铸件形成理论作业资料

合集下载

超详细铸件形成理论重要知识点.

超详细铸件形成理论重要知识点.

铸件形成理论告急知识点第一章液态金属得结构与性子1.金属得加热膨胀:原子间隔断将随温度得升髙而增长,即产生热膨胀:由于能量升沉,一些原子就大概越过势垒跑到原子之间得间隙中或金属外表,原子脱离点阵后,留下了自由点阵一空穴原子间距增大,空穴得产生为物体膨胀得缘故起因之一;2.金属得熔化:把金属加热;到熔点四周时,离位原子数大为增长;在外力得作用下,这些原子作定向运动,造成晶粒间得相对运动,称为品界粘滞运动:晶粒内部,也有相当数量得原子重复跳跃、离位,空穴数大为增长:靠近熔点时,晶界上得原子就大概脱离原晶粒外表,向相近晶粒跳跃,晶粒徐徐失去牢固形状:3. 理想金属得液态结构特点金属熔化后,以及在熔点以上不髙得温度领域内,液体状态得结构有以下特点:1、原子分列在较小隔断内仍具有肯定规律性,且其匀称原子间距增长不大:2、金属液体由许多原子团体所组成,在原子团体内保持固体得分列特性,而在原子团体之间得团结处就受到很大破坏(近程有序分列) :3、原子团体存在能量升沉与结构升沉:4、原子团体间距较大,比较疏松,犹如存在空穴:5、原子团体得匀称尺寸、游动速率都与温度有关,温度越髙,就原子团体得匀称尺寸越小,游动速率越快:归纳综合起去:靠近熔点得液态金属由许多游动得原子团体与空穴组成,原子团体中原子呈规就分列,结构与原固体相似,但存在能量升沉与结构升沉:4、实际金属得液态结构实际液态金属在微观上为由存在能星升沉、结构升沉与因素升沉得游动原子团体、空穴与许多固态、气态或液态得化合物组成得污浊液体:从化学键上看,除了基体金属与其合金元素组成得金属键之外,仍存在其他多种典范得化学键:(1)温度:温度不太髙时,T升髙,n值降落:温度很髙时,T升髙,n值升髙:(2)化学因素:外表活性元素使液体粘度低沉,非外表活性杂质得存在使粘度提髙:(3)非金属殽杂物:非金属殽杂物使粘度增长:6.粘度对铸坯质星得影响(1>对液态金属运动状态得影响:粘度对铸件外表得淸晰水平有影响,为降低液体得粘度应恰当进步过热度大概到场外表活性物质等:(2)对液态金属对流得影响:运动粘度越大,对流强度越小:铸坯得宏观偏析紧张受对流得影响:(3)对液态金属净化得影响:粘度越大,般杂物上浮速率越小,越容易滞留在铸坯中形成殽杂、气孔:7.影响外表张力得闲素1 )熔点:髙熔点得物质,其原子间结协力大,其外表张力也大:2)温度:大多数金属与合金,温度升髙,外表张力低沉:3)溶质:体系中到场削弱原子间结协力得组元,会使外表内能与外表张力低沉:8.外表张力对铸坯质量得影响1)界曲张力与润湿角:液态金属凝固时析出得固相与液相得界面能越小,形核率越卨;液态杂质与金属晶体之间得润湿性将影响杂质形态:2)外表张力引起得附加压力:附加压力进步金属液中气体析出得阻力,易产生气孔:影响金属液与铸型得相互作用:附加压力为正值时(不润湿),铸坯外表平滑,但充型本事较差,必须附加一个静压头:附加压力为负值时(润湿),金属液能很好地充满铸型型腔,但为容易与铸型粘结(粘砂),拦阻收缩,以致产生裂纹:9.看法能量升沉:金属晶体结构中每个原子得振动能量不为均等得,一些原子得能鼠髙出原子得匀称能量,有些原子得能量就远小于匀称能量,这种能量得不匀称性称为能量升沉”结构升沉:液态金属中得原子团体处于瞬息万变得状态,时而长大时而变小,时而产生时而消散,此起彼落,犹如在不绝顿地游动:这种结构得瞬息厘革称为结构升沉:近程有序分列:金属液体就由许多原子团体所组成,在原子团体内保持牢固得分列特性,而在原子团体之间得团结处就受到很大破坏:浓度升沉:差异原子间结协力存在差异,在金属液原子团簇之间存在着因素差异:这种因素得不匀称性称为浓度升沉:粘滞性:在流体力学中有两个看法,一个为动力粘度,另一个为运动粘度:外表张力:液态金属外表层得质点受到一个指向液体内部得力,物体倾向于减小其外表积,这相当于在液态金属外表有一个平行于外表且各向巨细相当得张力,这个张力就为外表张力:10.充型本事与运动性得接洽与区別:充型本事:液态金属充满铸型型腔,得到形状完备、外表淸晰得铸件得本事:即液态金属充填铸型得本事:运动性:液态金属本身运动得本事:运动性与金属得因素、温度、杂质含量及其物理性子有关:充型本事与运动性得干系:充型本事为外因(铸型性子、浇注条件、铸件结构)与内因(运动性)得共同效果:外因肯定时,运动性就为充型本事:充型本事弱,就大概产生浇缺乏、冷隔、砂眼、铁豆、抬箱,以及卷入性气孔、夹砂等缺陷:11.液态金属得克制运动机理纯金属、共晶合金、窄结品温度领域合金:型壁处凝固结壳,柱状品相打仗,通道中心归并,运动克制:合金得结晶温度领域越宽,枝晶就越旺盛,液流前端出现较少得固相量,通道壅闭,亦即在相对较短得时间内,液态金属便克制运动:纯金属、共晶合金或窄结品温度领域合金有良好得运动性,低沉了凝固成形中冷隔、热裂、缩松等缺陷得产生:反之,宽结晶温度领域合金由于运动性差,通常会有较多得缺陷产生:12.影响液态金属充型本事因素与进步步调:影响充型本事得因素为通过两个途径产生作用得:影响金属与铸型之间热交换条件,而改变金属液得运动时间:影响金属液在铸型中得水力学条件,而改变金属液得流速:〔一)金属性子方而得因素这类因素为内因,决定了金属本身得运动本事一一运动性:铸型阻力影响金属液得充填速率:铸型与金属得热交换条件影响金属液保持运动得时间:1、合金因素合金得运动性与化学因素之间存在着肯定得规律性:在运动性曲线上,对应着纯金属、共晶因素与金属间化合物得地方出现最大值,而有结晶温度领域得地方运动性降落,且在最大结晶温度领域四周出现最小值:合金因素对运动性得影响,紧张为因素差异时,合金得结晶特点差异造成得:低沉合金熔点得元素容易进步金属过热度,从而进步合金运动时间,进步运动性:合金净化后运动性进步,合金因素中凡能形成髙熔点般杂物得元素均会低沉合金得运动性:2、结晶潜热结晶潜热越髙,凝固举行得越痴钝,运动性越好:3、金属得比热容、密度与导热系数金属得比热容、密度较大得合金,运动性好:导热系数小得合金,热量散失慢,保持运动时间长;金属中到场合金元素后,一样寻常会低沉导热系数:4、液态金属得粘度合金液得粘度,在充型进程前期(属紊流)对运动性得影响较小,而在充型进程后期凝固中(属层流)对运动性影响较大:5、外表张力外表张力影响金属液与铸型得相互作用:外表张力对薄壁铸件、铸件得细薄局部与棱角得成形有影响,型腔越细薄、棱角得曲率半径越小,外表张力得影响越大:为降服由外表张力引起得附加压力,必须附加一个静压头:综上所述,为了进步液态金属得充型本事,在金属方面可采取以下步调:1、准确选择合金得因素选用结晶温度领域小得舍牵: ,也有利于进步充型本事:2、公正得熔炼工艺选择洁净得原质料:镌汰与有害气体得打仗:充实脱氧粘炼去气,镌汰气体、殽杂:髙温出炉,低温浇注:【二)铸型性子方面1、铸型得蓄热系数:铸型得蓄热系数越大,充型本事降落:2、铸型温度:预热铸型3、铸型中得气体:减小铸型中气体反压力【三)浇注条件方面1、浇注温度浇注温度越髙,充型本事强:但髙出某一温度界限,氧化吸气严肃,充型本事进步不显着:2、充型压头液态金属在运动方向上所受得压力称为充型压力:充型压力越大,充型能力越强:3、浇注体系得结构浇注体系得结构越巨大,就运动阻力越大,充型本事越差:〔四)铸件结构方面衡量铸件结构特点得因素为铸件得折算厚度与巨大水平:1、折算厚度:折算厚度也叫当星厚度或模数,为铸件体积与铸件外表积之比:折算厚度越大,热星散失越慢,充型本事就越好:铸件壁厚类似时,垂直壁比水平壁更容易充填:大平而铸件不易成形:对薄壁铸件应准确选择浇注位罝:2、巨大水平:铸件结构越巨大,厚薄局部过渡曲多.就型腔结构巨大,运动阻力就越大.