【高考专题】2018年 高考数学(理数) 统计案例 专项练习(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高考数学(理数) 统计案例专项练习
1.某城镇社区为了丰富辖区内广大居民的业余文化生活,创建了社区“文化丹青”大型活动场所,配备了各种文化娱乐活动所需要的设施,让广大居民健康生活、积极向上.社区最近四年内在“文化丹青”上的投资金额统计数据如表:(为了便于计算,把2015年简记为5,其余以此类推)
(1)利用所给数据,求出投资金额y与年份x之间的回归直线方程;
(2)预测该社区在2019年在“文化丹青”上的投资金额.
2.第31届夏季奥林匹克运动会将于2016年8月5日—21日在巴西里约热内卢举行下表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).
(1)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);
(2)甲、乙、丙三人竞猜下一届中国代表团和俄罗斯代表团中的哪一个获得的金牌数多(假设两国代表团获得的金牌数不会相等),规定甲、乙、丙必须在两个代表团中选一个,已知甲、乙猜中国代表团的概率都为0.8,丙猜中国代表团的概率为0.6,三人各自猜哪个代表团的结果互不影响.现让甲、乙、丙各猜一次,设三人中猜中国代表团的人数为X,求X的分布列及数学期望EX.
3.随着互联网的快速发展,基于互联网的共享单车应运而生,某市场研究人员为了了解共享单车运营公司M 的经营状况,对该公司最近六个月的市场占有率进行了统计,并绘制了相应的折线图:
(1)由折线图可以看出,可用线性回归模型拟合月度市场占有率与月份代码之间的关系,求y关于x 线性回归方程,并预测M公司2017年4月的市场占有率;
(2)为进一步扩大市场,公司拟再采购一批单车,现有采购成本分别为1000元/辆和
1200元/辆的A、B两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致单车使用寿命各不相同,考虑到公司运营的经济效益,该公司决定先对这两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命的频数表如右表:
经测算,平均每辆单车每年可以带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率,如果你是M公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?
参考公式:
4.随着我国互联网信息技术的发展,网络购物已经成为许多人消费的一种重要方式,某市为了了解本市市民的网络购物情况,特委托一家网络公示进行了网络问卷调查,并从参与调查的10000名网民中随机抽取了200人进行抽样分析,得到了下表所示数据:
(1)依据上述数据,能否在犯错误的概率不超过0.15的前提下认为该市市民进行网络购物的情况与性别有关?
(2)现从所抽取的女性网民中利用分层抽样的方法再抽取5人,从这5人中随机选出3人赠送网络优惠券,求出选出的3人中至少有两人是经常进行网络购物的概率;
(3)将频率视为概率,从该市所有的参与调查的网民中随机抽取10人赠送礼物,记经常进行网络购物的人数为X,求X的期望和方差.
5.随着电子产品的不断更新完善,更多的电子产品逐步走入大家的世界,给大家带来了丰富多彩的生活,但也带来了一些负面的影响,某公司随即抽取1000人对某电子产品是否对日常生活有益进行了问卷调查,并对参与调查的1000人中的年龄层次以及意见进行了分类,得到的数据如下表所示:
(1)根据表中的数据,能否在犯错误的概率不超过10.1%的前提下,认为电子产品的态度与年龄有关系?(2)为了答谢参与问卷调查的人员,该公司对参与本次问卷调查的人员进行抽奖活动,奖金额以及发放的概率如下:
现在甲、乙两人参与了抽奖活动,记两人获得的奖金总金额为Y,求Y的分布列和数学期望.
6.随着科学技术的飞速发展,手机的功能逐渐强大,很大程度上代替了电脑、电视.为了了解某高校学生平均每天使用手机的时间是否与性别有关,某调查小组随机抽取了30名男生、20名女生进行为期一周的跟踪调查,调查结果如表所示:
(1)能否在犯错误的概率不超过0.01的前提下认为学生使用手机的时间长短与性别有关?
(2)在这20名女生中,调查小组发现共有15人使用国产手机,在这15人中,平均每天使用手机不超过3小时的共有9人.从平均每天使用手机超过3小时的女生中任意选取3人,求这3人中使用非国产手机的人数X的分布列和数学期望.
参考公式:
7.从某小区抽取50户居民进行月用电量调查,发现其用电量都在50到350度之间,将用电量的数据绘制成频率分布直方图如下图所示.
(1)求频率分布直方图中x的值并估计这50户用户的平均用电量;
(2)若将用电量在区间[50,150)内的用户记为A类用户,标记为低用电家庭,用电量在区间[250,350)内的用户记为B类用户,标记为高用电家庭,现对这两类用户进行问卷调查,让其对供电服务进行打分,并将打分数据绘制成茎叶图如图所示:
①从B类用户中任意抽取3户,求恰好有2户打分超过85分的概率;
②若打分超过85分视为满意,没超过85分视为不满意,请填写下面列联表,并根据列联表判断是否有95%的把握认为“满意与否与用电量高低有关”?
附表及公式:
8.某高三理科班共有60名同学参加某次考试,从中随机挑选出5名同学,他们的数学成绩x与物理成绩y 如下表:
数据表明y与x之间有较强的线性关系.
(1)求y关于x的线性回归方程;
(2)该班一名同学的数学成绩为110分,利用(1)中的回归方程,估计该同学的物理成绩;
(3)本次考试中,规定数学成绩达到125分为优秀,物理成绩达到100分为优秀.若该班数学优秀率与物理优秀率分别为50%和60%,且除去抽走的5名同学外,剩下的同学中数学优秀但物理不优秀的同学共有5人.能否在犯错误概率不超过0.01的前提下认为数学优秀与物理优秀有关?
9.第23届冬季奥运会于2018年2月9日至2月25日在韩国平昌举行,期间正值我市学校放寒假,寒假结束后,某校工会对全校教职工在冬季奥运会期间每天收看比赛转播的时间作了一次调查,得到如下频数分布表:
(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“体育达人”,否则定义为“非体育达人”,请根据频数分布表补全2×2列联表:
并判断能否有90%的把握认为该校教职工是否为“体育达人”与“性别”有关;
(2)在全校“体育达人”中按性别分层抽样抽取6名,再从这6名“体育达人”中选取2名作冬奥会知识讲座.记其中女职工的人数为,求的分布列与数学期望.
附表及公式:
10.为调查了解某省属师范大学师范类毕业生参加工作后,从事的工作与教育是否有关的情况,
该校随机调查了该校80位性别不同的2016年师范类毕业大学生,得到具体数据如下表:
(1)能否在犯错误的概率不超过5%的前提下,认为“师范类毕业生从事与教育有关的工作与性别有关”?参考公式:().
附表:
(2)求这80位师范类毕业生从事与教育有关工作的频率;
(3)以(2)中的频率作为概率.该校近几年毕业的2000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关的人数为X,求X的数学期望E(X).
参考答案1.解:
2.解:
3.解:
5.解:
7.解:
9.解:。

相关文档
最新文档