世界大地构造学2_
大地构造学2
早期的世界地图已清楚地表明非洲和南美洲相对海岸 线的“锯齿状拟合”。远在1801年,洪堡 (A.Humboldt)及其同时代的著名科学家们已经提出, 大西洋两岸的海岸线和岩石都很相似。魏格纳首先提 出,应该用深海中的大陆坡边缘进行大陆拟合。凯里 (S.W.Carey )证明,两个大陆的外形在海面以下 2000米等深线几乎完全可以拟合。布拉德(E.Bullard) 等人借助计算机计算,发现无论用1000米或2000米等 深线拟合的结果差别不大。复原拟合工作证明,各大 陆可以通过复原形成一个超级大陆,即魏格纳所命名 的“泛大陆”。泛大陆是由冈瓦纳大陆(南方各大陆 加上印度)和劳亚大陆(北美和欧亚)组成的复合古 大陆。
魏格纳及其大陆漂移说
由于当时受对地球内部构造和动力学的知识局限, 大陆漂移和动力学机制得不到物理学上的支持。魏格 纳学说的不幸遭遇在于他倡导大陆漂移的同时却认为 大洋底的稳定。直到他去世的20年后,抛弃洋底稳定 不动的海底扩张学说提出,人们对大陆漂移的兴趣又 复萌了。 魏格纳是德国气象学家、地球物理学家,1880年11月1 日生于柏林,1930年11月在格陵兰考察冰原时遇难。 (播放电影文件)
海底扩张
50年代的海洋科学园地犹如百花盛开,海洋学 家除了海底热流测量外,还进行了海底地形测 量。这些资料和地震分布、海底火山和深海沉 积的研究结果,被普林斯顿大学的哈雷·赫斯 (Harry Hess)综合成海底扩张的模式。 赫斯用地幔对流机制来解释海底的地形标志, 他设想大洋中脊是热流上升而使海底裂开的地 方,熔融岩浆从这里喷出,推开两边的岩石形 成新的海底。
B.古气候的证据
魏格纳首次提出大陆漂移观点时,许多证据来自他对 古气候的研究。他注意到,各大陆上存在某一地质时 期形成的岩石类型出现在现代条件下不该出现的地区: 如在极地区分布有古珊瑚礁和热带植物化石;而在赤 道地区发现有古代的冰层。运用将今论古的原则,魏 格纳把冰川活动的中心放在当时的旋转极附近,而珊 瑚礁和蒸发岩分布的地带放在赤道附近,用这种方法 确定了各大陆当时的古纬度。对古纬度和现代纬度的 比较,魏格纳得出了大陆漂移的结论。
第二章 大地构造学(板块构造理论—1板块构造理论起源)2012
的 泛 大 陆
大陆漂移学说发展遭到的阻碍
魏格纳的大陆漂移学说没有很好地解决大陆漂移的力 学机制问题,他认为,大陆漂移是硅铝质大陆壳像一座座 桌状冰山一样航行在洋底的较重的硅镁质岩浆中,并且认 为地球自转的离心力和潮汐摩擦力是推动大陆漂移的驱动 力。这些论点遭到当时多数地球物理学家们的激烈反对, 在地球物理学家们看来,洋底是坚硬的,大陆不可能像船 一样航行在洋底或硅镁层之上,地球自转的离心力和潮汐 摩擦力非常有限,远不足以推动大陆漂移。由于魏格纳的 大陆漂移学说遇到动力机制上的困难而遭到地球物理学家 们的强烈反对,加之其蕴含的活动论思想与当时地学界占 支配地位的地槽理论在思想体系上矛盾,因而,随着他本 人不幸于1930年逝世,大陆漂移假说一度销声匿迹。
1872-1876 英国挑战者号 Challenger调查
Harry Hammond Hess
H. Hess二战期间任美国太平 洋战争时期凯普.约翰逊号船 长,用声纳对海底做了不间 断的观测。 1946年发现水下平顶山。 二战后任普林斯顿大学教授, 1957年2月26日听Heezen的 报告,报导了洋脊的发现, 他当即指出:你动摇了地质 学的基石。 1960年口头发表,并于1962 年正式发表了“海盆的历史” 一文。
魏格纳和他的家人乘坐气球
• 1970在汉堡重 新命名的魏格 纳街
魏格纳有关大陆漂移的著作
• 1912a,Die Entstehung der Kontinente,Petermann’s Geographyche Mitteilungen,58,185-195,305-308. • 1912b,Die Entstehung der Kontinente,Geologische Rundschau,3,276-292 • 1915,Die Entstehung der Kontinente und Ozeane, Braunschweiz, Veiweg. • 1924,The Origin of Continents and Oceans, London: Methuen. • 1929(1966),The Origin of Continents and Oceans,
