换热器温度控制系统设计

合集下载

热力公司换热站控制系统设计

热力公司换热站控制系统设计

第一章绪论1.1 集中供暖旳发展概述集中供暖是在十九世纪末期, 随着经济旳发展和科学技术旳进步, 在集中供暖技术旳基本上发展起来旳, 它运用热水或蒸汽作为热媒, 由集中旳热源向一种都市或较大区域供应热能。

集中供暖不仅为都市提供稳定、可靠旳热源, 改善人民生活, 并且与老式旳分散供热相比, 能节省能源和减少污染, 具有明显旳经济效益和社会效益。

1.1.1 国外集中供暖发展概况集中供暖方式始于1877年, 当时在美国纽约, 建立了第一种区域锅炉房向附近14家顾客供热。

20世纪初期, 某些工业发达旳国家, 开始运用发电厂内汽轮机旳排气, 供应生产和生活用热, 其后逐渐成为现代化旳热电厂。

在上世纪中, 特别是二次世界大战后来, 西方某些发达国家旳城乡集中供暖事业得到迅速发展。

原苏联和东欧国家旳集中供暖事业长期以来是实行以积极发展热电厂为主旳发展政策。

原苏联集中供暖规模, 居世界首位。

地处寒冷气候旳北欧国家, 如瑞典、丹麦、芬兰等国家, 在第二次世界大战后来集中供暖事业发展迅速, 都市集中供暖普及率都较高。

据1982年资料, 如瑞典首都斯德哥尔摩市, 集中供暖普及率为35%;丹麦集中供暖系统遍及全国城乡, 向全国1/3以上旳居民供暖和热水供应。

第二次世界大战后德国在废墟中进行重建工作, 为发展集中供暖提供了有力旳条件。

目前除柏林、汉堡、慕尼黑等都市已有规模较大旳集中供暖系统外, 在鲁尔地区和莱茵河下游, 还建立了联结几种都市旳城际供暖系统。

在某些工业发达较早旳国家中, 如美、英、法等国家, 初期多以锅炉房供暖来发展集中供暖事业, 锅炉房供暖占较大比例。

但是这些国家已非常注重发展热电联产旳集中供暖方式。

1.1.2 国内集中供暖发展概况国内都市集中供暖真正起步是在50年代开始旳, 党旳十一届三中全会后来, 特别是国务院1986年下发《有关加强都市集中供热管理工作旳报告》, 对国内旳集中供暖事业旳发展起到了极大旳推动作用。

换热器控制系统原理说明

换热器控制系统原理说明

换热机组及控制系统技术方案
一.机组及控制组成如下图1:
图1、系统工作原理图
1、板式换热器;2.加压水泵;3、纯净水箱;4、温度控制阀;5、液位传感器;6、温度传感器;7、控制柜二.控制原理及逻辑关系如下图2:
图2、逻辑控制图
三.技术方案说明:
本系统包括板式换热器;加压水泵;纯净水箱;温度控制阀;液位传感器;温度传感器;控制柜等7大部分及其他一些管路、阀门、支座等结构组成。

1、控制柜通过柜体上的启停按钮来控制加压泵(2)的启动和停止,开启前先检
测水箱水位信号,确认水量充足后开启;温度控制器和水泵频率控制器安装在控制柜内;
2、水泵的转速由安装在控制柜内的水泵频率控制器调节,由此来调节水量;
3、控制柜接受来自温度传感器的热水温度信号,通过控制器调节温度控制阀(6)
的开度达到使换热器加热纯净水到要求的温度;
4、运行中若蒸汽量充足,则温控阀调节蒸汽量到设定温度,当蒸汽量不足时,则
温控阀开到最大后,减小供水量,使出水温度保持恒定,随着蒸汽量的恢复增大,逐渐增大水泵频率,频率达到最大后,则开始关小温控阀开度,减小供汽量来控制水温。

5、纯净水箱液位满时,通过液位传感器将信号传到控制柜,再传到纯净水制取系
统停止制取纯净水,反之开始制取纯净水;
6、水泵采用一用一备工作方式,当其中一台水泵或其控制回路故障时,可切换到
另一台投入工作,增加系统运行可靠性。

换热器温度控制系统

换热器温度控制系统

1.E-0101B混合加热器设计为确保混合加热器(E-0101B)中MN(亚硝酸甲酯),CO(一氧化碳)的出口温度为408K,选用0.68Mpa,408K的加热蒸汽加热入口温度为294K的工艺介质。

为保证生成物的产量,质量,及最终生成物的转化率,且工艺介质较稳定,蒸汽源压力较小,变化不大,因此针对此实际情况,最后确定设计一个换热器的反馈控制方案。

1.1换热器概述换热器工作状态如何,可用几项工作指标加以衡量。

常用的工作指标主要有漏损率、换热效率和温度效率。

它们比较全面的说明了换热器的特点和工作状态,在生产和科学试验中了解这些指标,对于换热器的管理和改进都是必不可少的。

换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。

换热器在化工、石油、动力、食品及其它许多工业生产中占有重要地位,其在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用广泛。

换热器是一种在不同温度的两种或两种以上流体间实现物料之间热量传递的节能设备,是使热量由温度较高的流体传递给温度较低的流体,使流体温度达到流程规定的指标,以满足工艺条件的需要,同时也是提高能源利用率的主要设备之一。

1.2换热器的分类适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:一按传热原理分类:间壁式换热器,蓄热式换热器,流体连接间接式换热器,直接接触式换热器,复式换热器二按用途分类:加热器,预热器,过热器,蒸发器三、按结构分类:浮头式换热器,固定管板式换热器,U形管板换热器,板式换热器等此设计要求是将进料温度都为297.99K的MN(亚硝酸甲酯)和CO(一氧化碳)加热到出口温度为473K,所以我们经过调查研究,综合比较之后选择了管壳式(又称列管式) 换热器。

管壳式换热器主要有壳体、管束、管板和封头等部分组成,壳体多呈圆形,内部装有平行管束或者螺旋管,管束两端固定于管板上。

在管壳换热器内进行换热的两种流体,一种在管内流动,其行程称为管程;一种在管外流动,其行程称为壳程。

换热器温度控制.

换热器温度控制.

