高中物理动量定理专题训练答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理动量定理专题训练答案
一、高考物理精讲专题动量定理
1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ;
(2)求运动员在AB 段所受合外力的冲量的I 大小;
(3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小.
【答案】(1)100m (2)1800N s ⋅(3)3 900 N 【解析】
(1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即
22
02v v aL -=
可解得:22
1002v v L m a
-==
(2)根据动量定理可知合外力的冲量等于动量的该变量所以
01800B I mv N s =-=⋅
(3)小球在最低点的受力如图所示
由牛顿第二定律可得:2C
v N mg m R
-= 从B 运动到C 由动能定理可知:
221122
C B mgh mv mv =
-
解得;3900N N =
故本题答案是:(1)100L m = (2)1800I N s =⋅ (3)3900N N =
点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小.
2.一个质量为60千克的蹦床运动员从距离水平蹦床网面上3.2米的高处自由下落,触网后沿竖直方向蹦回到离水平网面5米高处.已知运动员与网接触的时候为1.2秒。求运动员和网接触的这段时间内,网对运动员的平均作用力F (g 取10 m /s 2)。 【答案】1500N ,方向竖直向上 【解析】 【详解】
设运动员从h 1处下落,刚触网的速度为
18m s v == (方向向下)
运动员反弹到达高度h 2 ,离网时速度为
210m s v ==(方向向上)
在接触网的过程中,运动员受到向上的弹力F 和向下的重力mg ,设向上方向为正,由动量定理有
()()21 F mg t mv mv -=--
解得=1500N F ,方向竖直向上。
3.动能定理和动量定理不仅适用于质点在恒力作用下的运动,也适用于质点在变力作用下的运动,这时两个定理表达式中的力均指平均力,但两个定理中的平均力的含义不同,在动量定理中的平均力F 1是指合力对时间的平均值,动能定理中的平均力F 2是合力指对位移的平均值.
(1)质量为1.0kg 的物块,受变力作用下由静止开始沿直线运动,在2.0s 的时间内运动了2.5m 的位移,速度达到了2.0m/s .分别应用动量定理和动能定理求出平均力F 1和F 2的值.
(2)如图1所示,质量为m 的物块,在外力作用下沿直线运动,速度由v 0变化到v 时,经历的时间为t ,发生的位移为x .分析说明物体的平均速度v 与v 0、v 满足什么条件时,F 1和F 2是相等的.
(3)质量为m 的物块,在如图2所示的合力作用下,以某一初速度沿x 轴运动,当由位置
x =0运动至x =A 处时,速度恰好为0,此过程中经历的时间为t =所受合力对时间t 的平均值.
【答案】(1)F 1=1.0N ,F 2=0.8N ;(2)当02v v x v t +==时,F 1=F 2;(3)2kA F π
=. 【解析】 【详解】
解:(1)物块在加速运动过程中,应用动量定理有:1t F t mv = 解得:1 1.0 2.0
N 1.0N 2.0
t mv F t ⨯=
== 物块在加速运动过程中,应用动能定理有:221
2
t F x mv =
解得:22
2 1.0 2.0N 0.8N 22 2.5
t mv F x ⨯===⨯
(2)物块在运动过程中,应用动量定理有:10Ft mv mv =- 解得:01()
m v v F t
-=
物块在运动过程中,应用动能定理有:22201122
F x mv mv =
- 解得:22
02()
2m v v F x
-=
当12F F =时,由上两式得:02
v v x v t +=
= (3)由图2可求得物块由0x =运动至x A =过程中,外力所做的功为:
211
22
W kA A kA =-=-
设物块的初速度为0v ',由动能定理得:20
1
02
W mv '=-
解得:0
k
v A m
'= 设在t 时间内物块所受平均力的大小为F ,由动量定理得:0
0Ft mv -=-' 由题已知条件:2m t k
π
= 解得:2kA
F π
=
4.如图,一轻质弹簧两端连着物体A和B,放在光滑的水平面上,某时刻物体A获得一大小为的水平初速度开始向右运动。已知物体A的质量为m,物体B的质量为2m,求:
(1)弹簧压缩到最短时物体B的速度大小;
(2)弹簧压缩到最短时的弹性势能;
(3)从A开始运动到弹簧压缩到最短的过程中,弹簧对A的冲量大小。
【答案】(1)(2)(3)
【解析】
【详解】
(1)弹簧压缩到最短时,A和B共速,设速度大小为v,由动量守恒定律有
①
得②
(2)对A、B和弹簧组成的系统,由功能关系有
③
得④
(3)对A由动量定理得
⑤
得⑥
5.以初速度v0=10m/s水平抛出一个质量为m=2kg的物体,若在抛出后3s过程中,它未与地面及其它物体相碰,g取l0m/s2。求:
(1)它在3s内所受重力的冲量大小;
(2)3s内物体动量的变化量的大小和方向;
(3)第3秒末的动量大小。
【答案】(1)60N·s(2)60kg·m/s,竖直向下(3)10kg m/s
【解析】
【详解】
(1)3s内重力的冲量:
I=Ft =mgt =2×10×3N·s=60N·s
(2)3s内物体动量的变化量,根据动量定理:
△P=mgt =20×3kg·m/s=60kg·m/s
方向:竖直向下。
(3)第3s末的动量: