2019-2020学年东莞市东华初级中学七年级上学期期末数学试卷解析版
2019-2020学年广东省东莞市七年级上期末数学模拟试卷及答案解析
2019-2020学年广东省东莞市七年级上期末数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则这个方程的解是()A.x=0B.x=3C.x=﹣3D.x=22.如果方程2x+8=﹣6与关于x的方程2x﹣3a=﹣5的解相同,则a的值为()A.13B.3C.﹣3D.83.方程2x+1=0的解是()A.B.C.2D.﹣24.如图,有四个大小相同的小长方形和两个大小相同的大长方形按如图位置摆放,按照图中所示尺寸,则小长方形的长与宽的差是()A.3b﹣2a B.C.D.5.在有理数范围内定义运算“*”,其规则为,则方程程4*x=4的解为()A.﹣3B.3C.2D.46.如果关于x的方程(a﹣3)x=2019有解那么实数a的取值范围是()A.a<3B.a=3C.a>3D.a≠37.已知x﹣2y﹣5=0,则﹣x+2y+8=()A.﹣3B.3C.13D.﹣138.小宝今年5岁,妈妈35岁,()年后,妈妈的年龄是小宝的2倍.A.30B.20C.10D.以上都不对9.下列解方程去分母正确的是()A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2 y﹣15=3yD.由,得3(y+1)=2 y+610.某家电公司销售某种型号的彩电,一月份销售每部彩电的利润是售价的25%,二月份每部彩电的售价调低10%而进价不变,销售件数比一月份增加80%.那么该公司二月份销售彩电的利润总额比一月份利润总额增长()A.2%B.8%C.40.5%D.62%二.填空题(共5小题,满分15分,每小题3分)11.如果﹣3x2a﹣1+6=0是关于x的一元一次方程,那么a=.12.已知2x+4与3x﹣2互为相反数,则x=.13.如果方程﹣3x2﹣m+2=0是一元一次方程,则m=.14.若a与b互为相反数,c与d互为倒数,P的绝对值等于4,则关于x的方程(a+b)x2+5cdx ﹣p2=0的解为.15.今年国庆长假期间,“富万家”超市某商品按标价打八折销售,小玲购了一件该商品,付款56元,则该项商品的标价为元.三.解答题(共8小题)16.解方程:(1)3x+7=32﹣2x;(2)4x﹣3(20﹣x)+4=0;(3);(4)=2﹣;17.解方程:(1)4x﹣3(20﹣x)=3(2)﹣1=18.方程x﹣7=0与方程5x﹣2(x+k)=2x﹣1的解相同,求代数式k2﹣5k﹣3的值.19.已知关于x的方程ax+=的解是正整数,求正整数a的值,并求出此时方程的解.20.现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.。
2019-2020学年七年级(上)期末考试数学试卷(解析版)
2019-2020学年七年级(上)期末考试数学试卷一、选择题(每小题3分,共30分)1.计算1+(﹣2)的正确结果是()A.﹣2 B.﹣1 C.1 D.32.﹣2019的相反数是()A.﹣2019 B.2019 C.﹣D.3.观察下列实物模型,其形状是圆柱体的是()A.B.C.D.4.温度先上升6℃,再上升﹣3℃的意义是()A.温度先上升6℃,再上升3℃B.温度先上升﹣6℃,再上升﹣3℃C.温度先上升6℃,再下降3℃D.无法确定5.把(﹣)÷(﹣)转化为乘法是()A.(﹣)×B.(﹣)×C.(﹣)×(﹣)D.(﹣)×(﹣)6.某学习小组为了了解本校2000名学生的视力情况,随机抽查了500名学生,其中有200名学生近视.对于这个问题上,下列说法中正确的是()A.每名学生是总体的一个个体B.样本容量是500C.样本是500名学生D.该校一定有1000名学生近视7.若a为有理数,且|a|=2,那么a是()A.2 B.﹣2 C.2或﹣2 D.48.某校购进价格a元的排球100个,价格b元的篮球50个,则该校一共需支付()A.100a+50b B.100a﹣50b C.50a+100b D.50a+100b 9.下列说法正确的是()A.多项式x2+2x2y+1是二次三项式B.单项式2x2y的次数是2C.0是单项式D.单项式﹣3πx2y的系数是﹣310.王先生到银行存了一笔三年期的定期存款,年利率是4.25%,若到期后取出得到本息和(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4.25%x)=33825二、填空题(每小题3分,共15分)11.比较大小:1 ﹣2(填“>,<或=”)12.把(﹣8)+(﹣5)﹣(﹣2)写成省略括号的和的形式是.13.2018年前三季度,我市社会消费品零售总额为19400000000元,该数据用科学记数法可表示为.14.“□”“△”“〇”各代表一种物品,其质量关系由下面两个天平给出(左右平衡状态),如果“〇”的质量是4kg,那么“□”的质量是千克.15.食品店一周中的盈亏情况如下(盈余为正):132元,﹣12.5元,﹣10.5元,127元,﹣87元,136.5元,98元.则该食品店这一周共盈余了元.三、解答题(共55分,解答应写出必要的文字说明,演算步骤或推理过程)16.(5分)计算:﹣32﹣(﹣2)3+4÷2×2.17.(5分)解方程:﹣=1.18.(7分)先化简,再求值:3(m2n﹣mn)﹣6(m2n﹣mn),其中m=1,n=2.19.(7分)甲、乙两列火车从相距480km的A、B两地同时出发,相向而行,甲车每小时行80km,乙车每小时行70km,问多少小时后两车相距30km?20.(7分)在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了名学生;(2)被调查的学生中,最喜爱丁类图书的有人,最喜爱甲类图书的人数占本次被调查人数的%;(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.21.(8分)如图所示,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON=90°,∠AOC=50°.(1)求∠AON的度数.(2)写出∠DON的余角.22.(8分)已知平面上四点A,B,C,D,如图:(1)请按要求画图:①画直线AB,射线CD;②画射线AD,连接BC;③直线AB与射线CD相交于E;④连接AC、BD相交于点F.(2)根据以上作图,请判断下列位置关系:①点C与直线AB;②点E与直线CD;③直线AB与直线CD.23.(8分)方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?参考答案一、选择题1.计算1+(﹣2)的正确结果是()A.﹣2 B.﹣1 C.1 D.3【分析】绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.解:1+(﹣2)=﹣(2﹣1)=﹣1.故选:B.【点评】本题主要考查的是有理数的加法法则,熟练掌握有理数的加法法则是解题的关键.2.﹣2019的相反数是()A.﹣2019 B.2019 C.﹣D.【分析】直接利用相反数的定义分析得出答案.解:﹣2019的相反数是:2019.故选:B.【点评】此题主要考查了相反数,正确把握定义是解题关键.3.观察下列实物模型,其形状是圆柱体的是()A.B.C.D.【分析】熟悉立体图形的基本概念和特性即可解.解:圆柱的上下底面都是圆,所以正确的是D.故选D.【点评】熟记常见圆柱体的特征,是解决此类问题的关键.4.温度先上升6℃,再上升﹣3℃的意义是()A.温度先上升6℃,再上升3℃B.温度先上升﹣6℃,再上升﹣3℃C.温度先上升6℃,再下降3℃D.无法确定【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.上升﹣3℃的意义是下降3℃.解:温度先上升6℃,再上升﹣3℃的意义是温度先上升6℃,再下降3℃.故选:C.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.5.把(﹣)÷(﹣)转化为乘法是()A.(﹣)×B.(﹣)×C.(﹣)×(﹣)D.(﹣)×(﹣)【分析】根据除以一个不等于0的数,等于乘这个数的倒数可得.解:把(﹣)÷(﹣)转化为乘法是(﹣)×(﹣),故选:D .【点评】本题主要考查有理数的除法,解题的关键是掌握有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.6.某学习小组为了了解本校2000名学生的视力情况,随机抽查了500名学生,其中有200名学生近视.对于这个问题上,下列说法中正确的是( )A .每名学生是总体的一个个体B .样本容量是500C .样本是500名学生D .该校一定有1000名学生近视【分析】根据总体,样本,个体,样本容量的定义写出即可.解:A .每名学生的视力情况是总体的一个个体,此选项错误;B .样本容量是500,此选项正确;C .样本是500名学生的视力情况,此选项错误;D .该校大约有800名学生近视,此选项错误;故选:B .【点评】本题考查了对总体,样本,个体,样本容量的理解和运用,关键是能根据定义说出一个事件的总体,样本,个体,样本容量.7.若a 为有理数,且|a |=2,那么a 是( )A .2B .﹣2C .2或﹣2D .4【分析】利用绝对值的代数意义求出a 的值即可.解:若a 为有理数,且|a |=2,那么a 是2或﹣2,故选:C.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.8.(3分)某校购进价格a元的排球100个,价格b元的篮球50个,则该校一共需支付()A.100a+50b B.100a﹣50b C.50a+100b D.50a+100b 【分析】由总价=单价×数量,可用含a,b的代数式表示出需付金额,此题得解.解:依题意,需付(100a+50b)元.故选:A.【点评】本题考查了列代数式,根据数量之间的关系,利用含a,b的代数式表示出需付总金额是解题的关键.9.下列说法正确的是()A.多项式x2+2x2y+1是二次三项式B.单项式2x2y的次数是2C.0是单项式D.单项式﹣3πx2y的系数是﹣3【分析】根据多项式、单项式、系数、常数项的定义分别进行判断,即可求出答案.解:A.多项式x2+2x2y+1是三次三项式,此选项错误;B.单项式2x2y的次数是3,此选项错误;C.0是单项式,此选项正确;D.单项式﹣3πx2y的系数是﹣3π,此选项错误;故选:C.【点评】此题考查了多项式、单项式;把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.10.王先生到银行存了一笔三年期的定期存款,年利率是4.25%,若到期后取出得到本息和(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是()A.x+3×4.25%x=33825 B.x+4.25%x=33825C.3×4.25%x=33825 D.3(x+4.25%x)=33825【分析】根据“利息=本金×利率×时间”(利率和时间应对应),代入数值,计算即可得出结论.解:设王先生存入的本金为x元,根据题意得出:x+3×4.25%x=33825;故选:A.【点评】此题主要考查了一元一次方程的应用,计算的关键是根据利息、利率、时间和本金的关系,进行计算即可.二、填空题(每小题3分,共15分)11.比较大小:1 >﹣2(填“>,<或=”)【分析】根据有理数的大小比较法则比较即可.解:∵负数都小于正数,∴1>﹣2,故答案为:>.【点评】本题考查了对有理数的大小比较法则的应用,注意:负数都小于正数.12.把(﹣8)+(﹣5)﹣(﹣2)写成省略括号的和的形式是﹣8﹣5+2 .【分析】根据有理数的运算法则即可求出答案.解:原式=﹣8﹣5+2,故答案为:﹣8﹣5+2.【点评】本题考查有理数的运算,解题的关键熟练运用有理数的运算法则,本题属于基础题型.13.2018年前三季度,我市社会消费品零售总额为19400000000元,该数据用科学记数法可表示为 1.94×1010.【分析】根据科学记数法的表示方法:a×10n,可得答案.解:19400000000用科学记数法表示为:1.94×1010,故答案为:1.94×1010.【点评】本题考查了科学记数法,确定n的值是解题关键,n是整数数位减1.14.“□”“△”“〇”各代表一种物品,其质量关系由下面两个天平给出(左右平衡状态),如果“〇”的质量是4kg,那么“□”的质量是9 千克.【分析】设△的质量为xkg,□的质量为ykg,根据图示,列出关于x和y的二元一次方程组,解之即可.解:设△的质量为xkg,□的质量为ykg,根据题意得:,解得:,即□的质量为9kg.【点评】本题考查了等式的性质,正确掌握等式的性质是解题的关键.15.食品店一周中的盈亏情况如下(盈余为正):132元,﹣12.5元,﹣10.5元,127元,﹣87元,136.5元,98元.则该食品店这一周共盈余了383.5 元.【分析】利用有理数的加法求出已知各数的和即可求出一周总的盈亏情况.解:132+(﹣12.5)+(﹣10.5)+127+(﹣87)+136.5+98=132﹣12.5﹣10.5+127﹣87+136.5+98=132+98+127﹣87+136.5﹣12.5﹣10.5=230+40+113.5=383.5;答:这一周食品店的盈余了383.5元.故答案为:383.5.【点评】此题主要考查了正数和负数及有理数加法在实际生活中的应用,解题的关键是熟练掌握有理数的加法法则.三、解答题(共55分,解答应写出必要的文字说明,演算步骤或推理过程)16.(5分)计算:﹣32﹣(﹣2)3+4÷2×2.【分析】根据有理数的乘除法和加减法可以解答本题.解:﹣32﹣(﹣2)3+4÷2×2=﹣9﹣(﹣8)+4=﹣9+8+4=3.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.(5分)解方程:﹣=1.【分析】依次去分母、去括号、移项、合并同类项、系数化为1可得.解:2(x﹣3)﹣3(4x+1)=6,2x﹣6﹣12x﹣3=6,2x﹣12x=6+6+3,﹣10x=15,x=﹣.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1.18.(7分)先化简,再求值:3(m2n﹣mn)﹣6(m2n﹣mn),其中m=1,n=2.【分析】先算乘法,再合并同类项,最后代入求出即可.解:原式=3m2n﹣3mn﹣6m2n+4mn=﹣3m2n+mn,当m=1,n=2时,原式=﹣3×12×2+1×2=﹣6+2=﹣4.【点评】本题主要考查整式的化简求值,解题的关键是掌握去括号和合并同类项法则.19.(7分)甲、乙两列火车从相距480km的A、B两地同时出发,相向而行,甲车每小时行80km,乙车每小时行70km,问多少小时后两车相距30km?【分析】设x小时后两车相距30km,根据相距30km有两种情况分别列出方程求出即可.解:设x小时后两车相距30km,根据题意,得:(80+70)x=480﹣30或(80+70)x=480+30,解得:x=3或.答:3小时或小时后两车相距30km.【点评】此题主要考查了一元一次方程的应用,根据两车相距30km分类讨论得出是解题关键.20.(7分)在我市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了200 名学生;(2)被调查的学生中,最喜爱丁类图书的有15 人,最喜爱甲类图书的人数占本次被调查人数的40 %;(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.【分析】(1)根据百分比=频数÷总数可得共调查的学生数;(2)最喜爱丁类图书的学生数=总数减去喜欢甲、乙、丙三类图书的人数即可;再根据百分比=频数÷总数计算可得最喜爱甲类图书的人数所占百分比;(3)设男生人数为x人,则女生人数为1.5x人,由题意得方程x+1.5x=1500×20%,解出x的值可得答案.解:(1)共调查的学生数:40÷20%=200(人);故答案为:50;(2)最喜爱丁类图书的学生数:200﹣80﹣65﹣40=15(人);最喜爱甲类图书的人数所占百分比:80÷200×100%=40%;故答案为:15,40;(3)设男生人数为x人,则女生人数为1.5x人,由题意得:x+1.5x=1500×20%,解得:x=120,当x=120时,1.5x=180.答:该校最喜爱丙类图书的女生和男生分别有180人,120人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)如图所示,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON=90°,∠AOC=50°.(1)求∠AON的度数.(2)写出∠DON的余角.【分析】(1)根据角平分线的定义求出∠MOB的度数,根据邻补角的性质计算即可.(2)根据题意得到:∠DOM为∠DON的余角.解:(1)∵∠AOC+∠AOD=∠AOD+∠BOD=180°,∴∠BOD=∠AOC=50°,∵OM平分∠BOD,∴∠BOM=∠DOM=25°,又由∠MON=90°,∴∠AON=180°﹣(∠MON+∠BOM)=180°﹣(90°+25°)=65°;(2)由∠DON+∠DOM=∠MON=90°知∠DOM为∠DON的余角,∵∠AON+∠BOM=90°,∠DOM=∠MOB,∴∠AON+∠DOM=90°,∴∠NOD+∠BOM=90°,故∠DON的余角为:∠DOM,∠BOM.【点评】本题考查的是邻补角的概念以及角平分线的定义,掌握邻补角的性质是邻补角互补是解题的关键.22.(8分)已知平面上四点A,B,C,D,如图:(1)请按要求画图:①画直线AB,射线CD;②画射线AD,连接BC;③直线AB与射线CD相交于E;④连接AC、BD相交于点F.(2)根据以上作图,请判断下列位置关系:①点C与直线AB;②点E与直线CD;③直线AB与直线CD.【分析】(1)根据直线、射线及线段的定义作图可得;(2)结合图形,依据点与直线的位置关系和直线与直线的位置关系逐一判断即可得.解:(1)如图所示:(2)由图知,①点C在直线AB外;②点E在直线CD上;③直线AB与直线CD相交.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握直线、射线及线段的定义和点与直线、直线与直线的位置关系.23.(8分)方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?【分析】第一个窗户射进的阳光的面积=长方形面积﹣半径为的一个半圆的面积;第二个窗户射进的阳光的面积=长方形面积﹣半径为的2个圆的面积.解:第一个窗户射进的阳光的面积为ab﹣×π()2=ab﹣第二个窗户射进的阳光的面积为ab﹣2×π()2=ab﹣∵>∴第一个窗户射进的阳光的面积<第二个窗户射进的阳光的面积.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.要能根据图形得到窗户射进的阳光的面积的计算公式.。
(4份试卷汇总)2019-2020学年广东省东莞市数学七年级(上)期末联考模拟试题
2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,C ,D 是线段 AB 上两点,若 CB=4cm ,DB=7cm ,且 D 是 AC 的中点,则 AB 的长等于( )A.6cmB.7cmC.10cmD.11cm2.甲乙两人各用一张正方形的纸片ABCD 折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC 折叠,使B 点落在D 点上,则∠1=45°.乙:将纸片沿AM 、AN 折叠,分别使B 、D 落在对角线AC 上的一点P ,则∠MAN=45°. 对于两人的做法,下列判断正确的是() A .甲乙都对B .甲对乙错C .甲错乙对D .甲乙都错3.平面内有n 条直线(n≥2),这n 条直线两两相交,最多可以得到a 个交点,最少可以得到b 个交点,则a+b 的值是( ) A.()1n n -B.21n n -+C.22n n -D.222n n -+4.“某幼儿园给小朋友分苹果,若每个小朋友分3个则剩1个;若每个小朋友分4个则少2个,问苹果有多少个?”若设共有x 个苹果,则列出的方程是( ) A.3x 14x 2+=-B.3x 14x 2-=+C.x 1x 234-+= D.x 1x 234+-= 5.同学们,足球是世界上第一大运动,你热爱足球运动吗?已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队共踢了30场比赛,负了9场,共得47分,那么这个队胜了( ) A .10场B .11场C .12场D .13场6.若单项式2x 3y 2m与﹣3x n y 2的差仍是单项式,则m+n 的值是( ) A .2 B .3 C .4 D .57.一个多项式减去x 2﹣2y 2等于x 2+y 2,则这个多项式是( ) A .﹣2x 2+y 2 B .2x 2﹣y 2 C .x 2﹣2y 2 D .﹣x 2+2y 28.下列图形都是由同样大小的矩形按一定的规律组成,其中,第①个图形中一共有6个矩形,第②个图形中一共有11个矩形,……,按此规律,第⑧个图形中矩形的个数为( )A .31B .30C .28D .259.13的相反数是( ) A.13 B.-13C.3D.-310.有理数a 、b 在数轴上的位置如图所示,则下列各式中错误的是( )A.b <aB.|b|>|a|C.a+b >0D.a-b >011.2018的相反数是( ) A.12018B.2018C.-2018D.12018-12.某项工程,甲单独做30天完成,乙单独做40天完成,若乙先单独做15天,剩下的由甲完成,问甲、乙一共用几天完成工程?若设甲、乙共用x 天完成,则符合题意的是( ) A.151513040x -+= B.151513040x ++= C.1513040x x++= D.1513040x x-+= 二、填空题13.如图,∠AOB=90°,∠AOC=2∠BOC ,则∠BOC=__________°.14.如图,C 、D 两点将线段AB 分成2:3:4三部分,E 为线段AB 的中点,10AD cm =,则线段DE =______cm .15.若5x 2m y 2和-7x 6 y n是同类项,则m +n=_______ .16.若a+b=2019,c+d=-5,则代数式(a-2c )-(2d-b )=______. 17.若代数式2x +和3x +互为相反数,则x =____________. 18.比较大小:34-________ ﹣0.65(填“<”、“>”或“=”) 19.如果m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式m 2015+2016n+c 2017的值为20.已知代数式x+2y 的值是3,则代数式2x+4y+1的值是 . 三、解答题21.34°25′20″×3+35°42′.22.已知:点C ,D 是直线AB 上的两动点,且点C 在点D 左侧,点M ,N 分别是线段AC 、BD 的中点.(1)如图,点C 、D 在线段AB 上. ①若AC=10,CD=4,DB=6,求线段MN 的长; ②若AB=20,CD=4,求线段MN 的长;(2)点C 、D 在直线AB 上,AB=m ,CD=n ,且m >n ,请直接写出线段MN 的长(用含有m ,n 的代数式表示).23.甲乙两车间共120人,其中甲车间人数比乙车间人数的4倍少5人. (1)求甲、乙两车间各有多少人?(2)若从甲、乙两车间分别抽调工人,组成丙车间研制新产品,并使甲、乙、丙三个车间的人数比为13∶4∶7,那么甲、乙两车间要分别抽调多少工人?24.如果方程的解与关于x 的方程4x -(3a +1)=6x +2a -1的解相同,求式子a -的值.25.大客车上原有(3a -b )人,中途下去一半人,又上车若干人,使车上共有乘客(8a -5b )人,问中途上车乘客是多少人?当a =10,b =8时,上车乘客是多少人? 26.先化简,再求值:5(3a 2b-ab 2)-4(-ab 2+3a 2b ),其中a=12,b=-13. 27.计算:(﹣6)2×(12﹣13). 28.计算:(1)225(3)()39⎡⎤-⨯-+-⎢⎥⎣⎦;(2)62311(10.5)2(3)5⎡⎤---⨯⨯+-⎣⎦【参考答案】*** 一、选择题 1.C 2.A 3.D 4.C 5.D 6.C 7.B 8.A 9.B 10.C 11.C 12.A 二、填空题 13.30 14.1cm 15.5 16.202917. SKIPIF 1 < 0 解析:52- 18.< 19.0 20. 三、解答题 21.138°58′22.(1)①12;②12;(2)2m n+. 23.(1) 甲有95,乙有25 ;(2) 甲、乙两车间要分别抽调30人、5人.24.-325.5a-4.5b;29人26.-11 3627.628.(1)-11(2)0.25.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如果A 、B 、C 三点在同一直线上,且线段AB=6cm ,BC=4cm ,若M ,N 分别为AB ,BC 的中点,那么M ,N 两点之间的距离为( ) A .5cmB .1cmC .5或1cmD .无法确定2.小李同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .经过两点有且只有一条直线D .两点之间线段最短3.平面内有n 条直线(n≥2),这n 条直线两两相交,最多可以得到a 个交点,最少可以得到b 个交点,则a+b 的值是( ) A.()1n n - B.21n n -+C.22n n -D.222n n -+4.解方程2x 13x 4134---=时,去分母正确的是( ) A.4(2x-1)-9x-12=1 B.8x-4-3(3x-4)=12 C.4(2x-1)-9x+12=1D.8x-4+3(3x-4)=125.已知关于x 的方程()1230m m x ---=是一元一次方程,则m 的值是( )A.2B.0C.1D.0或26.如图,点O (0,0),A (0,1)是正方形OAA 1B 的两个顶点,以OA 1对角线为边作正方形OA 1A 2B 1,再以正方形的对角线OA 2作正方形OA 1A 2B 1,…,依此规律,则点A 2017的坐标是( )A .(0,21008) B .(21008,21008) C .(21009,0) D .(21009,-21009)7.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由5个圆组成,第3个图由11个圆组成,……按照这样的规律排列下去,则第6个图形由( )个圆组成A .39B .40C .41D .428.如图,将一张正三角形纸片剪成四个全等的正三角形,得到4个小正三角形,称为第一次操作;然后,将其中的一个正三角形再剪成四个小正三角形,共得到7个小正三角形,称为第二次操作;再将其中的一个正三角形再剪成四个小正三角形,共得到10个小正三角形,称为第三次操作;……,以上操作n 次后,共得到49个小正三角形,则n 的值为()A .13n =B .14n =C .15n =D .16n =9.2018年国庆假期里,民航提供的运力满足了旅客出行需求,中国民航共保障国内外航班近77800班,将77800用科学记数法表示应为( ). A.0.778×105B.7.78×105C.7.78×104D .77.8×10310.下列各组数中,互为相反数的是( ) A.|﹣23|与﹣23 B.|﹣23|与﹣32 C.|﹣23|与23D.|﹣23|与3211.已知a ,b ,c 是有理数,且a+b+c=0,abc (乘积)是负数,则||||||b c a c a ba b c +++++的值是( )A.3B.﹣3C.1D.﹣112.下列运算正确的是( ).A .-(-3)2=-9B .-|-3|=3C .(-2)3=-6D .(-2)3=8 二、填空题13.已知平面内两个角∠AOB =60°,∠BOC =45°,求∠AOC 的度数。