任务一 强制对流换热器温度控制
将实验装置电源插头接到380V的三相交流电源。 打开电源三相带漏电保护空气开关,电压表指示380V。 打开总电源钥匙开关,按下电源控制屏上的启动按钮, 即可开启电源。 开启相关仪器和计算机软件,进入相应的实验。 运行组态软件,进入相应的实验,观察实时或历史曲 线,待水温基本稳定于给定值后,将调节器的开关由 “手动”位置拔至“自动”位置,使系统变为闭环控制 运行。待基本不再变化时,加入阶跃扰动(可通过改变 设定值来实现)。观察并记录在当前比例P时的余差和 超调量。每当改变值P后,再加同样大小的阶跃信号, 比较不同P时的ess和σp 。
任务一 强制对流换热器温度控制
任务一 强制对流换热器温度控制
Temperature Control of the Forced Convection Heat Exchanger
能力目标 :1.能够正确操作多种温度控制系统。 2.能够对温度控制系统PID整定。
知识目标 :1.温度控制系统分析。 2.比例积分(PI)调节器控制。 3.比例微分调节器(PD)控制。 4. 比例积分微分(PID)调节器控制
任务一 强制对流换热器温度控制
五、安全提示
实验前,锅炉内胆的水位必须高于热电阻的测 温点。 给定值必须要大于常温。 实验线路全部接好后,必须经指导老师检查认 可后,方可通电源开小组汇报
——操作
任务一 强制对流换热器温度控制
七、总结
作出比例调节器控制时,不同P值时的阶跃响 应曲线,得到的结论是什么? 分析PI调节器控制时,不同P和I值对系统性能 的影响? 绘制用PD调节器控制时系统的动态波形。 绘制用PID调节器控制时系统的动态波形。
任务一 强制对流换热器温度控制

换热器出口温度设置

换热器出口温度设置

摘要目前,换热器控制中大多数仍采用简单控制系统及传统的PID控制,以加热(冷却)介质的流量作为调节手段,以被加热(冷却)工艺介质的出口温度作为被控量构成控制系统。

但是,由于换热系统这种被控对象具有纯滞后、大惯性、参数时变的非线性特点,传统的PID 控制往往不能满足其静态、动态特性的要求。

使换热器普遍存在控制效果差,换热效率低的现象,造成能源的浪费。

如何提高换热器的控制效果,提高换热效率,对于缓解我国能源紧张的状况,具有长远的意义本课题是针对换热器实验设备温度控制改进提出的。

设计中首先通过对现阶段换热器出口温度控制的特点进行分析,从而发现了制约控制效果进一步提高的瓶颈,为下一步改善换热器的控制效果提供了理论依据。

然后根据换热系统组成、控制流程的特点对换热器温度控制系统建立数学模型。

再根据所建立的数学模型,联系换热器温度控制的特点,给出了相应的控制策略,提出了串级控制及前馈控制或串级—反馈,前馈—反馈等复杂控制系统,来满足对于存在大的负荷干扰且和控制品质要求较高的应用场合。

关键字:换热器、数学模型、PID 、出口温度控制、串级控制前言换热器是国民经济和工业生产领域中应用十分广泛的热量交换设备。

随着现代新工艺、新技术、新材料的不断开发和能源问题的日趋严重,世界各国已普遍把石油化工深度加工和能源综合利用摆到十分重要的位置。

换热器因而面临着新的挑战。

换热器的性能对产品质量、能量利用率以及系统运行的经济性和可靠性起着重要的作用,有时甚至是决定性的作用。

在继续提高设备热效率的同时,促进换热设备的结构紧凑性,产品系列化、标准化和专业化,并朝大型化的方向发展。

随着我国工业化和城镇化进程的加快,以及全球发展中国家经济的增长,国内市场和出口市场对换热器的需求量将会保持增长,客观上为我国换热器产业的快速发展提供了广阔的市场空间。

从市场需求来看,在国家大力投资的刺激下,我国国民经济仍将保持较快发展。

石油化工、能源电力、环境保护等行业仍然保持稳定增长,大型乙烯项目、大规模的核电站建设、大型风力发电场的建设、太阳能光伏发电产业中多晶硅产量的迅速增长、大型环境保护工程的开工建设、海水淡化工程的日益成熟,都将对换热器产业产生巨大的拉动。

热交换器温度控制系统课程设计

热交换器温度控制系统课程设计

热交换器温‎度控制系统‎一.控制系统组‎成由换热器出‎口温度控制‎系统流程图‎1可以看出‎系统包括换‎热器、热水炉、控制冷流体‎的多级离心‎泵,变频器、涡轮流量传‎感器、温度传感器‎等设备。

图1换热器‎出口温度控‎制系统流程‎图控制过程特‎点:换热器温度‎控制系统是‎由温度变送‎器、调节器、执行器和被‎控对象(出口温度)组成闭合回‎路。

被调参数(换热器出口‎温度)经检验元件‎测量并由温‎度变送器转‎换处理获得‎测量信号c‎,测量值c与‎给定值r的‎差值e送入‎调节器,调节器对偏‎差信号e进‎行运算处理‎后输出控制‎作用u。

二、设计控制系‎统选取方案‎根据控制系‎统的复杂程‎度,可以将其分‎为简单控制‎系统和复杂‎控制系统。

其中在换热‎器上常用的‎复杂控制系‎统又包括串‎级控制系统‎和前馈控制‎系统。

对于控制系‎统的选取,应当根据具‎体的控制对‎象、控制要求,经济指标等‎诸多因素,选用合适的‎控制系统。

以下是通过‎对换热器过‎程控制系统‎的分析,确定合适的‎控制系统。

换热器的温‎度控制系统‎工艺流程图‎如图2所示‎,冷流体和热‎流体分别通‎过换热器的‎壳程和管程‎,通过热传导‎,从而使热流‎体的出口温‎度降低。

热流体加热‎炉加热到某‎温度,通过循环泵‎流经换热器‎的管程,出口温度稳‎定在设定值‎附近。

冷流体通过‎多级离心泵‎流经换热器‎的壳程,与热流体交‎换热后流回‎蓄电池,循环使用。

在换热器的‎冷热流体进‎口处均设置‎一个调节阀‎,可以调节冷‎热流体的大‎小。

在冷流体出‎口设置一个‎电功调节阀‎,可以根据输‎入信号自动‎调节冷流体‎流量的大小‎。

多级离心泵‎的转速由便‎频器来控制‎。

换热器过程‎控制系统执‎行器的选择‎考虑到电动‎调节阀控制‎具有传递滞‎后大,反应迟缓等‎缺点,根具离心泵‎模型得到通‎过控制离心‎泵转速调节‎流量具有反‎应灵敏,滞后小等特‎点,而离心泵转‎速是通过变‎频器调节的‎,因此,本系统中采‎用变频器作‎为执行器。

换热器温度控制系统的设计过程控制系统与装置课程设计(论文)--大学毕业设计论文

换热器温度控制系统的设计过程控制系统与装置课程设计(论文)--大学毕业设计论文

过程控制系统与装置课程设计(论文)题目:换热器温度控制系统的设计课程设计(论文)任务及评语院(系):电气工程学院教研室:测控技术与仪器学号学生姓名专业班级课程设计(论文)题目换热器温度控制系统的设计课程设计(论文)任务在某生产过程中,冷物料通过热交换器用热水(工业废水)和蒸汽对进行加热,工艺要求出口温度为140±2℃。

当用热水加热不能满足出口温要求时,则在同时使用蒸气加热,试设计换热器温度控制系统。

1.技术要求:测量范围:0-180℃控制温度:140±2℃最大偏差:5℃;2.说明书要求:确定控制方案并绘制原理结构图、方框图;选择传感器、变送器、控制器、执行器,给出具体型号;确定控制器的控制规律以及控制器正反作用方式;若设计由计算机实现的数字控制系统应给出系统硬件电气连接图及序流程图;编写设计说明书。

