最新人教版初中九年级数学上册知识点笔记总结(内部资料打印版)
九年级上册数学笔记整理人教版
九年级上册数学笔记整理人教版一、一元二次方程。
(一)定义。
1. 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程。
- 一般形式:ax² + bx + c = 0(a≠0),其中ax²是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
(二)解法。
1. 直接开平方法。
- 对于方程x² = p(p≥0),解得x = ±√(p)。
- 例如,方程(x - 3)² = 4,则x - 3 = ±2,x = 3±2,即x = 1或x = 5。
2. 配方法。
- 步骤:- 把方程化为ax²+bx = - c的形式。
- 在方程两边同时加上一次项系数一半的平方,即x²+(b)/(a)x+((b)/(2a))² = - (c)/(a)+((b)/(2a))²。
- 把左边写成完全平方式(x+(b)/(2a))²,然后用直接开平方法求解。
- 例如,对于方程x²+6x - 7 = 0,移项得x²+6x = 7,配方得x² + 6x+9 = 7 + 9,即(x + 3)²=16,解得x=-3±4,x = 1或x=-7。
3. 公式法。
- 对于一元二次方程ax²+bx + c = 0(a≠0),其求根公式为x=(-b±√(b² -4ac))/(2a)。
- 其中b² - 4ac叫做判别式,记作Δ=b² - 4ac。
- 当Δ>0时,方程有两个不相等的实数根。
- 当Δ = 0时,方程有两个相等的实数根。
- 当Δ<0时,方程没有实数根。
- 例如,方程2x² - 3x - 2 = 0,其中a = 2,b=-3,c=-2,Δ=(-3)²-4×2×(-2)=9 + 16 = 25>0,根据公式x=(3±√(25))/(4)=(3±5)/(4),解得x = 2或x =-(1)/(2)。
(完整word版)人教版数学九年级上册知识点整理
知识点五:与圆有关的位置关系
5.点与圆
的位置关系
设点到圆心的距离为d.
⑴d<r?点在OO内;(2)d=r?点在OO上;(3)d>r?点在OO夕卜.
6.直线和 圆的位
m¥方
宀护¥方位置大糸
相离
相切
相交
图形
l®1
[GDI
公共点个数
0个
1个
2个
数量关系
d>r
d=r
dvr
知识点六:切线的性质与判定
解•
(2 )因式分解法:可化为(ax+m)(bx+ n)=0的方程,用因式分解法求
解•
(3 )公式法:一元二次方程ax2+bx+c=0的求根公式为x=
2.一元二次方
b曲4ac(b2-4ac>0).2a
程的解法
(4)配方法:当元二次方程的二次项糸数为1, 次项糸数为偶数时,
也可以考虑用配方法.
先
先用其他,再用公式
(3)弧:圆上任意两点间的部分叫做弧,小于半圆的 弧叫做劣弧,大于半圆的弧叫做优弧.
(4)圆心角:顶点在圆心的角叫做圆心角
(5)圆周角:顶点在圆上,并且两边都与圆还有一个 交点的角叫做圆周角.
(6)弦心距:圆心到弦的距离.
知识点二:垂径定理及其推论
2.垂径定
理及其推
论
定理
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
知识点三:二次函数的平移
4.平移与
解析式
的关系
x/_ov2向左(h<0)或向右(h>0)2向上(k>0)或向下(kv0)2
常”>y=a(x-h)—、y=a(x—h)2+k
部编人教版九年级数学上册知识点归纳整理
部编人教版九年级数学上册知识点归纳整
理
本文档旨在提供对部编人教版九年级数学上册的知识点进行归纳整理,以帮助学生更好地理解和掌握数学知识。
以下是该册数学教材的主要知识点概述:
一、函数与方程
1. 函数的概念与表示方法
2. 线性函数与一次函数
3. 反比例函数
4. 平方函数与二次函数
5. 一元一次方程与一元一次不等式
6. 两个一元一次方程的联立与解法
二、图形的认识
1. 平面直角坐标系
2. 点、线、面的基本概念
3. 直线的方程与图像
4. 一次函数图象上的关系
三、平面图形的性质和计算
1. 三角形的认识与分类
2. 三角形的面积与周长计算
3. 圆的认识与计算
4. 矩形、平行四边形和梯形的性质与计算
四、统计与概率
1. 统计调查与数据分析
2. 简单事件和复合事件的概率计算
五、立体图形
1. 立体图形的认识与分类
2. 立体图形的视图与展开图
3. 空间几何基本概念与性质
以上是部编人教版九年级数学上册的主要知识点归纳整理,学生们在学习过程中可以结合教材内容进行复习和巩固。
希望本文档对学生们的数学学习有所帮助。
人教版初三上册数学知识点汇总
人教版初三上册数学知识点汇总初三上册数学课程涵盖了多个重要的数学概念和技巧,为学生进入高中数学学习打下坚实的基础。
以下是针对人教版初三上册数学知识点的一个全面汇总,旨在帮助学生更好地理解和掌握相关内容。
一、不等式1.不等式的定义:用不等号表示不等关系的式子,叫做不等式。
2.不等式的解:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3.不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4.求不等式的解集:这个过程叫做解不等式。
