生物柴油的生产与应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物柴油的生产与应用
摘要: 随着能源危机的加深和环境污染的加剧,寻找新能源来替代石化能源已
经迫在眉睫。而生物柴油是一种优质清洁柴油,可从各种生物质提炼,具有环境友好,可再生等优点,可以说是化石能源的良好替代品。本文简述了生物柴油的化学反应原理、、生产方法、优缺点,应用以及发展前景。
关键词:生物柴油生产方法优缺点应用及前景
前言:随着化石燃料的枯竭以及环境污染的日益严重,全球范围内的能源危机
使得寻求新的代替型能源已经是必然趋势,因此生物柴油具有巨大的发展潜力,将对保证石油安全、保证生态环境等方面有十分重大的作用。通过利用可再生资源生产生物柴油替代石化柴油,不仅是我国经济发展和能源需求的战略选择,而且对保障国家能源安全,减少温室气体排放,改善生态环境,实现社会、经济、环境的可持续发展均具有重大的意义。可以预料,生物柴油作为石化柴油的替代能源,在未来几十年内必将呈现出有增无减的发展趋势。
1生物柴油的介绍
1.1生物柴油的定义
生物柴油是指以动植物油或水解的脂肪酸为原料,在催化剂的作用下与低碳醇发生酯交换反应而形成的一种脂肪酸烷基酯,是一种优质成品柴油的代用品。
1.2生物柴油的优点
生物柴油的优点可以概括为[1] a生产原料来源广泛且可再生,大豆油、花生油、菜籽油、玉米油、棉籽油、乌桕油等植物油、猪油、牛油等动物油脂,以及餐饮废油等均可以作为生产生物柴油的原料b具有优良的环保特性。生物柴油具有生物可降解性,低排放,尾气中多环芳香族碳氢化合物、亚硝酸盐、硫化物、硫酸盐、一氧化碳以及烟尘颗粒的含量远低于石化柴油。c可以任何比例与石化柴油混溶,直接添加使用,无需对发动机作任何改进。d闪点高,具有较好的安全性能。生物柴油不属于危险品,在运输、储存、使用方面的优势显而易见。
2生产生物柴油的原理及方法
近年来,实验室研究的生物柴油生产技术非常多,而且针对各种不同的原料进行的工艺试验很多。从反应来讲,涉及物理法、化学催化、生物催化、超临界无催化剂的酯化/酯交换反应
2.1直接混合法[2]
直接混合法是将植物油与矿物柴油按一定的比例混合后作为发动机燃料使用。国外研究人员曾用50%植物油和50%的矿物柴油混合作燃料,结果表明曲轴箱变稠,喷油嘴积炭较厚。美国阿拉巴马州罕次准尔大学约翰逊环境与能源中心用1:2 的混合燃料(1/3 的豆油和2/3 的矿物柴油),结果表明:1/3 的脱胶豆油和2/3 的矿物柴油混合可代替柴油,他们对该混合燃料进行了900h的耐力试验,发现曲轴箱污染物不多,也未发生变硬和凝胶现象。但是植物油的黏度比柴油高11~13倍,加热到100℃才能接近柴油的黏度。因此柴油机发动时需燃用矿物柴油,正常行驶时候再切换为植物油,但这在运输时这是很难实现的。
2.2 微乳液法[3-4]
微乳液法是将动植物油与溶剂混合制成微乳状液。微乳液是由两种不相溶液体与其它两性分子混合形成胶体分散系统,透明热力学稳定,且各向同性,分散相粒径为1~150 nm 之间微乳化法生产生物柴油是利用乳化剂,使植物油分散到猫度较低溶剂中,例如1~5元醇类,从而将植物油稀释,降低猫度,以满足作为燃料使用要求,微乳液组分中含有低沸点成分,因此能改善雾化特性。微乳液法可以在一定程度上改善植物油的性能,但是易出现破乳现象,稳定性差。
2.3 酯交换法
酯交换反应是动植物油脂在催化剂存在或超临界条件下,与低链醇类发生醇解反应生成脂肪酸单酯的反应过程。酯交换反应过程很多因素影响到生物柴油的生产工艺和生物柴油的质量,如原料脂肪酸的组成、脂肪酸的含量、催化剂的种类和用量、低链醇的类别和用量、原料中水含量、反应温度、反应时间、搅拌等。酯交换反应由于催化剂选择的不同主要有酸碱催化法、酶催化法、超临界法。
2.3.1酸碱催化法
酸碱催化法是用动物和植物油脂与甲醇或乙醇等低碳醇在酸性或者碱性催化剂作用下进行酯交换反应,生成相应的脂肪酸甲酯或乙酯,再经洗涤干燥即得生物柴油,生产过程中可产生约10%的副产品甘油。酸催化反应的催化剂可选用浓硫酸,苯磺酸和磷酸等,在酯交换过程中不会发生造化,但反应速率较慢;碱催化的反应时间短,工艺较成熟,目前生产厂家大都采用该法生产生物柴油。酸碱催化法合成生物柴油工艺中,醇必须过量,后续工艺必须有相应的醇回收装置,生产过程邮费酸碱液排放。[5-6]
2.3.2 酶催化法
酶催化法是指用脂肪酶为催化剂,将醇与植物油进行酯交换反应生成脂肪酸酯的过程。生物柴油可以通过脂肪酶催化的酯交换反应来制备。由于生物酶催化反应条件温和、专一性好和效率高,因而生物酶催化酯交换反应在生物柴油生产技术研发受到高度重视。脂肪酶来源广泛,底物与功能团专一性,在非水相中能发生催化水解、酯合成、酯交换等多种反应,且反应条件温和,无需辅助因子[7]。用脂肪酶为催化剂制备生物柴油,反应过程不受原料中水和游离脂肪酸影响,只需加入理论甲醇量就可使反应顺利进行,且催化剂也易与产物分离。根据使用脂肪酶的方法的不同,可以分为游离脂肪酶、固定化脂肪酶和全细胞脂肪酶催化。酶催化法具有油脂原料适用性较广、反应条件温和( 30 ~ 40℃) 、醇用量小、脂肪酸酯收率较高、产品易于收集和无污染等优点, 近年来越来越受到人们的关注。缺点:用有机溶剂就达不到高酯交换率;反应系统中如甲醇达到一定量,脂酶就会失活;酶价格偏高,反应时间较长.
2.3.3超临界法
生物柴油的制备方法中,物理法虽简单易行,能够降低动植物油的粘度,但其燃烧性能难以满足燃料标准;化学法又分酸碱催化法和酶催化法,这些方法工艺复杂,原料要求较高,反应时间较长,产品分离困难,且催化剂难以回收。尽管如此,但目前有工业应用的主要是酸碱催化法.显然,发展生物柴油制备新工艺或者对现有工艺过程进行强化是发展方向[8-10] 。超临界甲醇( supercritical methanol,SCMeOH) 酯交换法就是近年来提出的新方法[11-15],其突出优势在于反应速度快,转化率高,产品单纯,原料要求不高,因此受到广泛关注,但高温、高压操作是它的缺点。超临界甲醇法制备生物柴油时,为了控制酯交换反应的操作参数,实验过程和实际生产中都需要知道甲醇-油脂混合体系的临界参