铸型得充填就越阐难:1、逐层凝固(纯金属或共晶因素合金得凝固要领)恒温下结晶得金属,在凝固进程中其铸件断而上得凝固地域宽度即为零,断而上得固体与液体由一条界限淸晰地脱离,随着温度得降落,固体层不绝加厚,徐徐到达铸件中心,此为"逐层凝固要领” :逐层凝固要领特点:无凝固区或凝固区很窄 a )恒温下结晶得纯金属或共晶因素合金b)结晶温度领域很窄或断面温度梯度很大2、体积凝固(铸件断|M温度场较平展或结晶领域较宽得合金)假设合金得结晶温度领域很宽,或闲铸件断面温度场较平展,铸件凝固得某一段时间内,其凝固地域很宽,以致贯穿整个铸件断而,而外表温度髙于固相温度,这种情况为"体积凝固要领",或称为”糊状凝固要领":体积凝固要领(糊状凝固要领)特点:凝固动态曲线上得两相界限得纵向间距很小或为无条件重合:a、铸件断而温度平展b、结晶温度领域很宽一凝固动态曲线上得两相界限纵向间距很大3、中心凝固(结晶领域较窄或铸件断而温度梯度较大得合金)假设合金得结晶领域较窄,或因铸件断而得温度梯度较大,铸件断面上得凝固地域介于前两者之间时,属于"中心凝固要领" :中心凝固要领特点:a、结晶温度领域较窄b、铸件断面得温度梯度较大特点:凝固初期似逐层凝固——凝固动态曲线上得两相界限纵向距较小凝固后期似糊状凝固第二章凝固温度场〔重点)1.研究铸件温度场得要领:数学分析法、数值模拟法与实测法等:2.凝固:合金从液态转变成固态得进程,称为一次结晶或凝固:3.研究温度场自得义:埤轳铸件温度场随时间得厘革,可以大概预计铸件凝固中其断面上各个时间得凝固地域巨细及厘學:,凝固前沿向中心得推进速率.缩孔与缩松得位罝,凝固时间等告急标题,为准确方案浇注体系、设罝冒口、冷铁,以及采取其他工艺步调提供可靠依据,敷衍消除铸造缺陷,得到健全铸件,改良铸件结构与性能有告急意义:4.凝固要领及其影响因素一样寻常将金属得凝固要领分为三种典范:逐层凝固要领、体积凝固要领(或称糊状凝固要领)与中心凝固要领:在凝固进程中铸件断曲_上得凝固地域宽度为零,固体与液体由一条界限(凝固前沿)淸晰地脱离:随着温度得降落,固体层不绝加厚,徐徐到达铸件中心:这种情况为逐层凝固要领:铸件凝固得某一段时间内,其凝固地域险些贯穿整个铸件断面时,就在凝岡地域里既有己结晶得晶体,也有未凝固得液体,这种情况为体积凝固要领或称糊状凝固要领:铸件断而上得凝固地域宽度介于前两者之间时,称中心凝固要领:领域与冷却强度(温度梯度):结晶温度领域越宽,温度梯度越小,越倾向于体积凝固要领:5.金属凝固要领与铸件质量得干系逐层要领凝固,凝固前沿直接与液态金属打仗:当液态凝固成为固体而产生体积紧缩时,可以不绝地得到液体得增补,以为产陌生散性缩松得倾向性很小,而为在铸件末了凝固得部位留下会集缩孔:由于会集缩孔容易消除,一样寻常以为这类合金得补缩性良好:在板状或棒状铸件会出现中心线缩孔:这类铸件在凝固进程中,当紧缩受阻而产生晶间裂纹时,也容易得到金属液得添补,使裂纹愈合:当粗大得等轴枝晶相互毗连以后(固相约为70%),将使凝固得液态金属支解为一个个互不类似得溶池,末了在铸件中形身疏散性得缩孔,即缩松:敷衍这类铸件采取平常冒口消除其缩松为很难过,而通常须要采取别得资助步调,以增加铸件得致密性:由于粗大得等轴晶比较¥得连成骨架,在铸件中产生热裂得倾向性很大:这为由于,等轴晶越粗大,髙温强度就越低:别恰当晶间出现裂纹时,也得不到液态金属得充填使之愈合:假设这类合金在充填进程中产生凝固时,其充型性能也很差:6.铸件得凝固时间得盘算要领:分析法:分析要领为直策应用现有得数学理论与定律去推导与演绎数学方程(或模子),得到用函数情势表达得解,也就为分析解:数值要领:数值要领又叫数值阐发法,为用盘算机步调去求解数学模子得近似解,又称为数值模拟或盘算机模拟:紧张有差分法、有限元法:履历盘算法:平方根定律盘算法与折算厚度法(或模数法):第三章晶体形核与生长〔重点)1.液态金属结晶(液•固相变)驱动力:两相自由能得差值AG为结晶得驱动力:T I ATAG V =L(1-~)=—,敷衍给定金属,L与To均为定值,ZkGv仅与AT有关: 因此,液态金属结晶得驱动力为由过冷度提供得:过冷度越大,结品得驱动力也就越大,过冷度为零时,驱动力就不复存在:以为液态金属在没有过冷度得情况下不会结晶:2.液态金属结晶进程:起首,体系通过升沉作用在某些微观小地域内降服能量停滞而形成稳固得新相品核:新相一旦形成,体系内将出现自由能较髙得新旧两相之间得过渡区:力使体系ft由能尽大概地低沉,过渡区必须减薄到最小原子尺度,如许就形成了新旧两相得界而:然后,依靠界Iftl徐徐向液相内推移而使晶核长大:直到全部得液态金属都全部转变成金属晶体,整个结晶进程也就在出现最少量得中心过渡结构中完成:由此可见,为了降服能量停滞以防范系统自由能太过増大,液态金属得结晶进程为通过形核与生长得要领举行得:3.形核:亚稳固得液态金属通过升沉作用在某些微观小地域内形成稳固存在得晶态小质点得进程称为形核:形核条件:起首,体系必须处于亚稳态以提供相变驱动力:其次,须要通过起伏作用降服能障才华形成稳固存在得晶核并确保其进一步生长:由于新相与界而相伴而生,因此界面向由能这一热力学能障就成为形核进程中得紧张阻力:根据组成能障得界面情况得差异,大概出现两种差异得形核要领:均质生核与非均质生核:均质生核:在没有任何外去界而得匀称熔体中得生核进程:非均质生核:在不匀称熔体中依靠外去杂质或型壁界而提供得衬底举行生核得进程:4.均质生核机制必须具备以下条件:1)过冷液体中存在相升沉,以提供固相晶核得晶胚:2)生核导致体积自由能低沉,界側自由能进步:为此,晶胚须要体积达到肯定尺寸才华稳固存在:3)过冷液体中存在能量升沉与温度升沉,以提供临界生核功:4)为维持生核功,须要肯定得过冷度:5.临界晶核半径而言,非均质形核临界半径r/与均质形核临界半径r ‘得表达式完全类似:非均质生核得临界形核功AGh与均质生核得临界形核功△供之间也仪相差一个因子f( 0):0°< 0< 180° X) < f( 0) < 1,故V s <V 球,△‘< AG 均*.因而衬底都具有促进形核得作用,非均质生核比均质生核更容易举行;6.生核剂:一种好得生核剂起首应能包管结晶相在衬底物质上形成尽大概小得润湿角0,其次生核剂仍应该在液态金属中尽大概地保持稳固,并且具有最大得外表积与准确得外表特性:7.晶体得生长紧张受以下几个相相互关得进程所制约:①界面生长动力学进程:② 传热进程:③传质进程:8.固一液界而得微观结构从微观尺度思量,固一液界面可分别为粗糙界而与平整界面,或非小平面界面及小平面界面:粗糙界而(非小平而界面):界面固相一侧得几个原子层点阵位罝只有50%左右为固相原子所占据:这几个原子层得粗糙区实际上就为液固之间得过渡区:平整界而(小平而界衡):界而固相一侧得点阵险些全部被固相原子占据,只留下少数空位:或在充满固相原子得界而上存在少数不稳固得、孤独得固相原子,从而从团体上看为平整平滑得:敷衍差异得a值,对应差异得界面微观结构,称为Jackson判据:当a沒时,界而得平衡结构应有50%左右得点阵位罝为固相原子所占据. 因此粗糙界而为稳固得:当a >2时,界而得平衡结构或为只有少数点阵位罝被占据,或为绝大局部位罝被占据后而仪留下少量空位:因此,这时平整界而为稳固得:a越大,界曲_ 越平整:绝大多数金属得熔化熵均小于2,在其结晶进程中,固一液界曲为粗糙界而:多数非金属与化合物得a值大于2.这类物质结晶时,其固一液界面为由基本完备得晶断所组第8页,共18页成得平整界而:铋、铟、锗、硅等亚金属得情况就介于两者之间,这类物质结晶时,其固一液界而通常具有殽杂结构:9.界面得生长机理与生长速率1、连续生长机制一粗糙界面得生长:较髙得生长速率:2、二维生核生长机制一完备平整界而得生长:生长速率也比连续生长低:3、从缺陷处生长机制一非完备界面得生长:(1)螺旋位错生长:(2)旋转孪晶生长:反射孪晶生长:生长速率比二维形核生长快,仍比连续生长慢:第四章单相合金凝固1.溶质再分配与平衡分配系数单相合金得结晶进程一样寻常为在一个固液两相共存得温度区间内完成得 ;在区间内得任一点,共存两相都具有差异得因素:因此结品进程肯定要导致界而• • • • * • ■■■■ • ••會■ • • • ■ • ■■■—• • ■ ■■ 一•M •_•_■ • •屬故晶体生长与传质进程肯定相伴而生:如许,从生核开始直到凝固竣事,在整个结晶进程中,固、液两相内部将不绝举行着溶质元素重新漫衍得进程:称此为合金结晶进程中溶质再分配:衡固相中溶质浓度与平衡液相溶质浓度得比值称为平衡分配系数:2.平衡结品中得溶质再分配规律:Cfjk。