指导教师评语及成绩成绩:指导教师签字:年月日目录第1章换热器温度控制系统设计概述 .......................................................................第2章换热器温度控制系统设计方案论证 .................................................................第3章系统内容设计.....................................................................................................3.1 温度传感器的选择 ...............................................3.2 流量变送器的选择 ...............................................3.3 调节器的选择 ...................................................3.4 执行器的选择 ...................................................3.5 变送器的选择 ...................................................3.6 调节阀的选择 ...................................................第4章系统性能分析. (X)4.1参数整定........................................................4.2.控制算法的确定 (X)第5章课程设计总结 (XX)参考文献 (XX)第1章换热器温度控制系统设计概述换热器的应用广泛,比如中央空调系统,机械润滑油冷却系统,制药消毒系统,饮料行业消毒系统,船用冷却,化工行业特殊介质冷却系统日常生活中取暖用的暖气散热片、汽轮机装置中的凝汽器和航天火箭上的油冷却器等,都是换热器。

热力公司换热站PLC控制系统设计

热力公司换热站PLC控制系统设计

目录目录引言 (1)第一章绪论 (2)1.1 换热站的发展概述 (2)1.1.1 国外换热站发展概况 (2)1.1.2 国内换热站发展概况 (2)1.2 换热站的简介及运行现状 (3)1.3 课题的来源及意义 (3)第二章换热站的构成和总体设计方案 (5)2.1换热站的简介 (5)2.2换热站控制系统的构成 (5)2.3 换热站控制系统的硬件 (6)2.3.1换热器 (6)2.3.2 循环水泵 (7)2.3.3 阀门 (7)2.3.4 温度计、阀门 (8)2.3.5 PLC S7-200 (8)2.4 换热站工作原理 (11)2.5 系统总体方案设计思路 (12)2.6 该方案要实现的控制功能 (13)第三章控制系统实施方案 (15)3.1 换热站与热用户的连接方式 (15)3.2 温度的控制调节 (15)3.3 循环水流量的调节控制 (16)3.4 压力的调节控制 (17)3.5 换热站总体控制系统方案 (18)3.5.1 换热站控制系统设计 (18)3.5.2 控制系统硬件总体框架图 (18)3.5.3 换热站控制系统电气图 (18)参考文献 (20)引言温度控制系统在国内各行各业的应用虽然应用很广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比仍然有着较大的差距。

目前,我国在这方面总体水平处于20世纪80年代中后期的水平,成熟产品主要以“点位”控制及常规的PID控制器为主,它只能适用于一般的温度系统的控制,难以控制滞后、复杂、时变温度系统控制。

能适应于较高的控制场合的智能化、自适应控制仪表,国内还不十分成熟。

随着国民经济的不断发展,人们对供暖质量的需求也在逐步提高。

在传统供热模式下,为满足供热需求,换热站内设备运行参数多为人工调节,随着室外温度及热负荷的不断改变,不断的人工调节二次供水温度以保证用户室内能够维持恒定的温度。

在这种情况下,人工手动调节必然存在着较大偏差,只能够根据经验达到粗调节,不能够居民对室内温度恒定。

换热器温度控制系统设计

换热器温度控制系统设计

换热器温度控制系统设计热交换器是工业生产中常用的设备之一,用于传递热量并调节流体温度。

热交换器温度控制系统的设计是为了确保热交换器能够稳定运行并提供所需的热量。

本文将介绍热交换器温度控制系统的设计要点和步骤。

1.系统需求分析在开始设计热交换器温度控制系统之前,首先需要对系统的需求进行分析。

这包括流体的类型、流量、温度范围以及所需的温度稳定性等。

根据这些需求,选择合适的控制器和传感器。

2.传感器选择传感器是热交换器温度控制系统中非常重要的组成部分,用来监测流体的温度并传输给控制器。

常用的温度传感器有热电偶和热敏电阻。

选择适合的传感器需要考虑精度、响应时间以及耐高温等因素。

3.控制器选择控制器是热交换器温度控制系统的核心部分,用于读取传感器的信号并根据设定的温度范围进行控制。

常用的控制器包括PID控制器和模糊控制器。

选择控制器时需要考虑可调节的参数、控制精度以及响应速度。

4.控制策略选择合适的控制策略是确保热交换器温度控制系统稳定运行的关键。

常用的控制策略有开环控制和闭环控制。

开环控制根据预先设定的参数进行控制,闭环控制根据传感器反馈的信息进行调节。

根据实际需求选择合适的控制策略。

5.温度设定和调节根据系统需求,设置所需的温度范围和稳定性。

通过控制器对热交换器的供热和冷却进行调节,以保持流体温度在设定的范围内。

6.安全保护热交换器温度控制系统设计中需要考虑安全保护措施,以防止超温和意外故障。

例如,可以设置过温报警和自动断电装置,当温度超出设定范围或发生故障时,及时停止热交换器的运行。

7.控制系统调试和优化在完成热交换器温度控制系统的设计和安装后,需要进行调试和优化,以确保系统的性能和稳定性。

在调试过程中,根据实际情况调整控制器的参数,以达到所需的温度控制效果。

总结:热交换器温度控制系统的设计需要从系统需求分析、传感器选择、控制器选择、控制策略、温度设定和调节、安全保护等方面进行考虑。

通过合理的设计和调试优化,可以确保热交换器能够稳定运行并提供所需的热量。

换热器出口温度单回路控制

换热器出口温度单回路控制

换热器出口温度单回路控制(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1、概述换热器又叫做热交换器(heat exchanger),是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。

本次课程设计我要完成换热器出口温度单回路控制系统设计,单回路控制系统又称简单控制系统,是指由一个控制对象、一个检测元件及变送器、一个调节器和一个执行器所构成的闭合系统,方框图如下:图1、单回路控制系统方框图单回路控制系统结构简单、易于分析设计,投资少、便于施工,并能满足一般生产过程的控制要求,因此在生产中得到广泛应用。

设计一个控制系统,首先应对被控对象做全面的了解。

除被控对象的动静态特性外,对于工艺过程、设备等也需要比较深入的了解;在此基础上,确定正确的控制方案,包括合理选择被控变量与操纵变量,选择合适的检测变送原件及检测位置,选用恰当的执行器、调节器以及调机器控制规律等;最后将调节器的参数整定到最佳值。

2、换热器温度控制原理以及控制方案的确定换热器温度控制过程有如下特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象组成的闭合回路。

被调参数经检测元件测量并由温度变送器转换处理获得测量信号,测量值与给定值的差值送入调节器,调节器对偏差信号进行运算处理后输出控制作用。

换热器温度控制系统的工艺流程如下:冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使冷流体的出口温度升高。

冷流体通过循环泵流经换热器的壳程,出口温度稳定在设定值附近。

热流体通过多级泵流经换热器的管程,与冷流体热交换后流回蓄水池,循环使用。

从控制任务要求可知,换热器温度控制系统是单点、恒值控制。

且题目要求用单回路控制系统,控制范围和控制精度要求一般,功能上无特殊要求,采用广泛使用的PID 控制。

图2 PID 控制系统原理图PID 控制是偏差比例(P )、偏差积分(I )、偏差微分(D )控制的简称。

换热器温度控制系统的设计

换热器温度控制系统的设计

1换热器温度控制系统的组成与特点1.1换热器的组成换热器温度控制系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。

