金融机构大数据信息化数据治理平台建设和应用总体解决方案

合集下载

金融数据治理解决方案

金融数据治理解决方案

评估与持续改进
01
02
03
04
建立评估机制
制定数据治理评估指标和方法 ,定期对数据治理工作进行评
估和审查。
识别改进机会
通过评估发现数据治理中存在 的问题和不足,识别改进的机
会和优先级。
制定改进计划
针对识别出的问题,制定具体 的改进计划和措施,明确责任
人和时间节点。
跟踪改进效果
对改进计划的执行情况进行跟 踪和监控,确保改进措施得到 有效落实并取得预期效果。
金融数据治理解决方案
汇报人: 2024-02-05
1
目 录
contents
• 金融数据治理背景与意义 • 金融数据治理目标与原则 • 金融数据治理框架构建 • 金融数据全生命周期管理 • 金融数据质量评估与提升方法 • 金融数据治理实践案例分享 • 金融数据治理挑战与对策建议
金融数据治理背景与意义
金融数据治理挑战与对策建 议
3
当前面临主要挑战
数据质量参差不齐
由于来源众多、格式各异,金融 数据存在大量重复、错误、不完 整等问题,严重影响数据分析和
决策效果。
数据安全风险突出
金融数据涉及客户隐私、交易信 息等敏感内容,一旦泄露或被滥 用,将给金融机构和客户带来巨
大损失。
监管合规压力加大
随着金融科技的快速发展,监管 机构对金融数据的采集、存储、 使用等方面提出了更高要求,金 融机构需不断适应和满足监管要
提升数据质量
通过数据治理,可以清洗、整 合、转换数据,提高数据的质
量和可用性。
保障数据安全
数据治理有助于建立完善的数 据安全体系,确保数据的机密 性、完整性和可用性。
促进业务创新
高质量的数据是金融业务创新 的基础,数据治理有助于金融 机构更好地挖掘数据价值,推 动业务创新。