5.用数轴表示不等式:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
6.一元一次不等式:不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
7.解一元一次不等式的一般步骤:去分母、去括号、移项、合并同类项、将x项的系数化为1。
8.一元一次不等式组:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
二、二次根式1.二次根式的定义:形如√(a)(a≥0)的式子叫做二次根式。
二次根式必须满足:含有二次根号“√”;被开方数必须是非负数。
2.积的算术平方根:积的算术平方根等于积中各因式的算术平方根的积。
3.二次根式的乘法法则:满足乘法交换律和结合律。
4.二次根式比较大小的方法:利用近似值比大小;把二次根式的系数移入二次根号内,然后比大小;分别平方,然后比大小。
5.商的算术平方根:商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
6.二次根式的除法法则:分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。
(完整版)人教版数学九年级上册知识点归纳,推荐文档
一元二次方程 ax2 bx c 0(a 0) 的求根公式: x b b2 4ac (b2 4ac 0)
2a
有括号的先算括号里的(或先去括号)。
4、因式分解法
我去人也就有人!为UR扼腕入站内信不存在向你偶同意因式调分解剖法沙就是龙利用课因反式分倒解的是手龙段,卷求出风方前程的一解的天方我法,分这种页方符法简Z单N易BX吃噶十 行,是解一元二次方程最常用的方法。
开方数 a 必须是非负数。
ax2 bx c 0(a 0) ,它的特征是:等式左边十一个关于未知数 x 的二次多
2、最简二次根式 若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开
项式,等式右边是零,其中 ax2 叫做二次项,a 叫做二次项系数;bx 叫做一次项,
得尽方的因数或因式,这样的二次根式叫做最简二次根式。
弧也相等。
三、垂径定理及其推论
推论 2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论 1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
推论 3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三
尽方的因数或因式开出来。 3、同类二次根式
直接开平方法适用于解形如 (x a)2 b 的一元二次方程。根据平方根的定义可知,
几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫 做同类二次根式。
x a 是 b 的平方根,当 b 0 时, x a b , x a b ,当 b<0 时,方程没有
b 叫做一次项系数;c 叫做常数项。
化二次根式为最简二次根式的方法和步骤:
人教版九年级数学上册知识点总结
人教版九年级数学上册知识点总结
1.代数
(1)多项式的概念、加减乘除、因式分解、配方法、公式法。
(2)一元二次方程及其解法、判别式、因式分解法、公式法、图像。
(3)一元二次不等式及其解法、图像、应用。
2.几何
(1)角的概念、角的度量、角平分线、垂线、平行线、角的和差倍角公式。
(2)三角形的概念、分类、性质、面积公式、勾股定理、正弦、余弦、正切等基本概念和公式。
(3)相似三角形的概念、判定、性质、应用。
(4)圆的概念、性质、圆周角、弧、切线、割线、圆的面积和周长公式。
(5)立体几何的概念、长方体、正方体、棱锥、棱台、圆锥、圆台的表面积和体积公式。
3.数据与概率
(1)数据的收集、整理、统计和分析。
(2)概率的基本概念、频率和概率的关系、事件的概率、互斥事件、独立事件。
4.函数
(1)函数的概念、函数的表示、函数的性质、函数的图像、函
数的基本变换、函数的复合。
(2)一次函数、二次函数、反比例函数、指数函数、对数函数。
以上是九年级数学上的主要知识点,需要注意的是,这些知识点是相互联系和影响的,需要理解和掌握它们的内在关系,才能真正运用自如。
数学九年级上册(人教版)知识点总结(K12教育文档)
数学九年级上册(人教版)知识点总结(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(数学九年级上册(人教版)知识点总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为数学九年级上册(人教版)知识点总结(word版可编辑修改)的全部内容。
数学九年级上册(人教版)知识点总结第二十一章二次根式21.1 二次根式1.二次根式:式子(a≥0)叫做二次根式。
2。
最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式;(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式。