根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。

其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。

1.2系统控制过程的特点换热器温度控制过程有如下特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。

被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号,测量值与给定值的差值送入调节器,调节器对偏差信号进行运算处理后输出控制作用。

换热器的温度控制系统工艺流程如下:冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。

热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。

冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。

在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。

在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。

多级离心泵的转速由便频器来控制。

1.3引起换热器出口温度变化的扰动因素简要概括起来,引起换热器出口温度变化的扰动因素主要有:(1)热流体的流量和温度的扰动,热流体的流量主要受到换热器入口阀门的开度和循环泵压头的影响。

热流体的温度主要受到加热炉加热温度和管路散热的影响。

(2)冷流体的流量和温度的扰动。

冷流体的流量主要受到离心泵的压头、转速和阀门的开度等因素的影响。

(3)加热炉的启停机的影响。

(4)室内温度与管路内气体变化和阀门开度的影响。

2.1 换热器温度控制原理介绍图2.1为蒸汽水换热器的工作原理图。

加热介质为蒸汽,冷流体为水,控制目标是T ,T 1~T 3 温度传感器 M 电动调节阀图2.1 换热器温度控制原理图其工作原理为:温度传感器T 测量换热器出水温度,把信号传送至DDC 现场控制器,此为温度控制的主回路。

u型管式换热器结构设计及温度控制

u型管式换热器结构设计及温度控制

u型管式换热器结构设计及温度控制下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!U型管式换热器是一种常见的换热设备,广泛应用于工业生产中的热交换过程。

换热器温度控制方案

换热器温度控制方案

换热器温度控制方案概述换热器温度控制是工业生产过程中非常重要的一部分,能够有效地控制换热器的温度可保证生产过程的稳定性和产品的质量。

本文档将介绍一种换热器温度控制的方案,以提高工艺过程中的换热效率和温度稳定性。

方案设计1. 温度传感器温度传感器是控制换热器温度的基础,良好的温度传感器能够准确地感知换热器内部的温度变化。

选择合适的温度传感器非常重要,目前市场上常用的温度传感器有热电偶和热敏电阻。

热电偶对高温环境有较好的适应性,而热敏电阻则适用于较低温度范围。

根据具体的工艺要求和环境条件,选择合适的温度传感器进行安装。

2. 温度控制器温度控制器是控制换热器温度的核心部件,能够根据传感器测量到的温度信号进行反馈控制。

根据具体的应用场景,可以选择PID控制器或者模糊控制器等不同类型的温度控制器。

PID控制器通过比较实际温度和设定温度来调节输出信号,具有响应速度快和稳态误差小的特点;而模糊控制器则能够根据温度变化趋势进行模糊推理和控制辨识,适用于非线性和复杂的控制系统。