大数据平台数据治理整体解决方案 大数据可视化平台建设方案

大数据平台数据治理整体解决方案 大数据可视化平台建设方案

大数据可视化平台建设方案目录第1章前言 0第2章XXX大数据现状分析 (1)2.1、基本现状 (1)2.2、总体现状 (1)2.2.1、行领导 (1)2.2.2、业务人员 (1)2.3、数据架构方面 (2)2.3.1、业务表现 (2)2.3.2、问题 (2)2.4、数据应用难题 (3)2.4.1、缺少统一的应用分析标准 (3)2.4.1.1、业务表现 (3)2.4.1.2、问题 (3)2.4.2、缺少统一的基础数据标准 (4)2.4.2.1、业务表现 (4)2.4.2.2、问题 (5)2.4.3、缺少反馈机制 (5)2.4.3.1、业务表现 (6)2.4.3.2、问题 (6)2.5、数据应用现状总结 (6)第3章XXX大数据治理阶段目标 03.1、数据平台逻辑架构 (1)3.2、数据平台部署架构 (1)3.3、建设目标 (2)3.3.1、建设大数据基础设施,完善全行数据体系架构 (2)3.3.2、开发大数据资源,支撑全行经营管理创新 (2)3.3.3、培养大数据人才队伍,建立大数据分析能力 (2)3.4.1、发现数据质量问题,推动大数据治理工作的开展,建立数据质量检核系统.. 33.4.2、分析、梳理业务系统,推动数据标准的建立,统一全行口径 (3)3.4.3、建立数据仓库模型框架,优化我行数据架构,建设稳定、可扩展的数据仓库33.5、目标建设方法 (4)3.5.1、建设内容 (4)3.5.2、工作阶段 (4)3.5.2.1、源系统分析阶段 (4)3.5.2.1.1、工作内容 (4)3.5.2.1.2、工作依据 (4)3.5.2.1.3、工作重点 (5)3.5.2.2、数据质量问题检查阶段 (5)3.5.2.2.1、工作内容 (5)3.5.2.2.2、工作依据 (5)3.5.2.2.3、工作重点 (6)3.5.2.3、数据质量问题分析阶段 (6)3.5.2.3.1、工作内容 (6)3.5.2.3.2、工作依据 (6)3.5.2.3.3、工作重点 (6)3.6、预期建设效益 (6)3.6.1、实现数据共享 (6)3.6.2、加强业务合作 (7)3.6.3、促进业务创新 (7)3.6.4、提升建设效率 (7)3.6.5、改善数据质量 (7)第4章XXX大数据建设总体规划 04.1、功能需求 04.1.1、个人和企业画像 04.1.3、为金融业提供风险管控 (3)4.1.4、运营优化 (4)4.2、XXX大数据应用架构远景 (4)4.2.1、XXX需要从“坐商”转型为“行商” (5)4.2.2、客户下沉 (5)4.2.3、与“互联网金融”进行差异化竞争 (5)4.3、XXX大数据平台应用架构 (6)4.4、XXX大数据平台架构 (7)4.5、XXX大数据支撑平台 (7)4.5.1、大数据虚拟化平台 (7)4.5.1.1、设计原则 (8)4.5.1.2、虚拟化平台设计 (10)4.5.1.3、硬件基础设施层 (10)4.5.1.4、虚拟化存储 (11)4.5.1.5、虚拟化计算 (11)4.5.1.6、平台管理 (12)4.5.1.7、数据存储系统设计 (12)4.5.1.8、高性能SAN存储系统 (14)4.5.1.9、存储方案优势 (15)4.5.2、大数据分析管理平台 (16)4.6、大数据分析处理平台 (16)4.6.1、分布式内存分析引擎 (17)4.6.2、数据挖掘引擎 (17)4.6.3、分布式实时在线数据处理引擎 (18)4.6.4、流处理引擎 (18)4.6.5、大数据分析支撑系统 (18)4.6.6、大数据分析节点群 (24)4.6.7、软硬件配置 (25)4.6.8、虚拟化平台关键特性 (27)4.7、安全保障系统 (30)4.7.1、设计原则 (30)4.7.2、总体设计 (31)4.7.3、物理安全设计 (31)4.7.4、网络安全设计 (33)4.7.4.1、外网边界安全 (33)4.7.4.2、网络基础设施安全 (34)4.7.5、主机安全设计 (35)4.7.6、应用安全设计 (35)4.7.7、数据库安全设计 (36)4.7.8、安全制度与人员管理 (37)4.7.9、安全管理体系建设 (37)4.7.10、安全运维 (38)4.7.11、安全人员管理 (39)4.7.12、技术安全管理 (39)4.7.13、安全保障系统配置 (40)4.8、计算机网络系统 (40)4.8.1、设计原则 (40)4.8.2、系统设计 (42)4.8.3、计算机网络系统配置 (45)4.9、基础支撑软件 (45)4.9.1、地理信息软件 (45)4.9.2、操作系统软件 (47)4.9.3、数据库管理软件 (48)4.9.4、机房建设方案 (49)4.9.5、基础支撑系统软硬件配置 (52)第5章系统架构设计 (56)5.1、总体设计目标 (56)5.3、案例分析建议 (58)5.3.1、中国联通大数据平台 (58)5.3.2、项目概述 (58)5.3.2.1、项目实施情况 (60)5.3.2.2、项目成果 (67)5.3.2.3、项目意义 (68)5.3.3、恒丰XXX大数据平台 (68)1.1.1.1项目概述 (69)1.1.1.2项目实施情况 (73)1.1.1.3项目成果 (80)1.1.1.4项目意义 (81)5.3.4、华通CDN运营商海量日志采集分析系统 (83)5.3.5、项目概述 (83)5.3.5.1、项目实施情况 (84)5.3.5.2、项目成果 (89)5.3.5.3、项目意义 (89)5.3.6、案例总结 (90)5.4、系统总体架构设计 (91)5.4.1、总体技术框架 (91)5.4.2、系统总体逻辑结构 (95)5.4.3、平台组件关系 (98)5.4.4、系统接口设计 (104)5.4.5、系统网络结构 (109)第6章系统功能设计 (111)6.1、概述 (111)6.2、平台管理功能 (112)6.2.1、多应用管理 (112)6.2.2、多租户管理 (116)6.2.3.1、Hadoop集群自动化部署 (119)6.2.3.2、Hadoop集群性能监控 (121)6.2.3.3、Hadoop集群资源管理 (125)6.2.3.4、图形界面方式多租户管理 (128)6.2.3.5、系统巡检信息收集 (132)6.2.3.6、系统性能跟踪 (134)6.2.3.7、与集团运维监控平台对接 (135)6.2.4、作业调度管理 (139)6.3、数据管理 (141)6.3.1、数据管理框架 (141)6.3.1.1、结构化数据管理框架 (142)6.3.1.2、半/非结构化数据管理框架 (143)6.3.2、数据采集 (144)6.3.3、数据交换 (147)6.3.4、数据存储与管理 (149)6.3.4.1、数据存储管理功能 (152)6.3.4.2、数据多温度管理 (154)6.3.4.3、生命周期管理 (156)6.3.4.4、多索引模式 (157)6.3.4.5、多数据副本管理 (158)6.3.4.6、数据平衡管理 (159)6.3.4.7、在线节点管理 (160)6.3.4.8、分区管理 (161)6.3.4.9、数据导入与导出 (162)6.3.4.10、多级数据存储 (163)6.3.4.11、多种数据类型支持 (165)6.3.4.12、多种文件格式支持 (167)6.3.4.13、数据自定义标签管理 (171)6.3.4.14、数据读写锁处理 (171)6.3.4.16、表压缩 (172)6.3.5、数据加工清洗 (172)6.3.6、数据计算 (174)6.3.6.1、多计算框架支持 (174)6.3.6.2、并行计算与并行处理能力 (176)6.3.6.3、PL/SQL存储过程 (180)6.3.6.4、分布式事务支持 (184)6.3.6.5、ACID测试案例 (186)6.3.7、数据查询 (196)6.3.7.1、OLAP函数支持 (196)6.3.7.2、分布式 Cube (197)6.3.7.3、SQL兼容性 (200)6.3.7.4、SQL功能 (217)6.4、数据管控 (222)6.4.1、主数据管理 (222)6.4.2、元数据管理技术 (224)6.4.3、数据质量 (227)6.5、数据ETL (235)6.6、数据分析与挖掘 (238)6.6.1、数据分析流程 (241)6.6.2、R语言开发环境与接口 (242)6.6.3、并行化R算法支持 (243)6.6.4、可视化R软件包 (247)6.6.5、编程语言支持 (249)6.6.6、自然语言处理和文本挖掘 (249)6.6.7、实时分析 (250)6.6.8、分析管理 (251)6.6.8.1、需求管理 (252)6.6.8.2、过程管理 (253)6.6.9、分析支持 (256)6.6.10、指标维护 (256)6.6.11、分析流程固化 (257)6.6.12、分析结果发布 (257)6.6.13、环境支持 (257)6.7、数据展现 (258)6.7.1、交互式报表 (260)6.7.2、仪表盘 (267)6.7.3、即席查询 (268)6.7.4、内存分析 (269)6.7.5、移动分析 (270)6.7.6、电子地图支持 (271)第7章技术要求实现 (272)7.1、产品架构 (272)7.1.1、基础构建平台 (277)7.1.2、大数据平台组件功能介绍 (278)7.1.2.1、Transwarp Hadoop分布式文件系统 (278)7.1.2.2、Transwarp Inceptor内存分析交互引擎 (280)7.1.2.3、稳定的Spark计算框架 (282)7.1.2.4、支持Memory+SSD的混合存储架构 (283)7.1.2.5、完整SQL功能支持 (283)7.1.2.6、Transwarp Discover机器学习引擎 (289)7.1.2.7、并行化统计算法库 (291)7.1.2.8、机器学习并行算法库 (293)7.1.2.9、Transwarp Hyperbase列式存储数据库 (300)7.1.2.10、智能索引 (311)7.1.2.11、全局索引 (312)7.1.2.12、全文索引 (313)7.1.2.14、图数据库 (315)7.1.2.15、全文数据处理 (316)7.1.2.16、Transwarp Stream数据实时处理分析 (318)7.1.2.17、分布式消息队列 (322)7.1.2.18、流式计算引擎 (323)7.1.2.19、流式SQL执行 (324)7.1.2.20、流式机器学习 (325)7.1.3、系统分布式架构 (325)7.2、运行环境支持 (328)7.2.1、系统操作支持以及环境配置 (328)7.2.2、与第三方软件平台的兼容说明 (329)7.3、客户端支持 (330)7.3.1、客户端支持 (330)7.3.2、移动端支持 (331)7.4、数据支持 (331)7.5、集成实现 (333)7.6、运维实现 (336)7.6.1、运维目标 (336)7.6.2、运维服务内容 (337)7.6.3、运维服务流程 (340)7.6.4、运维服务制度规范 (342)7.6.5、应急服务响应措施 (343)7.6.6、平台监控兼容 (344)7.6.7、资源管理 (345)7.6.8、系统升级 (348)7.6.9、系统监控平台功能 (348)7.6.9.1、性能监控 (348)7.6.9.2、一键式收集 (352)7.6.9.3、系统资源监控图形化 (354)7.6.9.5、消息队列监控 (355)7.6.9.6、故障报警 (356)7.6.9.7、告警以及统巡检以及信息收集 (356)7.7、平台性能 (358)7.7.1、集群切换 (358)7.7.1.1、主集群异常及上层业务切换 (358)7.7.1.2、从集群异常及上层业务切换 (359)7.7.2、节点切换 (360)7.7.3、性能调优 (361)7.7.3.1、图形化性能监控 (361)7.7.3.2、图形化调优工具 (362)7.7.3.3、调优策略 (366)7.7.4、并行化高性能计算 (367)7.7.5、计算性能线性扩展 (370)7.8、平台扩展性 (372)7.9、可靠性和可用性 (374)7.9.1、单点故障消除 (374)7.9.2、容灾备份优化 (375)7.9.2.1、扩容、备份、恢复机制 (375)7.9.2.2、集群数据容灾优化 (377)7.9.2.3、数据完整性保障和方案 (378)7.9.2.4、主集群异常及上层业务切换 (380)7.9.2.5、从集群异常及上层业务切换 (380)7.9.3、系统容错性 (381)7.10、开放性和兼容性 (383)7.10.1、高度支持开源 (388)7.10.1.1、PMC-HaoyuanLi (388)7.10.1.2、Committor-AndrewXia (390)7.10.1.3、Committor-ShaneHuang (392)7.10.1.5、Committor-JasonDai (397)7.10.1.6、Committor-WeiXue (400)7.10.2、操作系统支持以及软件环境配置 (401)7.10.3、兼容性与集成能力 (402)7.11、安全性 (404)7.11.1、身份鉴别 (404)7.11.2、访问控制 (405)7.11.3、安全通讯 (413)7.12、核心产品优势 (413)7.12.1、高速运算、统计分析和精确查询 (413)7.12.1.1、Spark引擎结合分布式内存列存提供高性能计算 (413)7.12.1.2、多种索引支持与智能索引 (415)7.12.2、有效的资源利用 (416)7.12.3、高并发、低延迟性能优化 (417)7.12.4、计算资源有效管控 (418)7.12.5、API设计和开发工具支持 (420)7.12.6、友好的运维监控界面 (422)7.12.7、扩容、备份、恢复机制 (427)7.12.8、集群自动负载均衡 (429)7.12.9、计算能力扩展 (429)7.13、自主研发技术优势 (430)7.13.1、高稳定、高效的计算引擎Inceptor (430)7.13.2、完整的SQL编译引擎 (432)7.13.3、高性能的SQL分析引擎 (433)7.13.4、SQL统计分析能力 (433)7.13.5、完整的CURD功能 (435)7.13.6、Hyperbase高效的检索能力 (436)7.13.7、基于Hyperbase和SQL引擎的高并发分布式事务 (438)7.13.8、Hyperbase非结构化数据的支持 (440)7.13.9、机器学习与数据挖掘 (440)7.13.10、Transwarp Stream (445)7.13.11、内存/SSD/磁盘混合存储 (448)7.13.12、MR/Spark/流处理统一平台 (450)7.13.13、多租户支持能力 (452)7.13.14、多租户安全功能 (453)7.13.15、标准JDBC与ODBC接口 (454)第8章系统性能指标和测试结果说明 (455)8.1、性能测试报告 (455)8.1.1、测试目标 (455)8.1.2、测试内容 (455)8.1.3、测试环境 (456)8.1.4、测试过程和结果 (457)8.2、TPC-DS测试报告 (460)8.2.1、测试目标 (460)8.2.2、测试内容 (461)8.2.3、测试环境 (463)8.2.4、测试过程和结果 (464)8.3、量收迁移验证性测试报告 (465)8.3.1、测试目标 (465)8.3.2、测试内容 (465)8.3.3、测试环境 (466)8.3.4、串行执行情况 (467)8.3.5、并行执行情况 (469)8.3.6、生产表数据规模 (471)8.3.7、测试结果 (475)8.4、某XXX性能测试报告 (475)8.4.1、测试目标 (475)8.4.2、测试内容 (475)8.4.4、测试过程和结果 (477)第9章系统配置方案 (491)9.1、硬件系统配置建议 (491)9.1.1、基础Hadoop平台集群配置规划 (491)9.1.2、数据仓库集群配置规划 (494)9.1.3、集群规模综述 (496)9.1.4、开发集群配置建议 (497)9.1.5、测试集群配置建议 (498)9.2、软件配置建议 (498)9.3、软硬件配置总表 (500)9.4、网络拓扑 (503)第10章系统测试 (504)10.1、系统测试方法 (504)10.2、系统测试阶段 (505)10.3、系统测试相关提交物 (507)第11章项目实施 (508)11.1、项目实施总体目标 (508)11.2、项目管理 (509)11.3、业务确认 (510)11.4、数据调研 (511)11.5、系统设计阶段 (512)11.6、集成部署阶段 (513)11.7、ETL过程设计 (513)11.8、ETL开发与测试 (515)11.9、系统开发阶段 (516)11.10、系统测试阶段 (516)11.11、系统上线及验收 (518)11.13、系统的交接与知识转移 (523)第1章前言随着信息化程度的加深,以及移动互联网、物联网的崛起,人们产生的数据急剧膨胀,传统的数据处理技术难以支撑数据大量的增长和处理能力。

