可证
5.80 MB 5.91 MB
0.21 s
0.28 s
•相对于不规则三角网格路面,RGR道路提供大量和可扩展 的减少文件大小,减小内存的需求,减少文件加载时间和 CPU评价的时间。
• FTire提供了一个辅助程序FTire/roadtools工具箱来产生, 分 析 和 处 理 所 有 的 道 路 文 件 , 包 括 RGR 路 面 模 型 。

ADAMS轮胎模型简介

ADAMS轮胎模型简介

详细介绍轮胎模型,主要是自己做课题时,用到的整理汇总出来的,轮胎这部分的资料比较少的,记录下来帮助大家一起学习一起进步;主要分以下两部分介绍一、轮胎模型简介轮胎是汽车重要的部件,它的结构参数和力学特性决定着汽车的主要行驶性能。

轮胎所受的垂直力、纵向力、侧向力和回正力矩对汽车的平顺性、操纵稳定性和安全性起重要作用。

轮胎模型对车辆动力学仿真技术的发展及仿真计算结果有很大影响,轮胎模型的精度必须与车辆模型精度相匹配。

因此,选用轮胎模型是至关重要的。

由于轮胎具有结构的复杂性和力学性能的非线性,选择符合实际又便于使用的轮胎模型是建立虚拟样车模型的关键。

一、轮胎模型简介轮胎建模的方法分为三种:1)经验—半经验模型针对具体轮胎的某一具体特性。

目前广泛应用的有Magic Formula公式和吉林大学郭孔辉院士利用指数函数建立的描述轮胎六分力特性的统一轮胎半经验模型UniTire,其主要用于车辆的操纵动力学的研究。

2)物理模型根据轮胎的力学特性,用物理结构去代替轮胎结构,用物理结构变形看作是轮胎的变形。

比较复杂的物理模型有梁、弦模型。

特点是具有解析表达式,能探讨轮胎特性的形成机理。

缺点是精确度较经验—半经验模型差,且梁、弦模型的计算较繁复。

3)有限元模型基于对轮胎结构的详细描述 ,包括几何和材料特性,精确的建模能较准确的计算出轮胎的稳态和动态响应。

但是其与地面的接触模型很复杂,占用计算机资源太大,在现阶段应用于不平路面的车辆动力学仿真还不现实,处于研究阶段。

主要用于轮胎的设计与制造二、ADAMS/TIRE轮胎不是刚体也不是柔体,而是一组数学函数。

由于轮胎结构材料和力学性能的复杂性和非线性以及适用工况的多样性,目前还没有一个轮胎模型可适用于所有工况的仿真,每个轮胎模型都有优缺点和适用的范围。

必须根据需要选择合适的轮胎模型。

ADAMS/TIRE分为两大类:一).用于操稳分析的轮胎模型魔术公式是用三角函数的组合公式拟合轮胎试验数据,用一套形式相同的公式完整地表达轮胎的纵向力、侧向力、回正力矩、翻转力矩、阻力矩以及纵向力、侧向力的联合作用工况,主要包括以下的前四种模型。

车辆动力学仿真中的轮胎数学模型研究现状

车辆动力学仿真中的轮胎数学模型研究现状

车辆动力学仿真中的轮胎数学模型研究现状3471039 洛阳工学院 周学建 周志立 张文春 摘要 对车辆动力学仿真中的轮胎数学模型现状进行了分析,简要说明了轮胎动力学建模的新方法并进行了展望。

Abstract The current state of the mathematical m odel of tire dynamics is analysis.The new methods of m odelling are ex2 plained and forecasted. 关键词:车辆 轮胎 动力学 数学模型 车辆的充气轮胎具有支承车辆质量、在车辆驶过不平地面时进行缓冲、为驱动和制动提供足够附着力、提供足够的转向操纵与方向稳定性的作用。