如不是最简二次根式,因被开方数中含有4是可开得尽方的因数,又如,,。
....。
.。
.都不是最简二次根式,而, ,5 ,都是最简二次根式.3。
同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
如, ,就是同类二次根式,因为=2 , =3 ,它们与的被开方数均为2。
4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式.如与,a+ 与a- , - 与+ ,互为有理化因式。
二次根式的性质:1。
(a≥0)是一个非负数, 即≥0;2.非负数的算术平方根再平方仍得这个数,即:( )2=a(a≥0);3。
某数的平方的算术平方根等于某数的绝对值,即=|a|=4。
非负数的积的算术平方根等于积中各因式的算术平方根的积,即= ·(a≥0,b≥0).5.非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即=(a≥0,b〉0)。
最新人教版初中九年级数学上册知识点笔记总结(内部资料打印版)
21.1 二次根式知识点一 二次根式的概念(1) 一般地,我们把形如a (a ≥0)的式子叫做二次根式。
二次根式a 的实质是一个非负数a 的算术平方根。
其中“”叫做二次根号。
(2) 正确理解二次根式的概念,要把握以下几点: ① 二次根式是在形式上定义的,必须含有二次根号“”。
如4是二次根式,虽然4=2,但2不是二次根式。
② 被开方数a 必须是非负数,即a ≥0.如3-就不是二次根式,但式子)3(-2是二次根式。
③ “”的根指数为2,即“2”,一般省略根指数2,写作“”,注意,不可误认为根指数是“1”或“0”。
提示:判断是不是二次根式,一看形式,二看数值,即形式上要有二次根号,被开方数要是非负数。
知识点二 二次根式的性质 (1)a (a ≥0)既是二次根式,又是非负数的算术平方根,所以它一定是非负数,即a ≥(a ≥0),我们把这个性质叫做二次根式的非负性。
(2)(a )2= a (a ≥0),这个性质可以正用,也可以逆用,正用时常用于二次根式的化简和计算,可以去掉根号;逆用时可以把一个非负数写成完整平方数的形式,常用于多项式的因式分解。
(3)a 2= a (a ≥0),这个性质可以正用,也可以逆用,正用时用于二次根式的化简,即当被开方数能化为完全平方数(式)时,就可以利用该性质去掉根号;逆用时可以把一个非负数化为一个二次根式。
知识点三 代数式定义:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子,叫做代数式。
21.2 二次根式的乘除知识点一 二次根式的乘法法则 一般地,对二次根式的乘法规定:a ·b =ab (a ≥0,b ≥0),即二次根式相乘,把被开方数相乘,根指数不变。
知识点二 积的算术平方根的性质ab =a ·b (a ≥0,b ≥0),积的算术平方根等于积中各个因式的算术平方根的积。
知识点三 二次根式的除法法则 一般地,对二次根式的除法规定:b a =ba (a ≥0,b >0),即两个二次根式相除,把被开方数相除,根指数不变。
人教版九年级数学上册各章节知识点总结
人教版九年级数学上册知识点总结第二^一章一元二次方程21.1一元二次方程知识点一一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2 (二次)的方程,叫做一元二次方程。
注意一下几点:①只含有一个未知数;②未知数的最高次数是2;③是整式方程。
知识点二一元二次方程的一般形式一般形式:ax2+ bx + c = 0(a 丰0).其中,ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
知识点三一元二次方程的根使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。
方程的解的定义是解方程过程中验根的依据。
典型例题:1、已知关于x的方程(m+ J3)x + (m-3 )-1=0是一元二次方程,求m的值。
21.2降次一一解一元二次方程21.2.1配方法知识点一直接开平方法解一元二次方程(1 )如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。
一般地,对于形如x2=a(a > 0)的方程,根据平方根的定义可解得x1= a ,x2= - - a .(2)直接开平方法适用于解形如x2=p或(mx+a) 2=p(m乒0)形式的方程,如果p >0,就可以利用直接开平方法。
(3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。
(4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。
知识点二配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。
配方法的一般步骤可以总结为:一移、二除、三配、四开。