2019-2020学年七年级数学上学期期末原创卷A卷(广东)(全解全析)
2019-2020学年上学期期末原创卷A 卷七年级数学·全解全析12345678910BCCBDCBCCA1.【答案】B 【解析】2-的相反数是2,2的倒数是12,故选B.2.【答案】C 【解析】从a 的取值范围应是大于等于1,小于10,可以确定B 、D 选项错误;1500是4位数,所以n 应该是4-1=3,故选C.3.【答案】C 【解析】∵侧面展开图为3个三角形,∴该几何体是三棱锥,故选C .4.【答案】B【解析】∵AD +BC =AC +CD +BD +CD ,∴AD +BC =2CD +AC +BD ,又∵AD +BC =75AB ,∴2CD +AC +BD =75AB ,∵AB =AC +BD +CD ,AC +BD =a ,∴75(a +CD )=2CD +a ,解得:CD =23a ,故选B .5.【答案】D 【解析】A.2与x 不是同类项,不能合并,故错误;B.x +x +x =3x ,故选项错误;C.3ab -ab =2ab ,故选项错误;D.222223310.2544=4x x x x x +=+,故选项正确;故选D.6.【答案】C 【解析】∵221x x -+=5,∴22x x -=4,∴2361x x -+=3(22x x -)+1=3×4+1=13.故选:C .7.【答案】B 【解析】去分母得9(x -1)=1+2x ,去括号得9x -9=1+2x ,故选B.8.【答案】C【解析】A 、32ab 2c 的次数是4次,说法正确,故此选项不合题意;B 、多项式2x 2﹣3x ﹣1是二次三项式,说法正确,故此选项不合题意;C 、多项式3x 2﹣2x 3y +1的次数是4次,原说法错误,故此选项符合题意;D 、2πr 的系数是2π,说法正确,故此选项不合题意;故选:C .9.【答案】C 【解析】∵OB 是∠AOC 的平分线,OD 是∠COE 的平分线,∴∠COD =12∠COE ,∠BOC =∠AOB =12∠AOC ,又∵∠AOB =40°,∠COE =60°,∴∠BOC =40°,∠COD =30°,∴∠BOD =∠BOC +∠COD =40°+30°=70°,故选C .10.【答案】A【解析】设这款服装的进价是每件x 元,由题意,得300×0.8﹣x =60.故选:A .11.【答案】105°【解析】∠1的补角:180°﹣75°=105°.故答案为:105°.12.【答案】8【解析】因为a 、b 互为相反数,c 、d 互为倒数,并且x 的绝对值等于3,所以有a +b =0,cd =1,a b cd ++=1,29x =,即原式=23108-+=.13.【答案】1【解析】∵单项式﹣3a 2m +b 3与4a 2b 3n 是同类项,∴2233m n +==,,∴01m n ==,,∴1m n +=,所以答案为1.14.【答案】-2【解析】根据一元一次方程的定义可得:1120k k ⎧-=⎨-≠⎩,解得2k =-.15.【答案】98【解析】()()2(4)(82)482168298-⊕-=---=+=.故答案为98.16.【答案】6cm 或4cm 【解析】①当点C 在线段AB 的延长线上时,此时AC =AB +BC =12,∵M 是线段AC 的中点,则AM =12AC =6;②当点C 在线段AB 上时,AC =AB -BC =8,∵M 是线段AC 的中点,则AM =12AC =4.故答案为6或4.17.【解析】(﹣2)3×3﹣4÷(12-)=(﹣8)×3+8=﹣24+8=﹣16.(6分)18.【解析】12226y y y -+-=-去分母得:()()631122y y y --=-+,去括号得:633122y y y -+=--,移项得:631223y y y -+=--,合并得:47y =,系数化为1得:74y =.(6分).19.【解析】原式=2a +2a ﹣2b ﹣3a +2b +b =a +b ,(3分)当a =﹣2,b =5时,原式=﹣2+5=3.(6分)20.【解析】(1)∵(3×5)2=225,32×52=225,[(-12)×4]2=4,(-12)2×42=4,∴每组两个算式的结果相等;(2分)(2)由(1)可知,(ab )2=a 2b 2;猜想,当n 为正整数时,(ab )n =a n •b n ,即(ab )的n 次方=ab •ab •ab …ab =a •a •a …a •b •b •b …b =a n b n .(3分)(3)①(-8)2019×(18)2019=(-8×18)2019=-1,(5分)②(-115)2020×(56)2020=202065-56⎡⎤⎛⎫⨯ ⎪⎢⎥⎝⎭⎣⎦=1.(7分)21.【解析】(1)由题意,可得所挡的二次三项式为:(x 2-5x +1)-3(x -1)=x 2-5x +1-3x +3=x 2-8x +4;(3分)(2)当x =-3时,x 2-8x +4=(-3)2-8×(-3)+4=9+24+4=37.(7分)22.【解析】(1)∵()215290a b -+-=,∴()215a -=0,29b -=0,∵a 、b 均为非负数,∴a =15,b =4.5.(4分)(2)∵点C 为线段AB 的中点,AB =15,∴17.52AC AB ==,∵CE =4.5,∴AE =AC +CE =12,∵点D 为线段AE 的中点,∴DE =12AE =6,∴CD =DE −CE =6−4.5=1.5.(7分)23.【解析】(1)根据题意,设湿地公园x 个,森林公园为(x +4)个,则(4)42x x ++=,解得:19x =,∴湿地公园有19个,∴森林公园有:19+4=23(个);(4分)(2)①根据题意,设标价为m 元,则0.82000200020%m -=⨯,解得:3000m =,∴该电器的标价为3000元;(7分)②30000.9200027002000700⨯-=-=元,∴获得利润为700元.(9分)24.【解析】(1)∵()324825M a x x x =++-+是关于x 的二次多项式,且二次项系数为b ,∴40,8a b +==,则4a =-,∴A 、B 两点之间的距离为4812-+=,故答案为-4;8;12.(3分)(2)依题意得,4123456720182019--+-+-+-++- 410092019=-+-1041=-,故点P 所对应的有理数的值为1041-.(4分)(3)设点P 对应的有理数的值为x ,①当点P 在点A 的左侧时,PA =-4-x ,PB =8-x ,依题意得,8-x =3(-4-x ),解得x =-10;(5分)②当点P 在点A 和点B 之间时,PA =x -(-4)=x +4,PB =8-x ,依题意得,8-x =3(x +4),解得x =-1;(7分)③当点P 在点B 的右侧时,PA =x -(-4)=x +4,PB =x -8,依题意得,x -8=3(x +4),解得x =-10,这与点P 在点B 的右侧(即x >8)矛盾,故舍去;综上所述,点P 所对应的有理数分别是-10和-1.(9分)25.【解析】(1)由题意得,∠AOB =∠EOD =90°,∵125AOE ∠=︒,∴∠AOD =AOE ∠-∠DOE =125°-90°=35°,∴∠BOD =∠AOB -∠AOD =90°-35°=55°.(3分)(2)设∠BOE =x ,则∠AOE =∠AOB +∠BOE =90°+x,∠BOD =∠DOE -∠BOE =90°-x,∵4AOE BOD ∠=∠,∴90°+x =4(90°-x ),∴x =54°,∴∠BOE =54°.(6分)(3)在图1中,∠BOD =∠DOE -∠BOE =90°-∠BOE,∠AOE =∠AOB +∠BOE =90°+∠BOE,∴∠BOD +∠AOE =(90°-∠BOE )+(90°+∠BOE )=180°,在图2中,∠BOD =∠DOE +∠BOE =90°+∠BOE,∠AOE =∠AOB -∠BOE =90°-∠BOE,∴∠BOD +∠AOE =(90°+∠BOE )+(90°-∠BOE )=180°,在图3中,∠BOD +∠AOE =360°-∠AOB -∠DOE =360°-90°-90°=180°.(9分)。
2019-2020学年七年级上学期期末考试数学试卷(解析版)
2019-2020学年七年级上学期期末考试数学试卷一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是()A.4个B.3个C.2个D.1个2.在1,﹣1,﹣2这三个数中,任意两数之和的最大值是()A.1B.0C.﹣1D.﹣33.下列各式中运算正确的是()A.3a﹣4a=﹣1B.a2+a2=a4C.3a2+2a3=5a5D.5a2b﹣6a2b=﹣a2b4.下列结论正确的是()A.﹣3ab2和b2a是同类项B.不是单项式C.a比﹣a大D.2是方程2x+1=4的解5.如图,已知直线AB,CD相交于点O,OE平分∠COB,若∠EOB=55°,则∠BOD的度数是()A.35°B.55°C.70°D.110°6.运用等式性质的变形,正确的是()A.如果a=b,那么a+c=b﹣c B.如果,那么a=bC.如果a=b,那么D.如果a=3,那么a2=3a27.有理数a,b在数轴上的点的位置如图所示,则正确的结论是()A.a<﹣4B.a+b>0C.|a|>|b|D.ab>08.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.1009.在图中,将左边方格纸中的图形绕O点顺时针旋转90°得到的图形是()A.B.C.D.10.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.11.已知点A,B,C在同一条直线上,若线段AB=3,BC=2,AC=1,则下列判断正确的是()A.点A在线段BC上B.点B在线段AC上C.点C在线段AB上D.点A在线段CB的延长线上12.如图,△AOB中,∠B=30°.将△AOB绕点O顺时针旋转52°得到△A′OB′,边A′B′与边OB交于点C(A′不在OB上),则∠A′CO的度数为()A.22°B.52°C.60°D.82°13.有m辆校车及n个学生,若每辆校车乘坐40名学生,则还有10名学生不能上车;若每辆校车乘坐43名学生,则只有1名学生不能上车.现有下列四个方程:①40m+10=43m﹣1;②=;③=;④40m+10=43m+1.其中正确的是()A.①②B.②④C.②③D.③④14.下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案n需几根火柴棒()A.2+7n B.8+7n C.4+7n D.7n+1二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.单项式﹣xy2的系数是.16.a的3倍与b的差的平方,用代数式表示为.17.计算:15°37′+42°51′=.18.如图,是一个数值转换机的示意图,若输入x的值为3,y的值为﹣2时,则输出的结果为.19.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是.20.在排成每行七天的日历表中取下一个3×3的方块(如图所示).若所有日期数之和为189,则n的值为.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.(10分)计算:(1)﹣12014﹣(1﹣)÷[﹣32÷(﹣2)2](2)a﹣(5a﹣2b)﹣2(a﹣3b)22.(10分)解方程(1)4(2x﹣3)﹣(5x﹣1)=7(2).23.(10分)如图所示.(1)阴影部分的周长是;(2)阴影部分的面积是;(3)当x=5.5,y=4时,阴影部分的周长是多少?面积是多少?24.(10分)已知含字母x,y的多项式是:3[x2+2(y2+xy﹣2)]﹣3(x2+2y2)﹣4(xy﹣x﹣1)(1)化简此多项式;(2)小红取x,y互为倒数的一对数值代入化简的多项式中,恰好计算得多项式的值等于0,那么小红所取的字母y的值等于多少?25.(10分)周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)请根据他们的对话内容,求小明和爸爸的骑行速度.(2)爸爸第一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?26.(10分)已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.参考答案与试题解析一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.【分析】先化简原题中的各数,然后即可判断哪些数是负数,本题得以解决.【解答】解:∵﹣22=﹣4,(﹣2)2=4,﹣(﹣2)=2,﹣|﹣2|=﹣2,∴在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是2个,故选:C.【点评】本题考查正数和负数,解题的关键是明确负数的定义,可以对题目中的数进行化简.2.【分析】求最大值,应是较大的2个数的和,找到较大的两个数,相加即可.【解答】解:∵在1,﹣1,﹣2这三个数中,只有1为正数,∴1最大;∵|﹣1|=1,|﹣2|=2,1<2,∴﹣1>﹣2,∴任意两数之和的最大值是1+(﹣1)=0.故选:B.【点评】考查有理数的比较及运算;得到三个有理数中2个较大的数是解决本题的突破点.3.【分析】根据合并同类项进行解答即可.【解答】解:A、3a﹣4a=﹣a,错误;B、a2+a2=2a2,错误;C、3a2与2a3不是同类项,不能合并,错误;D、5a2b﹣6a2b=﹣a2b,正确.故选:D.【点评】此题考查合并同类项问题,理解合并同类项法则,是解决这类问题的关键.4.【分析】根据同类项、单项式、有理数的大小比较、一元一次方程的解逐个判断即可.【解答】解:A、﹣3ab2和b2a是同类项,故本选项符合题意;B、是单项式,故本选项不符合题意;C、当a=0时,a=﹣a,故本选项不符合题意;D、1.5是方程2x+1=4的解,2不是方程的解,故本选项不符合题意;故选:A.【点评】本题考查了同类项、单项式、有理数的大小比较、一元一次方程的解,能熟记知识点的内容是解此题的关键.5.【分析】利用角平分线的定义和补角的定义求解.【解答】解:OE平分∠COB,若∠EOB=55°,∴∠BOC=55+55=110°,∴∠BOD=180﹣110=70°.故选:C.【点评】本题考查了角平分线和补角的定义.6.【分析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:A、利用等式性质1,两边都加c,得到a+c=b+c,所以A不成立;B、利用等式性质2,两边都乘以c,得到a=b,所以B成立;C、不成立,因为c必需不为0;D、因为a2=9,3a2=27,所以a2≠3a2;故选:B.【点评】主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.7.【分析】根据图示,可得:﹣4<a<﹣3,1<b<2,据此逐项判断即可.【解答】解:根据图示,可得:﹣4<a<﹣3,1<b<2,﹣4<a<﹣3,选项A不符合题意;∵﹣4<a<﹣3,1<b<2,∴a+b<0,选项B不符合题意;∴|a|>|b|,选项C符合题意;∵a<0,b>0,∴ab<0,选项D不符合题意.故选:C.【点评】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.8.【分析】设商品进价为每件x元,则售价为每件0.8×200元,由利润=售价﹣进价建立方程求出其解即可.【解答】解:设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.故选:B.【点评】本题考查了销售问题的数量关系利润=售价﹣进价的运用,列一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键.9.【分析】根据旋转的性质,找出图中三角形的关键处(旋转中心)按顺时针方向旋转90°后的形状即可选择答案.【解答】解:根据旋转的性质可知,绕O点顺时针旋转90°得到的图形是.故选:B.【点评】本题考查旋转的性质.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.10.【分析】根据图形,结合互余的定义判断即可.【解答】解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.【点评】本题考查了对余角和补角的应用,主要考查学生的观察图形的能力和理解能力.11.【分析】依据点A,B,C在同一条直线上,线段AB=3,BC=2,AC=1,即可得到点C在线段AB上.【解答】解:如图,∵点A,B,C在同一条直线上,线段AB=3,BC=2,AC=1,∴点A在线段BC的延长线上,故A错误;点B在线段AC延长线上,故B错误;点C在线段AB上,故C正确;点A在线段CB的反向延长线上,故D错误;故选:C.【点评】本题主要考查了两点间的距离,解决问题的关键是判段点C的位置在线段AB上.12.【分析】根据旋转变换的性质可得∠B′=∠B,因为△AOB绕点O顺时针旋转52°,所以∠BOB′=52°,而∠A'CO是△B′OC的外角,所以∠A′CO=∠B′+∠BOB′,然后代入数据进行计算即可得解.【解答】解:∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选:D.【点评】本题考查的是图形的旋转及三角形外角与内角的关系,图形旋转角即为原三角形的一边与形成新三角形后该对应边的夹角.13.【分析】有m辆校车及n个学生,则无论怎么分配,校车和学生的个数是不变的,据此列方程即可.【解答】解:根据学生数不变可得:40m+10=43m+1,故④正确;根据校车数不变可得:=,故③正确.故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.14.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;故选:D.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.【分析】根据单项式系数的定义来求解.单项式中数字因数叫做单项式的系数.【解答】解:单项式﹣xy2的系数是﹣,故答案为:﹣.【点评】本题考查了单项式系数的定义,确定单项式的系数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数的关键.注意π是数字,应作为系数.16.【分析】先算差,再算平方.【解答】解:所求代数式为:(3a﹣b)2.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.注意抓住关键词,找到相应的运算顺序.17.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.18.【分析】首先根据已知一个数值转换机的示意图,逐步列出代数式并化简,最后表示出输出的结果的代数式,然后代入求值.【解答】解:根据已知一个数值转换机的示意图可得x×2=2x,(y)3=y3,(2x+y3)÷2=x+,把x=3,y=﹣2代入得3+×(﹣2)3=3+(﹣4)=﹣1.故答案为:﹣1.【点评】此题考查了代数式求值问题的理解和掌握.关键是首先根据示意图正确列出代数式,再代入求值.19.【分析】将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b的值,再将x=﹣1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.【解答】解:∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=﹣1时,代数式2ax3+3bx+4=﹣2a﹣3b+4=﹣(2a+3b)+4=﹣1+4=3.故答案为:3【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.20.【分析】根据日历表中的数据列出方程,求出方程的解即可得到结果.【解答】解:根据题意得:n﹣8+n﹣7+n﹣6+n﹣1+n+n+1+n+6+n+7+n+8=189,解得:n=21,则n的值为21,故答案为:21【点评】此题考查了一元一次方程的应用,弄清日历时候数据的规律是解本题的关键.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(2)原式去括号合并即可得到结果.【解答】解:(1)原式=﹣1﹣÷(﹣)=﹣1+×=﹣1+=﹣;(2)a﹣(5a﹣2b)﹣2(a﹣3b)=a﹣5a+2b﹣2a+6b=﹣6a+8b.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:8x﹣12﹣5x+1=7,移项合并得:3x=18,解得:x=6;(2)去分母得:2(2x﹣1)﹣(5﹣x)=﹣12,去括号得:4x﹣2﹣5+x=﹣12,移项合并得:5x=﹣5,解得:x=﹣1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.【分析】(1)阴影部分的周长等于各边长的和,将各边长相加即可;(2)阴影部分的面积等于大长方形的面积减去小长方形的面积;(3)将x=5.5,y=4代入(1)(2)即可.【解答】解:(1)阴影部分的周长:y+2y+y+y+2x+2x=4x+6y,故答案为4x+6y;(2)阴影部分的面积2x•2y﹣y•(2x﹣x﹣0.5x)=3.5xy,故答案为3.5xy;(3)当x=5.5,y=4时,阴影部分的周长为4x+6y=4×5.5+6×4=46,阴影部分的面积为3.5xy=3.5×5.5×4=77.【点评】本题考查了代数式的值,正确列出代数式是解题的关键.24.【分析】(1)原式去括号合并即可得到结果;(2)由x,y互为倒数,得到xy=1,原式整理后即可求出y的值.【解答】解:(1)3[x2+2(y2+xy﹣2)]﹣3(x2+2y2)﹣4(xy﹣x﹣1)=3x2+6(y2+xy﹣2)﹣3x2﹣6y2﹣4xy+4x+4=3x2+6y2+6xy﹣12﹣3x2﹣6y2﹣4xy+4x+4=2xy+4x﹣8;(2)∵x,y互为倒数,∴xy=1,∴2xy+4x﹣8=4x﹣6=0,解得:x=,则y=.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.25.【分析】(1)设小明的骑行速度为x米/分钟,则爸爸的骑行速度为2x米/分钟,根据距离=速度差×时间即可得出关于x的一元一次方程,解之即可得出结论;(2)设爸爸第一次追上小明后,在第二次相遇前,再经过y分钟,小明和爸爸跑道上相距50m.根据距离=速度差×时间即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设小明的骑行速度为x米/分钟,则爸爸的骑行速度为2x米/分钟,根据题意得:2(2x﹣x)=400,解得:x=200,∴2x=400.答:小明的骑行速度为200米/分钟,爸爸的骑行速度为400米/分钟.(2)解:设爸爸第一次追上小明后,在第二次相遇前,再经过y分钟,小明和爸爸相距50m.400y﹣200y=50y=或者60×y+50﹣60×y=400,解得y=.答:爸爸第一次追上小明后,在第二次相遇前,再经过或分钟,小明和爸爸相距50m.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,由路程差找出合适的等量关系列出方程,再求解.26.【分析】(1)MN的长为3﹣(﹣1)=4,即可解答;(2)根据题意列出关于x的方程,求出方程的解即可得到x的值;(3)可分为点P在点M的左侧和点P在点N的右侧,点P在点M和点N之间三种情况计算;(4)分别根据①当点M和点N在点P同侧时;②当点M和点N在点P异侧时,进行解答即可.【解答】解:(1)MN的长为3﹣(﹣1)=4.(2)根据题意得:x﹣(﹣1)=3﹣x,解得:x=1;(3)①当点P在点M的左侧时.根据题意得:﹣1﹣x+3﹣x=8.解得:x=﹣3.②P在点M和点N之间时,PN+PM=8,不合题意.③点P在点N的右侧时,x﹣(﹣1)+x﹣3=8.解得:x=5.∴x的值是﹣3或5.(4)设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.【点评】此题主要考查了数轴的应用以及一元一次方程的应用,根据M,N位置的不同进行分类讨论得出是解题关键.。
东莞市七年级上册数学期末试卷(带答案)-百度文库
东莞市七年级上册数学期末试卷(带答案)-百度文库一、选择题1.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是()A.B.C.D.2.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x天,由题意得方程()A.410+415x-=1 B.410+415x+=1 C.410x++415=1 D.410x++15x=13.若x=﹣13,y=4,则代数式3x+y﹣3xy的值为()A.﹣7 B.﹣1 C.9 D.74.已知a=b,则下列等式不成立的是()A.a+1=b+1 B.1﹣a=1﹣b C.3a=3b D.2﹣3a=3b﹣2 5.下列调查中,最适合采用全面调查(普查)的是( )A.对广州市某校七(1)班同学的视力情况的调查B.对广州市市民知晓“礼让行人”交通新规情况的调查C.对广州市中学生观看电影《厉害了,我的国》情况的调查D.对广州市中学生每周课外阅读时间情况的调查6.如图,能判定直线a∥b的条件是( )A.∠2+∠4=180°B.∠3=∠4 C.∠1+∠4=90°D.∠1=∠4 7.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>08.图中是几何体的主视图与左视图, 其中正确的是( )A.B.C.D.9.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.连接两点的线段叫做两点的距离10.下列计算正确的是()A.3a+2b=5ab B.4m2n-2mn2=2mnC.-12x+7x=-5x D.5y2-3y2=211.如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D两点表示的数分别为-5和6,点E为BD的中点,在数轴上的整数点中,离点E最近的点表示的数是()A.2 B.1C.0 D.-112.已知点A,B,P在一条直线上,则下列等式中,能判断点P是线段AB中点个数有()①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个二、填空题13.如图,点A在点B的北偏西30方向,点C在点B的南偏东60︒方向.则ABC∠的度数是__________.14.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.15.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.16.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.17.﹣213的倒数为_____,﹣213的相反数是_____. 18.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.19.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.20.方程x +5=12(x +3)的解是________. 21.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______.22.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.23.3.6=_____________________′24.用度、分、秒表示24.29°=_____.三、压轴题25.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ? 26.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.27.如图,数轴上点A表示的数为4-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0)>.()1A,B两点间的距离等于______,线段AB的中点表示的数为______;()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1PQ AB2=?()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.28.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.29.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.30.已知:A 、O 、B 三点在同一条直线上,过O 点作射线OC ,使∠AOC :∠BOC =1:2,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 按逆时针方向旋转至图2的位置,使得ON 落在射线OB 上,此时三角板旋转的角度为 度;(2)继续将图2中的三角板绕点O 按逆时针方向旋转至图3的位置,使得ON 在∠AOC 的内部.试探究∠AOM 与∠NOC 之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O 按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM 所在直线恰好平分∠BOC 时,时间t 的值为 (直接写结果).31.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.32.已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在∠CON的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;(2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案.【详解】解:A、5+3×6+1×6×6=59(颗),故本选项错误;B、1+3×6+2×6×6=91(颗),故本选项正确;C、2+3×6+1×6×6=56(颗),故本选项错误;D、1+2×6+3×6×6=121(颗),故本选项错误;故选:B.【点睛】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.2.B解析:B【解析】【分析】直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可.【详解】设乙独做x天,由题意得方程:4 10+415x=1.故选B.【点睛】本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的关键.3.D解析:D【解析】【分析】将x与y的值代入原式即可求出答案.【详解】当x=﹣13,y=4,∴原式=﹣1+4+4=7故选D.【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.4.D解析:D【解析】【分析】根据等式的基本性质对各选项进行逐一分析即可.【详解】A、∵a=b,∴a+1=b+1,故本选项正确;B、∵a=b,∴﹣a=﹣b,∴1﹣a=1﹣b,故本选项正确;C、∵a=b,∴3a=3b,故本选项正确;D、∵a=b,∴﹣a=﹣b,∴﹣3a=﹣3b,∴2﹣3a=2﹣3b,故本选项错误.故选:D.【点睛】本题考查了等式的性质,掌握等式的基本性质是解答此题的关键.5.A解析:A【解析】【分析】根据普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【详解】A. 对广州市某校七(1)班同学的视力情况的调查,适合全面调查,符合题意;B. 对广州市市民知晓“礼让行人”交通新规情况的调查,适合抽样调查,故不符合题意;C. 对广州市中学生观看电影《厉害了,我的国》情况的调查,适合抽样调查,故不符合题意;D. 对广州市中学生每周课外阅读时间情况的调查,适合抽样调查,故不符合题意,故选A.【点睛】本题考查的是抽样调查与全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大的调查,应选用抽样调查,对于精确度要求高的调查,事关重大的调查往往先用普查的方式.6.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.7.C解析:C【解析】【分析】利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<0,b>0,且|a|>|b|,∴a+b<0,ab<0,a﹣b<0,a÷b<0.故选:C.8.D解析:D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D.【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.9.A解析:A【解析】【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.【点睛】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.10.C解析:C【解析】试题解析:A.不是同类项,不能合并.故错误.B. 不是同类项,不能合并.故错误.C.正确.D.222 532.y y y -=故错误.故选C.点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.11.A解析:A【解析】【分析】 根据A 、D 两点在数轴上所表示的数,求得AD 的长度,然后根据2AB=BC=3CD ,求得AB 、BD 的长度,从而找到BD 的中点E 所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD ,∴AB=1.5CD ,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4, ∴|6-E|=4,∴点E 所表示的数是:6-4=2.∴离线段BD 的中点最近的整数是2.故选:A .【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.12.A解析:A【解析】①项,因为AP =BP ,所以点P 是线段AB 的中点,故①项正确;②项,点P 可能是在线段AB 的延长线上且在点B 的一侧,此时也满足BP =12AB ,故②项错误;③项,点P 可能是在线段BA 的延长线上且在点A 的一侧,此时也满足AB =2AP ,故③项错误;④项,因为点P 为线段AB 上任意一点时AP +PB =AB 恒成立,故④项错误.故本题正确答案为①.二、填空题13.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150︒【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150︒.【点睛】本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.14.伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与解析:伟【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与“中”是相对面,“的”与“梦”是相对面.故答案为:伟.【点睛】本题主要考查了正方体与展开图的面的关系,掌握相对的面之间一定相隔一个正方形是解答本题的关键.15.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.16.8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为;故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解解析:8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为22a b b ab ⊕=-;所以2(1)222(1)28.-⊕=-⨯-⨯=故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 17.﹣ 2【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣2的倒数为﹣,﹣2的相反数是2.【点睛】本题考查的是相反数和倒数,解析:﹣37 213【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】 ﹣213的倒数为﹣37,﹣213的相反数是213. 【点睛】 本题考查的是相反数和倒数,熟练掌握两者的性质是解题的关键.18.从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数解析:从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.【点睛】本题考查用数学知识解释生活现象,熟练掌握三视图的定义是解题的关键.19.5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案. 【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.20.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.21.【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解x=-解析:5【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解22.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n个图案中的基础图形个数表达式是解题的关键.23.【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】解:=3°36′.故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的解析:336【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】=︒+︒=︒+⨯=3°36′.解:3.630.63(0.660)'故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的计算法则知道度分秒间的进率为60进行分析运算.24.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′︒'"解析:241724【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″.故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.三、压轴题25.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.26.探究三:16,6;结论:n²,;应用:625,300.【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;应用:根据结论即可解决问题.【详解】解:探究三: 如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个; 边长为2的正三角形有个. 结论: 连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个; 边长为2的正三角形,共有个. 应用: 边长为1的正三角形有=625(个), 边长为2的正三角形有(个). 故答案为探究三:16,6;结论:n²,;应用:625,300. 【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.27.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t. (3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2= ()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2= ()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.28.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2120α-=-.解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2α120-=-. 解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.29.(1)-12,8-5t ;(2)94或114;(3)10;(4)MN 的长度不变,值为10. 【解析】【分析】(1)根据已知可得B 点表示的数为8﹣20;点P 表示的数为8﹣5t ;(2)运动时间为t 秒,分点P 、Q 相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P 运动x 秒时追上Q ,根据P 、Q 之间相距20,列方程求解即可;(4)分①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差求出MN 的长即可.【详解】(1)∵点A 表示的数为8,B 在A 点左边,AB=20,∴点B 表示的数是8﹣20=﹣12,∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒,∴点P 表示的数是8﹣5t ,故答案为﹣12,8﹣5t ;(2)若点P 、Q 同时出发,设t 秒时P 、Q 之间的距离恰好等于2;分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=94;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=11 4,答:若点P、Q同时出发,94或114秒时P、Q之间的距离恰好等于2;(3)如图,设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=20,解得:x=10,∴点P运动10秒时追上点Q;(4)线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=10,②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=10,∴线段MN的长度不发生变化,其值为10.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.30.(1)90°;(2)30°;(3)12秒或48秒.【解析】【分析】(1)依据图形可知旋转角=∠NOB,从而可得到问题的答案;(2)先求得∠AOC的度数,然后依据角的和差关系可得到∠NOC=60°-∠AON,∠AOM=90°-∠AON,然后求得∠AOM与∠NOC的差即可;(3)可分为当OM为∠BOC的平分线和当OM的反向延长为∠BOC的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.【详解】。
2019-2020学年广东省东莞市七年级(上)期末数学试卷 (解析版)