除空气的作用力和重力外,几乎其他影响地面车辆运动的力和力矩皆由轮胎与地面接触而产生。

因此,轮胎动力学特性的研究,对研究车辆性能来说是非常必要的[1]。

车辆运动依赖于轮胎所受的力,如纵向制动力和驱动力、侧向力和侧倾力、回正力矩和侧翻力矩等。

所有这些力都是滑转率、侧偏角、外倾角、垂直载荷、道路摩擦系数和车辆运动速度的函数,如何有效地表达这种函数关系,即建立精确的轮胎动力学数学模型,一直是轮胎动力学研究人员所关心的问题。

轮胎的动力学特性对车辆的动力学特性起着至关重要的作用,特别是对车辆的操纵稳定性、制动安全性、行驶平顺性具有重要的影响。

现代车辆动力学的发展不仅需要建立能反映物理实际的精确轮胎模型,而且需要建立的轮胎数学模型能满足车辆不同方面研究,如多自由度仿真、先进车辆控制系统的需要[2]。

1 轮胎动力学建模方法及研究现状轮胎动力学建模方法有理论方法、经验和半经验方法,建立的模型有理论模型、经验和半经验模型。

1.1 理论模型由于轮胎的结构十分复杂,在侧偏和纵滑时其受力和变形难于确定,另外,轮胎和路面之间的摩擦耦合特性也具有不稳定的多变性。

在目前阶段,很难根据轮胎的物理特性和真实的边界条件来精确地计算轮胎的偏滑特性。

用于车辆动力学仿真的轮胎模型

用于车辆动力学仿真的轮胎模型

SWIFT-Tire Model
非线性的垂直力 轮胎半径随着速度增加而增加 接触点的位移影响垂直力 基于滑移率的非稳态行为 胎体的固有频率 在简单和复杂之间切换
SWIFT-Tire: Example
Vertical force [N] when driving over a cleat
Ir m cv cw
h y
R r
A
X
轮胎的振型
n=0
n=1
n=2
n=3
n=4
柔性环模型的仿真结果
轮辋的质量和转动惯量只影响轮胎的零阶和 一阶模态. 来自于地面的低频振动主要有这两阶模态传 递到轮轴. 轮轴的高频响应主要来自于轮胎与不平路面 的相互作用. 如果只考虑低频振动,可以把轮胎看作一个 刚性环
交通
操稳的研究历史
"With the introduction of Independent Front Suspension … in this country and with the first tire tests on smooth drums, by Goodyear in 1931(by Cap Evans)…, the real study of the steering and handling of cars began." Maurice Olley, 1961
节点的位移通过一些算法来进行插值 每一个胎体单元上有5-10个胎面单元 实际上是3个方向的弹簧和阻尼.
F-Tire 的特征
完全非线性 可以描述面内面外,直到120Hz 波长小于5cm的障碍物 可以描述沿着胎宽的不平 使用静态和模态试验的数据 CPU time ≤ 10 .. 20 * 的实时 在稳态和动态操稳方面也有相当的精度

FTire模型的建立方法研究

FTire模型的建立方法研究

FTire模型的建立方法研究FTire是一款用于汽车动力学和控制的轮胎模型,因其高精度和适用性,得到了广泛的应用。

在使用FTire模型前,需要首先进行模型的建立,本文将介绍FTire模型的建立方法。

FTire模型的建立可以简化为两个步骤:参数标定和模型验证。

参数标定是指在实际试验中,采集轮胎与路面之间的实验数据,并通过这些数据来确定模型的参数;模型验证则是指在建立好模型后,将模型应用到不同的场景中,通过对比模拟结果与实际数据的差异,检测模型的合理性和精度。