根据具体的需求选择合适的温度控制器并进行参数调节,以实现对换热器温度的精确控制。

3. 温度调节阀温度调节阀作为温度控制系统的执行部件,通过控制工作介质的流量来调节换热器内部的温度。

温度调节阀的选择和设计需要考虑介质类型、流量要求以及工艺条件等因素。

常见的温度调节阀有旋塞阀、蝶阀和电动调节阀等,根据具体要求选择合适的类型和规格,并进行安装和调试。

方案实施1. 温度传感器安装首先,根据换热器的结构和布置确定合适的温度传感器安装位置。

通常情况下,温度传感器需要安装在换热器的进口和出口处,以便及时感知到换热器的温度变化。

安装时要注意传感器与换热介质的接触良好,并确保传感器固定牢固,避免发生松动或脱落。

2. 温度控制器调试将温度传感器与温度控制器连接,并进行调试。

首先,根据实际情况设置设定温度值,并观察温度控制器的输出信号和换热器的温度变化情况。

如果温度控制不准确,可以通过调整控制器的参数来提高控制精度。

换热器温度控制方案

换热器温度控制方案

换热器温度控制方案换热器是工业生产中常见的设备,用于将热能从一个介质传递到另一个介质。

在实际应用中,为了确保换热器的效率和安全性,温度的控制是非常重要的。

本文将探讨几种常见的换热器温度控制方案,并对其优缺点进行分析。

首先,我们来介绍一种常见的控制方案——比例控制。

比例控制是通过调节冷却介质流量或加热介质流量的比例来控制换热器的温度。

这种方法简单直接,易于实施。

然而,由于比例控制只能调节流量,而不能对介质的温度进行直接控制,所以在某些情况下,可能无法满足精确控制的要求。

为了更好地控制换热器温度,反馈控制是一种更高级的控制方案。

反馈控制是通过测量换热器的出口温度,并根据测量结果调整加热或冷却介质的流量。

这种方式可以实现对温度的精确控制,提高系统响应速度和控制精度。

然而,反馈控制需要实时监测和计算,对硬件和算法要求较高,增加了系统的复杂性和成本。

除了比例控制和反馈控制,前馈控制也是一种常见的控制方案。

前馈控制是提前根据进口温度和流量变化预测出口温度的变化,并根据预测结果进行相应的调整。

这种方法可以在温度变化前就采取控制行动,提前消除变化带来的影响。

前馈控制在应对外部扰动和预测未来变化方面具有一定的优势。

然而,由于前馈控制无法准确预测所有变化情况,仍然需要与反馈控制结合使用。

在实际应用中,智能控制技术的发展也为温度控制带来了新的方案。

例如,基于人工智能的控制算法可以实时学习和优化系统的控制策略,在保证温度稳定的同时,提高系统的能效和自适应能力。

此外,传感器技术的进步也为温度控制提供了更多的数据来源,使得控制更加精确和可靠。

综上所述,换热器温度的控制方案多种多样,每种方案都有自己的优缺点。

在选择控制方案时,需要根据具体的应用需求、控制精度要求和系统复杂性等因素进行综合考量。

未来随着技术的进一步发展,相信会出现更多高效、智能的控制方案,为换热器温度控制提供更多选择和可能性。

换热器温度控制系统设计

换热器温度控制系统设计

换热器温度控制系统设计热交换器是工业生产中常见的设备,用于传递热量。

为了保证热交换器的高效运行,需要设计一个温度控制系统,使得热交换器内的温度始终保持在合适的范围内。

本文将从系统的硬件组成、控制策略、控制算法和性能评价四个方面对热交换器温度控制系统进行设计。

1.系统的硬件组成热交换器温度控制系统的硬件组成包括传感器、执行器和控制器。

传感器用于实时测量热交换器内的温度,常用的传感器包括热电偶和温度传感器。

执行器通过控制热交换器内的冷却或加热装置,来调节温度。

常用的执行器包括冷却水泵和加热器。

控制器负责采集传感器的数据,并根据控制策略进行控制,常用的控制器包括PLC和单片机。

2.控制策略热交换器温度控制系统的常用控制策略包括比例控制、比例积分控制和模糊控制。

比例控制是基于测量值与设定值之间的误差进行控制的,根据误差的大小来调节执行器,使得误差逐渐减小,温度稳定在设定值附近。

比例积分控制在比例控制的基础上增加了对误差的积分项。

积分项的作用是累积误差,并在误差连续一段时间内较大时进行补偿。

这种控制策略可以更好地消除系统的定常误差,使得温度更加稳定。

模糊控制是一种基于人类智慧的控制方法。

它通过建立模糊规则来描述输入变量和输出变量之间的关系。

根据传感器测量到的温度值和设定值,模糊控制器会根据事先设定的模糊规则来决定执行器的控制信号,从而实现温度的控制。

3.控制算法在选择控制算法时,可以采用经典的PID控制算法或者先进的自适应控制算法。

PID控制算法是一种常见的经典控制算法。

它根据误差的大小和变化率来计算控制信号,并通过加权比例、积分和微分项来调节执行器,最终实现温度的控制。

自适应控制算法是一种先进的控制算法,它能够根据实际的系统动态特性,自动调整控制参数。

自适应控制算法通过建立数学模型来描述系统,并根据系统的响应来修正控制参数,从而实现更好的控制效果。

4.性能评价热交换器温度控制系统的性能评价主要包括控制精度、稳定性和快速性。

基于plc的换热站控制系统设计

基于plc的换热站控制系统设计

基于PLC的换热站控制系统设计目录第1章绪论 (4)1.1研究背景 (4)1.2研究目的和意义 (4)1.3研究现状 (4)1.4 本文研究内容 (5)第2章控制系统总体方案的设计 (5)2.1 换热站的简介 (5)2.2 换热站控制系统的构成 (5)2.3 系统总体设计方案思路 (6)2.4 该方案要实现的控制功能 (6)第3章系统的硬件设计 (7)3.1 PLC (7)3.1.1 PLC的应用 (7)3.1.2 PLC的系统性能特点............................... 错误!未定义书签。

3.1.3 S7-200PLC介绍 (8)3.2 I/O点表的确定 (9)3.3 变频器 (10)3.4 数字量输入输出 (10)3.5 电源 (10)3.6 换热站的接线设计 (11)3.6.1 主回路和二次回路 (11)3.6.2 数字量输入/输出回路 (11)3.6.3 模拟量输入/输出回路 (12)3.7 PID算法 (12)3.8 辅助模块设计 (15)3.8.1 稳压模块的设计 (15)3.8.2 保护电路的设计 (15)第4章系统的软件设计 (15)4.1 软件设计概述 (15)4.2 分析控制要求 (16)4.3 系统组态 (16)4.3.1 概念 (16)4.3.2 组态软件特点 (16)4.3.3 硬件组态 (16)4.3.4 编辑符号表 (17)4.4 梯形图的编程 (17)4.4.1 PID参数选择 (17)4.4.2 系统通信 (23)4.5 抗干扰设计 (24)4.5.1 硬件抗干扰设计 (24)4.5.2 软件抗干扰措施 (25)第5章系统实现与调试 (25)5.1 系统的实现 (26)5.1.1 建立工程 (26)5.1.2 变量的链接 (27)5.1.3 建立流程画面 (28)5.1.4 液位报警画面的建立 (30)5.1.5 变量记录与温度历史趋势 (30)5.1.6 压力实时趋势 (31)5.1.7 PID仿真调节画面 (32)5.2 系统的调试 (32)5.2.1 安装制作 (32)5.2.2 硬件调试 (33)5.2.3 软件调试 (33)5.2.4 故障分析和相应解决方案 (34)结论 (34)致谢.......................................................... 错误!未定义书签。

换热器温度控制系统课程设计

换热器温度控制系统课程设计

换热器温度控制系统课程设计一、设计背景及目的1.1 设计背景换热器是工业生产中常见的设备,其主要作用是将热量从一个物质传递到另一个物质中。

在换热器的使用过程中,为了保证其正常运行和安全性,需要对换热器进行温度控制。

因此,本课程设计旨在设计一种能够实现换热器温度控制的系统。

1.2 设计目的本课程设计旨在通过对换热器温度控制系统的设计与实现,培养学生对自动控制原理和电气控制技术的理解和应用能力,提高学生对工业自动化技术的认识和应用水平。

二、设计内容2.1 系统结构本系统采用分层结构,包括上位机、下位机、传感器、执行机构等四个部分。

其中上位机负责监测和控制整个系统;下位机负责接收上位机指令并控制执行机构;传感器负责采集温度信号;执行机构则根据下位机指令调节换热器内部水流量。

2.2 系统功能本系统主要包括以下功能:(1)实时监测换热器内部的温度变化,并将数据传输给上位机;(2)根据上位机发送的指令,下位机调节执行机构控制水流量,从而实现对换热器内部温度的控制;(3)当系统出现异常情况时,自动报警并停止运行。

2.3 系统设计2.3.1 上位机设计上位机采用C#语言编写,主要包括以下功能:(1)实时监测温度数据,并进行显示;(2)设置温度控制参数,并发送给下位机;(3)接收下位机状态信息,并进行显示;(4)当系统出现异常情况时,自动报警并停止运行。

2.3.2 下位机设计下位机采用单片机进行设计,主要包括以下功能:(1)接收上位机指令,并解析指令内容;(2)根据指令调节执行机构控制水流量;(3)采集执行机构状态信息,并发送给上位机。

2.3.3 传感器设计本系统采用PT100型号温度传感器进行温度信号采集。

该传感器具有精度高、稳定性好等优点。

2.3.4 执行机构设计本系统采用电磁阀作为执行元件。

电磁阀具有调节水流量的功能,可实现对换热器内部温度的控制。

三、系统实现3.1 系统硬件设计本系统采用单片机作为下位机控制核心,通过串口与上位机进行通信;采用PT100型号温度传感器进行温度信号采集;采用电磁阀作为执行元件,控制水流量。