2019-2020学年广东省东莞市七年级(上)期末数学试卷一、选择题1.﹣8的相反数是()A.B.﹣8C.8D.﹣2.我市某日的最高气温是10℃,最低气温是﹣2℃,那么当天的日温差是()A.12℃B.﹣12℃C.8℃D.﹣8℃3.据了解,受到台风“海马”的影响,潮阳区金灶镇农作物受损面积约达35800亩,将数35800用科学记数法可表示为()A.0.358×105B.3.58×104C.35.8×103D.358×1024.下列计算正确的是()A.x2+x2=x4B.x2+x3=2x5C.3x﹣2x=1D.x2y﹣2x2y=﹣x2y5.单项式﹣x3y2的系数与次数分别为()A.﹣1,5B.﹣1,6C.0,5D.1,56.中国讲究五谷丰登,六畜兴旺,如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”,“牛”,“羊”,“马”,“鸡”,“狗”,将其围成一个正方体后,则与“牛”相对的是()A.羊B.马C.鸡D.狗7.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85°B.160°C.125°D.105°8.根据等式的性质,下列变形正确的是()A.如果2x=3,那么B.如果x=y,那么x﹣5=5﹣yC.如果x=y,那么﹣2x=﹣2y D.如果x=6,那么x=39.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0B.a+b<0C.|a|<|b|D.a﹣b>010.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x人,依题意列方程得()A.+3(100﹣x)=100B.﹣3(100﹣x)=100C.3x﹣=100D.3x+=100二、填空题(每小题4分,共28分)11.的相反数是,1.5的倒数是.12.用一副三角板可以作出的角有(至少写出4个).13.在数轴上与表示﹣4的数相距4个单位长度的点对应的数是.14.如果4x2m+2y n﹣1与﹣3x3m+1y3n﹣5是同类项,则m﹣n的值为.15.已知线段AB=7cm,在直线AB上画线段BC,使它等于3cm,则线段AC=cm.16.已知x=2是关于x的一元一次方程mx﹣2=0的解,则m的值为.17.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n个图中所贴剪纸“○”的个数为个.三、解答题(一)(每小题6分,共18分)18.计算:(﹣1)2018÷2(﹣)3×16﹣|﹣2|19.先化简,再求值:6x2﹣3(2x2﹣4y)+2(x2﹣y),其中,x=﹣1,y=.20.解方程:四、解答题(二)(每小题8分,共24分)21.检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A地出发,到收工时行程记录为(单位:千米)+8,﹣9,+4,﹣7,﹣2,﹣10,+11,﹣3,+7,﹣5;(1)收工时,检修工在A地的哪边?距A地多远?(2)若每千米耗油0.3升,从A地出发到收工时,共耗油多少升?22.如图所示,池塘边有块长为20m,宽为10m的长方形土地,现在将其余三面留出宽都是xm的小路,中间余下的长方形部分做菜地,用含x的式子表示:(1)菜地的长a=m,菜地的宽b=m;菜地的周长C=m;(2)求当x=1m时,菜地的周长C.23.“元旦”期间,某文具店购进100只两种型号的文具进行销售,其进价和售价如下表:型号进价(元/只)售价(元/只)A型1012B型1523(1)该店用1300元可以购进A,B两种型号的文具各多少只?(2)若把所购进A,B两种型号的文具全部销售完,利润率超过40%没有?请你说明理由.五、解答题(三)(每小题10分,共20分)24.直角三角板ABC的直角顶点C在直线DE上,CF平分∠BCD.(1)在图1中,若∠BCE=40°,∠ACF=;(2)在图1中,若∠BCE=α,∠ACF=(用含α的式子表示);(3)将图1中的三角板ABC绕顶点C旋转至图2的位置,若∠BCE=150°,试求∠ACF与∠ACE的度数.25.已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+2|+(b﹣5)2=0,规定A、B两点之间的距离记作AB=|a﹣b|.(1)求A、B两点之间的距离AB;(2)设点P在A、B之间,且在数轴上对应的数为x,通过计算说明是否存在x的值使PA+PB=10;(3)设点P不在A、B之间,且在数轴上对应的数为x,此时是否又存在x的值使PA+PB =10呢?参考答案一、选择题(每小题3分,共30分)1.﹣8的相反数是()A.B.﹣8C.8D.﹣【分析】根据只有符号不同的两个数互为相反数,可得答案.解:﹣8的相反数是8,故C符合题意,故选:C.2.我市某日的最高气温是10℃,最低气温是﹣2℃,那么当天的日温差是()A.12℃B.﹣12℃C.8℃D.﹣8℃【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.解:10﹣(﹣2),=10+2,=12℃.故选:A.3.据了解,受到台风“海马”的影响,潮阳区金灶镇农作物受损面积约达35800亩,将数35800用科学记数法可表示为()A.0.358×105B.3.58×104C.35.8×103D.358×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:35800=3.58×104,故选:B.4.下列计算正确的是()A.x2+x2=x4B.x2+x3=2x5C.3x﹣2x=1D.x2y﹣2x2y=﹣x2y【分析】原式各项合并同类项得到结果,即可作出判断.解:A、原式=2x2,错误;B、原式不能合并,错误;C、原式=x,错误;D、原式=﹣x2y,正确,故选:D.5.单项式﹣x3y2的系数与次数分别为()A.﹣1,5B.﹣1,6C.0,5D.1,5【分析】根据单项式系数及次数的定义来求解.解:根据单项式系数的定义,单项式﹣x3y的系数是﹣1,次数是5.故选:A.6.中国讲究五谷丰登,六畜兴旺,如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”,“牛”,“羊”,“马”,“鸡”,“狗”,将其围成一个正方体后,则与“牛”相对的是()A.羊B.马C.鸡D.狗【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“猪”相对的字是“羊”;“马”相对的字是“鸡”;“牛”相对的字是“狗”.故选:D.7.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85°B.160°C.125°D.105°【分析】首先求得AB与正东方向的夹角的度数,即可求解.解:AB于正东方向的夹角的度数是:90°﹣70°=20°,则∠BAC=20°+90°+15°=125°.故选:C.8.根据等式的性质,下列变形正确的是()A.如果2x=3,那么B.如果x=y,那么x﹣5=5﹣yC.如果x=y,那么﹣2x=﹣2y D.如果x=6,那么x=3【分析】直接利用等式的基本性质分别分析得出答案.解:A、如果2x=3,那么,(a≠0),故此选项错误;B、如果x=y,那么x﹣5=y﹣5,故此选项错误;C、如果x=y,那么﹣2x=﹣2y,正确;D、如果x=6,那么x=12,故此选项错误;故选:C.9.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0B.a+b<0C.|a|<|b|D.a﹣b>0【分析】根据点a、b在数轴上的位置可判断出a、b的取值范围,然后即可作出判断.解:根据点a、b在数轴上的位置可知1<a<2,﹣1<b<0,∴ab<0,a+b>0,|a|>|b|,a﹣b>0,.故选:D.10.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x人,依题意列方程得()A.+3(100﹣x)=100B.﹣3(100﹣x)=100C.3x﹣=100D.3x+=100【分析】设大和尚有x人,则小和尚有(100﹣x)人,根据3×大和尚人数+小和尚人数÷3=100,即可得出关于x的一元一次方程,此题得解.解:设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100.故选:D.二、填空题(每小题4分,共28分)11.的相反数是1,1.5的倒数是.【分析】利用相反数,倒数的定义计算即可得到结果.解:﹣1的相反数是1;1.5的倒数是,故答案为:1,.12.用一副三角板可以作出的角有15°、75°、105°、120°、135°、150°.(至少写出4个).【分析】根据一副三角板的度数进行和差计算即可求解.解:因为一副三角板中有90°、60°、30°、45°,45°﹣30°=15°,45°+30°=75°,60°+45°=105°,60°+60°=120°,90°+45°=135°,90°+60°=150°.所以用一副三角板可以作出的角有15°、75°、105°、120°、135°、150°.故答案为15°、75°、105°、120°、135°、150°.13.在数轴上与表示﹣4的数相距4个单位长度的点对应的数是﹣8或0.【分析】分在﹣4的左边和右边两种情况讨论求解即可.解:在﹣4的左边时,﹣4﹣4=﹣8,在﹣4右边时,﹣4+4=0.所以点对应的数是﹣8或0.故答案为:﹣8和0.14.如果4x2m+2y n﹣1与﹣3x3m+1y3n﹣5是同类项,则m﹣n的值为﹣1.【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.据此解答可得.解:单项式4x2m+2y n﹣1与﹣3x3m+1y3n﹣5是同类项,∴2m+2=3m+1,n﹣1=3n﹣5,解得:m=1,n=2.∴m﹣n=1﹣2=﹣1.故答案为:﹣1.15.已知线段AB=7cm,在直线AB上画线段BC,使它等于3cm,则线段AC=10或4 cm.【分析】分点C在线段AB外和点C在线段AB上两种情况,作出图形,然后分别求解即可.解:如图1,点C在线段AB外时,AC=AB+BC=7+3=10cm,如图2,点C在线段AB上时,AC=AB﹣BC=7﹣3=4cm,综上所述,AC=10或4cm.故答案为:10或4.16.已知x=2是关于x的一元一次方程mx﹣2=0的解,则m的值为1.【分析】根据一元一次方程的解得概念即可求出m的值.解:将x=2代入mx﹣2=02m﹣2=0m=1故答案为:117.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n个图中所贴剪纸“○”的个数为3n+2个.【分析】观察图形可知从第二个图案开始,每加一扇窗户,就增加3个剪纸.照此规律便可计算出第n个图形中剪纸的个数.解:第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花;…从而可以探究:第n个图案所贴窗花数为(3n+2)个.故答案为:3n+2.三、解答题(一)(每小题6分,共18分)18.计算:(﹣1)2018÷2(﹣)3×16﹣|﹣2|【分析】先进行乘方运算,再进行乘除运算,最后进行加法运算.解:原式=1÷(﹣)×64﹣2=﹣4×64﹣2=﹣256﹣2=﹣258.19.先化简,再求值:6x2﹣3(2x2﹣4y)+2(x2﹣y),其中,x=﹣1,y=.【分析】首先计算单项式乘以多项式,然后合并同类项,化简后,再代入x、y的值求值即可.解:原式=6x2﹣6x2+12y+2x2﹣2y=2x2+10y,当x=﹣1,y=时,原式=2×1+10×=2+5=7.20.解方程:【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解:去分母,得:2(5x+7)﹣(x+17)=12,去括号,得:10x+14﹣x﹣17=12,移项,得:10x﹣x=12﹣14+17,合并同类项,得:9x=15,系数化为1,得:x=.四、解答题(二)(每小题8分,共24分)21.检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A地出发,到收工时行程记录为(单位:千米)+8,﹣9,+4,﹣7,﹣2,﹣10,+11,﹣3,+7,﹣5;(1)收工时,检修工在A地的哪边?距A地多远?(2)若每千米耗油0.3升,从A地出发到收工时,共耗油多少升?【分析】(1)根据表格中的数据,将各个数据相加看最后的结果,即可解答本题;(2)根据表格中的数据将它们的绝对值相加,然后乘以0.3即可解答本题.解:(1)(+8)+(﹣9)+(+4)+(﹣7)+(﹣2)+(﹣10)+(+11)+(﹣3)+(+7)+(﹣5)=8﹣9+4﹣7﹣2﹣10+11﹣3+7﹣5=8+4+11+7﹣9﹣7﹣2﹣10﹣3﹣5=30﹣36=﹣6(千米),答:收工时,检修工在A地的西边,距A地6千米;(2)|+8|+|﹣9|+|+4|+|﹣7|+|﹣2|+|﹣10|+|+11|+|﹣3|+|+7|+|﹣5|=8+9+4+7+2+10+11+3+7+5=66(千米)66×0.3=19.8(升)答:从A地出发到收工时,共耗油19.8升.22.如图所示,池塘边有块长为20m,宽为10m的长方形土地,现在将其余三面留出宽都是xm的小路,中间余下的长方形部分做菜地,用含x的式子表示:(1)菜地的长a=(20﹣2x)m,菜地的宽b=(10﹣x)m;菜地的周长C=(60﹣6x)m;(2)求当x=1m时,菜地的周长C.【分析】(1)根据图形中的数据求出菜地的长、宽、周长即可;(2)把x=1代入求出即可.解:(1)菜地的长a=(20﹣2x)m,菜地的宽b=(10﹣x)m,菜地的周长为2(20﹣2x+10﹣x)=(60﹣6x)m,故答案为:(20﹣2x),(10﹣x),(60﹣6x);(2)当x=1时,菜地的周长C=60﹣6×1=54(m).23.“元旦”期间,某文具店购进100只两种型号的文具进行销售,其进价和售价如下表:型号进价(元/只)售价(元/只)A型1012B型1523(1)该店用1300元可以购进A,B两种型号的文具各多少只?(2)若把所购进A,B两种型号的文具全部销售完,利润率超过40%没有?请你说明理由.【分析】(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具(100﹣x)只,根据总价=单价×数量结合A、B两种文具的进价及总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单价利润×数量即可求出销售完这批货物的总利润,用其除以进价×100%再与40%比较后,即可得出结论.解:(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具(100﹣x)只,根据题意得:10x+15(100﹣x)=1300,解得:x=40,∴100﹣x=60.答:该店用1300元可以购进A种型号的文具40只,B种型号的文具60只.(2)(12﹣10)×40+(23﹣15)×60=560(元),∵560÷1300×100%≈43.08%>40%,∴若把所购进A,B两种型号的文具全部销售完,利润率超过40%.五、解答题(三)(每小题10分,共20分)24.直角三角板ABC的直角顶点C在直线DE上,CF平分∠BCD.(1)在图1中,若∠BCE=40°,∠ACF=20°;(2)在图1中,若∠BCE=α,∠ACF=α(用含α的式子表示);(3)将图1中的三角板ABC绕顶点C旋转至图2的位置,若∠BCE=150°,试求∠ACF与∠ACE的度数.【分析】(1)、(2)结合平角的定义和角平分线的定义解答;(3)∠ACF=∠BCE.结合图2得到:∠BCD=180°﹣∠BCE.由角平分线的定义推知∠BCF=90°﹣∠BCE,再由∠ACF=∠ACB﹣∠BCF得到:∠ACF=∠BCE.解:(1)如图1,∵∠ACB=90°,∠BCE=40°,∴∠ACD=180°﹣90°﹣40°=50°,∠BCD=180°﹣40°=140°,又CF平分∠BCD,∴∠DCF=∠BCF=∠BCD=70°,∴∠ACF=∠DCF﹣∠ACD=70°﹣50°=20°;故答案为:20°;(2)如图1,∵∠ACB=90°,∠BCE=α°,∴∠ACD=180°﹣90°﹣α°=90°﹣α,∠BCD=180°﹣α,又CF平分∠BCD,∴∠DCF=∠BCF=∠BCD=90°﹣α,∴∠ACF=90°﹣α﹣90°+α=α;故答案为:α;(3)∠ACF=∠BCE.理由如下:如图2,∵点C在DE上,∴∠BCD=180°﹣∠BCE.∵CF平分∠BCD,∴∠BCF=∠BCD=(180°﹣∠BCE)=90°﹣∠BCE.∵∠ACB=90°,∴∠ACF=∠ACB﹣∠BCF=90°﹣(90°﹣∠BCE)=∠BCE.即:∠ACF=∠BCE.25.已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+2|+(b﹣5)2=0,规定A、B两点之间的距离记作AB=|a﹣b|.(1)求A、B两点之间的距离AB;(2)设点P在A、B之间,且在数轴上对应的数为x,通过计算说明是否存在x的值使PA+PB=10;(3)设点P不在A、B之间,且在数轴上对应的数为x,此时是否又存在x的值使PA+PB =10呢?【分析】(1)利用非负数的性质求出a与b的值,确定出AB即可;(2)根据P在A、B之间确定出x的范围,进而求出PA+PB,判断即可;(3)根据P在A、B之间确定出x的范围,进而求出PA+PB,判断即可.解:(1)∵|a+2|+(b﹣5)2=0,∴a+2=0,b﹣5=0,解得:a=﹣2,b=5,则AB=|a﹣b|=|﹣2﹣5|=7;(2)若点P在A、B之间时,PA=|x﹣(﹣2)|=x+2,|PB|=|x﹣5|=5﹣x,∴PA+PB=x+2+5﹣x=7<10,∴点P在A、B之间不合题意,则不存在x的值使PA+PB=10;(3)若点P在AB的延长线上时,PA=|x﹣(﹣2)|=x+2,PB=|x﹣5|=x﹣5,由PA+PB=10,得到x+2+x﹣5=10,解得:x=6.5;若点P在AB的反向延长线上时,PA=|x﹣(﹣2)|=﹣2﹣x,PB=|x﹣5|=5﹣x,由PA+PB=10,得到﹣2﹣x+5﹣x=10,解得:x=﹣3.5,综上,存在使PA+PB=10的x值,分别为6.5或﹣3.5.。
2019-2020 学年七年级上学期期末数学试题(解析版 )
初中2019级第一学期末教学质量监测数学第Ⅰ卷(选择题,共36分)一、选择题(本大题共12个小题,每小题3分,共36分.)1. 5的相反数是( )A. 15B.15- C. 5 D. 5-【答案】D【解析】【分析】根据相反数的定义解答.【详解】解:只有符号不同的两个数称为互为相反数,则5的相反数为-5,故选D.【点睛】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2. 下列四个几何体中,是三棱柱的为( ).A. B.C. D.【答案】C【解析】【分析】分别判断各个几何体的形状,然后确定正确的选项即可.【详解】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选C.【点睛】考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.3. 中国陆地面积约为29600000km ,将数字9600000用科学记数法表示为()A. 59610⨯B. 69.610⨯C. 79.610⨯D. 80.9610⨯ 【答案】B【解析】【分析】根据科学记数法的表示方法写出即可.【详解】解:将9600000用科学记数法表示为69.610⨯.故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.4. 如果单项式312m x y +-与2x 4y n+3的差是单项式,那么(m+n)2019的值为( ) A. 1-B. 0C. 1D. 22019【答案】A【解析】 【分析】 根据312m x y +-和2x 4y n+3是同类项,求出m 和n 的值,即可得出答案. 【详解】∵单项式312m x y +-与2x 4y n+3的差是单项式 ∴m+3=4,n+3=1解得:m=1,n=-2∴(m+n)2019=[1+(-2)]2019=-1故答案选择A.【点睛】本题考查的是同类项的定义:①字母相同;②相同字母的指数相同.5. 若(k ﹣5)x |k |﹣4﹣6=0是关于x 的一元一次方程,则k 的值为( )A. 5B. ﹣5C. 5 或﹣5D. 4 或﹣4【答案】B【解析】【分析】由一元一次方程的定义可得|k |﹣4=1且k ﹣5≠0,计算即可得到答案.【详解】∵(k ﹣5)x |k |﹣4﹣6=0是关于x 的一元一次方程, ∴|k |﹣4=1且k ﹣5≠0,解得:k =﹣5.故选B .【点睛】本题考查一元一次方程的定义,解题的关键是掌握一元一次方程的定义.6. 用四舍五入法得到的近似数1.02×104,其精确度为( )A. 精确到十分位B. 精确到十位C. 精确到百位D. 精确到千位【答案】C【解析】【分析】 先把近似数还原,再求精确度,即可得出答案.【详解】1.02×104=10200,2在百位上,故答案选择C. 【点睛】本题考查的是近似数的精确度,比较简单,近似数最后一位所在的数位即为该数的精确度. 7. 下列说法错误的是 ( )A. 若a=b,则3-2a=3-2bB. 若a b c c =,则a=b C. 若a b =,则a=bD. 若a=b,则ca=cb【答案】C【解析】【分析】 根据等式的性质逐一判断即可得出答案.【详解】A :因为a=b ,所以-2a=-2b ,进而3-2a=3-2b ,故选项A 正确;B :因为a b c c =,所以a=b ,故选项B 正确;C :因为a b =,所以a=b 或a=-b ,故选项C 错误;D :因为a=b ,所以ca=cb ,故选项D 正确;故答案选择C.【点睛】本题考查的是等式的性质,比较简单,需要熟练掌握等式的基本性质.8. 一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是( )A. 17道B. 18道C. 19道D. 20道【答案】C【解析】【分析】设作对了x道,则错了(25-x)道,根据题意列出方程进行求解.【详解】设作对了x道,则错了(25-x)道,依题意得4x-(25-x)=70,解得x=19故选C.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.9. 已知x2+3x=2,则多项式3x2+9x﹣4的值是()A. 0B. 2C. 4D. 6【答案】B【解析】【分析】【详解】解:∵x²+3x=2,∴3x²+9x−4=3(x²+3x)−4=3×2−4=6−4=2,故选B. 10. 已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A. a+bB. ﹣a﹣cC. a+cD. a+2b﹣c【答案】C【解析】【分析】首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案为a+c.故选C11. 观察如图所示图形,则第n个图形中三角形的个数是( )A. 2n+2B. 4n+4C. 4nD. 4n-4【答案】C【解析】【分析】由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.【详解】解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选C.【点睛】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.12. 如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A. 36°B. 45°C. 60°D. 72°【答案】D【解析】【分析】先推出∠AOD+∠BOC=180°,结合∠AOD=4∠BOC,求出∠BOC的度数,再根据角平分线求出∠COE的度数,利用∠DOE=∠COD-∠COE即可解答.【详解】解:∵∠AOB=90°,∠COD=90°,∴∠AOB+∠COD=180°,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD ,∴∠AOC+∠BOC+∠BOC+∠BOD=180°,∴∠AOD+∠BOC=180°,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180°,∴∠BOC=36°,∵OE 为∠BOC 的平分线,∴∠COE=12∠BOC=18°,∴∠DOE=∠COD−∠COE=90°−18°=72°,故选择:A.【点睛】本题考查了角平分线的定义,角的和差计算及数形结合的数学思想,根据图中的数量关系求出∠BOC=36°是解答本题的关键.第Ⅱ卷(非选择题,共64分)二、填空题:(本大题共6小题,每小题3分,共18分.)13. 建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,这样做的依据是:__________.【答案】两点确定一条直线【解析】【分析】由直线公理可直接得出答案.【详解】建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】本题主要考查的是直线的性质,掌握直线的性质是解题的关键.14. 用“>、=、<”符号填空:45-______78-.【答案】> 【解析】【分析】先求绝对值,再用绝对值相减即可得出答案.【详解】∵44=55-,77=88-又4732-353-==-0 584040<∴47 < 58∴47 ->-58故答案为:>【点睛】本题考查的是负数的比较大小,先取绝对值,再比较大小,绝对值大的反而小.15. 