在参数标定方面,应该采集的数据包括轮胎侧面刚度、胎面刚度、轮胎质量、转动惯量、摩擦力系数、钢丝束和布帘和胎面的接触半径等。

这些参数可以通过悬架试验和底盘试验来确定,最终得到一组适合该轮胎的参数值。

在模型验证方面,可以将FTire模型应用到车辆动力学仿真中,对比模拟结果和实测数据,以证明模型的精度。

车辆动力学仿真是一项复杂的任务,涉及到车辆运动学、动力学和控制等方面。

在进行仿真测试时,需要考虑到车辆内部的运动学和动力学条件,轮胎与路面之间的接触,以及车辆的控制策略等因素。

在进行参数标定和模型验证时,应该考虑到轮胎本身的特性,比如轮胎的结构、材料等,以及路面的状态、速度等。

此外,由于车辆的特殊性质,如质量分布、尺寸和性能等因素会影响车辆行驶过程中的运动特性和动态响应,这些特征也应该考虑到模型中。

总之,FTire模型的建立是一项复杂的任务,需要精确的试验数据和合理的模型验证过程。

通过正确建立和使用FTire模型,可以有效提高车辆控制精度和安全性,同时也有利于轮胎的设计和制造。

除了参数标定和模型验证,FTire模型的建立还需要考虑其他一些因素。

其中,一个重要的因素是轮胎的变形,即当轮胎在运动过程中承受载荷时,其形状和大小会发生变化。

这些变形会影响到轮胎与路面之间的接触状态,从而影响到行驶性能和控制精度。

因此,在建立FTire模型时,需要将轮胎变形考虑进去,以保证模型的精度。

轮胎模型

轮胎模型

• FTire提供了一个辅助程序FTire/roadtools工具箱来产生, 分 析 和 处 理 所 有 的 道 路 文 件 , 包 括 RGR 路 面 模 型 。 FTire/roadtools易于使用的图形用户界 三维接触模型,考虑了轮胎胎侧截面的几何特性,并把轮 胎沿宽度方向离散,用等效贯穿体积的方法来计算垂直力, 可以用于三维路面。该模型是一个单独的License,但是如 果用户只购买Durability TIRE,只能用Fiala模型计算操稳。 • 除了上述两类模型以外,还有环模型 环模型,作为子午线轮胎的 环模型 近似,研究轮胎本身的振动特性,成为国际上仿真轮胎在 短波不平路面动特性的主流模型,是目前发展比较成熟和 得到商业化应用的轮胎模型,其中具有代表性的是F-tire和 和 SWIFT轮胎模型。 轮胎模型。 轮胎模型
• 适用范围 适用范围:有效频率高达120-150Hz;可用于短波不平路 面,即障碍物的尺寸可以小于轮胎的印迹;可对不同的种 类的振动激励作出响应;可在相对运动的地面和各种各样 的试验台上进行仿真;可在三维路面上进行耐久性分析; 在水平路面和随机路面上对车辆的牵引和操纵性进行仿真 分析;可进行高动力悬浮控制系统对轮胎影响的评估 。 • 主要是针对乘坐舒适性(不平路面的制动、侧偏,不同速 度的越过障碍物以及4柱激励试验台)、耐久性以及操纵 性能(ABS制动时的制动距离,汽车的原地转向等)方面 的应用而设计的。此外,该模型的逼真度、细节和计算速 度之间提供了一个有效的折衷方法,在频域提供了有效地 分析结果,容易从轮胎的测量数据中获得模型参数。
• 可用于研究一些复杂的工况, 例如:不平路面的侧偏和ABS 制动。在处理轮胎-地面的接触问题时, SWIFT采用了等效 路形的方法,所用的等效路形是由一个专门的包容模型算 出来的。所以, SWIFT模型要自带一个包容模型来提供等 效路形,这也是它的缺点之一。 • 适用范围:有效频率为60-100Hz,可用于短波不平路面。 • 注: SWIFT模型所用到的路面模型要有合适的采样间隔, 否则会应用以内插值替换的数据,采样间隔一般为 0.1~0.2 m 或者更大。