集中供热工程换热站专用控制系统设计和控制方案说明

集中供热工程换热站专用控制系统设计和控制方案说明

集中供热工程换热站专用控制系统设计及控制方案技术方案**科达自控工程技术**2011年1月目录1. 第一章设计方案综述11.1热网控制系统技术方案21.1.1 设计原则21.1.2 方案简介21.1.3 功能特点31.2热网控制系统功能51.2.1 网络结构图51.2.2 网络结构概述51.2.3 监控调度中心软件功能61.2.4 本地换热站控制器功能71.2.5 热网平衡模块功能71.第一章设计方案综述本系统是集公司多年来供热工程应用经验,专门针对北方集中供热工程项目提供的换热站专用控制系统.该系统采用**中控自动化仪表**自主研发的U6-200一体化PLC,监控中心上位机软件采用Inscan HRC热网实时监控专用软件,配置热网管理软件包、热网平衡模块、Web发布软件包及GSM短消息报警模块,实现对各个小区换热站热网运行参数的采集存储,外界环境温度的补偿,热网温度流量、动力设备的启停及调节、安全报警以及自动分析、热网系统故障诊断、能源计量分析等功能,并配合现场网络视频监控系统,以达到整个热网系统的供热平衡、安全、经济运行,最终实现无人值守型换热站.换热站专用控制系统图示在自动化设计上,设置监控中心控制室<调度中心>一个,内含2台调度计算机同时通过通讯的方式对换热站进行监控,2台调度中心计算机为1主1备冗余.主监控操作站完成控制室内人机交互功能,在计算机上显示各站换热网的工艺管道、参数、控制流程图,包含各类热力参数、阀门等各类执行机构状态的显示和自/手动操作.监控操作站除完成基本的各换热站运行数据采集、远程调度控制、数据记录报表生成等之外,还具备热网平衡调节、提供热网负荷需求趋势预测、预测负荷与实际负荷对比、互联网web远程浏览、手机wap浏览、手机短信报警等热网管理功能.换热站采用就地与主控室远程控制协作方式.各站放置独立U6-200一体化PLC一套,该终端设备配有彩色触摸屏,方便巡检人员进行就地观测,实现小区热网运行参数的采集与监控,如压力、温度、流量、电流等,并集中将运行参数发送至远方控制中心;U6-200一体化PLC可就地存储至少一个采暖期的运行参数,实现根据室外温度值自动控制二次供回水温度,并可同时控制循环变频及补水变频,进行量值的调节;在启用换热平衡模块后,各站控制器接收主控室发送的平衡参数,结合各站过程参数调节二次供回水温度;控制器也可接收主控室下发的各项命令,完成远程控制热网温度、流量、动力设备的启停等.同时结合网络视频监控系统,通过变焦功能,手动调节远近焦距,最终实现换热站无人值守.1.1热网控制系统技术方案1.1.1设计原则本设计方案基于"集中管理,分散控制"的模式,数字化、信息化环保工程的思想,着眼于热网"管控一体化"信息系统的建设,建立一个先进、可靠、高效、安全且便于进一步扩充的集过程控制、监视和计算机调度管理于一体并且具备良好开放性的监控系统,完成对整个供热运行的监测与自动控制,实现"换热站无人值守"的目标.1.1.2方案简介自动化热网监控系统,采用分布式计算机系统结构,即采用中央与就地分工协作的监控方法.中央控制室负责全网参数的监视以及必要时的远程调控,在开启平衡模块情况下完成各换热站的流量和能量调配;各换热站根据中央控制室下发的平衡参数进行供回水温度自动,同时也可通过就地手动干预或者远程干预.本系统由调度监控中心、远程终端站、通讯网络和与监测控制有关的仪表等部分组成.调度监控中心起着调度中枢的作用,可以察看全网的供热参数,同时进行热力工况的分析来指导全网的运行.远程终端站由具有测控功能的控制装置和通讯系统组成.远程终端站通过与其相连的仪表和执行机构完成对一、二级换热站和其它现场设备的数据采集和控制功能.该热力站运行管理系统采用的策略为:中央监测、现场控制.中央管理工作站主要负责检测显示热网参数<必要时提供远程控制>和各站的协调;每个热力站独立地工作,互不干扰.即使某一个换热站出现故障也不会影响其它换热站的正常工作.各换热站主要实现以下三方面自动控制:①根据调度监控中心的各站调控参数以及二次侧供回水温度自动控制高温水进入换热器入口调节阀的开度;②根据定压点压力自动控制补水泵转速,若回水压力低于设定值时自动报警;③自动检测循环泵运行状态,并根据压力自动控制主循环泵的转速.整个通讯系统分调度监控中心、各换热站和通讯网络三个部分,通讯采用ADSL通讯方式,在调度监控中心设立专网,在每个换热站独立设立通讯方式,与U6-200一体化PLC的通讯模块相连,进行数据的收发.1.1.3功能特点换热站专用控制器功能:1.专用控制器:专门为换热站量身定做的U6-200一体化PLC,无需用户编程,简单易用,内置的常规功能即可满足所有换热机组控制需求;2.人性化显示:自带7寸真彩触摸屏,内置单双换热机组流程图画面,显示直观,操作方便,易学易懂,充分体现人性化,方便巡检人员进行就地观测,包括温度、压力、流量、循环泵、补水泵的状态等;3.参数检测功能:完成模拟量采集包括:一次网供水温度和压力、一次网回水温度和压力、二次网供水温度和压力、二次网回水温度和压力、室外温度、阀门开度、频率反馈、一次网流量、二次网流量等,状态量采集如:泵状态等;脉冲量采集如:累计补水量、累计耗热量等的测量;4.通讯功能:现场控制设备能够与调度中心进行数据通信,支持采用ADSL或GPRS通讯方式,即通过Internet和移动网络,主从站间进行数据传输,主站可远程监控各从站工况,无论距离远近;5.参数存储:可就地存储至少一个采暖期的运行参数,以便供热企业进行能效分析;6.控制模式:本地监控站可以自动识别中控室传来的控制模式的指令<本地控制、温度控制、直接阀位/频率控制>,经过判断执行其中一种控制指令,并运行对应的控制模式;7.控制功能:根据换热站实际运行情况进行相关控制;a)根据调度监控中心的各站调控参数以及二次侧供回水温度自动控制高温水进入换热器入口调节阀的开度;b)根据定压点压力自动控制补水泵转速,若回水压力低于设定值时自动报警;c)自动检测循环泵运行状态,并根据压力自动控制主循环泵的转速,;8.联锁保护功能:本地监控器诊断到设备出现故障<如电机过流、过压等>或现场工况发生异常变化<如二次网压力过高、过低等>,控制器可根据相应故障诊断软件及工况评估逻辑,立即停止对应的设备运行,同时将报警类型及信息上传至中控室,尽可能地保护系统的安全运行.9.报警功能:根据工艺要求,可将报警分为不同级别.a)各个温度、压力、水位等超限报警.至少包括:一次供水压力、二次回水压力、二次供水温度高限报警,补水箱水位高低限报警等.b)水泵、电机、电动阀、变频器、换热器、通讯系统等故障报警;c)停电报警:换热站配置UPS电源,作为现场控制器和调制解调器的后备电源,当换热站供电出现故障或停电时,控制器能够生成停电报警信号,并通知中央控制室的调度人员采取相应的措施.热网实时监控专用软件功能:1.专用软件功能:各个换热站控制器与调度中心Inscan HRC热网实时监控专用软件进行通讯,实现换热站无人值守,满足所有换热站功能需求;2.供热参数实时监测功能:调度中心直观显示各个换热站在区域内的分布图,点击可进入换热站运行参数详细图,实时显示热力站一级网和二级网供回水温度和压力、流量、热量、阀门开度、水泵开启状态、循环泵变频、补水泵变频、液位等参数;3.手自动控制模式:a)根据现场工况提供两种控制模式用于控制换热站的一次网阀门开度,分别为:本地温度控制、直接阀位控制.b)根据现场工况提供三种控制模式用于控制换热站的二次网循环水流量,分别为:本地手动控制、本地自动控制、直接转速控制.4.远程修正功能:中控计算机能对本地控制站进行参数组态,包括修改温度控制参数的给定值、控制模式及比例系数、积分系数及供热曲线等控制参数;参数修正要设定权限.5.故障诊断及报警功能:根据参数信息及时诊断各系统的故障并指导维护.