大数据治理数据支撑平台与数据管控平台建设方案

大数据治理数据支撑平台与数据管控平台建设方案

数据管控技术
使用IAM、Access Control等 数据管控技术,实现数据的安 全访问控制和数据加密。
微服务架构
采用Spring Cloud等微服务框 架,实现服务的注册、发现和 负载均衡。
数据存储技术
采用HBase、Elasticsearch等 分布式存储系统,实现数据的 分布式存储和高效查询。
07
效益评估与持续改进
项目效益评估
降低运营成本
优化数据处理流程,降低人力和物力成本, 提高运营效率。
提升数据质量
通过数据治理,提高数据质量,为业务决策 提供更准确的数据支持。
增强数据安全性
完善数据安全措施,减少数据泄露和损失, 保障企业核心利益。
数据治理体系持续改进
定期评估与调整
对数据治理体系进行定期评 估,根据实际情况进行调整 和优化。
注重兼容性
在技术更新和升级过程中, 重视与其他系统的兼容性, 降低整合成本。
THANKS
感谢观看
数据存储
采用分布式存储系统,实现数据的可靠性和高效存储。
数据管控
通过数据访问控制、数据安全保护和数据质量管理等手段 ,确保数据的安全性和合规性。
数据应用
提供数据分析和数据可视化等功能,支持业务决策和数据 分析。
技术实现细节
数据处理技术
使用Hadoop、Spark等数据 处理技术,实现批处理、流处 理和机器学习等数据处理。
数据处理
批处理
对大规模数据进行批量处 理,如MapReduce。
机器学习和数据挖掘
应用机器学习和数据挖掘 技术对数据进行深入分析 。
流处理
对实时数据进行处理,如 Apache Kafka。
数据服务

2023-银行金融大数据平台解决方案-1

2023-银行金融大数据平台解决方案-1

银行金融大数据平台解决方案随着科技飞速发展,金融行业也呈现出多项新的趋势。

其中之一就是大数据技术的广泛应用,它在银行金融领域的作用愈发重要。

银行金融大数据平台解决方案是应对这一趋势应运而生的,本文将围绕这一主题,简要介绍该解决方案的实现步骤。

第一步:搭建大数据平台银行金融大数据平台需要依托大数据技术进行搭建,包括基础设施、服务平台和应用平台等组成部分。

在基础设施方面,银行金融大数据平台需要建立集群和分布式文件系统等底层基础设施。

在服务平台方面,银行金融大数据平台需要搭建数据服务、数据管理、数据开发、数据治理等诸多服务。

在应用平台方面,银行金融大数据平台需要搭建数据分析、数据可视化、机器学习、人工智能等应用程序。

第二步:数据的采集银行金融大数据平台需要收集来自各个领域的数据,比如交易数据、风险管理数据、客户数据等等。

这些数据需要通过数据源的数据采集技术进行收集,并且要求数据采集的速度、准确性和存储的稳定性等方面都要达到一定的标准。

第三步:数据的处理在数据采集之后,数据需要进行清洗、处理和规范化等一系列操作,使其能够适应业务需求的分析建模和决策制定。

数据处理的方式一般包括ETL(Extract-Transform-Load)过程,就是从各个数据源中取出数据,经过数据清洗、规范化、转换等操作,最终将处理后的数据导入数据仓库。

第四步:数据的建模与分析银行金融大数据平台需要对数据进行建模和分析。

数据建模是指使用建模技术对数据进行建模,形成数据结构的过程,包括关系模型、维度模型、面向对象模型等等。

数据分析是指使用数据挖掘技术、机器学习技术等将数据转化成可视化的数据分析报表和图形等,以便更好地指导业务决策。

第五步:应用开发和推广银行金融大数据平台需要进行应用开发和推广。

在应用系统开发方面,需要有丰富的系统管理和业务规则处理经验,同时综合考虑业务需求和运维要求,开发出满足用户需求的应用。

在平台推广方面,需要进行宣传和推广工作,向用户介绍银行金融大数据平台的优势和特点,使其能够被广泛地应用于实际业务中。

大数据治理平台建设与应用解决方案

大数据治理平台建设与应用解决方案

大数据治理平台建设与应用解决方案大数据治理平台是一个以数据治理为核心,通过数据管理、数据质量、数据安全等一系列功能模块来实现对大数据的管理和应用的平台。

以下是一个关于大数据治理平台建设与应用的解决方案,旨在帮助企业解决大数据管理和应用中的挑战。

1.建设一个统一的数据管理平台:该平台可以整合多个数据源,包括结构化和非结构化数据,并提供数据集成、数据转换、数据清洗和数据加载等功能。

通过统一管理所有数据,可以实现数据的全面监控和管理。

2.实施数据质量管理:数据质量是大数据治理的关键,通过建立数据质量框架和规范,包括数据准确性、完整性、一致性、及时性等指标,并根据这些指标对数据进行监控和评估,以确保数据的质量。

3.建立数据安全管理体系:数据安全是大数据应用中最重要的方面之一、通过建立数据安全管理策略、数据安全流程和数据安全保护措施,对数据进行分类、加密、权限控制和审计,确保数据的机密性和完整性。

5.构建数据仓库和数据分析平台:大数据治理平台需要提供一个强大的数据仓库和数据分析平台,以便进行数据的存储、管理和分析。

该平台应该具备高性能、高可用性和易扩展性,并能够支持各种类型的数据分析和数据挖掘算法。

6.实施数据生命周期管理:通过实施数据生命周期管理策略,对数据进行分类、归档、备份和销毁,以确保数据的合规性和合法性。

7.提供数据可视化工具:大数据治理平台需要提供易用的数据可视化工具,以便用户可以直观地分析和呈现数据。

这些工具应该支持各种类型的图表、仪表盘和报表,以满足不同用户的需求。

8.建立数据治理团队和流程:大数据治理需要建立专门的团队来负责数据管理和数据治理的工作,并建立相应的流程和规范。

这个团队应该包括数据治理专家、数据分析师和数据架构师等角色,以确保大数据治理平台的顺利运行。

综上所述,建设一个完善的大数据治理平台并实施上述解决方案,可以帮助企业更好地管理和应用大数据,提高数据质量、数据安全性和数据分析能力,提升企业的竞争力和决策质量。