(1 )把常数项移到等号的右边;(2)方程两边都除以二次项系数;(3)方程两边都加上一次项系数一半的平方,把左边配成完全平方式;(4)若等号右边为非负数,直接开平方求出方程的解。
人教版九年级数学上册知识点
人教版九年级数学上册知识点人教版九年级数学上册知识点概述一、实数与代数表达式1. 实数的概念与性质- 正实数、负实数、零- 实数的四则运算- 实数的大小比较2. 代数表达式的运算- 整式的加法与减法- 乘法分配律- 幂的乘方与积的乘方- 单项式与多项式的乘法- 多项式的因式分解3. 二次根式的运算- 二次根式的定义- 二次根式的乘法与除法- 二次根式的加法与减法- 完全平方公式与平方差公式二、方程与不等式1. 一元一次方程与不等式- 方程的解法- 含绝对值的一元一次方程- 一元一次不等式的解集2. 二元一次方程组- 代入法与消元法- 方程组的解的情况3. 一元二次方程- 一元二次方程的解法(直接开平方法、配方法、公式法、因式分解法)- 一元二次方程根的判别式三、平面图形的性质1. 平行线与角- 平行线的判定与性质- 同位角、内错角、同旁内角- 角的平分线2. 三角形的性质- 三角形的内角和外角- 等腰三角形与等边三角形的性质- 三角形的中位线定理3. 特殊三角形- 直角三角形的性质与勾股定理- 直角三角形的判定- 含30°角的直角三角形的性质4. 平行四边形与圆- 平行四边形的性质与判定- 圆的基本性质- 圆周角与圆心角的关系- 扇形与弧长四、空间图形的性质1. 空间图形的观察- 视图的画法- 空间图形的展开图2. 空间图形的测量- 体积的计算- 表面积的计算五、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读2. 概率- 随机事件的概率- 概率的计算- 用树状图法解决简单的概率问题以上是人教版九年级数学上册的主要知识点概述。
这些知识点构成了九年级数学课程的核心内容,学生需要掌握这些概念、公式和解题方法,以便在数学学习中取得良好的成绩。
教师和家长应指导学生通过练习和应用这些知识点,加深理解和记忆,提高解题能力。
九年级上册数学知识点总结(最新最全)
九年级上册数学知识点总结(最新最全)单元1:整数- 整数的概念- 整数的比较和运算法则- 整数的加减乘除运算- 整数的乘方运算- 整数的分数和小数的关系单元2:有理数- 有理数的概念- 有理数的相反数和绝对值- 有理数的加减运算法则- 有理数的乘除运算法则- 有理数的幂运算- 有理数的分数和小数的关系单元3:代数式与整式- 代数式与整式的概念- 代数式的运算法则- 整式的合并同类项和提取公因式- 整式的加减运算- 整式的乘除运算单元4:一元一次方程与一次不等式- 一元一次方程的概念- 一元一次方程的解的性质- 列方程解问题- 一元一次不等式的概念- 一元一次不等式的解的性质单元5:图形的基本概念与性质- 平面直角坐标系- 点、线、面的基本概念- 图形的相似形与全等形- 图形的位置关系和判定- 图形的旋转、平移和翻折单元6:图形的表示与变换- 图形的平移和旋转表示- 图形的对称变换表示- 图形的全等判定和性质- 图形变换的综合应用单元7:函数的概念与表示- 函数的概念- 函数的自变量和函数值- 函数的表示方法- 函数的性质- 函数的实际应用单元8:一元一次函数- 一元一次函数的概念- 一元一次函数的函数图象- 一元一次函数的性质- 一元一次函数的应用以上是九年级上册数学的知识点总结,包括整数、有理数、代数式与整式、一元一次方程与一次不等式、图形的基本概念与性质、图形的表示与变换、函数的概念与表示以及一元一次函数。
希望对你的学习有所帮助!。
(精)最新版人教版九年级数学上册全册知识点
最新版人教版九年级数学全册知识点第二十一章一元二次方程21.1 一元二次方程在一个等式中,只含有一个未知数,且未知数的最高次数是 2 次的整式方程叫做一元二次方程。
一元二次方程有四个特点:(1)只含有一个未知数;(2) 且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为2的形式,ax +bx+c=0(a≠0)则这个方程就为一元二次方程.( 4)将方程化为一般形式:ax 2+bx+c=0 时,应满足( a≠0)21.2降次——解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
一元二次方程有四种解法:1、直接开平方法:用直接开平方法解形如(x- m)2=n (n ≥0) 的方程,其解为x=± m.直接开平方法就是平方的逆运算. 通常用根号表示其运算结果.2、配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
1.转化:将此一元二次方程化为 ax^2+bx+c=0 的形式 ( 即一元二次方程的一般形式)2.系数化 1:将二次项系数化为 13.移项:将常数项移到等号右侧4.配方:等号左右两边同时加上一次项系数一半的平方5.变形:将等号左边的代数式写成完全平方形式6.开方:左右同时开平方7.求解:整理即可得到原方程的根3、公式法公式法:把一元二次方程化成一般形式,然后计算判别式△的值代入求根公式x=(b2- 4ac≥0) 就可得到方程的根。