Magic_Formula轮胎模型

Magic_Formula轮胎模型
和侧偏角α的函数。 若计算回正力矩 Mz=-t*Fy+Mzr t(αt)=Dtcos[Ctarctan{Btαt-Et(Btαt-arctan(Btαt))}]cos(α) αt = α + Sht Mz表示回正力矩,t为气胎拖矩,Mzr为残余回正力矩。
MF模型简介
输入量:侧偏角α 纵向滑移率κ 侧倾角γ 垂直载荷Fz
输出量:纵向力Fx 侧向力Fy 翻转力 矩Mx 滚动阻力矩My 回正力矩Mz
对于给定的B、C、D 和E,曲线相 对于原点表现为非对称形状。为了 使曲线相对于原点产生一个偏移量, 引入水平偏移和垂直偏移。其中D 为峰值因子;C为形状因子;BCD 代表原点处的斜率;在D和C一定 的情况下,B决定了原点处的斜率, 所以B叫做刚度因子;E为曲率因 子。
MF模型简介
轮胎滑移速度分析:
纵向速度 Vx 侧向速度 Vy 纵向滑移速度 Vsx = Vx – ΩRe 侧向滑移速度 Vsy = Vy 滑移速度 Vs为Vx 与Vy的合量 其中纵向滑移率κ
侧偏角 α
MF模型简介
轮胎滑移力与速度分析:
MF模型简介
MF模型简介
下面简要的介绍下不同工况下MF公式的应用:
1.纯制动/驱动条件 2.纯转向条件 3.联合工况(制动/驱动转向)
MF模型简介
1.纯制动/驱动条件下的纵向滑移情况: 只考虑纵向力及速度,轮胎在转动前进的 同时也存在纵向滑移,二者之比为纵向滑 移率。则纵向力可由纵向滑移率与垂直载 荷求得。
Fx0 D1 sin{C1 arctan[B1 E1(B1 arctan B1 )]}
轮胎模型及Magic Formula模型简介
指导老师:解小华 教授 学生:秦贵军
报告内容
1 轮胎模型研究背景

ADAMS轮胎模型简介

ADAMS轮胎模型简介

详细介绍轮胎模型,主要是自己做课题时,用到的整理汇总出来的,轮胎这部分的资料比较少的,记录下来帮助大家一起学习一起进步;主要分以下两部分介绍一、轮胎模型简介轮胎是汽车重要的部件,它的结构参数和力学特性决定着汽车的主要行驶性能。

轮胎所受的垂直力、纵向力、侧向力和回正力矩对汽车的平顺性、操纵稳定性和安全性起重要作用。

轮胎模型对车辆动力学仿真技术的发展及仿真计算结果有很大影响,轮胎模型的精度必须与车辆模型精度相匹配。

因此,选用轮胎模型是至关重要的。

由于轮胎具有结构的复杂性和力学性能的非线性,选择符合实际又便于使用的轮胎模型是建立虚拟样车模型的关键。

一、轮胎模型简介轮胎建模的方法分为三种:1)经验—半经验模型针对具体轮胎的某一具体特性。

目前广泛应用的有 Magic Formula公式和吉林大学郭孔辉院士利用指数函数建立的描述轮胎六分力特性的统一轮胎半经验模型UniTire ,其主要用于车辆的操纵动力学的研究。

2)物理模型根据轮胎的力学特性,用物理结构去代替轮胎结构,用物理结构变形看作是轮胎的变形。

比较复杂的物理模型有梁、弦模型。

特点是具有解析表达式,能探讨轮胎特性的形成机理。

缺点是精确度较经验—半经验模型差,且梁、弦模型的计算较繁复。

3)有限元模型基于对轮胎结构的详细描述 , 包括几何和材料特性,精确的建模能较准确的计算出轮胎的稳态和动态响应。

但是其与地面的接触模型很复杂,占用计算机资源太大,在现阶段应用于不平路面的车辆动力学仿真还不现实,处于研究阶段。

主要用于轮胎的设计与制造二、 ADAMS/TIRE轮胎不是刚体也不是柔体,而是一组数学函数。

由于轮胎结构材料和力学性能的复杂性和非线性以及适用工况的多样性,目前还没有一个轮胎模型可适用于所有工况的仿真,每个轮胎模型都有优缺点和适用的范围。

必须根据需要选择合适的轮胎模型。

ADAMS/TIRE分为两大类:一) .用于操稳分析的轮胎模型魔术公式是用三角函数的组合公式拟合轮胎试验数据,用一套形式相同的公式完整地表达轮胎的纵向力、侧向力、回正力矩、翻转力矩、阻力矩以及纵向力、侧向力的联合作用工况,主要包括以下的前四种模型。