2023-大数据平台数据治理与建设方案-1

2023-大数据平台数据治理与建设方案-1

大数据平台数据治理与建设方案近年来,随着企业数据量的迅速增长以及数据应用场景日益复杂,数据治理和管理变得越来越重要。

数据治理是数据管理、分析、共享、质量保证和安全保障的综合。

大数据平台数据治理与建设方案的实施无疑是保证数据质量和运用的关键。

因此,在这篇文章中,我们将解释实现大数据平台数据治理和建设方案的步骤。

第一步:确定数据治理和建设需要和目标。

该步骤旨在为数据治理和建设制定明确的指导方针。

需确定数据治理的方向和目标,进而确定实现该目标所需的数据管理策略、流程和规范。

第二步:评估数据治理与建设的成熟度。

该步骤是保证数据治理与建设成功执行的前提。

通过对数据治理、数据管理和流程执行等方面的评估,确定当前数据管理水平和数据建设的成熟度,进而确定下一步的数据治理方向。

第三步:建立数据治理框架。

数据治理框架是数据治理与建设的基础。

通过创建数据治理框架,可以建立明确的治理范围、规范和流程、以及标准、指南和工具等,以实现数据治理与建设全流程管理。

第四步:按需制定数据管理和质量规范。

该步骤旨在明确大数据平台上数据的质量标准,以确定数据在处理、分析和审计等操作中的准确性、完整性、合法性等。

要确保数据管理和质量规范能够满足企业的特定数据处理和应用需求,可依据数据类型、来源、流程等维度进行制定。

第五步:制定数据安全和隐私保护方案。

数据治理与建设方案的成功执行,离不开数据的安全和隐私保护。

要确保大数据平台中数据的安全性、完整性、保密性等,制定数据安全和隐私保护方案,包括访问控制、风险评估、加密和脱敏等保障措施,以保护数据的安全性和隐私。

第六步:执行数据管理和质量控制。

确定了数据的管理、质量和隐私保护方案后,便可执行数据管理和质量控制措施。

这些措施包括数据的采集、处理、存储、审计、报告和文档化等工作,确保数据质量和可靠性受到持续的监督和控制。

总之,实现大数据平台数据治理与建设方案,需要有一个全面、专业、有系统的方法。

构建大数据平台数据治理框架,评估数据治理与建设的成熟度,按需制定数据管理和质量规范,塑造数据安全和隐私保护方案,以及执行数据管理和质量控制措施是实现数据治理与建设方案的关键步骤。

金融行业大数据治理实施与政策建议

金融行业大数据治理实施与政策建议

金融行业大数据治理实施与政策建议
金融行业的大数据治理实施与政策建议如下:
1. 加强数据安全保护:制定完善的数据保护法律法规,建立金融数据安全保护的技术和制度体系,加强数据加密、防护、备份和恢复能力,确保金融数据的安全性和可信度。

2. 建立数据共享和交换机制:促进金融机构之间的数据共享,建立合理的数据交换机制,提高金融行业内数据的质量和效率。

同时,加强数据资源共享与开放,建立与其他相关行业的数据连接。

3. 强化数据规范与标准:建立统一的金融数据规范和标准,规范金融机构的数据采集、处理和管理流程,提高数据质量和一致性。

同时,推动金融行业的数据标准与国际标准的对接,实现互操作性。

4. 提升数据分析能力:推动金融行业建设大数据分析平台,提升数据分析能力,利用人工智能、机器学习等技术,发掘金融数据中的价值,提供精准的金融服务和决策支持。

5. 加强数据隐私保护:制定严格的数据隐私保护政策和法律法规,确保个人和企业的数据隐私得到合理的保护。

同时,建立数据使用和共享的明确规则,保障数据使用的合法性和透明性。

6. 鼓励创新应用:为金融科技企业和创新团队提供支持和鼓励,鼓励利用大数据技术进行金融创新,推动金融行业的数字化转
型和升级。

7. 加强监管和治理:建立完善的数据监管和治理机制,加强对金融数据采集、处理和使用的监管,保障金融行业的数据安全和合规性。

总之,金融行业的大数据治理需要综合考虑数据安全、数据共享、数据规范、数据分析能力、数据隐私保护、创新应用和监管治理等方面,以推动金融行业的数字化转型和提升金融服务的质量和效率。

大数据治理运营整体解决方案

大数据治理运营整体解决方案
大数据治理运营整体解决方案
汇报人:xxx 2024-02-22
目录
• 引言 • 大数据治理体系构建 • 大数据运营平台建设 • 业务应用场景及案例分享 • 团队组建与培训支持服务 • 总结与展望
01
引言
背景与意义
01
02
03
数字化转型推动
随着企业数字化转型的加 速,大数据成为企业重要 的战略资源,大数据治理 运营显得尤为重要。
数据安全与隐私保护挑战加大
随着网络安全风险的增加和隐私保护要求的提高,数据安全与隐私保 护将面临更大的挑战。
持续改进方向和目标设定
提升数据处理效率
通过优化数据处理流程和技术手段,提高数据处理效率 ,降低运营成本。
深化业务价值挖掘
通过更加深入的数据分析和挖掘,为业务提供更加有价 值的洞察和决策支持。
规范性。
数据运营机制
构建数据运营机制,包括数据采集 、数据处理、数据存储、数据分析 等环节,实现数据的全流程管理。
技术与工具支撑
采用先进的大数据技术和工具,如 数据仓库、数据挖掘、数据可视化 等,提升数据治理运营的效率和质 量。
预期目标与效果
01
02
03
04
提升数据质量
通过数据治理运营,提升数据 的准确性、完整性、一致性等 质量指标,满足业务需求。
某零售企业通过大数据治理运营平台,对销售数据、库存数据等进行了
分析和挖掘,发现了市场趋势和消费者行为模式,为产品优化和营销策
略制定提供了依据。
业务价值评估与成果展示
业务价值评估
通过大数据治理运营平台的应用,企业可以实现数据的全面整合和治理,提高数据质量 和安全性,挖掘数据中的价值,为业务决策提供支持,推动企业的数字化转型和创新发