=b2-4ac的值,当b2- 4ac≥0时,把各项系数a, b, c因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
这种解一元二次方程的方法叫做因式分解法。
人教版九年级数学上册知识点整理完整版
人教版九年级数学上册知识点整理完整版一、代数与函数1.代数简介①常数:数值不变的量。
②变量:数量可能改变的量。
③代数式:由数、字母、加减乘除号、括号等符号组成的式子。
④同类项:指含有相同字母并且指数相同的项。
⑤合并同类项:指将同类项合并成一个项。
⑥因式分解:将代数式表示成幂或较简单的代数式,叫做因式分解。
⑦方程式&方程:一个代数式与另一个代数式在等号两边,称为方程式,且方程式构成了等式。
2.一次函数①函数:将自变量的某个取值代入函数中得到唯一的因变量的值,称为函数。
②自变量:输入的值③函数表达式:用代数式表示函数的式子称为函数表达式④一次函数:函数表达式中,最高次项是一次幂的函数叫一次函数,也叫线性函数。
⑤斜率:函数: y = kx + b ,函数图象的斜率 k,即为直线的斜率。
3.二次函数①二次函数:函数表达式中,最高次项是二次幂的函数,叫做二次函数。
②二次函数的一般式:f(x) = ax² + bx + c(a≠0)③二次函数的顶点:二次函数图象的转折点,称为顶点。
④二次函数的对称轴:图象关于 x = -b/ 2a 对称的直线,称为二次函数的对称轴。
⑤二次函数的最小值/最大值:二次函数)的顶点纵坐标所对应的函数值,是二次函数的最小值或最大值。
4.函数的研究①函数图象的基本性质:函数的零点、函数值的正负、单调性、奇偶性、周期性、对称性、渐近线等。
②函数的零点:函数 f(x) = 0 的解叫做函数的零点。
即 f(x) = 0 时 x 的解。
③函数类型:函数分类标准通常有函数的定义域和值域、图象、函数表达式等。
二、图形的认识1.图形的一些概念①线段:由两个端点所组成的线段,叫做线段。
②射线:在一个端点处向一个方向上延伸的线段,叫做射线。
③直线:没有端点,在一个方向上延伸的线段,称为直线。
④平行线:永远不会相交的两条直线叫做平行线。
⑤垂直平分线:在一条直线上,垂直于该线段、且等分该线段的线,称为垂直平分线。
最新人教版九年级数学上册知识点总结史上最全,精品资料
最新人教版九年级数学上册知识点总结史上最全,精品资料最新人教版九年级数学知识点总结第21章 一元二次方程1、计算a x 2+bx+c=0(a ≠0)其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项 2、应用题第22章 二次函数1、二次函数的解析式三种形式。
一般式 y=ax 2 +bx+c(a ≠0) 顶点式 2()y a x h k =-+224()24b ac b y a x a a-=-+交点式 12()()y a x x x x =--2、二次函数图像与性质对称轴:2b x a=-顶点坐标:24(,)24b ac b a a--与y 轴交点坐标(0,c )3、增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大 当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小4、二次函数的对称性当横坐标为x 1, x 2 其对应的纵坐标相等那么对称轴122x x x +=5、二次函数与一元二次方程的关系抛物线y=ax 2 +bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2 +bx+c=0(a ≠0)的根。
抛物线y=ax 2 +bx+c ,当y=0时,抛物线便转化为一元二次方程ax 2 +bx+c=024b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点; 24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点; 24b ac -<0时,一元二次方程有不等的实根,二次函数图像与x 轴没有交点二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。
第23章 旋转(以题带点)旋转、平移、轴对称、中心对称(关于原点对称的点的坐标)、中心对称图形错误!未指定书签。
中心对称的性质:关于中心对称的两个图形是全等形。
人教版九年级数学上册知识点整理(完整版)
−n± p m人教版九年级数学上册知识点整理(完整版)第二十一章 一元二次方程一、一元二次方程的有关概念(一)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的方程,叫做一元二次方程。
(二)一元二次方程的一般形式:ax 2 + bx + c = O(a ≠ O)其中:二次项为ax 2;二次项系数为 a ;一次项为 bx ,一次项系数为 b ;常数项为 c 。
特殊形式:(三)一元二次方程中“未知数的最高次数是 2,二次项系数 a≠0”是针对整理合并的方程而言的。
(四)一元二次方程的解(根)1、概念:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解 也叫做一元二次方程的根。