如图,OA是北偏东28°36′方向的一条射线,OB是北偏西71°24′方向的一条射线,则∠AOB=__________.【答案】100°【解析】【分析】根据题意求出∠AOC和∠BOC的度数,相加即可得出答案.【详解】根据题意可得:∠AOC =28°36′,∠BOC=71°24′∠AOB=71°24′+28°36′=100°故答案为:100°【点睛】本题考查的是角度的计算,比较简单,角度的计算记住满60进1.16. 已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____. 【答案】10【解析】【分析】【详解】∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m =4,n =﹣2,∴2m ﹣n =8﹣(﹣2)=10.点睛:本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.17. 规定“Δ”是一种新的运算法则,满足:a △b=ab-3b ,示例:4△(-3)=4×(-3)-3×(-3)=-12+9=-3.若-3△(x+1)=1,则x=____________. 【答案】76- 【解析】【分析】根据新定义代入得出含x 的方程,解方程即可得出答案.【详解】∵a △b=ab-3b∴-3△(x+1)=-3(x+1)-3(x+1)=-6(x+1)∴-6(x+1)=1解得:x=76- 【点睛】本题考查的是新定义,认真审题,理清题目意思是解决本题的关键.18. 在数轴上点A 对应的数为-2,点B 是数轴上的一个动点,当动点B 到原点的距离与到点A 的距离之和为6时,则点B 对应的数为_________.【答案】-4或2【解析】【分析】先设点B 对应的数为b ,再用距离公式计算即可得出答案.【详解】设点B 对应的数为b解:设点B 表示的数为b ,①当点B 在点A 的左侧时,则有-2-b-b=6,解得,b=-4,②当点B 在OA 之间时,AB+AO=2≠6,因此此时不存在,③当点B 在原点的右侧时,则有b+2+b=6,解得,b=2,故答案为:-4或2.【点睛】本题考查的是数轴的动点问题,解题关键是利用距离公式进行计算.三、解答题(本大题共6个小题,共46分.)19. 计算:100211(10.5)3(3)3⎡⎤---⨯⨯--⎣⎦ 【答案】0【解析】【分析】按照有理数的混合运算顺序:先算乘方,再算乘除,最后算加减,若有括号先算括号内的,计算即可. 【详解】解:100211(10.5)3(3)3⎡⎤---⨯⨯--⎣⎦ =-1-12×13×(3-9) =-1-16×(-6) =-1+1=0【点睛】本题考查有理数的混合运算,掌握运算顺序及法则,正确计算是本题的解题关键.20. 解方程:12136x x x -+-=- 【答案】27x =-【解析】【分析】方程两边同时乘以最小公倍数去掉分母,进而去括号、移项、合并同类项即可求解.【详解】解:去分母得:6x-2(1-x )=x+2-6,去括号得:6x-2+2x=x+2-6,移项得:6x+2x-x=2-6+2,合并同类项得:7x=-2,解得:27x =-. 【点睛】本题考查一元一次方程的解法,掌握解方程的步骤正确计算是本题的关键.21. 先化简,再求值:已知()()222242x x y x y --+- ,其中1x =-,y=2. 【答案】22x y +;5.【解析】【分析】先去括号再合并同类项,然后把1x =-,y=2代入计算.【详解】解:原式=22222422=2x x y x y x y --+++, 当1x =-,y=2时,原式=(-1)2+2×2=5. 【点睛】本题考查了整式的加减−化简求值:先去括号,再合并同类项,然后把满足条件的字母的值代入计算得到对应的整式的值.22. 如图所示,已知C ,D 是线段AB 上的两个点,M ,N 分别为AC ,BD 的中点,若AB=10cm ,CD=4cm ,求线段MN 的长;【答案】7cm【解析】【分析】根据题目求出AC+DB 的值,进而根据中点求出AM+DN 的值,即可得出答案.【详解】解:∵AB=10cm ,CD=4cm∴AC+DB=AB-CD=6cm又M ,N 分别为AC ,BD 的中点∴AM=CM=12AC ,DN=BN=12DB ∴AM+DN=12(AC+DB)=3cm ∴MN=AB-(AM+DN)=7cm【点睛】本题考查的是线段的中点问题,解题关键是根据进行线段之间等量关系的转换.23. 小魏和小梁从A ,B 两地同时出发,小魏骑自行车,小梁步行,沿同条路线相向匀速而行。
2020学年广东省东莞市人教版七年级上期末数学试卷含答案解析
2020学年广东省东莞市七年级(上)期末数学试卷一、选择题(每小题2分,共20201.﹣5的绝对值是()A.B.5 C.﹣5 D.﹣2.第二次全国残疾人抽样调查结果显示,我国0~6岁精神残疾儿童约为11.1万人,1.1万人用科学记数法表示为()A.1.11×104B.11.1×104C.1.11×105D.1.11×1063.计算3x2﹣2x2的结果为()A.﹣5x2B.5x2C.﹣x2D.x24.下列各组中,不是同类项的是()A.x3y4与x3z4B.﹣3x与﹣x C.5ab与﹣2ab D.﹣3x2y与2y5.一件标价为a元的商品打9折后的价格是()A.(a﹣9)元B.90%a元C.10%a元D.9a元6.下列等式的变形正确的是()A.如果x﹣2=y,那么x=y﹣2 B.如果x=6,那么x=2C.如果x=y,那么﹣x=﹣y D.如果x=y,那么=7.如果1是关于x方程x+2m﹣5=0的解,则m的值是()A.﹣4 B.4 C.﹣2 D.28.已知∠A=40°,则∠A的补角等于()A.50°B.90°C.140°D.180°9.如图,下列水平放置的几何体中,从正面看不是长方形的是()A.B.C.D.10.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.70°B.110°C.12020D.141°二、填空题(每小题3分,共15分)11.﹣2的相反数是.12.化简:2(a+1)﹣a=.13.方程x+5=2x﹣3的解是.14.在数轴上,若A点表示数﹣1,点B表示数2,A、B两点之间的距离为.15.如图,C、D是线段上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则BD的长为.三、解答题(每小题5分,共25分)16.计算:×(﹣6)﹣÷(﹣)17.化简:(5x﹣3y)﹣3(x﹣2y)18.解方程:.19.已知线段AB=12,点D、E是线段AB的三等分点,求线段BD的长.2020育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“﹣”表示成绩小于14秒﹣1 +0.8 0 ﹣1.2 ﹣0.1 0 +0.5 ﹣0.6(1)求这个小组的男生达标率是多少?(2)求这个小组8名男生的平均成绩是多少?四、解答题(每小题8分,共40分)21.计算:﹣14+(﹣2)2﹣|2﹣5|+6×(﹣).22.已知:多项式A=2x2﹣xy,B=x2+xy﹣6,求:(1)4A﹣B;(2)当x=1,y=﹣2时,4A﹣B的值.23.甲队原有工人65人,乙队原有工人40人,现又有30名工人调入这两队,为了使乙队人数是甲队人数的,应调往甲、乙两队各多少人?24.如图,OE为∠AOD的平分线,∠COD=∠EOC,∠COD=15°,求:①∠EOC的大小;②∠AOD的大小.25.如图所示,是一列用若干根火柴棒摆成的由正方形组成的图案.(1)完成下表的填空:正方形个数 1 2 3 4 5 6 n火柴棒根数 4 7 10 13(2)某同学用若干根火柴棒按如上图列的方式摆图案,摆完了第1个后,摆第2个,接着摆第3个,第4个,…,当他摆完第n个图案时剩下了2020柴棒,要刚好摆完第n+1个图案还差2根.问最后摆的图案是第几个图案?2020学年广东省东莞市七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题2分,共20201.﹣5的绝对值是()A.B.5 C.﹣5 D.﹣【考点】绝对值.【分析】利用绝对值的定义求解即可.【解答】解:﹣5的绝对值是5,故选:B.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.2.第二次全国残疾人抽样调查结果显示,我国0~6岁精神残疾儿童约为11.1万人,1.1万人用科学记数法表示为()A.1.11×104B.11.1×104C.1.11×105D.1.11×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将11.1万用科学记数法表示为:1.11×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.计算3x2﹣2x2的结果为()A.﹣5x2B.5x2C.﹣x2D.x2【考点】合并同类项.【分析】根据合并同类项法则进行计算即可得解.【解答】解:3x2﹣2x2,=(3﹣2)x2,=x2.故选D.【点评】本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.4.下列各组中,不是同类项的是()A.x3y4与x3z4B.﹣3x与﹣x C.5ab与﹣2ab D.﹣3x2y与2y【考点】同类项.【分析】根据同类项是字母项且相同字母的指数也相同,可得答案.【解答】解:A、字母不同不是同类项,故A符合题意;B、字母项且相同字母的指数也相同,故B不符合题意;C、字母项且相同字母的指数也相同,故C不符合题意;D、字母项且相同字母的指数也相同,故D不符合题意;故选:A.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.5.一件标价为a元的商品打9折后的价格是()A.(a﹣9)元B.90%a元C.10%a元D.9a元【考点】列代数式.【分析】直接利用标价×,进而求出答案.【解答】解:由题意可得:一件标价为a元的商品打9折后的价格是90%a元.故选:B.【点评】此题主要考查了列代数式,正确掌握打折与标价之间的关系是解题关键.6.下列等式的变形正确的是()A.如果x﹣2=y,那么x=y﹣2 B.如果x=6,那么x=2C.如果x=y,那么﹣x=﹣y D.如果x=y,那么=【考点】等式的性质.【分析】根据等式的性质1,两边都加或减同一个数或同一个整式,结果不变,可判断A,根据等式的性质2,两边都乘或除以同一个不为零的数或同一个整式,结果仍不变,可判断B、C、D.【解答】解:A、等式的左边加2,右边减2,故A错误;B、等式的左边乘以3,右边除以2,故B错误;C、等式的两边都乘以﹣1,故C正确;D、当a=0时,0不能作除数,故D错误;故选:C.【点评】本题考查了等式的性质,注意两边都乘或除以同一个不为零的数或同一个整式,结果仍不变.7.如果1是关于x方程x+2m﹣5=0的解,则m的值是()A.﹣4 B.4 C.﹣2 D.2【考点】一元一次方程的解.【分析】将x=1代入即可得出m即可.【解答】解:∵x=1是关于x方程x+2m﹣5=0的解,∴1+2m﹣5=0,∴m=2,故选D.【点评】本题考查了一元一次方程的解,方程的解就是能够使方程左右两边相等的未知数的值.8.已知∠A=40°,则∠A的补角等于()。
东莞市七年级上册数学期末试卷(含答案)
一、选择题
1.A
解析:A
【解析】
【分析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【详解】
解:∵3> > >﹣3,
∴在数3,﹣3, , 中,最小的数为﹣3.
故选:A.
【点睛】
此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.
【详解】
解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.
故选:C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5.C
解析:C
【解析】
【分析】
根据余角与补角的性质进行一一判断可得答案.
14.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.
15.化简: __________.
16.单项式﹣ 的系数是_____,次数是_____.
17.已知a,b是正整数,且 ,则 的最大值是______.
18.小马在解关于x的一元一次方程 时,误将2x看成了2x,得到的解为x=6,请你帮小马算一算,方程正确的解为x=_____.
24.a※b是新规定的这样一种运算法则:a※b=a﹣b+2ab,若(﹣2)※3=_____.
三、解答题
25.古代名著《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里,驽马先行十二日,问良马几日追及之.若设良马x天可追上弩马.
2019年东莞市七年级数学上期末试题带答案
2019年东莞市七年级数学上期末试题带答案一、选择题1.下列说法:(1)两点之间线段最短; (2)两点确定一条直线;(3)同一个锐角的补角一定比它的余角大90°;(4)A 、B 两点间的距离是指A 、B 两点间的线段;其中正确的有( ) A .一个B .两个C .三个D .四个2.下列四个角中,最有可能与70°角互补的角是( ) A .B .C .D .3.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A .2.18×106 B .2.18×105 C .21.8×106 D .21.8×105 4.实数a b ,在数轴上对应点的位置如图所示,则必有( )A .0a b +>B .0a b -<C .0ab >D .0ab< 5.如果水库的水位高于正常水位5m 时,记作+5m ,那么低于正常水位3m 时,应记作( ) A .+3mB .﹣3mC .+13m D .﹣5m6.如图的正方体盒子的外表面上画有3条黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是( )A .B .C .D .7.下列方程变形中,正确的是( )A .方程3221x x -=+,移项,得3212x x -=-+B .方程()3251x x -=--,去括号,得3251x x -=--C .方程2332t =,系数化为1,得1t = D .方程110.20.5x x--=,整理得36x = 8.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是( ) A .不赚不亏 B .赚8元C .亏8元D .赚15元9.用四舍五入按要求对0.06019分别取近似值,其中错误的是( )A .0.1(精确到0.1)B .0.06(精确到千分位)C .0.06(精确到百分位)D .0.0602(精确到0.0001)10.下面结论正确的有( )①两个有理数相加,和一定大于每一个加数. ②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和. ④两个正数相加,和为正数. ⑤两个负数相加,绝对值相减. ⑥正数加负数,其和一定等于0. A .0个 B .1个 C .2个 D .3个11.下列各数:(-3)2,0,212⎛⎫-- ⎪⎝⎭,227,(-1)2009,-22,-(-8),3|-|4-中,负数有( ) A .2个B .3个C .4个D .5个12.已知x =y ,则下面变形错误的是( ) A .x +a =y +aB .x -a =y -aC .2x =2yD .x ya a= 二、填空题13.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.14.已知整数1a 、2a 、3a 、4a 、…,满足下列条件;10a =、211a a =-+、322a a =-+、433a a =-+、…,依此类推,则2019a =___________.15.如果你想将一根细木条固定在墙上,至少需要钉2个钉子,这一事实说明了:_______.16.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.17.如图,若输入的值为3-,则输出的结果为____________.18.小强在解方程时,不小心把一个数字用墨水污染成了x=1﹣•5x-,他翻阅了答案知道这个方程的解为x=1,于是他判断●应该是_______.19.如图,若CB=4cm,DB=7cm,且D是AC的中点,则AC=_____cm.20.某种商品的标价为220元,为了吸引顾客,按九折出售,这时仍要盈利10%,则这种商品的进价是________元.三、解答题21.某超市用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的12多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/件)2230售价(元/件)2940(1)该商场购进甲、乙两种商品各多少件?(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?22.某村种植了小麦、水稻、玉米三种农作物,小麦种植面积是am2,水稻种植面积是小麦种植面积的4倍,玉米种植面积比小麦种植面积的2倍少3m2,则水稻种植面积比玉米种植面积大多少m2?(用含a的式子表示)23.已知:点C在直线AB上,AC=8cm,BC=6cm,点M、N分别是AC、BC的中点,求线段MN的长.24.8x=5200x=6500∴电器原价为6500元答:该品牌电脑的原价是6500元/台.②设该电器的进价为m元/台,则有:m(1+14%)=5700解得:m=5000答:这种品牌电脑的进价为5000元/台.【点睛】本题考查一元一次方程的实际运用,理解题意,搞清优惠的计算方法,找出题目蕴含的数量关系解决问题.25.如图,数轴的单位长度为1.(1)如果点A,D表示的数互为相反数,那么点B表示的数是多少?(2)如果点B,D表示的数互为相反数,那么图中表示的四个点中,哪一点表示的数的绝对值最大?为什么?(3)当点B为原点时,若存在一点M到A的距离是点M到D的距离的2倍,则点M所表示的数是____.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】(1)根据线段的性质即可求解;(2)根据直线的性质即可求解;(3)余角和补角一定指的是两个角之间的关系,同角的补角比余角大90°;(4)根据两点间的距离的定义即可求解.【详解】(1)两点之间线段最短是正确的;(2)两点确定一条直线是正确的;(3)同一个锐角的补角一定比它的余角大90°是正确的;(4)A、B两点间的距离是指A、B两点间的线段的长度,原来的说法是错误的.故选C.【点睛】本题考查了补角和余角、线段、直线和两点间的距离的定义及性质,是基础知识要熟练掌握.2.D解析:D【分析】根据互补的性质,与70°角互补的角等于180°-70°=110°,是个钝角;看下4个答案,哪个符合即可.【详解】解:根据互补的性质得,70°角的补角为:180°-70°=110°,是个钝角;∵答案A、B、C都是锐角,答案D是钝角;∴答案D正确.故选D.3.A解析:A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.D解析:D【解析】【分析】【详解】解:由数轴上a,b两点的位置可知0<a<1,a<﹣1.根据异号的两个数相加,取绝对值较大的加数的符号,知a+b<0,故选项A错;数轴上右边的数总比左边的数大,所以a﹣b>0,故选项B错误;因为a,b异号,所以ab<0,故选项C错误;因为a,b异号,所以ba<0,故选项D正确.故选:D.5.B解析:B【解析】【分析】根据正数和负数表示相反意义的量,可得答案.【详解】水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作-3m,【点睛】本题考查了正数和负数,确定相反意义的量是解题关键.6.D解析:D 【解析】根据正方体的表面展开图可知,两条黑线在一行,且相邻两条成直角,故A 、B 选项错误;该正方体若按选项C 展开,则第三行第一列处的黑线的位置应为小正方形的另一条对角线,所以C 不符合题意. 故选D.点睛:本题是一道关于几何体展开图的题目,主要考查了正方体展开图的相关知识.对于此类题目,一定要抓住图形的特殊性,从相对面,相邻的面入手,进行分析解答.本题中,抓住黑线之间位置关系是解题关键.7.D解析:D 【解析】 【分析】根据解方程的步骤逐一对选项进行分析即可. 【详解】A . 方程3221x x -=+,移项,得3212x x -=+,故A 选项错误;B . 方程()3251x x -=--,去括号,得325+5-=-x x ,故B 选项错误;C . 方程2332t =,系数化为1,得94t =,故C 选项错误;D . 方程110.20.5x x--=,去分母得()5121--=x x ,去括号,移项,合并同类项得:36x =,故D 选项正确. 故选:D 【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键. 8.C解析:C 【解析】试题分析:设盈利的进价是x 元,则 x+25%x=60, x=48.设亏损的进价是y 元,则y-25%y=60, y=80. 60+60-48-80=-8,∴亏了8元.故选C.考点:一元一次方程的应用.9.B解析:B【解析】A.0.06019≈0.1(精确到0.1),所以A选项的说法正确;B.0.06019≈0.060(精确到千分位),所以B选项的说法错误;C.0.06019≈0.06(精确到百分),所以C选项的说法正确;D.0.06019≈0.0602(精确到0.0001),所以D选项的说法正确。
广东省东莞市2019-2020学年七年级上学期期末数学试卷 (含解析)