ABS数学模型

ABS数学模型

在建立车辆动力学模型时,我们对其做如下假设:1.汽车行驶在水平公路上,道路无起伏;2.忽略空气阻力和滚动阻力的影响;3.忽略汽车的俯仰、侧倾和垂向运动;4.各个轮胎的机械特性相同;5.不考虑载荷转移,汽车质量均匀地分布在每个车轮上。

1.车辆动力学模型(整车)由图1可得车辆动力学方程为车辆运动方程:F vM -= . (1) 车轮运动方程:b T FR I -=ω. (2) 车辆纵向摩擦力:N F μ=. (3)式中:M 为1/4车辆的质量(kg),v 为车辆行驶速度(m/s),F 为纵向摩擦力(N),I 为车轮的转动惯量(2m kg ⋅),ω为车轮角速度(rad/s),R 为车轮行驶半径(m),b T 为制动器制动力矩(N ·m),μ为纵向附着系数,N 为地面支持力(N)。

图1 车辆受力分析图根据式(1)、(2)和(3) 建立Simulink 仿真模型,输入为制动力和纵向附着系数, 输出为车辆速度、车轮转速及制动距离, 仿真模型如图2所示图2 车辆动力学仿真模型2.轮胎模型轮胎模型是指制动过程中轮胎附着力和其它各种参数之间的函数关系式,通常用轮胎附着系数与各种参数的函数关系式来表示。

而影响附着系数的因素很多,如前所述.除滑移率外,道路的材料、路面的状况与轮胎的结构、胎面花纹、材料以及汽车运动速度等都是影响因素。

但在实际应用中,很难得出上述多种变量对附着系数影响的关系式,而较为实际与合理的办法则是只考虑对附着系数影响较大的因素,建立附着系数的计算表达式。

经典的轮胎模型有魔术公式轮胎模型、双线性模型、Dugoff轮胎模型和Burckhardt轮胎模型等,这里采取应用比较广泛的双线性模型。

图3 纵向附着系数μ 与滑移率S 的关系曲线根据上图,推导出双线性轮胎模型的数学表达式为:................................................................................................................11h opt opt hg opt h g optopt opt S S S S S S S S S S μμμμμμμ⎧=⋅≤⎪⎪⎨-⋅-⎪=-⋅>⎪--⎩(4)基于本课题的研究目的,我们采用双线性模型分别模拟三种典型路面的 曲线,并应用于汽车防抱制动系统的控制仿真模型中。

轮胎动力学特性及模型分析

轮胎动力学特性及模型分析
3 轮胎模型
在对车辆操纵稳定性的稳态特性进行仿真时,可以使用由 H.B.Pacejka教授提出的魔术公式来对轮胎实验数据进行拟合。魔术公 式是一组三角函数组合公式,在侧向加速度≤0.4 g、侧偏角≤5º情况 下,对普通轮胎有很高的拟合精度[4]。纵向力学特性方程如下。
(1) 侧向力学特性方程如下。
(2) 回正力矩力学特性方程如下。
1 轮胎模型基本参数
轮胎基本尺寸常标于轮胎侧面,如195/55R16,其中195代表轮 胎名义断面宽度为195 mm;55代表轮胎扁平比,是轮胎高度与名义 断面宽度之比;R代表子午线轮胎;16代表轮辋直径[1]。轮胎模型的 基本参数为名义载荷、空载轮胎半径、名义气压和车轮质量。
2 轮胎动力学特性 2.1 纵向力学特性
加速和制动时所需的摩擦力来自于轮胎滚动速度和行驶速度之 间的差值,这个差值可以用滑动率κ来进行表示。车轮自由滚动时其 滑动率为0%,车轮抱死时滑动率为100%。干路面上,轮胎刚开始 滑动时,能够产生的摩擦力随滑动率增加而显著增加,在滑动率接近 15%~20%时,其附着力达到最大值。滑动率超过该点抱死车轮的车辆,在干路面上能够缩短制动距离的理论依据。 2.2 侧向力学特性
轮胎回正力矩有别于由主销后倾导致的回正力矩,轮胎回正力矩 是由于充气轮胎前进过程中,接触区相对车轮接触中心不对称变形导致 的。车轮实际接触位置一般在车轮平面以后,车轮受到的侧向力所形成 的合力作用点,位于轮胎接地印迹几何中心后方,该偏移距离称为“充气 轮胎拖距(pneumatic trail)”,回正力矩大小等于侧向力×轮胎拖距。轮胎 产生的回正力矩本身对车辆影响较小,但由于其作用于转向系统,通过 转向系统而引起转向变形角,可对车辆转向不足梯度产生重要影响。 2.4 附着椭圆