铸件成型理论复习题

铸件成型理论复习题
13.关于铸件的凝固方式,下列不正确的是(A)
A.窄结晶温度范围合金不会发生体积凝固
B.对宽结晶温度范围的合金在大的结晶温度梯度下也发生逐层凝固
C.体积凝固通常由宽结晶温度合金产生的
D.纯金属和共晶合金一般发生逐层凝固
14.在化学成分和浇注温度相同的情况下,哪种元素有脱硫、去气和排除非金属夹杂物使铁液净化的作用(A)A.稀土镁B.硅C.磷D.碳
D.对于宽结晶温度范围的合金,固相仅占15~20%时停止流动,枝晶发达
4.关于铸件的几种凝固方式下列说法正确的是(A)
A.纯金属和合金一般发生逐层凝固
B.宽结晶温度范围和金不发生逐层凝固
C.体积凝固铸件组织细密,热烈纹倾向小
D.相比金属型,砂型更有利于发生逐层凝固
5.关于形核,下列说法有误的是(C)
A.形核需要相起伏,能量起伏和过冷度
B.均匀形核临界形核功等于表面能的1/3
C.临界过冷度随着润湿角的的减小而增加
D.凸面衬底上形成的晶核原子数最多,平面次之,凹面最少
6.下列说法不正确的是(B)
A.根据界面共格对应理论,点阵失配度<5%时,固相基底有很强的促进形核的作用
B.当△T<0,在平衡熔点温度以上不会有稳定存在的晶核
35.在TL以上的温度成形时,液态金属充满铸型后温度从T浇冷却至TL的体收缩称为液态收缩
36.相距单位距离的单位面积流体层在相对运动速度为1单位每秒时产生的阻力叫做粘度
21.在铸件的凝固过程中,铸件温度场方程与铸型温度场方程哪个准确(B)A铸件B铸型C一样准确D无法确定
22.均质生核是在没有外来界面的均匀熔体中的生核过程,即均质生核在熔体中各处的(几率)相等
23.在液态金属的粘滞性中,影响粘度的因素有:温度、化学成分、非金属夹杂物。

铸件形成理论基础习题答案

铸件形成理论基础习题答案

铸件形成理论基础习题答案铸件形成理论基础习题答案铸造是一种重要的金属加工方法,广泛应用于各个行业。

在学习铸造过程中,理解铸件形成的基本原理是非常重要的。

下面,我们将针对一些常见的铸件形成理论基础习题,提供详细的解答。

1. 什么是铸件形成的基本原理?铸件形成的基本原理是将熔化的金属或合金倒入铸型中,通过冷却凝固形成所需的零件。

这个过程主要包括四个步骤:铸型的制备、熔炼金属的准备、铸型填充和凝固收缩。

2. 铸型的制备有哪些常见的方法?常见的铸型制备方法包括砂型铸造、金属型铸造、石膏型铸造和陶瓷型铸造等。

其中,砂型铸造是最常用的方法,通过将铸型材料与模具进行填充、压实和硬化,形成具有所需形状和尺寸的铸型。

3. 熔炼金属的准备过程中需要注意哪些问题?熔炼金属的准备过程中需要注意以下几个问题:首先,要选择适合的熔炼设备和燃料,确保金属能够充分熔化;其次,要控制熔炼温度,以保证金属的质量和流动性;最后,要进行必要的炼化处理,如除气、除杂等,以提高金属的纯度和性能。

4. 铸型填充的基本原理是什么?铸型填充是指将熔化的金属或合金倒入铸型中的过程。

在填充过程中,金属液通过重力、压力或真空力等作用,充满整个铸型腔体,形成所需的零件形状。

填充的关键是要保证金属液的流动性和填充性能。

5. 凝固收缩对铸件形成有何影响?凝固收缩是指铸件在冷却凝固过程中由于体积变化而产生的收缩现象。

凝固收缩对铸件形成有重要影响,主要表现在以下几个方面:首先,凝固收缩会导致铸件尺寸缩小,因此在设计铸件时需要考虑收缩量;其次,凝固收缩还会引起铸件内部的应力和缺陷,如热裂纹、气孔等,因此需要采取相应的措施来避免这些问题的发生。

6. 如何控制铸件的凝固收缩?为了控制铸件的凝固收缩,可以采取以下几种措施:首先,选择合适的浇注系统和冷却方式,以控制凝固的速度和方向;其次,通过设计合理的铸件结构和尺寸,减少凝固收缩的影响;最后,可以采用凝固缩放补偿技术,通过在铸型中设置特殊的缩放部位,来补偿凝固收缩带来的尺寸变化。

铸造成形

铸造成形

铸造成形
1.1铸件形成理论基础
1、金属的充型影响充型能力的因素和原因(表2-2)
2、金属的凝固三种凝固方式
3、影响凝固方式的因素:结晶温度范围、温度梯度
4、影响温度梯度的因素:合金性质、铸型蓄热能力、浇注温度
5、合金的收缩:
三种收缩方式,液态收缩、凝固收缩、固态收缩
影响收缩因素,化学成分、浇注温度,铸件结构和铸型条件缩孔及缩松产生缩孔的原因:液态和凝固收缩大、气体多6、应力与变形:热应力和收缩应力、变形趋势
1.2 砂型铸造工艺分析
1、浇注位置与分型面的确定
浇注位置选定原则:5点;分型面选定原则8点P88~89
2、工艺参数不铸孔尺寸、加工余量、铸造收缩率、起模斜度
3、铸造工艺图制定
1.3 砂型铸造方法
1、气动微震压实造型
2、高压造型多触头高压造型,垂直分型无箱造型
3、消失模造型
1.4特种铸造
1、离心铸造铸造回转体铸件,可镶嵌金属
2、压力铸造铸造薄壁大批生产铸件,可镶嵌金属
3、低压铸造铸造致密性好的铸件发动机缸体、活塞等
4、熔模铸造精密铸造刀具、叶片、高熔点金属的零件
5、陶瓷型铸造精密铸造模具为主
6、壳型铸造常用于制芯
1.5铸造方法选择根据材料、形状、批量选择铸造方法。