应能诊断以下故障:压力、温度、流量传感器故障;通讯系统故障;各热力站水泵、电机、电动阀、变频器等设备的故障;各热力站的超限报警;第一时间接收各远端控制站报警和故障信号,能及时发出声光信号,并进行记录.6.多功能报表:运行记录、报表及图形打印功能:可以自动生成、打印多种多样的报表和参数变化曲线,至少包括各种运行记录的日报表,统计分析报表及设备的故障状态和维护清单,包括日/月/季等报表以及各个换热站对比统计分析,为供热企业分析热网运行提供数据分析依据.7.参数统计及能源计量功能:根据实测参数统计各站及全网的能耗和水耗,计算出其平均值和累计值.计量时间可以为时、日、月、年,计量结果将以数据文件的形式存储在外存储器内,为量化管理和收费提供依据.8.热网平衡功能:自动根据换热站远近距离、换热站负荷大小,现实换热站间热力/水力平衡;9.短信报警功能:可将报警信息发送到相关责任人的手机上,用于及时处理报警,排除险情10.手机监管:支持WAP手机浏览:通过手机,直接浏览关键的运行参数,真正做到远程监控的管理方式;11.视频监控:可结合网络视频监控系统,通过变焦功能,手动调节远近焦距,最终实现换热站无人值守;1.2热网控制系统功能1.2.1网络结构图集中供热工程换热站专用控制系统图示<adsl网络连接>1.2.2网络结构概述本方案将采用先进的分布式和模块化设计理念,利用成熟的软硬件产品完成整个系统体系结构的搭建.本系统由各换热站采集控制设备、通讯网络和监控中心组成.各换热站采集控制设备使用U6-200一体化PLC,该设备是一套相对独立运行的可编程控制设备,可对现场设备进行监测和控制;能够满足需要进行流量计算、PID闭环控制和逻辑顺序控制等应用的场合.通讯网络是监控中心与各换热站间连接的桥梁,承载着数据传送的功能.监控中心采用上位机软件Inscan HRC热网实时监控专用软件,配置热网管理软件包、热网平衡模块、Web发布软件包及GSM短消息报警模块,实现对监控数据进行高效采集、长期存储、查询、数据处理等功能;以数据库为核心构成完整的数据服务层,为上层应用系统提供稳定的数据源.1.2.3监控调度中心软件功能热力公司下属的各个换热站采集的实时数据,通过ADSL+VPN的方式传递到调度中心<调度中心需要有使用公网固定IP或域名>,由运行在调度中心的组态监控软件对换热站内的压力、温度和流量数据进行实时监控,统一调整各站参数,统一调整管网平衡.提供热网管线非矢量的地理分布图,地理分布图上标有各个换热站的实际位置,并显示换热站的主要运行参数,在该画面上通过按钮可以切换到任一个换热站,查看换热站的详细信息.换热站管网运行图提供换热站数据总貌画面,总貌画面以数据列表的形式,呈现了各个换热站在一次网、二环网中的实时采集数据以及通讯状态.热网换热站监控总貌提供单个换热站的运行监控画面,该画面显示单个换热站内的各数据采集点的实时运行数据.换热站远程监控提供单个换热站的补/回水泵远程控制画面,通过该画面可远程监控某个换热站内的补水泵和循环泵运行.换热站远程补水/回水控制提供数据的自动保存功能,保存的历史数据可随时供使用者调取、查询.提供数据报表生成和打印功能,可生成日报、月报、年报及同期比较报表,通过报表分析数据的变化情况,判断管路的失水情况,分析设备运行是否正常.能耗数据查询表热网关键参数报表提供多种数据曲线/图形显示功能,可选择任意换热站的数据点进行查看,比较实时或历史的曲线数据.运行数据曲线气温预测曲线各个换热站供热区域对比饼图提供位于实时数据采集和管理分析软件基础之上的换热站综合运行软件,拥有热网平衡轮询监视、气象数据更新、DCS数据采集报警、平衡数据分析等功能,是一套拥有强大扩展性的综合应用软件.换热站综合运行软件图示平衡运行前后数据对比图多级操作权限设置,不同的操作人员设置不同的功能权限,防止不同级别的操作人员越权操作.换热站综合管理登录系统登录异常情况报警<通信失败、循环泵全停、超流量、低流量、超温、低温等>,当发生系统报警时,自动出现报警提示,并提供报警历史查询功能.中控室报警画面具备异常情况报警信息短信通知功能,当变量报警产生后,按预先设定好的手机号码和报警内容进行发送,及时通知相关值班维护人员.短消息报警图示提供数据的分析功能,通过记录的热网运行历史数据,在一个采暖期结束后与前期数据进行比较分析,查出整个换热管网的主要问题,为今后的升级改造提供有针对性的分析.热网换热站统计报表能耗数据明细提供双机冗余备份功能,系统由两套组态相同的监控软件,一套设为主站,另一套设为从站,系统正常工作时只有主机和换热站通讯,从机不通讯,从机通过主站进行数据备份和同步.如果主机出现故障,其中一个从机接管主机工作.等主机恢复之后,可以通过自动或手动方式进行干预来恢复先前状态.本系统采用网络化设计,在服务器端运行WEB SERVER程序并发布监控画面后,用户可通过IE浏览器访问换热站数据采集系统采集到的各种运行数据.同时,可按用户需求,定制若干手机浏览页面,供用户便捷的进行访问.手机WAP浏览可结合网络视频监控系统,通过变焦功能,远程调节摄像头的观察位置和远近焦距,最终实现换热站无人值守.换热站视频监控同时,使用数据实时转发技术,可远程浏览控制专网内的DCS运行数据,真正实现全厂信息的集中监控.DCS运行数据的WEB发布1.2.4本地换热站控制器功能本地换热站在U6-200一体化PLC的7寸真彩触摸屏上提供单个换热站的运行监控流程图画面,显示直观,操作方便,易学易懂,充分体现人性化,方便巡检人员进行就地观测.双换热机组本地监控换热站本地补水/回水控制1.2.5热网平衡模块功能在运行与控制方面最重要的问题在于热网平衡.一个集中供热系统,特别是一个大的集中供热系统,要实现稳定运行和均衡供热的基本条件是保证管网的水力工况平衡.过去,热网平衡问题一直是难以解决的问题,一些系统中存在的工作压力不能满足正常工作需要,热力站不能获得需要的压差,用户普遍不热,或者前端用户压差高,流量超过设计值,而末端压差不足流量低于设计值因而造成近端用户过热,远端用户不热的原因,就是因为系统存在水力工况不平衡的问题.造成系统水力工况不平衡原因是多方面的主要有:受热源厂设备的限制,供给的压力不足,或者因为系统的循环水量超过原设计值,使循环水泵的供给压力下降;管网设计不合理,或者管网堵塞造成系统的压力损失过大,超出了热源厂设备所能提供的压力;系统〕管网和热力站〔缺少合理分配水量的手段,为解决末端用户不热的问题而加大循环水量,因而降低了一次供水温度.解决此类问题虽然需要由设备选型与管线铺设来保障,但是在控制上仍需要由控制手段来保障,特别是在整个热网负荷变化的情况下协调各换热站的能量分配.对于热网平衡来说,目的是使总能量在各站之间均匀分配,使各站的温度尽量均匀,但同时也要考虑到各站的暖气和地暖因素影响,这会造成有些地区的温度偏高或偏低.整个平衡是按照周期性进行控制<考虑二网滞后因素影响>,综合考虑各站的供回水温度和流量,经过平衡算法得到各站平衡参数,将参数下发给各换热站由各站控制器来合理地调整一网流量,使得整个网络中各站温度趋于平衡.算法中的主要模块配置参数和参数使用说明如下:一、优先级该参数表明换热站在整个平衡系统中的优先级,级别越高表明该站能优先从热网中得到更多的资源,往往也能获得较高的温度.二、敏感度该参数表明换热站覆盖区域温度变化对阀门开度大小变化的敏感性,级别越高表明一定的阀门开度变化造成的温度改变越大.该参数是匹配性参数,需根据换热站特性设置.三、回水相关度该参数表明平衡系统衡量标准与二次网回水温度的相关程度,级别越高表明二网回水温度在整个平衡效果评价体系中占的分量越重,同时也表明二网回水温度控制将会越平均. 四、鲁棒性该参数表明换热站区域温度的可控程度,鲁棒性越强表明该站温度的可调程度和范围越大.该参数是匹配性参数,强烈建议采用模块默认设置.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