广东省东莞市2019-2020学年七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.−5的相反数是()A. −15B. 15C. −5D. 52.某日,A市的最高气温为12℃,最低气温为−2℃,A市这天的最高气温比最低气温高()A. 10℃B. 14℃C. −10℃D. −14℃3.将数13680000用科学记数法表示为()A. 0.1368×108B. 1.368×107C. 13.68×106D. 1.368×1084.下列计算正确的是()A. 3a+4b=7abB. 7a−3a=4C. 3a+a=3a2D. 3a2b−2a2b=a2b5.单项式−3πxy2z3的系数和次数分别是()A. −3π,5B. −3,6C. −3π,7D. −3π,66.如图是一个正方体纸盒的展开图,将其围成一个正方体后,则与“5”相对的是()A. 2B. 0C. 数D. 学7.如图,由B到A的方向是()A. 南偏东30°B. 南偏东60°C. 北偏西30°D. 北偏西60°8.下列变形中,正确的是()A. 若5x−6=7,则5x=7−6B. 若−3x=5,则x=−35C. 若5x−3=4x+2,则5x−4x=2+3D. 若x−13+x+12=1,则2(x−1)+3(x+1)=19.如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是()A. a+b>0B. ab>0C. a−b>0D.|a|−|b|>010.“今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、物价各几何?”这是我国古代名著九章算术中记载的古典名题,其题意是:有若干人一起买鸡.如果每人出9文钱,就多出11文钱;如果每人出6文钱,就相差16文钱.问买鸡的人数、鸡的价格各是多少?若设买鸡的人数为x人,则列方程正确的是()A. 9x+11=6x+16B. 9x+11=6x−16C. 9x−11=6x+16D. 9x−11=6x−16二、填空题(本大题共7小题,共28.0分)11.−2是______ 的倒数,是______ 的相反数.12.一副三角板放置如图,∠AOB=________.13.在数轴上A点表示的数是−3,B点与A相距5个单位,则B点表示的数为______ .14.若−2a2b m与4a n b是同类项,则m−n=______.15.已知线段AB长为8,P为直线AB上一点,BP长为2,则AP的长为________.16.若x=−2是关于x的方程2a−3x=0的解,则a的值是______.17.如图,图案是按一定规律摆放的,按此规律,第2018个图案与第1−4个图案中第______个相同.(只填数字)三、计算题(本大题共2小题,共16.0分)18. 2x−13−10x−16=2x+14−1.19. 已知|m −1|+(n +12)2=0,求(−m 2n +1)(−1−m 2n )的值.四、解答题(本大题共6小题,共46.0分)20. 计算:(1)5÷(−35)×53(2)−32×(−23)+8×(−12)2−3÷1321.先化简,再求值:3x2y−[2xy−2(xy−32x2y)+x2y2],其中x=3,y=−13.22.检修小组乘汽车在东西方向的高速公路上检修线路,约定向东行驶为正,向西行驶为负.某天自基地出发到收工时,所走的十段路程(单位:千米)记录为:+22,−3,+4,−2,−8,+17,−4,−3,+10,+7(1)收工时检修小组在基地的什么方向?距基地多远?(2)若检修车每100千米耗油16升,求自基地出发到收工共耗油多少升?23.如图,有一块长为20米,宽10米的长方形土地,现将其余三面留出宽都是x米的小路,中间余下的长方形部分做菜地:(1)菜地的长a=_________米,菜地的宽b=________米,菜地的面积S=________平方米(用含x的代数式表示).(2)当x=1时,求菜地的面积S的值.24.某超市计划购进甲、乙两种型号的节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如果进货款恰好为46000元,那么可以购进甲、乙两种型号节能灯各多少只?(2)在(1)的条件下,超市为庆祝元旦进行大促销活动,决定对乙型节能灯进行打八折销售,求全部售完后超市是盈利还是亏本?若盈利,利润多少?若亏损,亏损多少?25.如图,O为直线AB上一点,∠AOC=58°,OD平分∠AOC,∠DOE=90°.(1)求出∠BOD的度数;(2)请通过计算说明:OE是否平分∠BOC.(3)与∠AOE互补的角是______;-------- 答案与解析 --------1.答案:D解析:本题考查了相反数的定义,就属于基础题.由−(−5)=5,可得答案.解:由−(−5)=5,可得−5的相反数是5.故选:D.2.答案:B解析:本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解..解:12−(−2)=14℃.故选B.3.答案:B解析:解:将13680000用科学记数法表示为:1.368×107.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.答案:D解析:解:A、3a+4b不能合并,故A错误;B、7a−3a=4a,故B错误;C、3a+a=4a,故C错误;D、3a2b−2a2b=a2b,故D正确;故选D.根据合并同类项得法则进行选择即可.本题考查了合并同类项,掌握合并同类项得法则是解题的关键.5.答案:D解析:解:单项式−3πxy2z3的系数是:−3π,次数是:6.故选:D.利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.此题主要考查了单项式的次数与系数,正确把握定义是解题关键.6.答案:B解析:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“数”相对的字是“1”;“学”相对的字是“2”;“5”相对的字是“0”.故选B.7.答案:D解析:解:由图可知∠ABN=90°−30°=60°,根据方向角的定义,所以由B到A的方向是北偏西60°.故选:D.由图可知∠ABN=90°−30°=60°,根据方向角的定义,由B到A的方向是北偏西60°.本题考查了方向角的定义,解决本题的关键是计算出∠ABN得度数.8.答案:C解析:此题主要考查了等式的性质,正确掌握等式的基本性质是解题关键.直接利用等式的基本性质分别分析得出答案.解:A、若5x−6=7,则5x=7+6,故此选项错误;B、若−3x=5,则x=−53,故此选项错误;C、若5x−3=4x+2,则5x−4x=2+3,正确;D、若x−13+x+12=1,则2(x−1)+3(x+1)=6,故此选项错误;故选:C.9.答案:C解析:本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.本题要先观察a,b在数轴上的位置,得b<−1<0<a<1,然后对四个选项逐一判断.解:A.∵b<−1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B.∵b<−1<0<a<1,∴ab<0,故选项B错误;C.∵b<−1<0<a<1,∴a−b>0,故选项C正确;D.∵b<−1<0<a<1,∴|a|−|b|<0,故选项D错误.选C.10.答案:C解析:本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.设买鸡的人数为x人,根据鸡的价钱不变,即可得出关于x的一元一次方程,此题得解.解:设买鸡的人数为x人,根据题意得:9x−11=6x+16.故选C.11.答案:−1;22解析:.也考查了相反数.本题考查了倒数:a(a≠0)的倒数为1a根据倒数和相反数的定义求解.的倒数,是2的相反数.解:−2是−12,2.故答案为−1212.答案:105°解析:此题主要考查了角的计算,关键是掌握角之间的关系.根据三角板的度数可得:∠2=45°,∠1=60°,再根据角的和差关系可得∠AOB=∠1+∠2,进而算出角度.解:如图:根据三角板的度数可得:∠2=45°,∠1=60°,∠AOB=∠1+∠2=45°+60°=105°,故答案为105°.13.答案:2或−8解析:解:设B点表示的数是x,∵A点表示的数是−3,B点与A相距5个单位,∴|x+3|=5,解得x=2或x=−8.故答案为:2或−8.设B点表示的数是x,根据数轴上两点间的距离公式求出x的值即可.本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.14.答案:−1解析:解:∵−2a2b m与4a n b是同类项,∴n=2,m=1,则m−n=1−2=−1,故答案为:−1.根据同类项:所含字母相同,并且相同字母的指数也相同,可得m与n的值,代入计算即可.本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同.15.答案:6或10解析:解:当P在线段AB上时,由线段的和差,得AP=AB−BP=8−2=6,当P在线段AB的延长线上时,由线段的和差,得AP=AB+BP=8+2=10,综上所述:AP的长为6或10,故答案为:6或10.分类讨论:P在线段AB上,P在线段AB的延长线上,根据线段的和差,可得答案.本题考查了两点间的距离,在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.16.答案:−3解析:解:将x=−2代入2a−3x=0,∴2a+6=0,∴a=−3故答案为:−3根据一元一次方程的解的定义即可求出答案.本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.17.答案:2解析:【分析】本题考查了规律型:图形的变化,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.观察图形变化规律可知,图形是4个循环,用2018除以4,看余数是多少,确定图案相同的序号.【解答】解:∵2018=504×4+2,∴第2018个图案与第2个图案相同.故答案为:2.18.答案:解:去分母得,4(2x−1)−2(10x−1)=3(2x+1)−12,去括号得,8x−4−20x+2=6x+3−12,移项得,8x−20x−6x=3−12+4−2,合并同类项得,−18x=−7,系数化为1得,x=718.解析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.19.答案:解:(−m2n+1)(−1−m2n)=(−m2n)2−1=m4n2−1,∵|m−1|+(n+12)2,∴m=1,n=−12,∴(−m2n+1)(−1−m2n)=(−12)2−1=−34.解析:本题主要考查了绝对值的非负性,偶次方的非负数的应用,解题的关键是熟练掌握绝对值的非负性,偶次方的非负数的计算,根据已知及绝对值的非负性,偶次方的非负数的计算,求出(−m 2n +1)(−1−m 2n)的值. 20.答案:解:(1)5÷(−35)×53=(−253)×53 =−1259(2)−32×(−2)+8×(−1)2−3÷1 =−9×(−23)+8×14−9 =6+2−9=8−9=−1解析:(1)从左向右依次计算即可.(2)首先计算乘方,然后计算乘除法,最后从左向右依次计算,求出算式的值是多少即可.此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算. 21.答案:解:3x 2y −[2xy −2(xy −32x 2y)+x 2y 2]=3x 2y −2xy +2(xy −32x 2y)−x 2y 2 =3x 2y −2xy +2xy −3x 2y −x 2y 2=−x 2y 2,当x =3,y =−13时,原式=−32×(−13)2=−9×19=−1.解析:先去括号,然后合并同类项即可化简题目中的式子,然后将x 、y 的值代入即可解答本题. 本题考查整式的加减−化简求值,解答本题的关键是明确整式化简求值的方法.22.答案:解:(1)22+(−3)+4+(−2)+(−8)+17+(−4)+(−3)+10+7=40,即收工时检修小组在基地的东边,距基地40千米;(2)(22+3+4+2+8+17+4+3+10+7)×(16÷100)=80×0.16=12.8(升),即自基地出发到收工共耗油12.8升.解析:本题考查正数和负数,解题的关键是正数和负数在题目中的实际意义.(1)根据题目中的数据可以解答本题;(2)根据题目中的数据和每100千米耗油16升可以解答本题.23.答案:解:(1)20−2x;10−x;(20−2x)(10−x);(2)由(1)知,菜地的面积为:S=(20−2x)⋅(10−x),当x=1时,S=(20−2)(10−1)=162(平方米).解析:本题考查了列代数式,求代数式的值的应用,能正确列出代数式是解此题的关键(1)本题可先根据所给的图形,得出菜地的长和宽,然后根据长方形面积公式求出面积;(2)直接将x=1代入(1)所求的面积式子中,得出结果.解:(1)∵其余三面留出宽都是x米的小路,∴由图可以看出:菜地的长为(20−2x)米,宽为(10−x)米;所以菜地的面积为S=(20−2x)(10−x);故答案为20−2x;10−x;(20−2x)(10−x);(2)见答案.24.答案:解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200−x)只,由题意,得25x+45(1200−x)=46000,解得:x=400,购进乙型节能灯1200−x=1200−400=800只;答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)乙型节能灯打八折,全部售完后0.8×60×800+30×400−46000=4400,答:全部售完后超市盈利,利润为4400元.解析:此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200−x)只,根据甲乙两种灯的总进价为46000元列出一元一次方程,解方程即可;(2)乙型节能灯打八折,全部售完后,根据利润=售价−进价求出即可.25.答案:(1)∵∠AOC=58°,OD平分∠AOC,∴∠AOD=∠DOC=29°,∴∠BOD=180°−29°=151°;(2)OE平分∠BOC,理由如下:∵∠DOC+∠COE=90°,∠DOC=29°,∴∠COE=61°.∵∠BOC=180°−∠AOC=122°,∠BOC=61°.∴∠COE=12∴∠EOC=∠BOE=61°,∴OE平分∠BOC.(3)∠BOE和∠COE解析:(1)由平分线的定义结合∠AOC的度数即可求出∠AOD的度数,再根据∠AOD和∠BOD互补即可得出结论;(2)由∠DOC和∠COE互余即可求出∠COE的度数,再根据∠AOC和∠BOC互补即可求出∠BOC的度数,由∠COE和∠BOC度数间的关系即可得出OE平分∠BOC.(3)根据补角的定义即可求解.本题考查了余角和补角以及角平分线的定义,解题的关键是:(1)利用角平分线的定义找出∠AOD的度数;(2)求出∠COE和∠BOC度数;(3)如果两个角的和等于180°(平角),就说这两个角互为补角.解:(1)见答案;(2)见答案;,因为∠BOE=∠COE,所以,所以与与∠AOE互补的角是∠BOE和∠COE,故答案为:∠BOE和∠COE.。
广东省东莞市2019-2020学年数学七上期末考试试题
注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.如图,甲从A 点出发向北偏东70°走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )A.125°B.160°C.85°D.105°2.已知∠AOB=60°,作射线OC ,使∠AOC 等于40°,OD 是∠BOC 的平分线,那么∠BOD 的度数是( )A.100°B.100°或20°C.50°D.50°或10°3.下列命题中:①.有理数和数轴上的点一一对应;②.内错角相等;③.平行于同一条直线的两条直线互相平行;④.邻补角一定互补.其中真命题的个数是( )A .1个B .2个C .3个D .4个4.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是( )A.x+1=2(x ﹣2)B.x+3=2(x ﹣1)C.x+1=2(x ﹣3)D.1112x x +-=+ 5.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打9折;③一次性购书超过200元,一律打8折.如果小明同学一次性购书付款162元,那么他所购书的原价为( )A .180元B .202.5元C .180元或202.5元D .180元或200元6.下列计算正确的是( )A .3x 2﹣x 2=3B .﹣3a 2﹣2a 2=﹣a 2C .3(a ﹣1)=3a ﹣1D .﹣2(x+1)=﹣2x ﹣27.下列计算正确的是( )A .3a+2a=5a 2B .3a -a=3C .2a 3+3a 2=5a 5D .-a 2b+2a 2b=a 2b8.下面运算中,结果正确的是( )A.()235a a =B.325a a a +=C.236a a a ⋅=D.331(0)a a a ÷=≠ 9.下列各式运用等式的性质变形,错误的是( )A .若a b -=-,则a b =B .若a b c c =,则a b =C .若ac bc =,则a b =D .若22(1)(1)m a m b +=+,则a b =10.如图,数轴上的、、A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||,a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边11.已知有理数a ,b ,c 在数轴上对应的位置如图所示,化简|b ﹣c|﹣|c ﹣a|( )A.b ﹣2c+aB.b ﹣2c ﹣aC.b+aD.b ﹣a12.计算(﹣6)+(﹣3)的结果等于( )A .-9B .9C .-3D .3二、填空题13.如图,将一副直角三角板叠在一起,使直角顶点重合于点O ,则∠AOB=155°,则∠COD=_____,∠BOC=_____.14.如果A 站与B 站之间还有C 、D 两个车站,那么往返于A 站与B 站之间的客车应安排_________种车票.15.把2005个正整数1,2,3,4,…,2005按如图方式排列成一个表,用一正方形框在表中任意框住4个数,被框住的4个数之和能否等于416?设正方形框中左上角的一个数为x ,则可列出方程 ________16.一个两位数,个位上的数字是十位上数字的3倍,它们的和是12,那么这个两位数是____.17.化简:2(x ﹣3)﹣(﹣x+4)=____.18.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是______.19.若|a| =|b|,则a 与b 的关系是__________________________..20.根据下图所示的流程图计算,若输入x 的值为1,则输出y 的值为__________。
东莞市七年级上册数学期末试卷(含答案)
东莞市七年级上册数学期末试卷(含答案)一、选择题1.下列判断正确的是()A.有理数的绝对值一定是正数.B.如果两个数的绝对值相等,那么这两个数相等.C.如果一个数是正数,那么这个数的绝对值是它本身.D.如果一个数的绝对值是它本身,那么这个数是正数.2.有m 辆客车及n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘45 人,则还有 5 人不能上车.有下列四个等式:① 40m+25=45m+5 ;②2554045n n+-=;③2554045n n++=;④ 40m+25 = 45m- 5 .其中正确的是()A.①③B.①②C.②④D.③④3.如图,OA⊥OC,OB⊥OD,①∠AOB=∠COD;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个()A.1个B.2个C.3个D.4个4.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为()4a b c﹣23…A.4 B.3 C.0 D.﹣25.按一定规律排列的单项式:x3,-x5,x7,-x9,x11,……第n个单项式是( )A.(-1)n-1x2n-1B.(-1)n x2n-1C.(-1)n-1x2n+1D.(-1)n x2n+16.在下边图形中,不是如图立体图形的视图是()A .B .C .D .7.计算:2.5°=( )A .15′B .25′C .150′D .250′ 8.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( )A .8cmB .2cmC .8cm 或2cmD .以上答案不对9.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .1 10.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( )A .m=2,n=1B .m=2,n=0C .m=4,n=1D .m=4,n=0 11.下列等式的变形中,正确的有( )①由5 x =3,得x = 53;②由a =b ,得﹣a =﹣b ;③由﹣x ﹣3=0,得﹣x =3;④由m =n ,得m n=1. A .1个 B .2个 C .3个 D .4个12.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )A .a+b<0B .a+c<0C .a -b>0D .b -c<0二、填空题13.已知关于x 的一元一次方程320202020x x n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 14.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.15.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.16.﹣30×(1223-+45)=_____. 17.当a=_____时,分式13a a --的值为0. 18.如图,在长方形ABCD 中,10,13.,,,AB BC E F G H ==分别是线段,,,AB BC CD AD 上的定点,现分别以,BE BF 为边作长方形BEQF ,以DG 为边作正方形DGIH .若长方形BEQF 与正方形DGIH 的重合部分恰好是一个正方形,且,BE DG =,Q I 均在长方形ABCD 内部.记图中的阴影部分面积分别为123,,s s s .若2137S S =,则3S =___19.因式分解:32x xy -= ▲ .20.如果一个数的平方根等于这个数本身,那么这个数是_____.21.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.22.用度、分、秒表示24.29°=_____.23.若4a +9与3a +5互为相反数,则a 的值为_____.24.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)三、压轴题 25.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值.26.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为 (2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.27.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足|a +24|+|b +10|+(c -10)2=0;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.28.如图1,线段AB的长为a.(1)尺规作图:延长线段AB到C,使BC=2AB;延长线段BA到D,使AD=AC.(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB所在的直线画数轴,以点A为原点,若点B对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M 是BC的中点,点N是AD的中点,请求线段MN的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.29.如图,在平面直角坐标系中,点M的坐标为(2,8),点N的坐标为(2,6),将线段MN向右平移4个单位长度得到线段PQ(点P和点Q分别是点M和点N的对应点),连接MP、NQ,点K是线段MP的中点.(1)求点K的坐标;(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M、N、Q、P、K的对应点),当BC与x轴重合时停止运动,连接OA、OE,设运动时间为t秒,请用含t的式子表示三角形OAE的面积S(不要求写出t的取值范围);(3)在(2)的条件下,连接OB、OD,问是否存在某一时刻t,使三角形OBD的面积等于三角形OAE的面积?若存在,请求出t值;若不存在,请说明理由.30.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数______;点P表示的数______(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P、Q 同时出发,问点P运动多少秒时追上Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.31.(阅读理解)若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?32.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数x的值.(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题解析:A∵0的绝对值是0,故本选项错误.B∵互为相反数的两个数的绝对值相等,故本选项正确.C如果一个数是正数,那么这个数的绝对值是它本身.D∵0的绝对值是0,故本选项错误.故选C.2.A解析:A【解析】【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【详解】根据总人数列方程,应是40m+25=45m+5,①正确,④错误;根据客车数列方程,应该为2554045n n++=,③正确,②错误;所以正确的是①③.故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变.3.C解析:C【解析】【分析】根据垂直的定义和同角的余角相等分别计算后对各小题进行判断,由此即可求解.