铸件形成理论

铸件形成理论

一、名词解释:1、流动性:液态金属本身的流动能力,是金属的铸造性能之一,与金属的成分温度杂质含量及其物理性质有关。

2、液态金属的充型能力:液态金属充满铸型型腔,获得形状完整轮廓清晰的铸件的能力成为液态金属充填铸型的能力,简称为~。

3、粗糙界面:界面固相一侧的点阵位置只有50%左右为固相原子所占据,这些原子散乱的随机分布在界面上形成一个坑坑洼洼呕吐不平的界面层。

4、平整界面:固相表面的点阵位置几乎全部为固相原子所占据,只留下少数空位或在充满固相原子的界面上存在有少数不稳定的孤立固相原子从而形成了一个总的来说平整光滑的界面。

5、成分过冷:由溶质再分配导致界面前方熔体成份及其凝固温度发生变化而引起的过冷称为~。

6、热过冷:仅由熔体实际温度分布所决定的过冷状态称为~。

7、枝晶偏析:由于固溶体合金多按枝晶方式生长,分支本身分支与分支间的成分是不均匀的,故称为~。

8、宏观偏析:又称长程偏析或区域偏析,指较大范围内的化学成分不均匀现象,表现为铸件各部位之间化学成分的差异。

9、反应性气孔:金属液与铸型之间,金属与熔渣之间或金属液内部某些元素化合物之间发生化学反应所产生的气孔。

10、铸造应力:铸件在凝固和以后的冷却过程中发生线收缩有些合金还发生固态相变,这种变化往往受到外界的约束或铸件各部分之间的相互制约而不能自由的进行于是产生变形的同时还产生应力,这种应力叫做~。

三、简答题1、铸造的优缺点?答:优:○1适应性强○2可以利用某些合金的特性○3尺寸精度高○4成本低。

缺:○1铸件尺寸均一性差○2与压力加工和粉末冶金相比金属利用率低○3内在质量比锻件差○4工作环境粉尘多温度高劳动强度大生产效率低。

2、试述均质生核与非均质生核的区别及联系?答:均质生核:在没有任何外界面的均匀熔体中的生核过程,均质生核在熔体各处几率相同,晶核的全部固液界面皆由生核过程所提供,因此热力学能障较大,所需驱动力较大,理想液态金属的生核过程就是均质生核;非均质生核:在不均匀的熔体中依靠外来杂质或型壁界面提供的衬底进行生核的过程,非均质生核优先发生在外来外界面处,因此热力学能障较小,所需要驱动力较小,实际液态金属的生核过程一般都是非均质生核。

铸件形成理论

铸件形成理论

析出性气孔析出机理
合金凝固时,气体的溶解度急剧下降。

由于溶质再分配,在固-液界面前的熔体中气体溶质富集。

当浓度过饱和时,产生很大的析出压力。

在现成的衬底(如非金属夹杂物)上气体析出,形成气泡。

保留在铸件中形成析出性气孔。

缩孔形成机理
结晶温度范围比较窄的合金,液态合金填满铸型后,因铸型吸热,靠近型腔表面的金属很快就降到凝固温度,凝固成一层外壳,随着温度的降低,外壳逐渐加厚,由于液态收缩和凝固收缩造成的体收缩大于已凝固外壳的固态收缩,所以,在重力的作用下,液体与顶面脱开,逐渐下降,出现了较大的空洞。

铸件完全凝固,在其上部保留了一个近似倒圆锥形的集中缩孔。

由于铸件在冷却中的固态收缩使铸件的外形和该缩孔的体积都稍有缩小。

缩松形成机理?
结晶温度范围较宽的合金,一般按照体积凝固的方式凝固,凝固区内的小晶体很容易发展成为发达的树枝晶。

当固相达到一定数量形成晶体骨架,尚未凝固的液态金属被分割成一个个互不相通的小熔池。

在随后的冷却过程中,小熔池发生液态收缩和凝固收缩,已凝固金属发生发生固态收缩。

由于熔池金属的液态收缩和凝固收缩之和大于其固态收缩,两者之差引起的细小孔洞又得不到外部液体的补充,便在相应部位形成了分散性的细小缩孔,即缩松。

凝固技术、铸件形成理论考试

凝固技术、铸件形成理论考试

凝固技术、铸件形成理论考试铸件形成理论重要知识点5.影响粘度的因素(1)温度:温度不太高时,T升高,η值下降。

温度很高时,T升高,η值升高。

(2)化学成分:表面活性元素使液体粘度降低,非表面活性杂质的存在使粘度提高。

(3)非金属夹杂物:非金属夹杂物使粘度增加。

6.粘度对铸坯质量的影响(1)对液态金属流动状态的影响:粘度对铸件轮廓的清晰程度有影响,为降低液体的粘度应适当提高过热度或者加入表面活性物质等。

凝固收缩形成压力差而造成的自然对流直接影响到铸件的质量,如热裂、缩孔、缩松的形成倾向。

(2)对液态金属对流的影响:运动粘度越大,对流强度越小。

铸坯的宏观偏析主要受对流的影响。

(3)对液态金属净化的影响:粘度越大,夹杂物上浮速度越小,越容易滞留在铸坯中形成夹杂、气孔。

7.影响表面张力的因素1)熔点:高熔点的物质,其原子间结合力大,其表面张力也大。

2)温度:大多数金属和合金,温度升高,表面张力降低。

3)溶质:向系统中加入削弱原子间结合力的组元,会使表面内能和表面张力降低。

8.表面张力对铸坯质量的影响1)界面张力与润湿角:液态金属凝固时析出的固相与液相的界面能越小,形核率越高。

液态杂质与金属晶体之间的润湿性将影响杂质形态。

2)表面张力引起的附加压力:附加压力提高金属液中气体析出的阻力,易产生气孔。

影响金属液与铸型的相互作用。

附加压力为正值时(不润湿),铸坯表面光滑,但充型能力较差,必须附加一个静压头。

附加压力为负值时(润湿),金属液能很好地充满铸型型腔,但是容易与铸型粘结(粘砂),阻碍收缩,甚至产生裂纹。

9.概念能量起伏:金属晶体结构中每个原子的振动能量不是均等的,一些原子的能量超过原子的平均能量,有些原子的能量则远小于平均能量,这种能量的不均匀性称为“能量起伏”结构起伏:液态金属中的原子集团处于瞬息万变的状态,时而长大时而变小,时而产生时而消失,此起彼落,犹如在不停顿地游动。

这种结构的瞬息变化称为结构起伏。

铸件形成理论复习文档

铸件形成理论复习文档

1.液体的“近程有序”与“长程无序”:液体的颗粒分布相对于周期有序的晶态固体是不规则的,液态结构在宏观上不具备平移及对称性,表现为长程无序特征;而相对于完全无序的气体,液体中存在着许多不停游荡着的局域有序的原子集团,其结构又表现为近程有序。

2.实际液态金属的结构是:实际金属的液态结构是非常复杂的,由大量时聚时散、此起彼伏游动的原子团簇及空穴所组成,同时可能包含各种固态、液态或气态杂质或化合物而且还表现出能量、结构和浓度三种起伏特征。

3.理想纯金属液态结构是:由原子集团、游离原子、空穴组成的。

原子集团内原子近程有序排列,原子集团间的空穴或裂纹内分布着无规则排列的游离原子。

原子集团、空穴或裂纹的大小、形态和分布及热运动的状态都处于每时每刻都在变化的状态,存在能量起伏和结构起伏。

4.窄结晶温度范围合金停止流动机理:1区:过热量未散失完;2区:冷前端在型壁上凝固,已凝固的壳重新熔化;3区:未被熔化保留下固相,该区金属液耗尽过热热量;4区:固、液相具有相同的温度,在该区发生堵塞。