汽车动力学仿真中轮胎模型的建模

汽车动力学仿真中轮胎模型的建模

轮胎是汽车与地面相互作用的载体,汽车与地 面的相互作用完全依靠弹性轮胎来实现,轮胎的结 构参数和力学特性决定着汽车的主要性能,在任何 整车动力学模型中,轮胎模型都是一个重要的部 分,其精确程度必须与车辆模型的精度相匹配。汽 车轮胎模型大致可分为经验模型、半经验模型和理 论模型3类【l J。经验模型或半经验模型对特定轮 胎的计算精度高,但往往需要大量的由专业轮胎测 试机构所给出的实验数据,因此通用性差,成本高, 给其应用带来了极大的不便。目前广泛认可的有 Pacejka提出的Magic Fonnula经验模型口。o和我 国郭孔辉院士建立的描述轮胎6分力特性的统一 轮胎半经验模型_4 J。理化模型是根据轮胎的力学 特性,通过对物理结构和形变机制的数学描述,来 建立轮胎剪切力和回正力矩与相应参数的函数关 系。最具代表性的轮胎纯理化模型是Gim模型, 该模型具有公式简洁,不需要实验数据拟合,基本 能体现轮胎力的特性趋势,通用性强的优点¨。6 J。 此外,该模型还具有在车轮大侧偏角运动时其计算 精度远远优于其他轮胎模型的特点"j。 在目前车辆动力学的研究中应用较多的仍是 经验轮胎模型,但限于数据获取的难度或实验成本 的限制,研究者所获得的实验数据通常很不完善 (譬如缺乏不同的路面附着系数与不同载荷下的
000
g 搿2 000

000

20 40

泔移率/%
80
100
纵向力Fx/N
(a)轮胎力随滑移率与侧偏角变化关系 图8
(b)纵向轮胎力与横向轮胎力关系
Gim轮胎模型仿真结果
在图8(a)中体现出来的轮胎力随滑移率的变 化趋势,以及轮胎力随侧偏角的变化趋势与很多文 献中的研究结果(包括理论与实验结果)是相符 万方数据
・现代设计与先进制造技术・

车辆操纵动力学中轮胎模型的研究

车辆操纵动力学中轮胎模型的研究

在车辆操纵动力学模型中轮胎模型的研究一、轮胎力学特性和建模的研究历史与现状轮胎动态特性的研究可以追溯到上个世纪三十年代,Bradly和Allen(1931)为了研究汽车的动态特性,开始涉及到轮胎的动态特性。

接着又有很多科学家致力于轮胎动态特性的研究,德国的Fromm(1941)对轮胎结构进行了简化,推导出了描述轮胎侧偏特性的简单理论模型,第一次对轮胎的侧偏特性进行了理论研究。