2、判断一个数是否是一元二次方程的根将这个数代入一元二次方程的左右两边,看是否相等,若相等,则该数是这个方程的根;若不 相等,则该数不是这个方程的根。
3、关于一元二次方程根的三个重要结论(1)a+b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =1。
(2)a-b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =﹣1。
(3)c=0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =0。
二、解一元二次方程(一)直接开平方法解一元二次方程1、直接开平方法∶利用平方根的意义直接开平方,求一元二次方程的解的方法叫做直接开平 方法。
2、方程x 2 = p 的根(1) 当 p>0 时,根据平方根的意义,方程x 2 = p 有两个不相等的实数根x 1 = p ,x 2 =− p 。
(2) 当 p=0 时,方程x 2 = p 有两个相等的实数根x 1 = x 2 =0。
(3) 当 p<0 时,因为对任意实数 x ,都有x 2≥0,所以方程x 2 = p 无实数根。
人教版九年级上册数学知识点
人教版九年级上册数学知识点人教版九年级上册数学知识点直角三角形的判定方法:判定1:定义,有一个角为90°的三角形是直角三角形。
判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。
如果三角形的三边a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。
(勾股定理的逆定理)。
判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。
那么判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。
(与判定3不同,此定理用于已知斜边的三角形。
) 人教版九年级上册数学知识点梳理第1章二次根式学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。
解决与数量关系有关的问题还会遇到二次根式。
二次根式一章就来认识这种式子,探索它的性质,掌握它的运算。
在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。
二次根式的乘除一节的内容有两条发展的线索。
一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到并运用它们进行二次根式的化简。
二次根式的加减一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。
在本节中,注意类比整式运算的有关内容。
例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。
这些处理有助于学生掌握本节内容。
人教版九年级上册数学各单元知识点归纳总结
人教版九年级上册数学各单元知识点归纳总结数学九年级上册共有十个单元,分别是集合与函数、有理数与运算、整式的加减、整式的乘法、一次函数与方程、比例与百分数、线性方程组、平方根与整式的除法、直角三角形与勾股定理、统计与概率。
下面将详细介绍这些单元的知识点。
一、集合与函数:1.集合:元素、属于、不属于、集合的相等、全集、子集、交集、并集、差集、互斥集、余集。
2.函数:自变量、因变量、函数的值、定义域、值域、函数的相等、奇函数、偶函数、函数的和差积商、反函数。
3.函数的图象:平移、伸缩、翻折、求过给定点的直线方程。
二、有理数与运算:1.有理数:整数、分数、有理数的相反数、绝对值、有理数的大小、有理数的加减乘除。
2.小数:有限小数、无限小数、循环小数、无理数、实数。
3.数轴与有理数:数轴上的点、有理数与数轴的对应关系、有理数的大小关系、有理数的加法减法、有理数的乘法除法。
4.分式:分数的性质、带分数、分数的加减乘除。
三、整式的加减:1.代数式:字母、代数式的加减、整式、项、系数、常数项。
2.同类项:同类项的合并与分拆、整式的加法、整式的减法。
四、整式的乘法:1.乘法基本公式:乘法基本公式的应用、平方差公式、差的平方公式、完全平方公式、立方差公式、立方和公式、整式的乘法。
2.因式与倍式:因式分解、互质、最大公因式。
五、一次函数与方程:1.函数与方程:线性函数、一次函数、函数的表示、函数的图象、函数的性质、函数关系、一元一次方程、方程的解。
2.解一次方程:等式的性质、移项变号、等式的逆运算、绝对值不等式。
六、比例与百分数:1.比例:比例的概念、比例的扩大与缩小、比例的性质、四边形的对边比、折线的边长比。
2.百分数:百分数与百分数、百分数与小数、百分数与分数、百分数的运算、平均数、加权平均数。
七、线性方程组:1.二元一次方程组:线性方程组、二元一次方程组、方程组的解、解二元一次方程组。
2.三元一次方程组:解三元一次方程组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