【详解】∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴∠AOB=∠COD,故①正确;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故②正确;∠AOB+∠COD不一定等于90°,故③错误;图中小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD一共6个,故④正确;综上所述,说法正确的是①②④.故选C.【点睛】本题考查了余角和补角,垂直的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.4.D解析:D【解析】【分析】根据三个相邻格子的整数的和相等列式求出a 、c 的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴4+a+b=a+b+c ,解得c=4,a+b+c=b+c+(-2),解得a=-2,所以,数据从左到右依次为4、-2、b 、4、-2、b ,第9个数与第三个数相同,即b=3,所以,每3个数“4、-2、3”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为-2.故选D.【点睛】此题考查数字的变化规律,仔细观察排列规律求出a 、b 、c 的值,从而得到其规律是解题的关键.5.C解析:C【解析】【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得.【详解】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为21n ,∴第n 个单项式是 (-1)n -1x 2n +1 ,故选C.【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.6.C解析:C【解析】【分析】直接利用简单组合体的三视图进而判断得出答案.【详解】解:A选项为该立体图形的俯视图,不合题意;B选项为该立体图形的主视图,不合题意;C选项不是如图立体图形的视图,符合题意;D选项为该立体图形的左视图,不合题意.故选:C.【点睛】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.7.C解析:C【解析】【分析】根据“1度=60分,即1°=60′”解答.【详解】解:2.5°=2.5×60′=150′.故选:C.【点睛】考查了度分秒的换算,度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.8.C解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC,又∵AB=5,BC=3,∴AC=5−3=2;②当点C在线段AB的延长线上时,如图,∵AC=AB+BC,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8.故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.9.B解析:B【解析】【分析】根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果.【详解】解:由题意可得,当x=1时,第一次输出的结果是4,第二次输出的结果是2,第三次输出的结果是1,第四次输出的结果是4,第五次输出的结果是2,第六次输出的结果是1,第七次输出的结果是4,第八次输出的结果是2,第九次输出的结果是1,第十次输出的结果是4,……,∵2020÷3=673…1,则第2020次输出的结果是4,故选:B.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.10.A解析:A【解析】根据同类项的相同字母的指数相同可直接得出答案.解:由题意得:m=2,n=1.故选A.11.B解析:B【解析】①若5x=3,则x=35,故本选项错误;②若a=b,则-a=-b,故本选项正确;③-x-3=0,则-x=3,故本选项正确;④若m=n≠0时,则nm=1,故本选项错误.故选B.12.C解析:C【解析】【分析】根据数轴上的数,右边的数总是大于左边的数,即可判断a、b、c的符号,根据到原点的距离即可判断绝对值的大小,再根据有理数的加减法法则即可做出判断.【详解】根据数轴可知:a<b<0<c,且|a|>|c|>|b|则A. a+b<0正确,不符合题意;B. a+c<0正确,不符合题意;C.a-b>0错误,符合题意;D. b-c<0正确,不符合题意;故选C.【点睛】本题考查了数轴以及有理数的加减,难度适中,熟练掌握有理数的加减法法则和利用数轴比较大小是解题关键.二、填空题13.y=﹣.【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程①的解为x =2020,∴关于y 的一元一次方程②中﹣(3y ﹣2)=2020,解解析:y =﹣20183. 【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程320202020x x n +=+①的解为x =2020, ∴关于y 的一元一次方程3232020(32)2020y y r --=--②中﹣(3y ﹣2)=2020, 解得:y =﹣20183. 故答案为:y =﹣20183. 【点睛】此题主要考查了一元一次方程的解,正确得出−(3y−2)的值是解题关键.14.-2【解析】【分析】根据图和题意可得出答案.【详解】解:表示的数互为相反数,且,则A 表示的数为:.故答案为:.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.解析:-2【解析】【分析】根据图和题意可得出答案.【详解】解:,A B 表示的数互为相反数,且4AB =,则A 表示的数为:2-.故答案为:2-.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.15.-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.【详解】解:根据如图所示:当输入的是的时候,,此时结果解析:-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果.【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=,此时结果1>-需要将结果返回,即:1(3)25⨯--=-,此时结果1<-,直接输出即可,故答案为:5-.【点睛】本题考查程序设计题,解题关键在于数的比较大小和读懂题意.16.﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(+)=﹣30×+(﹣30)×()+(﹣30)×=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛解析:﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(1223-+45)=﹣30×12+(﹣30)×(23-)+(﹣30)×45=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键.17.1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式解析:1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.18.【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据,列方程可得a的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,解析:121 4【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据213 7SS=,列方程可得a的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,∵AB=10,BC=13,∴AE=AB−BE=10−(10−a)=a, PI=IG−PG=10−a−a=10−2a,AH=13−DH=13−(10−a)=a+3,∵213 7S S =,即23(3)7aa a=+,∴4a2−9a=0,解得:a1=0(舍),a2=94,则S3=(10−2a)2=(10−92)2=1214,故答案为121 4.【点睛】本题考查正方形和长方形边长之间的关系、面积公式以及解一元二次方程等知识,解题的关键是学会利用参数列方程解决问题.19.x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y),故答案为x(x﹣y)(x+y).20.0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵±=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】解析:0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.21.72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】解析:72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键. 22.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′︒'"解析:241724【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″.故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.23.-2【解析】【分析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为:﹣2.【点睛】本题考查了解解析:-2【解析】【分析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为:﹣2.【点睛】本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.24.【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得故答案为.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.x+解析:416【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得()()()x x x x x+++++++=+1771416x+.故答案为416【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.三、压轴题25.(1)107秒或10秒;(2)1413或11413.【解析】【分析】(1)由绝对值的非负性可求出a,c的值,设点B对应的数为b,结合BC = 2 AB,求出b 的值,当运动时间为t秒时,分别表示出点P、点Q对应的数,根据“Q到B的距离与P 到B的距离相等”列方程求解即可;(2)当点R运动了x秒时,分别表示出点P、点Q、点R对应的数为,得出AQ的长,由中点的定义表示出点M、点N对应的数,求出MN的长.根据MN+AQ=25列方程,分三种情况讨论即可.【详解】(1)∵|a-20|+|c+10|=0,∴a-20=0,c+10=0,∴a=20,c=﹣10.设点B对应的数为b.∵BC=2AB,∴b﹣(﹣10)=2(20﹣b).解得:b=10.当运动时间为t秒时,点P对应的数为20+2t,点Q对应的数为﹣10+5t.∵Q到B的距离与P到B的距离相等,∴|﹣10+5t﹣10|=|20+2t﹣10|,即5t﹣20=10+2t或20﹣5t=10+2t,解得:t=10或t=107.答:运动了107秒或10秒时,Q到B的距离与P到B的距离相等.(2)当点R运动了x秒时,点P对应的数为20+2(x+2)=2x+24,点Q对应的数为﹣10+5(x+2)=5x,点R对应的数为20﹣x,∴AQ=|5x﹣20|.∵点M为线段PR的中点,点N为线段RQ的中点,∴点M对应的数为224202x x++-=442x+,点N对应的数为2052x x-+=2x+10,∴MN=|442x+﹣(2x+10)|=|12﹣1.5x|.∵MN+AQ=25,∴|12﹣1.5x|+|5x﹣20|=25.分三种情况讨论:①当0<x<4时,12﹣1.5x+20﹣5x=25,解得:x =1413; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,解得:x =667>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25, 解得:x 31141=. 综上所述:x 的值为1413或11413. 【点睛】本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.26.(1)3;(2)12;-3,2,-4或2,-3,-4.(3)a=11或4或10. 【解析】【分析】(1)根据上述材料给出的方法计算其相应的最佳值为即可;(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可;(3)分情况算出对应的数值,建立方程求得a 的数值即可.【详解】(1)因为|−4|=4,-4-32=3.5,-4-312+=3,所以数列−4,−3,1的最佳值为3.故答案为:3;(2)对于数列−4,−3,2,因为|−4|=4,432--=72,432||2--+=52, 所以数列−4,−3,2的最佳值为52; 对于数列−4,2,−3,因为|−4|=4,||422-+=1,432||2--+=52, 所以数列−4,2,−3的最佳值为1;对于数列2,−4,−3,因为|2|=2,224-=1,432||2--+=52, 所以数列2,−4,−3的最佳值为1;对于数列2,−3,−4,因为|2|=2,223-=12,432||2--+=52,所以数列2,−3,−4的最佳值为1 2∴数列的最佳值的最小值为223-=12,数列可以为:−3,2,−4或2,−3,−4.故答案为:12,−3,2,−4或2,−3,−4.(3)当22a+=1,则a=0或−4,不合题意;当92a-+=1,则a=11或7;当a=7时,数列为−9,7,2,因为|−9|=9,972-+=1,9722-++=0,所以数列2,−3,−4的最佳值为0,不符合题意;当972a-++=1,则a=4或10.∴a=11或4或10.【点睛】此题考查数字的变化规律,理解新定义运算的方法是解决问题的关键.27.(1) a=-24,b=-10,c=10;(2) 点P的对应的数是-443或4;(3) 当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8,理由见解析【解析】【分析】(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c-10=0,解可得a、b、c的值;(2)分两种情况讨论可求点P的对应的数;(3)分类讨论:当P点在Q点的右侧,且Q点还没追上P点时;当P在Q点左侧时,且Q点追上P点后;当Q点到达C点后,当P点在Q点左侧时;当Q点到达C点后,当P 点在Q点右侧时,根据两点间的距离是8,可得方程,根据解方程,可得答案.【详解】(1)∵|a+24|+|b+10|+(c-10)2=0,∴a+24=0,b+10=0,c-10=0,解得:a=-24,b=-10,c=10;(2)-10-(-24)=14,①点P在AB之间,AP=14×221+=283,-24+283=-443,点P的对应的数是-443;②点P在AB的延长线上,AP=14×2=28,-24+28=4,点P的对应的数是4;(3)∵AB=14,BC=20,AC=34,∴t P=20÷1=20(s),即点P运动时间0≤t≤20,点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s),当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t=463<17(舍去);当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t=623>20(舍去),当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8,解得t=21;综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题.28.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767.四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×347=5257=1767.位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的。
2019-2020学年七年级上学期期末考试数学试卷含解析版
2019-2020学年七年级上学期期末考试数学试卷一、选择題(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果气温升高3℃时气温变化记作+3℃,那么气温下降3℃时气温变化记作( )A .﹣6℃B .﹣3℃C .0℃D .+3℃2.在﹣6,﹣5.01,﹣5,这四个数中,最大的数是( )A .﹣6B .﹣5.01C .﹣5D . 3.|﹣2|的倒数是( )A .2B .﹣2C .D .4.下列各式中,次数为5的单项式是( )A .5abB .a 5bC .a 5+b 5D .6a 2b 35.多项式﹣2x 2+2x +3中的二次项系数是( )A .﹣1B .2C .﹣2D .36.三个立体图形的展开图如图①②③所示,则相应的立体图形是( )A .①圆柱,②圆锥,③三棱柱B .①圆柱,②球,③三棱柱C .①圆柱,②圆锥,③四棱柱D .①圆柱,②球,③四棱柱 7.在数轴上表示有理数a ,﹣a ,﹣b ﹣1的点如图所示,则( )A .﹣b <﹣aB .|b +1|<|a |C .|a |>|b |D .b ﹣1<a8.已知等式3a =b +2c ,那么下列等式中不一定成立的是( )A .3a ﹣b =2cB .4a =a +b +2cC .a =b +cD .3=+9.某商店以每件a 元的价格卖出两件衣服,其中一件盈利25%,另一件亏损20%,那么商店卖出这两件衣服总的情况是()A.盈利0.05a元B.亏损0.05a元C.盈利0.15a元D.亏损0.15a元10.若关于x的方程有无数解,则3m+n的值为()A.﹣1B.1C.2D.以上答案都不对二、填空题(本大题共6小题,每小题3分,满分18分)11.﹣2019的相反数是.12.目前我国年可利用的淡水资源总量约为38050亿立方米,是世界上严重缺水的国家之一.38050用科学记数法表示为.13.若x与3的积等于x与﹣16的和,则x=.14.若﹣x m y4与x3y n是同类项,则(m﹣n)9=.15.如图所示的运算程序中,若开始输入的x值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,则第2019次输出的结果为.16.如图,第n个图形是由正n+2边形“扩展”而来(n=1,2,3,4…),第n个图形中共有个顶点(结果用含n的式子表示).三、解答題(本大题共8小题,满分72分,解答须写出文字说明、推理过程)17.计算:(1)(﹣7)+(﹣5)﹣(﹣13)﹣(+10)(2)﹣(﹣1)10×2+(﹣2)3÷418.先化简,再求值:,其中x=﹣2,y=﹣319.解下列方程:(1)2(x+3)=5(x﹣3)(2)20.有理数a,b,c在数轴上的位置如图所示请化简:﹣|a|﹣|b+2|+2|c|﹣|a+b|+|c﹣a|.21.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;(2)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.22.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为30元,乙平均每本书的价格为15元,优惠后甲乙两人的书费共283.5元(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场7.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?23.如图1,已知∠AOB=126°,∠COD=54°,OM在∠AOC内,ON在∠BOD内,∠AOM=∠AOC,∠BON=∠BOD.(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,求∠MON的度数;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<126且n≠54),求∠MON的度数.24.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.参考答案与试题解析一、选择題(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果气温升高3℃时气温变化记作+3℃,那么气温下降3℃时气温变化记作()A.﹣6℃B.﹣3℃C.0℃D.+3℃【分析】根据负数的意义,可得气温上升记为“+”,则气温下降记为“﹣”,据此解答即可.【解答】解:因为气温上升3℃,记作+3℃,所以气温下降3℃,记作﹣3℃.故选:B.【点评】此题主要考查了负数的意义及其应用,要熟练掌握,解答此题的关键是要明确:气温上升记为“+”,则气温下降记为“﹣”.2.在﹣6,﹣5.01,﹣5,这四个数中,最大的数是()A.﹣6B.﹣5.01C.﹣5D.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣6<﹣5.01<﹣5<﹣,∴这四个数中,最大的数是﹣.故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.3.|﹣2|的倒数是()A.2B.﹣2C.D.【分析】根据绝对值和倒数的定义作答.【解答】解:∵|﹣2|=2,2的倒数是,∴|﹣2|的倒数是.故选:C.【点评】一个负数的绝对值是它的相反数.若两个数的乘积是1,我们就称这两个数互为倒数.4.下列各式中,次数为5的单项式是()A.5ab B.a5b C.a5+b5D.6a2b3【分析】直接利用单项式以及多项式次数确定方法分别分析得出答案.【解答】解:A、5ab是次数为2的单项式,故此选项错误;B、a5b是次数为6的单项式,故此选项错误;C、a5+b5是次数为5的多项式,故此选项错误;D、6a2b3是次数为5的单项式,故此选项正确.故选:D.【点评】此题主要考查了单项式以及多项式次数,正确把握单项式次数确定方法是解题关键.5.多项式﹣2x2+2x+3中的二次项系数是()A.﹣1B.2C.﹣2D.3【分析】根据多项式的概念即可求出答案.【解答】解:二次项系数为﹣2,故选:C.【点评】本题考查多项式的概念,解题的关键熟练运用多项式的概念,本题属于基础题型.6.三个立体图形的展开图如图①②③所示,则相应的立体图形是()A.①圆柱,②圆锥,③三棱柱B.①圆柱,②球,③三棱柱C.①圆柱,②圆锥,③四棱柱D.①圆柱,②球,③四棱柱【分析】根据圆柱、圆锥、三棱柱表面展开图的特点解题.【解答】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是圆柱、圆锥、三棱柱.故选:A.【点评】本题考查圆锥、三棱柱、圆柱表面展开图,记住这些立体图形的表面展开图是解题的关键.7.在数轴上表示有理数a,﹣a,﹣b﹣1的点如图所示,则()A.﹣b<﹣a B.|b+1|<|a|C.|a|>|b|D.b﹣1<a【分析】因为a与﹣a互为相反数,所以根据图示知,a<0<﹣a<﹣b﹣1,由此对选项进行一一分析.【解答】解:∵a与﹣a互为相反数,∴根据图示知,a<0<﹣a<﹣b﹣1,∴|﹣a|=|a|<|﹣b﹣1|=|b+1|,则|b+1|>|a|,故B选项错误;∴﹣b>﹣a,故A选项错误;∴|a|>|b|,故C选项错误;∴b﹣1<a,故D选项正确.