Fiala(1954)在弹性“梁”模型的基础上,建立了侧向力,回正力矩与侧偏角和外倾角的关系。

在以后的几十年中,Fiala的理论模型得到了进一步的研究和改进。

Frank(1965)在Fiala理论模型的基础上,把胎体看作一个受弯曲的梁,研究了胎体弯曲对轮胎特性的影响。

从六十年代开始,Pacejka将胎体的变形简化为受拉的“弦”,对轮胎的静态和动态特性进行了大量的理论和试验研究。

并在后来(1989,1991)对模型进行了进一步的改进和发展,形成了著名的“Magic Formula”模型。

Sharp(1986)提出了轮辐式轮胎模型,将轮胎看作完全由相同的径向轮辐组成,这些轮辐与轮毂连接在一起,而且具有弹性。

轮辐的周期性变化会导致迟滞损失。

建立了与实际相当吻合的轮胎模型。

九十年代初,随着汽车先进底盘控制技术,虚拟原型设计以及计算机辅助工程等先进技术的飞速发展,轮胎的动态力学特性研究受到了广泛的重视。

有很多科学家致力于动态特性的研究,也得到了飞速的发展。

我国郭孔辉教授领导的科研小组二十几年来一直致力于轮胎力学特性的理论和试验研究,自行开发了具有多种功能的轮胎力学特性试验台,并利用该试验台在试验研究和理论研究上取得了重大突破。

郭孔辉教授(1986)建立了具有任意印迹压力分布的轮船侧偏特性简化理论模型。

并在该模型基础上先后推导出了纵滑侧偏特性简化理论模刑(1986),用于汽车转向,制动与驱动动态仿真的统一模型(1986),并在大量试验和理论研究的基础上提出了一种适用于较大载荷和侧偏角变化范围的轮胎侧偏特性半经验模型(1986)。

ADAMS轮胎模型简介

ADAMS轮胎模型简介

详细介绍轮胎模型,主要是自己做课题时,用到的整理汇总出来的,轮胎这部分的资料比较少的,记录下来帮助大家一起学习一起进步;主要分以下两部分介绍一、轮胎模型简介轮胎是汽车重要的部件,它的结构参数和力学特性决定着汽车的主要行驶性能。

轮胎所受的垂直力、纵向力、侧向力和回正力矩对汽车的平顺性、操纵稳定性和安全性起重要作用。

轮胎模型对车辆动力学仿真技术的发展及仿真计算结果有很大影响,轮胎模型的精度必须与车辆模型精度相匹配。

因此,选用轮胎模型是至关重要的。

由于轮胎具有结构的复杂性和力学性能的非线性,选择符合实际又便于使用的轮胎模型是建立虚拟样车模型的关键。

一、轮胎模型简介轮胎建模的方法分为三种:1)经验—半经验模型针对具体轮胎的某一具体特性。

目前广泛应用的有Magic Formula公式和吉林大学郭孔辉院士利用指数函数建立的描述轮胎六分力特性的统一轮胎半经验模型UniTire,其主要用于车辆的操纵动力学的研究。

2)物理模型根据轮胎的力学特性,用物理结构去代替轮胎结构,用物理结构变形看作是轮胎的变形。

比较复杂的物理模型有梁、弦模型。

特点是具有解析表达式,能探讨轮胎特性的形成机理。

缺点是精确度较经验—半经验模型差,且梁、弦模型的计算较繁复。

3)有限元模型基于对轮胎结构的详细描述,包括几何和材料特性,精确的建模能较准确的计算出轮胎的稳态和动态响应。

但是其与地面的接触模型很复杂,占用计算机资源太大,在现阶段应用于不平路面的车辆动力学仿真还不现实,处于研究阶段。

主要用于轮胎的设计与制造二、ADAMS/TIRE轮胎不是刚体也不是柔体,而是一组数学函数。

由于轮胎结构材料和力学性能的复杂性和非线性以及适用工况的多样性,目前还没有一个轮胎模型可适用于所有工况的仿真,每个轮胎模型都有优缺点和适用的范围。

必须根据需要选择合适的轮胎模型。

ADAMS/TIRE分为两大类:一).用于操稳分析的轮胎模型魔术公式是用三角函数的组合公式拟合轮胎试验数据,用一套形式相同的公式完整地表达轮胎的纵向力、侧向力、回正力矩、翻转力矩、阻力矩以及纵向力、侧向力的联合作用工况,主要包括以下的前四种模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档