金融行业证券行业大数据建设综合解决方案

金融行业证券行业大数据建设综合解决方案

02
大数据建设解决方案的核心理念
数据采集与预处理
实时数据采集
通过数据接口和爬虫技术,实时获取证券行业的业务数据、市场数据和其他相关 数据。
数据清洗
对采集到的数据进行清洗、去重、校验等预处理操作,保证数据的质量和准确性 。
数据存储与管理
数据存储
采用分布式文件系统,如Hadoop HDFS,对数据进行分布式 存储,以实现数据的高可靠性和可扩展性。
某证券公司的风险控制分析案例
总结词
基于大数据进行风险控制,降低业务风险 。
详细描述
该证券公司利用大数据技术,对市场风险 、信用风险等多方面的风险进行评估和预 测。通过建立风险评估模型和监控体系, 该证券公司能够及时发现潜在风险并进行 预警,降低业务风险。
应用效果评估与总结
• 总结词:经过多个案例的应用效果评估,大数据解决方案能够提高金融证券行业的业务效率和准确性。 • 详细描述:经过多个案例的应用效果评估发现,《金融行业证券行业大数据建设综合解决方案》在提高金
证券行业的客户画像分析
客户基本信息
获取客户的身份信息、联系方式、投资偏好等基本信息,帮助证券公司了解客户 需求和特征。
客户行为分析
分析客户的交易行为、投资偏好、风险承受能力等,为精准营销和个性化服务提 供支持。
证券行业的市场趋势分析
宏观经济分析
分析国内外经济形势、政策变化、利率汇率等宏观经济因素 ,为证券投资提供参考。
智能展示
结合自然语言处理和语音识别技术,将数据以语音、文本等 形式智能展示给用户,提高展示的便捷性和效率。
03
大数据建设解决方案的应用场景
证券行业的交易数据分析
实时交易数据
实时获取和分析证券市场的交易数据,包括股票、期货、基金等产品的买卖 盘口、成交明细、行情走势等。

大数据治理平台与数据运营体系建设方案

大数据治理平台与数据运营体系建设方案

大数据治理平台与数据运营体系建设方案随着数字化时代的到来,企业面临着海量数据的挑战和机遇。

如何高效地管理和利用这些数据,成为了企业发展的关键问题。

为了解决这一难题,许多企业开始积极建设大数据治理平台与数据运营体系。

本文将探讨大数据治理平台和数据运营体系的建设方案,并提供一些建议来帮助公司顺利实施。

一、大数据治理平台建设方案1. 技术平台选择在建设大数据治理平台之前,企业需要根据自身的实际情况选择合适的技术平台。

常见的大数据技术平台包括Hadoop、Spark、Hive等。

根据公司规模和需求,选择适当的技术平台可以提高数据处理效率和准确性。

2. 数据采集与清洗数据采集是大数据治理平台的第一步。

企业可以通过数据采集工具,如Flume、Logstash等,从各个数据源中提取数据。

同时,对采集到的数据进行清洗,排除无效或错误数据,确保数据的准确性和一致性。

3. 数据存储与管理对于大规模的数据处理,建立高效的数据存储与管理系统非常重要。

常见的数据存储技术包括HDFS、MongoDB等。

同时,企业需要建立完善的数据分类和命名规范,以便于数据的管理和检索。

4. 数据安全和隐私保护在建设大数据治理平台的过程中,数据安全和隐私保护是不可忽视的问题。

企业需要采取适当的安全措施,如加密和权限管理,来保护敏感数据的安全。

此外,遵守相关的法律法规,合规处理用户隐私数据,是企业建设大数据治理平台的基本要求。

二、数据运营体系建设方案1. 数据治理与质量管理在数据运营体系中,数据治理和质量管理是关键环节。

企业需要建立数据治理机构和流程,明确数据责任人和流转路径。

同时,制定数据质量管理策略,进行数据清洗、校验和修复,确保数据的高质量和一致性。

2. 数据分析与挖掘大数据运营体系的目标是通过数据分析与挖掘产生有价值的洞见。

企业可以利用机器学习、数据挖掘等技术来对数据进行分析,发现其中蕴藏的业务机会和风险。

同时,制定相应的数据分析策略,为企业的决策提供科学依据。

大数据平台数据治理体系建设和管理方案

大数据平台数据治理体系建设和管理方案

大数据平台数据治理体系建设和管理方案目录一、内容概述 (2)1.1 背景与意义 (3)1.2 目标与范围 (4)二、大数据平台概述 (6)2.1 平台介绍 (8)2.2 架构设计 (9)三、数据治理体系构建 (10)3.1 数据治理原则 (12)3.2 治理框架 (13)3.3 组织架构与角色职责 (14)四、数据质量管理 (16)4.1 数据质量评估 (17)4.2 数据清洗与校正 (18)4.3 质量监控与持续改进 (19)五、数据安全管理 (21)5.1 数据加密与脱敏 (22)5.2 权限管理与访问控制 (23)5.3 安全审计与日志记录 (25)六、数据共享与交换 (26)6.1 共享机制 (28)6.2 交换标准与流程 (30)6.3 数据交换安全保障 (31)七、数据治理效能评估 (32)7.1 评估指标体系 (33)7.2 评估方法与工具 (34)7.3 效果反馈与持续优化 (35)八、实施计划与路线图 (36)8.1 短期计划 (37)8.2 中长期规划 (39)九、总结与展望 (39)9.1 实施成果 (40)9.2 发展趋势与挑战 (42)一、内容概述随着大数据技术的快速发展和广泛应用,企业和社会对数据的需求越来越迫切。

海量数据的快速增长给数据治理带来了巨大的挑战,为了确保数据的准确性、安全性和可用性,本文档将详细介绍大数据平台数据治理体系建设和管理方案。

数据治理目标和原则:明确数据治理的目标,如提高数据质量、保障数据安全、实现数据价值等,并制定相应的数据治理原则,如尊重用户隐私、保护知识产权等。

数据治理组织架构:设计合理的数据治理组织架构,明确各部门和岗位的职责,建立有效的沟通机制,确保数据治理工作的顺利推进。

数据治理流程:制定详细的数据治理流程,包括数据采集、存储、处理、分析、共享等各个环节,确保数据的全生命周期管理。

数据质量管理:建立完善的数据质量管理体系,包括数据清洗、去重、标准化、验证等环节,提高数据的准确性和一致性。

2023-大数据治理平台总体建设方案V2-1

2023-大数据治理平台总体建设方案V2-1

大数据治理平台总体建设方案V2
大数据治理平台是一种为企业或组织提供数据管理与分析能力的软件
平台,其目的是考虑数据本身的价值和分析结果的有效性,旨在从大
量的数据中提取有价值的信息,提高数据质量和数据价值。