故选:D.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.8.已知等式3a=b+2c,那么下列等式中不一定成立的是()A.3a﹣b=2c B.4a=a+b+2c C.a=b+c D.3=+【分析】根据等式的基本性质逐一判断即可得.【解答】解:A、原等式两边都减去b即可得3a﹣b=2c,此选项正确;B、原等式两边都加上a即可得4a=a+b+2c,此选项正确;C、原等式两边都除以3即可得a=b+c,此选项正确;D、在a≠0的前提下,两边都除以a可得3=+,故此选项不一定成立;故选:D.【点评】本题主要考查等式的性质,解题的关键是掌握等式两边加同一个数(或式子)结果仍得等式、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.9.某商店以每件a元的价格卖出两件衣服,其中一件盈利25%,另一件亏损20%,那么商店卖出这两件衣服总的情况是()A.盈利0.05a元B.亏损0.05a元C.盈利0.15a元D.亏损0.15a元【分析】设盈利的衣服的进价为x元/件,亏损的衣服的进价为y元/件,根据售价﹣进价=利润,可得出关于x(y)的一元一次方程,解之即可得出x(y)的值,再利用总利润=两件衣服的售价﹣两件衣服的进价,即可得出结论.【解答】解:设盈利的衣服的进价为x元/件,亏损的衣服的进价为y元/件,依题意,得:a﹣x=25%x,a﹣y=﹣20%y,解得:x=0.8a,y=1.25a,∴2a﹣x﹣y=﹣0.05a,∴商店卖出这两件衣服总的情况是亏损0.05a元.故选:B.【点评】本题考查了一元一次方程的应用以及列代数式,找准等量关系,正确列出一元一次方程是解题的关键.10.若关于x的方程有无数解,则3m+n的值为()A.﹣1B.1C.2D.以上答案都不对【分析】原方程经过移项,合并同类项,根据“该方程有无数解”,得到关于m和关于n的一元一次方程,解之,代入3m+n,计算求值即可得到答案.【解答】解:mx+=﹣x,移项得:mx+x=﹣,合并同类项得:(m+1)x=,∵该方程有无数解,∴,解得:,把m=﹣1,n=2代入3m+n得:原式=﹣3+2=﹣1,故选:A.【点评】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.二、填空题(本大题共6小题,每小题3分,满分18分)11.﹣2019的相反数是2019.【分析】直接利用相反数的定义进而得出答案.【解答】解:﹣2019的相反数是:2019.故答案为:2019.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.12.目前我国年可利用的淡水资源总量约为38050亿立方米,是世界上严重缺水的国家之一.38050用科学记数法表示为 3.805×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:38050=3.805×104.故答案为:3.805×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.若x与3的积等于x与﹣16的和,则x=﹣8.【分析】由题意列出方程进而解方程得出答案.【解答】解:由题意可得:3x=x﹣16,解得:x=﹣8.故答案为:﹣8.【点评】此题主要考查了解一元一次方程,正确掌握解题方法是解题关键.14.若﹣x m y4与x3y n是同类项,则(m﹣n)9=﹣1.【分析】首先根据同类项定义可得m=3,n=4,再代入(m﹣n)9进行计算即可.【解答】解:由题意得:m=3,n=4,则(m﹣n)9=﹣1,故答案为:﹣1.【点评】此题主要考查了同类项,关键是掌握所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.15.如图所示的运算程序中,若开始输入的x值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,则第2019次输出的结果为2.【分析】根据设计的程序进行计算,找到循环的规律,根据规律推导计算.【解答】解:由设计的程序,知依次输出的结果是50,25,32,16,8,4,2,1,8,4,2,1…,发现从8开始循环.则2019﹣4=2015,2015÷4=503…3,故第2019次输出的结果是2.故答案为:2【点评】此题主要考查了数字的变化规律,正确发现循环的规律,根据循环的规律进行推广.该题中除前4次不循环外,后边是4个一循环.16.如图,第n个图形是由正n+2边形“扩展”而来(n=1,2,3,4…),第n个图形中共有(n+2)(n+3)个顶点(结果用含n的式子表示).【分析】由已知图形得出顶点的个数是序数分别与2、3和的乘积,据此可得.【解答】解:由图形知,当n=1时,顶点的个数为12=3×4;当n=2时,顶点的个数20=4×5;当n=3时,顶点的个数30=5×6;当n=4时,顶点的个数42=6×7;……所以第n个图形中顶点的个数为(n+2)(n+3)(个),故答案为:(n+2)(n+3).【点评】本题主要考查图形的变化规律,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.三、解答題(本大题共8小题,满分72分,解答须写出文字说明、推理过程)17.计算:(1)(﹣7)+(﹣5)﹣(﹣13)﹣(+10)(2)﹣(﹣1)10×2+(﹣2)3÷4【分析】(1)先化简,再计算加减法即可求解;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(﹣7)+(﹣5)﹣(﹣13)﹣(+10)=﹣7﹣5+13﹣10=﹣22+13=﹣9;(2)﹣(﹣1)10×2+(﹣2)3÷4=﹣1×2+(﹣8)÷4=﹣2﹣2=﹣4.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.先化简,再求值:,其中x=﹣2,y=﹣3【分析】先去掉括号,然后合并同类项,再把x、y的值代入进行计算即可得解.【解答】解:原式==﹣3x+y2,把x=﹣2,y=﹣3代入﹣3x+y2=﹣3×(﹣2)+(﹣3)2=6+9=15.【点评】本题考查了整式加减,先化简然后再代入数据进行求值更加简便,整式的加减实质就是去括号,合并同类项的运算.19.解下列方程:(1)2(x+3)=5(x﹣3)(2)【分析】(1)直接去括号进而合并同类项解方程即可;(2)直接去分母进而移项合并同类项解方程即可.【解答】解:(1)2(x+3)=5(x﹣3)2x+6=5x﹣15,则3x=21,解得:x=7;(2)45﹣5(2x﹣1)=3(4﹣3x)﹣15x,整理得:14x=38,解得:x=.【点评】此题主要考查了解一元一次方程,正确掌握解题方法是解题关键.20.有理数a,b,c在数轴上的位置如图所示请化简:﹣|a|﹣|b+2|+2|c|﹣|a+b|+|c﹣a|.【分析】根据数轴上点的位置,判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】根据题意得:a=﹣2.5,b=﹣0.5,c=1.5,则b+2>0,a+b<0,c﹣a<0,则化简得:a﹣(b+2)+2c+(a+b)﹣(c﹣a)=3a+c代入数值a=﹣2.5,b=﹣0.5,c=1.5,原式=﹣6.【点评】本题考查了合并同类项,利用绝对值的性质化简绝对值,利用合并同类项,代数数值得出答案.21.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;(2)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.【分析】(1)根据和解方程的定义即可得出关于m的一元一次方程,解之即可得出结论;(2)根据和解方程的定义即可得出关于m、n的二元二次方程组,解之即可得出m、n的值.【解答】解:(1)∵方程3x=m是和解方程,∴=m+3,解得:m=﹣.(2)∵关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,∴﹣2n=mn+n,且mn+n﹣2=n,解得m=﹣3,n=﹣.【点评】本题考查了一元一次方程的解、解一元一次方程以及二元二次方程组,解题的关键是:根据“和解方程“的定义列出关于m的一元一次方程;根据和解方程的定义列出关于m、n的二元二次方程组.22.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为30元,乙平均每本书的价格为15元,优惠后甲乙两人的书费共283.5元(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场7.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?【分析】(1)设甲购书x本,则乙购书为(15﹣x)本,再根据总价格列出方程即可;(2)先计算7.5折后的价格,加上办卡的费用,与原来的价格差即为节省的钱数.【解答】解:(1)甲购书x本,则乙购书为(15﹣x)本,由题意得30x×0.9+15(15﹣x)×0.9=283.5解得x=6则15﹣x=9答:甲购书6本,乙购书9本.(2)购书7.5折的应付款表示为283.5÷0.9×0.75=236.25办卡节省的费用为283.5﹣236.25﹣20=22.25答:办卡购书比不办卡购书共节省22.25元.【点评】本题考查的是一元一次方程应用中的打折销售问题,明确等量关系,并正确列出方程是解题的关键.23.如图1,已知∠AOB=126°,∠COD=54°,OM在∠AOC内,ON在∠BOD内,∠AOM=∠AOC,∠BON=∠BOD.(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,求∠MON的度数;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<126且n≠54),求∠MON的度数.【分析】(1)根据∠MON=∠BOM+∠BON计算即可;(2)分两种情形分别计算即可.【解答】解:(1)由题意;∠MON=∠AOB+∠COD=86°+28°=114°;(2)①当0<n<54°时,如图1中,∠AOC=126°﹣n°,∠BOD=54°﹣n°,∴∠MON=∠MOC+∠COB+∠BON=(126°﹣n°)+n°+(54°﹣n°)=114°,②当60°<n<120°时,如图2中,∠AOC=126°﹣n°,∠COD=54°,∠BOD=n°﹣54°∴∠MON=∠MOC+∠COD+∠DON=(126°﹣n°)+54°+(n°﹣54°)=114°.综上所述,∠MON=114°【点评】本题考查角的和差定义,解题的关键是学会用分类讨论的思想思考问题,学会利用参数解决问题.24.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【分析】由绝对值的非负性可求出a,b,c的值.(1)设点P对应的数为x,分x<﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况考虑,由PA+PB =PC利用两点间的距离公式,即可得出关于x的一元一次方程,解之即可得出结论;(2)找出当运动时间为t秒时点A,B,C对应的数,进而可求出AB﹣BC=6,此题得解.【解答】解:∵a,b,c满足|a+5|+|b﹣2|+|c﹣3|=0,∴a=﹣5,b=2,c=3.(1)设点P对应的数为x.当x<﹣5时,﹣5﹣x+2﹣x=3﹣x,解得:x=﹣6;当﹣5≤x<2时,x﹣(﹣5)+2﹣x=3﹣x,解得:x=﹣4;当2≤x<3时,x﹣(﹣5)+x﹣2=3﹣x,解得:x=0(舍去);当x≥3时,x﹣(﹣5)+x﹣2=x﹣3,解得:x=﹣6(舍去).综上所述:在数轴上存在点P,使得PA+PB=PC,点P对应的数为﹣6或﹣4.(2)AB﹣BC的值不变,理由如下:当运动时间为t秒时,点A对应的数为t﹣5,点B对应的数为3t+2,点C对应的数为5t+3,∴AB﹣BC=3t+2﹣(t﹣5)﹣[5t+3﹣(3t+2)]=6.∴AB﹣BC的值不变.【点评】本题考查了一元一次方程的应用、数轴以及绝对值的非负性,解题的关键是:(1)分x <﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况,找出关于x的一元一次方程;(2)利用两点间的距离公式求出AB﹣BC=6.。
2019-2020学年度上学期期末考试七年级试题解析版
2019-2020学年度上学期期末考试题七 年 级 数 学把符合题意的选项代号填在题后括号内,每小题3分,共36分.)1.如果一个物体向右移动2米记作移动+2米,那么这个物体又移动了-2米的意思是( C )(教材P3练习2改编)A .物体又向右移动了2米B . 物体又向右移动了4米C .物体又向左移动了2米 D .物体又向左移动了4米 2.计算32---的结果为(A )(教材P51习题6(2)) A .-5 B .-1 C .1 D .5 3.平方等于9的数是( A )(教材P47习题7) A .±3 B .3 C .﹣3D .±94.一天有41064.8⨯秒,一年按365天计算,一年有(D )秒(教材P48习题10) A .4101536.3⨯ B .5101536.3⨯ C .6101536.3⨯ D .7101536.3⨯5.下列说法错误的是(B )(教材P59习题3)A . ab 15-的系数是-15B .532y x 的系数是51C .224b a 的次数是4D .42242b b a a +-的次数是4 6.下列计算中,正确的是( C )(教师用书P141测试题5) A .b a b a +-=+-2)(2B .b a b a --=+-2)(2C .b a b a 22)(2--=+-D .b a b a 22)(2+-=+-7.长方形的长是x 3,宽是y x -2,则长方形的周长是( A )(教师用书P140测试题1) A .y x 210-B .y x 210+C .y x 26-D .y x -108.下列方程,是一元一次方程的是( B )(教师用书P214测试题1) A .342=-a aB .213a a =- C .12=+b a D .53=-ab9.已知等式323+=y x ,则下列变形不一定成立的是(D )(教师用书P214测试题3改编) A .y x 233=- B .132+=y x C .4213+=+y x D .523+=yz xz10.一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损20%,这家商店(A )(教材P102探究1改编)A .亏损3元B .盈利3元C .亏损8元D .不盈不亏 11.下列说法中错误的是( C )(教材P126练习1改编)A .线段AB 和射线AB 都是直线的一部分 B .直线AB 和直线BA 是同一条直线C .射线AB 和射线BA 是同一条射线D .线段AB 和线段BA 是同一条线段 12.已知∠α的补角的一半比∠α小30°,则∠α等于( D ) (教材P148复习题8改编)A .50°B .60°C .70°D .80°二、填空题(本大题有6个小题,把各题的正确答案填在题后的横线上,每小题3分,共18分.)13.数轴上表示-5和-14的两点之间的距离是 . (教师用书P90测试题8) 14.已知代数式a a 22-值是-4,则代数式a a 6312-+的值是 . (-11) 15.若单项式b am 15+和1425-n b a 是同类项,则n m 的值为 .(9)16.若方程6x +2=0与关于y 的方程3y +m =15的解互为相反数,则m =________.(16) 17.点A ,B ,C 在同一条直线上,AB=5 cm ,BC=2cm ,则AC 的长为 __ _cm .(3或 7) (教材P130习题10改编)18.南偏东50°的射线与西南方向的射线组成的角(小于平角)的度数是 .(95°) 三、解答题(本题有9个小题,共66分.) 19.(本题满分8分,每小题4分)计算: (1)43512575)522(75÷-⨯--÷ (2) ()())31(34252232-⨯+÷--⨯- (教师用书P90测试题11(1)) (教材P51复习题5(13)、(14)改编)解:(1)原式=848512584258425413512575)125(75-=---=⨯-⨯--⨯.……………4分(2)原式=)2(94)8(54-⨯+÷--⨯=418220)18()2(20=-+=-+--.………8分20.(本题满分8分,每小题4分)解方程: (1) )1(25)10(2-+=+-x x x x (2)3713321-+=-x x (教材P94例题1(1)) (教材P111复习题2(3))解:(1) 去括号,得:225102-+=--x x x x移项,得:102252--=---x x x x 合并同类项,得:86=-x 系数化为1,得:34-=x .……………………………………………4分 (2) 去分母,得:63)13(3)21(7-+=-x x 去括号,得:6339147-+=-x x 移项,得:7633914--=--x x 合并同类项,得:6723-=-x系数化为1,得:2367=x ……………………………………………8分 21.(本题满分6分)化简求值:]2)321(5[322x x x x +---,其中4=x .解:原式=222)321(53x x x x --+-=22232153x x x x --+-………………………………2分=3292--x x ……………………………………………………4分当4=x 时,原式=5342942-=-⨯-.………………………………6分22.(本题满6分)如图,BD 平分∠ABC ,BE 把∠ABC 分成的两部分∠ABE ∶∠EBC =2∶5,∠DBE =21°,求∠ABC 的度数.解:设∠ABE =2x °,则∠CBE =5x °,∠ABC =7x °.……………………1分∵BD 为∠ABC 的平分线,∴∠ABD =12∠ABC =72x °.…………………2分∴∠DBE =∠ABD -∠ABE =72x °-2x °=32x °=21°.……………………4分∴x =14.……………………………5分∴∠ABC =7x °=98°.……………………………6分23.(本题满6分)列方程解应用题:机械加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个.已知2个大齿轮与3个小齿轮配成一套,则安排多少名工人加工大齿轮,才能使每天加工的大、小齿轮刚好配套?解:设安排x 名工人加工大齿轮,根据题意得…………1分3×16x =2×10(85-x )或16x :10(85-x )=2:3………………………………3分 解得x =25…………………………………………………5分答:安排5名工人加工大齿轮,才能使每天加工的大、小齿轮刚好配套.………………6分24. (本题满7分)如图,点A 、B 都在数轴上,O 为原点. (1)点B 表示的数是________;(2)若点B 以每秒3个单位长度的速度沿数轴运动,则1秒后点B 表示的数是______; (3)若点A 、B 都以每秒3个单位长度的速度沿数轴向右运动,而点O 不动,t 秒后有一个点是一条线段的中点,求t 的值.解:(1)-6.………………1分(2) -9或-3.………………3分(填对一个得1分) (3)由题意可知有两种情况:①O 为BA 的中点时,由题意可得:(-6+3t )+(2+3t )=0.解得t =32.……………5分 ②B 为OA 的中点时,由题意可得:2+3t =2(-6+3t ) . 解得t =314. 综上所述,t =32或314 .………………7分25.(本题满7分)用“※”定义一种新运算:对于任意有理数a 和b ,规定a ※b =ab 2+2ab +a .如:1※3=1×32+2×1×3+1=16.(1)求3 ※(-2)的值;(2)若(21+a ※3)※(21-)=4,求a 的值. 解:(1)根据题中定义的新运算得:3)※(-2)=3×(-2)2+2×3×(-2)+3=12-12+3=3.………………3分 (2)根据题中定义的新运算得:21+a ※3=21+a ×32+2×21+a ×3+21+a =8(a +1) .………………4分 8(a +1) ※(21-)=8(a +1)×(21-)2+2×8(a +1)×(21-)+8(a +1)=2(a +1) .………………5分所以2(a +1)=4,解得a =1.………………7分26.(本题满8分)小刚和小强从A ,B 两地同时出发,小刚骑自行车,小强步行,沿同一 条路线相向匀速而行.出发后两小时两人相遇.相遇时小刚比小强多行进24千米.相遇后0.5 小时小刚到达B 地.(1)两人的行进速度分别是多少?(2)相遇后经过多少时间小强到达A 地?(3)AB 两地相距多少千米? (教材P107习题10改编)解:(1)设小强的速度为x 千米/小时,则小刚的速度为(x +12)千米/小时.根据题意得:2x =0.5(x +12). 解得:x =4. x +12=4+12=16.答:小强的速度为4千米/小时,小刚的速度为16千米/小时.………………3分O B A(2)设在经过y小时,小强到达目的地.根据题意得:4y=2×16.解得:y=8.答:在经过8小时,小强到达目的地.………………6分(3)2×4+2×16=40(千米).答:AB两地相距40千米.………………8分27.(本题满10分)如图①,点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90°) .(1)若∠BOC=35°,求∠MOC的大小.(2)将图①中的三角板绕点O旋转一定的角度得图②,使边OM恰好平分∠BOC,问:ON 是否平分∠AOC?请说明理由.(3)将图①中的三角板绕点O旋转一定的角度得图③,使边ON在∠BOC的内部,如果∠BOC=50°,则∠BOM与∠NOC之间存在怎样的数量关系? 请说明理由.解:(1) ∵∠MON=90°,∠BOC=35°,∴∠MOC=∠MON+∠BOC= 90°+35°=125°.………………2分(2)ON平分∠AOC.理由如下:………………3分∵∠MON=90°,∴∠BOM+∠AON=90°,∠MOC+∠NOC=90°.………………4分又∵OM平分∠BOC,∴∠BOM=∠MOC.………………5分∴∠AON=∠NOC.∴ON平分∠AOC.………………6分(3)∠BOM=∠NOC+40°.理由如下:………………7分∵∠CON+∠NOB=50°,∴∠NOB=50°-∠NOC.………………8分∵∠BOM+∠NOB=90°,∴∠BOM=90°-∠NOB=90°-(50°-∠NOC)=∠NOC-40°.………………10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 10 页
2019-2020学年东莞市东华初级中学七年级上学期期末数学试卷
解析版
一.选择题(共10小题,每小题3分,满分30分)
1.﹣5的相反数是( )
A .5
B .﹣5
C .15
D .−15 【解答】解:﹣5的相反数是5,
故选:A .
2.据探测,月球表面白天阳光垂直照射的地方温度高达127℃,而夜晚温度可降低到零下
183℃.根据以上数据推算,在月球上昼夜温差有( )
A .56℃
B .﹣56℃
C .310℃
D .﹣310℃
【解答】解:127﹣(﹣183)=127+183=310℃,
故选:C .
3.随着我国金融科技的不断发展,网络消费、网上购物已成为人们生活不可或缺的一部分,
今年“双十一”天猫成交额高达2135亿元.将数据“2135亿”用科学记数法表示为( )
A .2.135×1011
B .2.135×107
C .2.135×1012
D .2.135×103
【解答】解:2135亿=213500000000=2.135×1011,
故选:A .
4.下列运算正确的是( )
A .2a 2﹣a 2=1
B .5a 2b ﹣3ba 2=2a 2b
C .5a +a =6a 2
D .3a +3b =8ab 【解答】解:A .2a 2﹣a 2=a 2,故本选项不合题意;
B .5a 2b ﹣3ba 2=2a 2b ,正确,故本选项符合题意;
C .5a +a =6a ,故本选项不合题意;
D .3a 与3b 不是同类项,所以不能合并,故本选项不合题意.
故选:B .
5.在−3,π2−1,−2x −2,−1πx 2y ,−a−12,−√x 4六个代数式中,是单项式的个数
( )
A .2个
B .3个
C .4个
D .5个。