换热器温度控制系统设计
1、换热设备概述
换热器又称热交换器,是进行热量交换的设备的统称。

换热器广泛应用于化工、石化、炼油、轻工、制药、食品加工、动力以及原子能等工业。

换热器应用于存在温度差的流体间的热交换设备,换热器中至少有两种流体,温度较高则放出热量,反之则吸收热量。

换热器依据传热原理和实现热交换的方法一般分为间壁式、混合式、蓄热式三类。

其中间壁式换热器应用最广。

它又可分为管式换热器、板式换热器、翅片式换热器、热管换热器等。

其中以管式(包括蛇管式、套管式、管壳式等)换热器应用最普遍。

列管式和板式,各有优点,列管式是一种传统的换热器,广泛应用于化工、石油、能源等设备;板式则以其高效、紧凑的特点大量应用于工业当中。

2、控制方案的确定
实验控制对象位列管式换热器,主要的扰动是冷物料的流量Q。

换热器温度控制系统包括换热器、控制冷流体的离心泵,传感器等设备。

实验采用温度流量串级控制,以冷物料出口温度为主对象,以冷物料流量Q为副对象。

换热器控制图
3、系统硬件设计
或控制量
型号
参数
温度变送器
(Endress+Hauser )TR13
工作温度范围 PT100 (薄膜式(TF) 50 °C...500 °C (58 °F...932 °F) PT100 (绕线式(WW)):
-200 °C...600 °C (-328 °F...1,112 °F) PT100 (薄膜式(TF)):
-50 °C...400 °C (58 °F...752 °F) 最大过程压力(静压) 20 °C 时:50 bar (725 psi)
流量变送器
(Endress+Hauser )73W 涡街
流量计
73W 参数:
标称口径 DN 15…150 (1/2"…6") 测量范围 气体: 4…5 210 m3/h 过



-200...+400°C
(-328...+752°F)
最高可达 +450°C / 842°F (特殊选型) 输出信号 4…20 mA 电流输出
防爆认证 ATEX 、FM 、CSA 、TIIS 、NEPSI 、IEC
换热器热水出口温度和冷水流量串级控制框图
防护等级 IP 67 (NEMA 4x)
控制器
(Autonics)TX4S TX4S参数
额定电压:
250 V
负载电流:
5 A
室内
控温精度:
0.1 ℃
类型:
智能温度调节控制器输出额定功率:
6 w
温控范围:
1000 ℃
显示方式:
数字显示
调节阀D971X
D971X电动蝶阀参数
公称
通径
DN(mm) 50~2000 公称
压力
PN(MPa)
0.
6
1
.0
1.
6
试验
压力
强度试验
0.
9
1
.5
2.
4
密封试验
0.
66
1
.1
1.
76
气密封试验
0.
6
.6
0.
6 适用
介质
空气、水、污水、蒸气、煤气、油品等。

驱动
形式
手动、蜗杆蜗轮传动、气传动、电传动。

4、控制规律选择
调节器的作用是对来自变送器的测量信号与给定值比较所产生的偏差e(t)进行比例(P)、比例积分(PI)、比例微分(PD)或比例积分微分(PID)运算,并输出信号到执行器。

选择调节器的控制规律是为了使调节器的特性与控制过程的特性能很好
配合,使所设计的系统能满足生产工艺对控制质量指标的要求
(1)控制器:本系统是温度控制为被控参数,温度检测本身具有滞后性,
为了弥补这个缺点,本系统选用比例积分(PI)控制规律。

(2)调节器:在串级控制系统中,主、副调节器所起的作用是不同的。

主调节器起定值控制作用,副调节器起随动控制作用,在本设计中,出口温度增大,入口流量应增大,主控制器为负作用,入口流量增大,调节阀开度应减小,副调节器为正作用。

5、控制参数整定
PID 参数整定方法就是确定调节器的比例系数P 、积分时间常数Ti 和微分时间常数Td ,改善系统的静态和动态特性,使系统的过渡过程达到最为满意的质量指标要求。

一般可以通过理论计算确定,但误差太大。

目前,应用最多的还是工程整定法:如经验法、衰减曲线法、临界比例带法和反应曲线法。

下面介绍衰减曲线法整定PID 参数。

衰减曲线法是在闭环系统中,先把调节器设置为纯比例作用,然后把比例度由大逐渐减小,加阶跃扰动观察输出响应的衰减过程,直至10:1衰减过程为止。

这时的比例度称为10:1衰减比例度,用s
δ表示之。

由于当衰减比为10:1时。

要推

3
y 的时间不容易,因此当过渡过程曲线上只看到第一个波峰而第二个看不出来时
就认为是衰减比为10:1的振荡过程。

此时被控参数上升时间为
r
T 。

根据
r
T 和
s
δ,
运用表2所示的经验公式,就可计算出调节器预整定的参数值。

衰减曲线法的第一步就是获取系统的衰减曲线,采用10:1衰减曲线法。


i T =∞

d T =,可直接将图中的积分环节和微分环节都断开,让δS 的值从大到小
进行试验.,观察示波器的输出, 直到只看到第一个波峰而第二个看不出来时就认为是衰减比为10:1的振荡过程。

simulink 仿真方框图
系统仿真图
根据系统方框图及传递函数做系统仿真,并调节调节器的参数,以便使系统达到最佳的状态,即:=50 =3 时候有系统达到稳定。

总结
在这次课程设计中锻炼了我的自学能力,自学simulink仿真,自己用CAD画图,因为这次课程设计中有部分知识我们之前还没有接触过,所以自己必须学会查找相关资料来阅读了解。

经过这次的课程设计,让我深深的感受到理论联系实践的重要性,平时在学习中不能够透彻理解的知识,通过动手,会有很好的认知。

本次课程设计虽然不长,但是它给我们带来很多收获。

它使我们意识到自己的操作能力的不足,在理论上还存在很多缺陷。

通过这次实验我对控制系统理解更加深刻,对于今后的学习有很大帮助。

相关文档
最新文档