资料由小程序:家教资料库 整理21.1 二次根式知识点一 二次根式的概念(1) 一般地,我们把形如a (a ≥0)的式子叫做二次根式。
二次根式a 的实质是一个非负数a 的算术平方根。
其中“”叫做二次根号。
(2) 正确理解二次根式的概念,要把握以下几点: ① 二次根式是在形式上定义的,必须含有二次根号“”。
如4是二次根式,虽然4=2,但2不是二次根式。
② 被开方数a 必须是非负数,即a ≥0.如3-就不是二次根式,但式子)3(-2是二次根式。
③ “”的根指数为2,即“2”,一般省略根指数2,写作“”,注意,不可误认为根指数是“1”或“0”。
提示:判断是不是二次根式,一看形式,二看数值,即形式上要有二次根号,被开方数要是非负数。
知识点二 二次根式的性质(1)a (a ≥0)既是二次根式,又是非负数的算术平方根,所以它一定是非负数,即a ≥(a ≥0),我们把这个性质叫做二次根式的非负性。
(2)(a )2= a (a ≥0),这个性质可以正用,也可以逆用,正用时常用于二次根式的化简和计算,可以去掉根号;逆用时可以把一个非负数写成完整平方数的形式,常用于多项式的因式分解。
(3)a 2= a (a ≥0),这个性质可以正用,也可以逆用,正用时用于二次根式的化简,即当被开方数能化为完全平方数(式)时,就可以利用该性质去掉根号;逆用时可以把一个非负数化为一个二次根式。
知识点三 代数式定义:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子,叫做代数式。
21.2 二次根式的乘除知识点一 二次根式的乘法法则一般地,对二次根式的乘法规定:a ·b =ab (a ≥0,b ≥0),即二次根式相乘,把被开方数相乘,根指数不变。
知识点二 积的算术平方根的性质ab =a ·b (a ≥0,b ≥0),积的算术平方根等于积中各个因式的算术平方根的积。
知识点三 二次根式的除法法则一般地,对二次根式的除法规定:ba =ba(a ≥0,b >0),即两个二次根式相除,把被开方数相除,根指数不变。
知识点四 商的算术平方根的性质b a =ba (a ≥0,b >0),即商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
知识点五 最简二次根式必须满足以下两个条件:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式。
21.3 二次根式的加减知识点一 二次根式的加减二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式合并,二次根式加减法的实质是将被开方数相同的二次根式合并,合并时只把系数相加减,根指数和被开方数不变。
知识点二 二次根式的混合运算(1)二次根式的混合运算顺序与整式的混合运算顺序相同:先乘方开方,再乘除,最后加减,有括号的先算括号里面的。
(2)在二次根式的运算中乘法法则和乘法公式仍然适用。
22.1 一元二次方程知识点一一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
注意一下几点:①只含有一个未知数;②未知数的最高次数是2;③是整式方程。
知识点二一元二次方程的一般形式一般形式:ax2 + bx + c = 0(a ≠ 0).其中,ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c 是常数项。
知识点三一元二次方程的根使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。
方程的解的定义是解方程过程中验根的依据。
22.2 降次——解一元二次方程22.2.1 配方法知识点一直接开平方法解一元二次方程(1)如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。
一般地,对于形如x2=a(a≥0)的方程,根据平方根的定义可解得x1=a,x2=a-.(2)直接开平方法适用于解形如x2=p或(mx+a)2=p(m≠0)形式的方程,如果p≥0,就可以利用直接开平方法。
(3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。
(4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。
知识点二配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。
配方法的一般步骤可以总结为:一移、二除、三配、四开。
(1)把常数项移到等号的右边;(2)方程两边都除以二次项系数;(3)方程两边都加上一次项系数一半的平方,把左边配成完全平方式;(4)若等号右边为非负数,直接开平方求出方程的解。
22.2.2 公式法知识点一公式法解一元二次方程(1)一般地,对于一元二次方程ax2+bx+c=0(a≠0),如果b2-4ac≥0,那么方程的两个根为x=a acb b24 2-±-,这个公式叫做一元二次方程的求根公式,利用求根公式,我们可以由一元二方程的系数a,b,c的值直接求得方程的解,这种解方程的方法叫做公式法。
(2)一元二次方程求根公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0)的过程。