5.宽结晶温度范围合金停止流动机理:a.过热量未散失尽,以纯液态流动;b.温度下降到液相线以下,析出固相,顺流前进,黏度增加;c.晶粒数量达到临界值,固相形成连续网络,压力无法克服该网络阻力而发生堵塞,停止流动。

6.三个起伏结构起伏:液态金属中原子团簇尺寸及其内部原子数量都随着时间和空间发生着改变能量起伏:液态金属中不同原子能量有高有低,同一原子的能量也随着时间空间的变化时高时低浓度(成分)起伏:在液态金属中,游动原子团簇之间存在着成分差异,这种局域成分的不均匀性随原子热运动在随时变化7.充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,称为液态金属充填铸型的能力,简称液态金属的充型能力8.凝固动态曲线的绘制:以温度﹣时间曲线为依据,先将合金的液相线和固相线温度给定到温度场曲线上,以铸件表面至中心的距离x 与半铸件厚度R 之比为纵坐标(x / R =1表示铸件中心位置),以时间t 为横坐标,将温度场曲线与液相和固相温度线的交点分别标注在坐标系中,然后分别将温度场曲线与液相和固相温度线的交点各自连接成曲线,即为凝固动态曲线绘制方法:以时间为横坐标,相对位置x/R为纵坐标; 把温度场曲线与液相线和固相线的交点分别标注在图上;分别把液相线和固相线连成曲线。

铸件形成理论6(第十章)

铸件形成理论6(第十章)

§10-2 热裂形成的温度范围及形成机理 -一、热裂形成的温度范围
因此可以认为,热裂纹是 在凝固温度范围内、邻近 固相线时形成的,或者说 是在有效结晶温度范围形 成的。 所谓有效结晶温度范围, 其上限指合金形成枝晶骨 架,线收缩开始温度,其 下限为合金凝固终了的温 度。


§10-2 热裂形成的温度范围及形成机理 -二、热裂的形成机理
§10-2 热裂形成的温度范围及形成机理 -一、热裂形成的温度范围

必须指出,在铸造条件下, 合金的结晶都偏离平衡条 件。合金在非衡条件下结 晶,低熔点物质被排斥到 晶界上,形成晶界偏析, 使实际固相线温度下移, 低于平衡固相线温度。例 如,在碳钢中,当硫含量 较高时,硫将与Fe和FeO 形成熔点仅为940℃的三 元共晶存在于晶界上。因 此,产生热裂的温度有时 虽在平衡固相线以下,但 不能认为它是在合金完全 凝固以后形成的。
BACK
§10-3 影响热裂形成的因素 和防止铸件产生热裂的途径
一、影响因素 1.铸造合金性质 (1)化学成分对热脆区的影响 合金的热脆区越大,热裂倾向性就 越大,而热脆区的大小与合金的化 学成分有关。
§10-3 影响热裂形成的因素和 防止铸件产生热裂的途径


右图为有限固溶体共晶型合 金的热裂倾向性,图中阴影 部分是合金的热脆区。由图 可见,合金的结晶温度范围 越大,热脆区越大,合金的 热裂倾向性则越大;纯金属 或接近共晶成分的合金,热 裂倾向小。 钢中的S、P具有增大热脆区 的作用。因此,在铸钢中应 严格控制S、P含量。
第十章 铸件的热裂
§10-1 概述 §10-2 热裂形成的温度范围及形成机理 §10-3 影响热裂形成的因素和防止铸件 产生热裂的途径
§10-1 概述

铸件形成理论实验指导书

铸件形成理论实验指导书

冷却速度对7075铝合金组织和性能影响试验指导书一.试验目1.研究7075铝合金在不一样冷却速度对合金铸态组织和性能影响及其规律;2.了解多种溶剂、涂料、精炼剂、变质剂、中间合金及其选择;3.了解炉料配比计算过程和多种炉料准备;4.掌握真空感应电炉操作规程及常见熔炼浇注工具使用方法;5.了解7075铝合金牌号及相关性能。

二.试验材料绝大多数金属材料制备加工都要经历凝固过程, 控制材料凝固过程是控制材料组织、提升性能、挖掘材料潜力及开发新材料最关键方法之一。

材料凝固理论与凝固加工制备新技术研究是当今材料科学与工程前沿热点研究领域。

铝合金是最关键工业结构材料之一, 铸造铝硅合金是在航空航天、机械、电子等工业中大量应用关键结构材料, 凝固组织尤其是共晶硅生长形态对其性能含有决定性影响, 凝固过程控制、细化凝固组织、改变共晶组织生长形态, 是控制铸造铝硅合金性能关键方法。

7075铝合金是一个冷处理锻压合金, 强度高, 远胜于软钢, 7075是商用最强力合金之一。

一般抗腐蚀性能、良好机械性能及阳极反应。

细小晶粒使得深度钻孔性能愈加好, 工具耐磨性增强, 螺纹滚制更与众不一样。

抗拉强度: 524Mpa; 屈服强度455MPa; 伸长率: 11%; 硬度: 150HB。

关键用途: 航天航空工业、吹塑模、超声波塑焊模具、高尔夫球头、机械设备、模具加工、用于制作高端铝合金自行车车架。

特点: 高强度可热处理合金、良好机械性能、可使用性能好、抗腐蚀性能、抗氧化性能好。

化学成份: Si: 0.40%、 Fe: 0.50%、 Cu: 1.2-2.0%、 Mn: 0.30%、 Cr: 0.18-0.28%、Zn: 5.1-6.1%、余量Al。

三、试验设备25Kg真空感应电炉, 真空感应熔炼炉是在真空条件下, 利用中频感应加热原理, 将金属熔化成套真空冶炼设备。

适适用于科研与生产单位对镍基合金及特殊钢、精密合金、高温合金、有色金属及其合金在真空或保护气氛下进行熔炼和浇铸。

铸件形成理论习题集

铸件形成理论习题集

1•液态金属的结构和性质1、加热时原子距离的变化如图1 —2所示,试问原子间的平衡距离R。

与温度有何关系? R o、R i、R2…..的概念?答:温度的变化,只改变原子的间距,并不改变原子间的平衡位置,即R o不变。

而R o,R i,R2….是温度升高时,原子振动的中心位置。

因为温度升高,振幅加大但曲线(W-R )是不对称的,所以振幅中心发生变化。

2、图1-1纵坐标表示作用力,金属原子的运动可以看成是一种振动,其振动在图中如何表示的?物质受热后为什么会膨胀?答:振幅在图中的表示:如图1-2中数条的平行线。

加热时,能量增加,原子间距增加,金属部空穴增加,即产生膨胀。

3、图1-1中的Q是熔化潜热吗?在熔化温度下,金属吸收热量而金属温度不变,熔化潜热的本质是什么?答:Q不是熔化潜热。

在熔化温度下金属吸收热量①体积膨胀做功②增加系统能(电阻,粘性都发生突变)原子排列发生紊乱。

在熔点附近,原子间距为R1,能量很高,但是引力大,需要向平衡位置运动,当吸收足够能量----熔化潜热时,使原子间距>R1,引力减小,结合键破坏,进入熔化状态,熔化潜热使晶粒瓦解,液体原子具有更高的能量而金属的温度并不升高。

(使晶粒瓦解,并不是所有结合键全部破坏)4、通过哪些现象和实验说明金属熔化并不是原子间的结合力全部被破坏?答:(1 )体积变化:固态—气态:体积无限膨胀。

固态到液态,体积仅增加3~5% ,原子间距仅增加1~1.5% 。

(2)熵值变化:△Sm/ △S 仅为0.13~0.54%(3)熔化潜热:原子结合键只破坏了百分之几(4)X 线衍射分析:液态金属原子分布曲线波动于平衡密度曲线上下第一峰位置和固态衍射线极为相近,其配位数也相近,第二峰值亦近似。

距离再大,则与固态衍射线远了,液态金属中原子的排列在几个原子间距的围,与其固态的排列方式基本一致。

5、纯金属和实际金属在结构上有何异同?试分析铸铁的液态结构。

答:纯金属的液态结构:接近熔点的液态金属是由和原子晶体显微晶体和“空穴”组成。

山东建筑大学铸件形成理论复习题(李长龙老师)