在大数据治理平台总体建设方案V2中,应首先确定平台设计的核心目
标以及需要达成的业务目标。

在实现大数据治理平台的过程中,需要
逐步完成以下步骤:
第一步:需求分析和评估
针对企业或组织的数据资产,分析其数据量、类型、来源等相关信息,同时深入了解其业务需求、数据当前的状况以及未来的发展方向,为
平台设计提供基础的参考数据。

第二步:平台规划设计
根据需求分析和评估的结果,确定平台的目标和设计要求,进行架构
设计和模块功能规划,并考虑平台的可扩展性、安全性和可用性等方
面的要求。

第三步:平台开发与实现
根据平台规划设计,确定平台的技术方向和选型,进行模块开发实现
以及系统数据集成和应用接入等方面的开发工作。

第四步:测试和上线
在开发完成后进行全面的测试和调试,以确保平台具有高效稳定和良
好的用户体验,最终将平台上线并与企业的业务应用集成。

第五步:维护和优化
系统部署后需要对平台进行持续的维护与优化,包括数据系统运行监
测、故障处理、升级与优化等,确保平台的持续稳定运行。

总之,“大数据治理平台总体建设方案V2”涉及到多个方面的问题,需要根据企业的实际需求进行规划设计和实现,确保其功能齐备且能够满足用户需求。

在这个过程中,各项工作应该紧密协作,有效利用现有的技术和上下游资源,以确保最终的平台实现效果最大化。

数据治理平台建设方案

数据治理平台建设方案

数据治理平台建设方案目录一、项目概述 (3)1.1 项目背景介绍 (4)1.2 项目目标与期望成果 (5)二、项目需求分析 (6)2.1 业务需求分析 (7)2.2 技术需求分析 (8)2.3 安全性需求分析 (10)三、数据治理平台架构设计 (11)3.1 整体架构设计思路 (12)3.2 数据采集层 (14)3.3 数据存储层 (15)3.4 数据处理层 (16)3.5 数据访问控制层 (18)四、功能模块设计 (20)4.1 数据采集模块 (21)4.2 数据清洗模块 (22)4.3 数据存储模块 (24)4.4 数据分析模块 (25)4.5 数据安全模块 (26)4.6 数据可视化模块 (28)五、技术选型与实施方案 (29)5.1 技术选型原则 (31)5.2 关键技术介绍 (32)5.3 实施方案及时间表 (33)六、项目组织与人员配置 (34)6.1 项目组织结构 (35)6.2 人员配置及职责 (36)七、项目风险管理与应对措施 (37)7.1 项目风险管理分析 (39)7.2 应对措施与预案 (40)八、项目预算与成本估算 (42)8.1 项目预算制定 (43)8.2 成本估算与分析 (44)九、项目实施进度安排 (45)9.1 实施阶段划分 (47)9.2 进度计划表与时间表管理 (47)十、项目后期维护与升级策略 (48)10.1 后期维护计划 (50)10.2 升级策略及规划方案部署计划安排总结概况和数据治理平台的未来发展趋势预测50一、项目概述随着信息技术的快速发展和数字化转型的深入推进,数据已成为组织的重要资产。