(3)公式法解一元二次方程的具体步骤:①方程化为一般形式:ax2+bx+c=0(a≠0),一般a化为正值;②确定公式中a,b,c的值,注意符号;③求出b2-4ac的值;④若b2-4ac≥0,则把a,b,c和b-4ac的值代入公式即可求解,若b2-4ac<0,则方程无实数根。
知识点二一元二次方程根的判别式式子b2-4ac叫做方程ax2+bx+c=0(a≠0)根的判别式,通常用希腊字母△表示它,即△=b2-4ac.△>0,方程ax2+bx+c=0(a≠0)有两个不相等的实数根一元二次方程△=0,方程ax2+bx+c=0(a≠0)有两个相等的实数根根的判别式△<0,方程ax2+bx+c=0(a≠0)无实数根22.2.3 因式分解法知识点一因式分解法解一元二次方程(1)把一元二次方程的一边化为0,而另一边分解成两个一次因式的积,进而转化为求两个求一元一次方程的解,这种解方程的方法叫做因式分解法。
(2)因式分解法的详细步骤:① 移项,将所有的项都移到左边,右边化为0;② 把方程的左边分解成两个因式的积,可用的方法有提公因式、平方差公式和完全平方公式; ③ 令每一个因式分别为零,得到一元一次方程; ④ 解一元一次方程即可得到原方程的解。
知识点二 用合适的方法解一元一次方程若一元二次方程x 2+px+q=0的两个根为x 1,x 2,则有x 1+x 2=-p,x 1x 2=q. 若一元二次方程a 2x+bx+c=0(a ≠0)有两个实数根x 1,x 2,则有x 1+x 2=,a b -,x 1x 2=ac 22.3 实际问题与一元二次方程知识点一 列一元二次方程解应用题的一般步骤:(1)审:是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的等量关系。
(2)设:是指设元,也就是设出未知数。
(3)列:就是列方程,这是关键步骤,一般先找出能够表达应用题全部含义的一个相等含义,然后列代数式表示这个相等关系中的各个量,就得到含有未知数的等式,即方程。
(4)解:就是解方程,求出未知数的值。
(5)验:是指检验方程的解是否保证实际问题有意义,符合题意。
(6)答:写出答案。
知识点二 列一元二次方程解应用题的几种常见类型(1)数字问题三个连续整数:若设中间的一个数为x ,则另两个数分别为x-1,x+1。
三个连续偶数(奇数):若中间的一个数为x ,则另两个数分别为x-2,x+2。
三位数的表示方法:设百位、十位、个位上的数字分别为a,b,c ,则这个三位数是100a+10b+c. (2)增长率问题设初始量为a ,终止量为b ,平均增长率或平均降低率为x ,则经过两次的增长或降低后的等量关系为a(1x ±)2=b 。
(3)利润问题利润问题常用的相等关系式有:①总利润=总销售价-总成本;②总利润=单位利润×总销售量;③利润=成本×利润率(4)图形的面积问题根据图形的面积与图形的边、高等相关元素的关系,将图形的面积用含有未知数的代数式表示出来,建立一元二次方程。
23.1 图形的旋转知识点一 旋转的定义在平面内,把一个平面图形绕着平面内某一点O 转动一个角度,就叫做图形的旋转,点O 叫做旋转中心,转动的角叫做旋转角。
我们把旋转中心、旋转角度、旋转方向称为旋转的三要素。
知识点二 旋转的性质旋转的特征:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等。
理解以下几点:(1) 图形中的每一个点都绕旋转中心旋转了同样大小的角度。
(2)对应点到旋转中心的距离相等,对应线段相等,对应角相等。
(3)图形的大小和形状都没有发生改变,只改变了图形的位置。
知识点三 利用旋转性质作图旋转有两条重要性质:(1)任意一对对应点与旋转中心所连线段的夹角等于旋转角;(2)对应点到旋转中心的距离相等,它是利用旋转的性质作图的关键。
步骤可分为:①连:即连接图形中每一个关键点与旋转中心;②转:即把直线按要求绕旋转中心转过一定角度(作旋转角)③截:即在角的另一边上截取关键点到旋转中心的距离,得到各点的对应点;④接:即连接到所连接的各点。
23.2 中心对称知识点一中心对称的定义中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。
注意以下几点:中心对称指的是两个图形的位置关系;只有一个对称中心;绕对称中心旋转180°两个图形能够完全重合。
知识点二作一个图形关于某点对称的图形要作出一个图形关于某一点的成中心对称的图形,关键是作出该图形上关键点关于对称中心的对称点。
最后将对称点按照原图形的形状连接起来,即可得出成中心对称图形。
知识点三中心对称的性质有以下几点:(1)关于中心对称的两个图形上的对应点的连线都经过对称中心,并且都被对称中心平分;(2)关于中心对称的两个图形能够互相重合,是全等形;(3)关于中心对称的两个图形,对应线段平行(或共线)且相等。
知识点四中心对称图形的定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
知识点五关于原点对称的点的坐标在平面直角坐标系中,如果两个点关于原点对称,它们的坐标符号相反,即点p(x,y)关于原点对称点为(-x,-y)。