山东建筑大学铸件形成理论复习题(李长龙老师)

山东建筑大学铸件形成理论复习题(李长龙老师)铸件形成理论考题题型一、名词解释 (每题3分,共15分)二、填空每空1分,共15分三、问答题 (每题5分,共40分)四、推导公式 (20分)五、计算题 (10分)铸件形成理论复习题1、铸造的优缺点?2、金属的液态结构?3、孔穴理论4、一次结晶?二次结晶?5、影响黏度的因素有哪些?6、分析热过冷对纯金属结晶过程的影响?7、表面张力的实际是什么?8、影响表面张力的因素有哪些?9、流动性? 充型能力?影响充型能力的因素有哪些?测试流动性试样的方法有哪些?10、原子的热振动11、凝固?逐层凝固方式?同时凝固方式?12、铸件宏观结晶组织应控制的问题有哪些?13、液态金属的充型能力?14、影响析出性气孔的因素有哪些?15、防止析出性气孔的途径有哪些?16、影响铸件温度场的因素有哪些?17、粗糙界面? 平整界面?18、防止析出性气孔的途径有哪些?19、成分过冷? 热过冷?20、气体的来源?气孔的特征? 影响气孔的因素?21、动态晶体细化的方法有哪些?22、共晶合金的分类?23、共晶合金的共生区?24、离异共晶?25、非金属夹杂物的来源?分析非金属夹杂物的来源?非金属夹杂物的分类?减小和排除夹杂物的途径?26、能否把枝晶偏析看成正常偏析?为什么?微观偏析?宏观偏析?正常偏析?逆偏析?正偏析?枝晶偏析?重力偏析?偏析的表示方法有那些?27、热裂的形成机理?热裂的特征?减少热裂的途径?影响热裂的因素有哪些?铸件中非金属夹杂物包括那些?28、反应性气孔29、能量起伏?结构起伏?相起伏?30、非均质生核?均质生核?31、液态金属生核的首要条件是什么?32、铸造应力的分类?铸造应力?热应力?相变应力?机械阻碍应力?减少和消除铸造应力有哪些途径?33、非均质生核的临界形核功与均质34、什么叫孕育处理?孕育处理的目的?铸铁中常用的孕育剂有那些?35、铸件的宏观组织的分类?36、收缩?收缩的分类?液态收缩?凝固收缩?固态收缩?缩孔的特征?影响缩孔大小的因素有哪些?37、试述均质生核与非均质生核之间的区别与联系?38、采用高温出炉低温浇注的工艺措施,为什么能提高流动性?39、表面细的等轴晶区的形成?40、气体以气泡形式析出的过程是什么?41、测试流动性试样的方法有哪些?42、影响铸件温度场的因素有哪些?43、分析固液界面的微观结构?44、分析非均质生核与润湿角的关系?45、分析铸件结晶过程中,可能存在的枝晶游离形式有几种?46、柱状晶区的形成过程?47、内部等轴晶区的形成?48、分析共晶合金的两种共生区?49、为什么有时希望获得单向生长的柱壮晶?50、分析枝晶间液体的流动对宏观偏析的影响?51、减少和排除非金属夹杂物的途径?52、铸件形成过程中、合金收缩要经历哪几个阶段?53、单向凝固的原理是什么?54、公式推导9个如:液态金属充型能力 xL k j t t t t c kL P F l --+?=)(11αρν 铸件温度场: t 1=t F +(t F -t 10)erf τα12x固相无扩散,液相只有有限扩散而无对流搅拌时的溶质再分配: )11()(000x D RL L e k k C x C --+= 54、计算题1)试计算无限大平板铸钢件的温度场。

铸件形成理论复习提纲

铸件形成理论复习提纲

铸件形成理论复习提纲铸件形成理论复习提纲一、名词解释(考5个)1.能量起伏:一些原子的的能量超过原子的平均能量,有些原子的能量远小于平均能量,这种能量的不均匀性2.浓度起伏:表示各各个原子集团之间成分的不均匀性。

3.熔化潜热:将金属加热到至熔点时,金属体积突然膨胀,等于固态金属从热力学温度零度加热到熔点的总膨胀量,金属的其他性质如电阻,粘性等发生突变,吸收的热能。

4.充型能力:液态金属充满铸型型腔,获得形状完整,轮廓清晰的铸件的能力。

5.成分过冷:由溶质再分配导致的界面前方熔体成分及其凝固温度发生变化而引起的过冷。

6.热过冷:由熔体实际温度分布所决定的过冷状态。

7.微观偏析(枝晶偏析)8.正常偏西9.负偏析:降低该区的溶质浓度,使该区C5降低,产生的偏析。

10.重力偏析:由于沿垂直方向逐层凝固而产生的正常偏析和固液相之间或互不相容的液相之间有的密度不同,在凝固过程中发生沉浮现象造成的。

11.热裂:铸件在凝固期间或刚凝固完毕,在高温下收缩受到阻碍产生的现象。

12.铸造应力:铸件在凝固或冷却过程中,发生线收缩,有些合金还发生固态相变,引起体积的膨胀或收缩时产生的应力。

13.冷裂:铸件应力超出合金强度极限而产生的现象。

14.顺序凝固:铸件结构各部分,按照远离冒口的部分最先凝固,然后是靠近冒口部位,最后是冒口本身凝固的次序进行的凝固方式15.同时凝固:铸件各部分之间没有温差或温差尽量小,使各部分同时进行凝固的方式。

16.析出性气孔:金属液在凝固过程中,因气体溶解度下降而析出气体,形成气泡未能排除而产生的气孔。

17.反应性气孔:金属液与铸型之间,金属与熔渣之间或金属液内部某些元素、化合物之间发生化学反应所产生的气孔。

二、填空题(不限于这些)1.减小或消除残余应力的方法有人工、自然、共振时放。

2.润湿角是衡量界面张力的标志,润湿角≥90o,表明液体不能润湿体。

3.晶体结晶时,有时会以枝晶生长方式进行。

此时固液界面前液体中的温度梯度小于0 。

铸件成形理论基础

铸件成形理论基础
4
液态金属的性质 1、液态金属的粘度 粘度的表观现象 水和油
※粘滞性:影响充填铸型、气体及夹杂物的排出速度。
5
粘度的影响因素 温度
液态钴和镍
6
粘度的影响因素 合金元素和杂质
表面及界面活性微量元素(如Al-Si合金变质元素 Na),冷却过程中抑制原子集团的聚集长大,将阻 碍金属液粘度的上升;
合金(Al-5%Sn)
等轴晶 离入口越远,晶粒越细 试样前段向外突出 金属的温度沿程下降
流动过程的几个区域
过热度未散失前(纯液态动) 液相线以下,析出晶体,随流前进,并不断长大 液流前段不断与冷的型壁接触,冷却最快,晶粒数量最 多,粘度增加,流速减慢 当晶体达到某一零界值时,结成连续网络,流动停止
纯金属
柱状晶 试样末端有缩孔 停止流动时末端保 持有热的金属液
流动过程的几个 区域
I区 (纯液态流动) II区 (先形成凝固壳,然后熔化) III区(未被完全熔化) IV区(液相与固相温度相同)
机理:末端之前的某个部位从铸型向中心生长的柱状晶 相接触,金属的流动通道被阻塞。
25
液态金属停止流动机理
17
液态金属的充型能力的基本概念
充型能力:液态金属充满铸型型腔,获得形状完整、轮廓 清晰的铸件的能力。 充型能力与金属液本身的流动能力及外界条件(铸型性质、 浇注条件、铸件结构)有关。 流动性:液态金属本身流动的能力。铸造性能之一。流动 性与金属的成分、温度、杂质含量及其物理性质有关。 流动性和充型能力是两个不同的概念。
• 良好的流动性,能使铸件在凝固期间产生的缩孔 得到金属液的补缩,以及铸件在凝固末期受阻而 出现的热裂得到液态金属的弥合。
20
一些合金的流动性(螺旋形式样,沟槽断面8×8mm)

铸件形成理论(一)

铸件形成理论(一)