数据治理作为管理和优化数据的关键手段,已成为当前信息化建设的核心任务之一。

本数据治理平台建设方案旨在通过构建高效、可靠、可扩展的数据治理平台,提升组织的数据质量,释放数据价值,推动决策优化和业务创新。

提升数据质量:通过平台的数据清洗和校验功能,提高数据的准确性和完整性。

金融机构信息化架构总体规划方案

金融机构信息化架构总体规划方案

04
数据安全:加密技术、访问控制等技术
05 数据治理:数据质量管理、数据生命周期管理等技术
人工智能技术
01 02 03 04
01
机器学习:通过大量数据训练模型, 实现自动预测和决策
02
自然语言处理:理解、分析、生成 自然语言,实现人机交互
03
计算机视觉:识别、分析图像和视 频,实现图像和视频的智能处理
大数据:金融机构将更加注重大数据的收集、分 析和应用,提高风险控制和客户服务能力。
人工智能:金融机构将更加广泛地应用人工智能 技术,提高自动化程度和客户体验。
区块链:金融机构将更加关注区块链技术在金融 领域的应用,提高金融交易的安全性和透明度。
展望未来
金融机构信息 化架构的发展
趋势
跨机构、跨行 业的合作与竞
内部管理:包 括人力资源管 理、行政管理、 IT管理等
功能模块
01
客户管理:包 括客户信息管 理、客户关系
管理等
04
投资管理:包 括投资决策、 投资执行、投
资评估等
02
财务管理:包 括财务管理、 会计核算、财
务分析等
05
监管合规:包 括监管政策解 读、合规管理、
合规审计等
03
风险管理:包 括风险识别、 风险评估、风
05
建立应急处理知识库,积累经验,持续改进应急预案
应急响应
01
设立应急响应小 组,明确各成员
职责
02
制定应急响应流 程,包括报告、 响应、调查、解 决和总结等环节
03
定期进行应急演 练,提高应急处
理能力
04
建立应急响应知 识库,包括常见 问题、解决方案
和案例等
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 是构建完善、共享、统一管理数据环境的基本保障和重要组成部分 • 是把数据作为资产来管理的有效手段
作用
• 确定了一系列岗位角色和相应的责任及管理流程 • 保证了业务数据在采集、集中、转换、存储、应用整个过程中的完整性、准确性、一致性和时效性
价值
• 企业进行数据治理的最大驱动力来自数据质量,通过提高数据质量实现更多的业务价值 • 将实现业务目标作为数据管理和服务的核心驱动力,优化数据架构,提升数据仓库/信息化管理系统建
客户 风险 报表
客户 一部 报表
中间 ➢ 历史数据缺失
主题层
报表应用共用 主题数据
客户风险
集市层
客户一部
中间业务
支付业务
问题
➢ 数据分散,难以管理 ➢ 没有一个稳定的,抗源变
化的数据层
汇总数据层 ODS层 BDS层 DEP层
源系统
没有进行整合,无法 共享,不能支持如客 户管理等共享性应用
二、初期能够快速见效并体现建设价值,不盲目投入
实施周期不易过长,规模不易过大,能够快速的见 到数据总线带来的效果和价值。
三、借鉴同业的成功经验和成果,选择成熟技术架构和解决方案
尽量参考同行业、同规模、同类型企业行的建设经验,适当创新。
四、重视内部人员培养,建设配套运营制度和管理体系
前期让公司内IT人员尽量更多、更深入的参与到数据总线 的建设中,后期角色以管理为主,尽量与合作伙伴共同建 设二期以上。配套的管理规范、技术规范、运营体系。
1 正常 2 关注 3 次级(不良) 4 可疑(不良) 5 损失(不良)
01 正常 02 关注 03 次级 04 可疑 05 损失
数据应用现状分析-数据质量方面
没有归纳并总结数据质量问题,缺少反馈机制,导致长期存在各类数据质量问题。
由于全行的数据散落在各个业务系统中,没有进行有效整合,形成竖井式架构,造成多个信息孤岛,
整体架构缺少一个稳定的、抗源变化的保存最细粒度历史数据的数据层。无法支撑未来共享性应用。
缺少一个稳定的、
竖井式架构,
抗源变化的数据层
业务表现
➢ 信息孤岛 ➢ 数据冗余
造成信息孤岛
其它 报表
…… 绩效考核 客户管理
问题
➢ 重复投入 ➢ 数据不一致 ➢ 指标设计、口径不一致 ➢ 指标难以共享
客户风险集市
借据号 期末余额 主营业务收入 负债总额 。。。
客户一部集市
借据编号 期末贷款余额 总资产 。。。
资金计划 部
金融机构大数据信息化数据治理平台建设和应用总体解决方案
我想看本期贷款 余额,看哪个呢?
用户 我想看客户经营情 况信息,有哪些呢?
用户 活期存款指标数据 怎么不一致呢?
数据应用现状分析-数据应用难题
缺少统一的基础数据标准
核心贷款分户账表
业务表现
➢ 各系统存在冗余数据 ➢ 各系统存在业务含义一致,名称定义不一致的属性 ➢ 各系统存在含义不一致,名称定义一致的情况
贷款主档代码 贷款余额 五级分类标志 计息方式
。。。
➢ 业务代码定义混乱
金融机构大数据信息化数据治理平台建设和应用总体解决方案
Part 2
XXX金融机构数据现状及问题
数据应用现状分析-总体情况
业务职能不清晰或 相互重叠,观察数据视 角不尽相同,缺少数据 标准与业务统一定义, 语轨不一致
行领导
IT架构中中都是以部 门级应用为主(如计财、 资金计划部等),缺乏从 大的管理职能(财务、风 险、运营等)综合方面的 数据整合、数据标准和统 一业务定义
问题
信贷管理借据表
➢ 重复投入
➢ 数据不一致、不准确 ➢ 难以利用和管理 ➢ 各系统数据难以共享
贷款账号 贷款余额
5级分类标志
借据计息周期 。。。
金融机构大数据信息化数据治理平台建设和应用总体解决方案
业务含义一致, 名称定义不一致
数据冗余
相同业务代码 定义不一致
核心五级分类代码 信贷管理五级分类代码
金融机构大数据信息化数据治理平台建设和应 用总体解决方案
金融机构大数据信息化数据治理平台建设和应用总体解决方案
Contents
目录
1.数据治理概述 2.XXX金融机构数据现状及问题 3.数据治理阶段目标 4.成效和特点 5.数据管理系统建设情况
Part 1
数据治理概述
数据治理意义、作用和价值
意义
贷款余额
客…户信..息
贷款余额
客户…信..息
客户信息
…..
客户…信.. 息
客户信息
…..
财务会计部
信贷管理部
国际业务部
资金计划部
…….
综合报表平台
数据交换平台
综合业务系 统
信贷管理
国际业务系 统
债券管理系 统
……
金融机构大数据信息化数据治理平台建设和应用总体解决方案
业务人员
X\?56 7
数据应用现状分析-数据架构方面
内容管 理
支撑
数据战略与规划
金融机构大数据信息化数据治理平台建设和应用总体解决方案
保障机制
数据组织与职责
数据制度与管理流程
数据架构
数据源
内部数据 业务系统
数据交换平台
其他系统
外部数据 互联网 物联网
贴源层
数据平台
整合层
基础 汇总层 数据
平台
数据结构化转换

大数据分析计算


分布式数据库


分布式文件系统
数据调度与处理 数据生命周期管理 数据质量检核 元数据管理
金融机构大数据信息化数据治理平台建设和应用总体解决方案
数据服务 数据集市 数据接口 数据切分
数据应用
统计 报表
数据 挖掘
高管 驾驶

数据传输
数据 管理 平台
数据平台建设原则
一、应用(需求)驱动主导数据平台的实现,加强业务的关注和参与
应用是展现数据总线建设效果的门户,因此需要建设业务人员最紧迫和 最关注的需求和应用,让业务部门最快参与数据总线的建设当中。
设,支持管理能力的提高、精细化和决策的科学性
金融机构大数据信息化数据治理平台建设和应用总体解决方案
数据治理框架
数据战略
促进
数据应用与服务
数据服务管理 数据需求管理 数据服务
应用系统建设
实现
支撑
数据管理
数据架构 与
模型管理
数据标准 管理
元数据 管理
数据质量 管理
主数据 管理
数据保留 与归档 管理
数据安全 管理
综合业务
信贷管理
国际结算
债券核算
金融机构大数据信息化数据治理平台建设和应用总体解决方案
数据应用现状分析-数据应用难题
缺少统一的应用分析标准
业务表现
➢ 各集市系统指标存在重复 ➢ 各集市系统在保有存量的同时,不断产
生新的指标(增量) ➢ 集市指标派生无法实现 ➢ 指标逻辑视图(指标分类)不一致
相关文档
最新文档