铸件形成理论(一)铸造是将熔化成液态的金属浇入铸型后一次制成需要形状和性能的铸件,亦即铸造是使金属的状态按着“固态液态固态”变化而成形的。

金属由液态固态的凝固过程中的一些现象,如液态金属、结晶、溶质的传输、晶体长大、气体溶解和析出、非金属夹杂物的形成、金属体积变化等都是我们在后面将要探讨的内容。

一、有关液态金属方面的介绍(一)液态金属的粘滞性液态金属的粘滞性对铸型的充填、液态金属中的气体、非金属夹杂物的排除、金属的补缩、一次结晶的形态、偏析的形成等,多有直接或间接的作用。

因此液态金属的粘滞性对铸件的质量有重要的影响。

1、粘滞性的本质当外力作用于液体表面时,由于质点间作用力引起内摩擦力,使的最表面的一层移动速度大于第二层,而第二层的速度大于第三层,……。

因此粘滞性的本质是质点间(原子间)结合力的大小。

2、影响粘度的因素①温度温度对粘度的影响要根据不同原子之间的相互关系来解释,因此在这里不讨论。

细化铝硅合金加入的变质剂钠,在结晶期间吸附在晶核表面,阻止硅原子的集聚,使粘度降低。

所以变质处理后的铝硅合金的流动性较未变质前有所提高。

②化学成分难熔化合物的粘度较高,而熔点低的共晶成分合金其粘度低。

这是由于难熔化合物的结合力强,在冷至熔点之前就及早地开始了原子的集聚。

对于共晶成分合金,异类原子间不发生结合,而同类原子聚合时,由于异类原子存在所造成的阻碍,使它们聚合缓慢,晶胚的形成拖后,故粘度较非共晶成分的低。

③非金属夹杂物液态合金中呈固态的非金属夹杂物使液态合金的粘度增加,如氧化铝、氧化硅等。

这是因为夹杂物的存在使液态合金成为不均匀的多相系统,液体流动时内摩擦力增加。

夹杂物愈多,对粘度影响愈大。

同时夹杂物的形态也有影响。

(二)液态金属的表面张力物体的表面是两种相的分界面,该表面总是具有某些不同于内部的特有性质,有此产生出一些表面特有的现象-----表面现象。

在铸件形成过程中存在着许多相相的界面,如金属与大气、熔剂、型壁,以及与其内部的气体、夹杂物、晶体等界面。

铸件形成理论(三)

铸件形成理论(三)

铸件形成理论(三)一、铸件化学成分的不均匀性铸件中化学成分不均匀的现象称为偏析。

偏析分为微观偏析和宏观偏析两大类。

同时偏析也可根据铸件各部位的溶质浓度Cs与合金原始浓度C O的偏离情况分类。

凡Cs>C O者称为正偏析;Cs<C O者称为负偏析。

这种分类不仅适用于微观偏析也适用于宏观偏析。

微观偏析对铸件的影响是明显的,由于成分的不均匀造成组织上的差别,导致冲击韧性和塑性的下降,增加铸件的热裂倾向性,有时还是铸件难于加工。

宏观偏析使铸件各部分的机械性能和物理性能产生很大差异,影响铸件的使用寿命和工作效果。

因此偏析是铸件的主要的缺陷之一。

认识偏析的形成规律,对防止偏析的产生,寻求消除偏析的工艺措施,改善铸件组织,提高铸件性能有着重要意义。

当然偏析也有有益的一面:利用偏析现象可以实现净化或提纯金属的目的。

1、微观偏析微观偏析按其形式分为胞状偏析、枝晶偏析和晶界偏析。

它们的表现形式不同,但形成机理是相似的,都是合金在结晶过程中溶质再分配的必然结果。

⑴枝晶偏析在枝晶偏析区,各组元的分布规律是,使合金熔点升高的组元富集在分枝中心和枝干上;使合金熔点降低的组元富集在分枝的外层或分枝间,甚至在分枝间出现不平衡第二相,其它部位的成分介于两者之间。

消除枝晶偏析是采用均匀化退火;均匀化时间取决于枝晶间距和扩散系数;枝晶间距越小、偏析元素扩散系数愈大,均匀化时间越短。

⑵晶界偏析在不少情况下,晶粒中心只有不甚明显的负偏析(或正偏析),而晶界区域却显示出明显的正偏析(或负偏析),这种偏析称为晶界偏析。

晶界偏析的预防和消除方法同枝晶偏析。

2、宏观偏析铸件产生宏观偏析的途径:⑴在铸件凝固早期,固相或液相的沉浮;⑵在固液两相区内液体沿枝晶间流动。

液态金属沿枝晶间流动对铸件产生宏观偏析起着重要作用。

液态金属沿枝晶间流动的重要原因主要是:熔体本身的流动驱使固液两相区内的液体流动;由于凝固收缩的抽吸作用促使液体流动;由于密度差而发生对流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.液态金属的结构和性质1、加热时原子距离的变化如图1 —2所示,试问原子间的平衡距离R o与温度有何关系? R o、R i、R2…..的概念?答:温度的变化,只改变原子的间距,并不改变原子间的平衡位置,即R o不变。

而R O,R I,R2….是温度升高时,原子振动的中心位置。

因为温度升高,振幅加大但曲线(W-R )是不对称的,所以振幅中心发生变化。

2、图1-1纵坐标表示作用力,金属原子的运动可以看成是一种振动,其振动在图中如何表示的?物质受热后为什么会膨胀?答:振幅在图中的表示:如图1-2中数条的平行线。

加热时,能量增加,原子间距增加,金属内部空穴增加,即产生膨胀。

3、图1-1中的Q是熔化潜热吗?在熔化温度下,金属吸收热量而金属温度不变,熔化潜热的本质是什么?答:Q不是熔化潜热。

在熔化温度下金属吸收热量①体积膨胀做功②增加系统内能(电阻,粘性都发生突变)原子排列发生紊乱。

在熔点附近,原子间距为R1,能量很高,但是引力大,需要向平衡位置运动,当吸收足够能量----熔化潜热时,使原子间距>R1,引力减小,结合键破坏,进入熔化状态,熔化潜热使晶粒瓦解,液体原子具有更高的能量而金属的温度并不升高。

(使晶粒瓦解,并不是所有结合键全部破坏)4、通过哪些现象和实验说明金属熔化并不是原子间的结合力全部被破坏?答:(1)体积变化:固态一气态:体积无限膨胀。

固态到液态,体积仅增加3~5%,原子间距仅增加1~1.5% 。

(2)熵值变化:△ Sm/ △仅为0.13-0.54% (3)熔化潜热:原子结合键只破坏了百分之几(4)X线衍射分析:液态金属原子分布曲线波动于平衡密度曲线上下第一峰位置和固态衍射线极为相近,其配位数也相近,第二峰值亦近似。

距离再大,则与固态衍射线远了,液态金属中原子的排列在几个原子间距的范围内,与其固态的排列方式基本一致。

5、纯金属和实际金属在结构上有何异同?试分析铸铁的液态结构。

答:纯金属的液态结构:接近熔点的液态金属是由和原子晶体显微晶体和“空穴”组成。

实际金属的液态结构:存在着两种起伏:能量起伏,浓度起伏。

微观上是由结构和成分不同的游动原子集团,空穴和许多固态,气态,液态化合物组成,是一种浑浊液体,而从化学键上看除了金属基体与其合金元素组成的金属键外,还存在着其他化学健。

铸铁的液态结构:Fe为基体金属,含C,Si,少量Mn , S,P液体以Fe为主可能含有SiO2,MnS,FeS等杂质,还可能有H2,N2,O2等气体,而大部分(7附加压力是表示由力引起的.10、试推导P 吉R C,Si,Mn,S,P 基体均匀分布在液体中。

6、试分析能量起伏和浓度起伏在在生核中的作用。

答:生核时必须有一定大小的晶胚,这需能量起伏,使原子集团达到一定大小才能成核。

而浓度起伏对二相以上液态金属成核很重要,一定的浓度起伏才 可能瞬时达到某一相的要求。

7、斯托克斯公式在什么条件下方可应用?在充型过程中杂质在金属液的上浮或 者下沉速度能否用此公式描述?2答:斯托克斯公式(stoks ): J 一-^-g条件:杂质上升过程保持或近似球形且上升很慢, 且杂质很小(r<0.1mm ),2r满足Re 一充型过程:杂质物半径很小,可使用 stoks 公式。

8、同一种元素在不同液态金属中的表面吸附作用以及同一种元素在同一种液态 金属中的表面吸附作用是否相同?为什么?答:同一种元素在不同液态金属中表示吸附作用不同。

因为: 不同液态金属的C 不同。

同种液态金属C 与C 界不同。

9、液态金属的表面张力和界面张力有何异同?表面张力和附加压力有何区别和联系?答:液态金属的表示张力指 喊-气:表示单位长度上作用着力。

液态金属的界面张力指 0液-固,0液-液:不同相界面上单位长度作用着力。

(7L P 不润湿时答: R1,R2的意义:任一曲度的曲率半径:表示(任一曲度)上通过某点做垂直于此表面的直线,在通过此线做一平面, 此平面与表面的截线为曲面,曲率半径即为与此曲线相垂直的圆心的曲率半径即为R1垂直于第一个平面在做一个平面此第二平面亦通过垂直直线并与表面的足够小,以使R1和R2基本是定值。

W=P .xydz自相似三角形的比较可得:12、设钢液与砂型绝对不湿润,钢的密度为7000 g/cm3表面张力为1.5N/m,11x dx / R dz x/R1 dx y dy /R2 dz y/ R2 dyF wx. ydz ydx p xydzx. ydz/ R2 ydxR1pxydz1 1在球铁液中,石x.dz/ Ry.dz/R2墨球的半径/3 2 22 5 * 10 10 7000 2000 9.81 5.56 103m/s答:V= 9 0.0049-H 晟3 89 s相交由此可得第二个截线和第二个曲率半径,即为R2图中为任一截面的小截面,具有两个曲率半径R1和R2,我们可以将截面取若表面向外移动而形成比额外表面所需之功为: △ F= (T (xdy+ydx )在表面二边将有压力差P,作用在xy面上病经过dz 的距离相应的功为△求其填充5mm的薄板时所需的附加压头,计算说明什么? 答:2 2 cos r Rp 1.2 103 ■g 7000 9.8 2 1.5 1 1.2 103N/m2 2.5 100.174m说明浇铸5mm钢板需要的压头不高,可以满足。

13、1593 C的钢液W c 0.75%加铝脱氧生成AJO s,如能使此颗粒上浮到钢液表面得到质量较好的钢。

加入脱氧产物在1524mm 处生成,试确定钢液脱氧后2min上浮到钢液表面的AI2O3最小颗粒的尺寸。

答:v 2r21 2g,v 超0.0127m/s9 2 602 r2 7000 4000 9.81 23 9.81 2 6 20.0127 --------------------- --- ------ r 1.3347 10 r9 0.0049 9 4.92 9 3r 9.515 10 ,r 0.0975 10 m 0.0975 cm14、从物质结构的变化说明金属的熔化与汽化有何不同?通过哪些实验证实?答:汽化:原子间结合键全部破坏;熔化:与固态相似-体积变化,熔化与汽化潜热。

2.液态金属的充型能力1、试述液态金属的充型能力和流动性之间在概念上的区别,并举例说明。

答:液态金属的充型能力:充满铸型型腔,获得形状完整轮廓清晰的铸件能力。

影响因素:金属液体的流动能力,铸型性质,浇铸条件,铸件结构。

流动性:液态金属本身的流动能力,与金属本身有关:成分,温度,杂质物理性质。

其流动性一定,但充型能力不高,可以改变某些因素来改变,流动性是特定条件下的充型能力。

2、用螺旋形试样测定合金的流动性时,为了使得数据稳定和重复性好,应该控制哪些因素?答:铸型性质浇铸条件3、试分析中等结晶温度范围的合金停止流动机理。

答:过热能量散失尽以前,金属液也可以纯金属液态流动。

温度下降到液相线以下,首先生成了一批小晶粒,在型壁上长成细而长的柱状晶,空隙的液体继续流,流动过程继续生长柱状晶,在液体温度不段下降时,出现等轴晶,阻塞通道。

介于两者之间,出现枝状晶时,温度不产生大量晶粒,但是生长到一定程度,等轴晶大量析出。

4、碳钢W c 0.25 ~ 0.4流动性螺旋试样流束前端常出现豌豆形突出物,经化学分析,突出物的S, P较高,试解释生成原因。

答:豌豆型突出物可能是FeS, Fe3P2其熔点比钢熔点低,故在结晶终了析出, 一般在晶界上,则形成豌豆状。

5、AL-Mg合金机翼,壁厚为3mm,长为1500mm,其铸造工艺为采用粘土砂型,常压下浇铸,常浇铸不足而报废,你认为应该采取哪些工艺措施来提高铸件的成品率?答:提高铸型的透气性提高浇铸温度足够的压头④变质处理⑤浇铸系统合理⑥涂烟黑涂料,减小b2。

6、欲铸造壁厚为3mm,外形尺寸为580 355 305 mm的箱体,(材质为ZL106)你认为如何浇铸更合理?答:应使305mm的方向为垂直方向,更利于充型7、采用石膏铸型可产生壁厚达0.8mm的铝合金铸件(石膏为绝热材料)但是常出现浇铸不足分析产生该缺陷的原因,如何消除?答:可能的原因:铸型温度低,排气不好,浇铸温度低等措施:预热铸型,加强排气,提高浇铸温度8、采用高温出炉,低温浇铸的工艺措施,为什么可提高合金的流动性?答:高温出炉:使一些难熔的质点熔化,未熔的质点和气体在浇包中镇静有机会上浮而使金属净化,提高流动性。

低温浇铸,一般来讲,浇铸温度越高,充型能力越强但是温度过高,会使金属吸气更多,氧化严重,充型能力幅度减小,所以最好是,高温出炉, 低温浇铸。

9、试分析亚共晶铝硅合金和过共晶铝硅合金的流动性。

答:亚共晶铝硅合金:随着硅的百分含量增加,结晶范围增大流动性降低当Si%=1.65%时,出现共晶组织,结晶温度范围减小,故流动性有上升,一直到共晶成分均匀。

过共晶铝硅合金: 当Si%=11.7%,达到共晶成分,一般来讲,它在此点的流动性最好。

而后流动性逐渐下降但对Al-Si合金出现了反常,因为过共晶合金初生(P)相为比较规整的块状晶体不形成“坚强”的网络,使合金仍流动,这样,结晶潜热可以起作用,所以超过共晶点后,流动性继续增高。

10、用同一种合金浇铸同一批铸件,其中有一两件出现浇不足缺陷,可能是什么原因?答:(1)可能是铸型不同:如砂型,不能保证让每个型都一样。

(2 )浇铸工艺,浇铸温度。

11、四类因素中,在一般条件下,哪些是可以控制的?哪些是不可控的?提高浇铸温度会带来什么副作用?答:一般条件下:合金与铸件结构不可控制,而铸型和浇铸条件可以控制,浇铸温度太高,容易使金属吸气,氧化严重达不到预期效果。

12、合金液在半径为r的型腔中流动,试证明经L长的温度为2 T o T型L/ r GV,式中v是流速,T。

-----x=0 处的温度。

证明:t 型 d s .d dv. 1Gd t F 1c 1 l1 nt 0, F 1C1 e t t 型 F i C i I n Pt t 型 t o t 型 F 1C 1V 1 1 n p 2 r CV] 1 n P r 1c 1v t t o t 型 t o t t o t 型 t o t o t 型 t o 2 t o t型 r 1c 1v t 0 t 2 L t 0 t 型 / r 1c 1v3.液态金属的传热与凝固方式1.试分析铸件在金属型,砂型,保温型中凝固时的传热过程,并讨论在上述几种情况影响传热的限制性环节及温度场的特点。

答:(1)砂型:2远小于1,铸件冷却缓慢断面上的温差很小,而铸型内表面被铸件加热到很高的温度,而外表面仍处于较低的温度。

砂型本身的热物理性质是主要因素(限制环节)。

(2)金属型:a.铸件较厚,涂料较厚。

相关文档
最新文档