大地构造学说课件
大地构造学说的历史发展
总结词
大地构造学说的发展历程包括早期的地质学理论和现代的大地构造理论两个阶段 。
详细描述
早期的地质学理论包括地壳均衡说、大陆漂移说等,这些理论为现代大地构造理 论的发展奠定了基础。现代大地构造理论包括板块构造学说、地幔柱构造学说等 ,这些理论进一步深化了对地球表面构造的认识。
塔里木地台
以石油、天然气、钾盐等资源 为主,散布于塔里木盆地周边
地区。
大地构造演变与成矿作用
大地构造演变的不同阶段对成矿作用的影响
例如,板块汇聚带在汇聚初期,岩浆活动频繁,有利于形成铁矿和铜矿;而在汇聚晚期,变质作用加强,有利于 形成金矿和石墨等矿产。
成矿系统的形成与演变
成矿系统是在长期的地质演变过程中形成的,其形成和演变受到大地构造演变的影响。了解成矿系统的形成与演 变有助于预测矿产资源的散布和富集规律。
02
大地构造学说的主要理论
板块构造理论
1
板块构造理论认为地球的外壳由若干个板块组成 ,这些板块在地质应力作用下不断运动和相互碰 撞。
2
板块边界是地壳活动的主要地带,板块的运动和 相互作用导致了地震、火山活动和地形变化等现 象的产生。
3
板块构造理论是目前对地球构造最广泛和最科学 的模型之一,尽管仍有一些未解之谜和需要进一 步研究的问题。
THANKS
感谢观看
大地构造学说课件
• 大地构造学说的基本概念 • 大地构造学说的主要理论 • 大地构造学说的研究方法 • 大地构造与矿产资源 • 大地构造与地质灾害 • 大地构造学说的发展趋势与展望
(精品word)《大地构造学》知识点总结.(良心出品必属精品)
《大地构造学》知识点总结第一章绪论一、大地构造学的研究对象、内容、方法、意义研究对象:大地构造学,是研究地球过程的综合学科。
研究内容:①区域或全球尺度的地壳与岩石圈构造变形特征及圈层相互作用,如:大洋-大陆相互作用、地球内部圈层相互作用、造山带与盆地的形成过程等;②构造变形与岩浆作用-沉积作用-变质作用的相互关系;③地壳与岩石圈的形成与演化过程;④地球表面海-陆的形成与演变方式及过程;⑤地球深部作用过程及其机制。
研究方法:大地构造学研究方法需要综合利用地质学其他学科以及地球物理探测、地球化学的研究手段与研究成果。
研究意义:大地构造学研究可以为认识和分析构造地质学的研究背景和形成机制提供宏观的上成因解释。
二、固体地球构造的主要研究方法主要包括固体构造几何学与构造运动学的研究。
固体地球的构造几何学:主要研究地球的组成成分及结构。
方法有:①研究暴露在地表的中、下层地壳乃至地幔顶部剖面,通过地质、地物、地化综合研究,揭示地壳深部物质组成、结构构造、物理性质、岩石矿物及元素的物化行为、温压条件、地热增温率、有关元素及矿物成分的聚散规律;②研究火山喷发携带到地表的深源包裹体,揭示深部物质与构造特征;③人工超深钻探直接取样(目前为止涉及最深深度12km);④地震探测:分为天然地震探测和人工地震探测,利用地震波的折射与反射可揭示地球深部构造特征。
固体地球构造运动学:主要研究地质历史时期的大地构造运动学与现今固体地球表面的构造运动。
地质历史时期的大地构造运动学可以利用古地理学(岩相、生物、构造)、古气候分区、地球物理学与古地磁学进行研究;现今固体地球表面的构造运动可以利用空间对地的观测与分析技术。
三、大地构造学研究意义理论意义:可以为认识和分析构造地质学的研究背景和形成机制提供宏观的上成因解释;实际应用意义:①大型成矿集中区(矿集区)等成矿构造背景、资源规划;②大规模破坏性地震产生于形成的地质构造背景与稳定性评价;③绝大对数大型、灾难性地震都发生在活动板块边缘带(区)上,或与板块相互作用有关的次级活动构造单元边界区域。
大地构造学基础理论提要(2)
大地构造学基础理论提要(2)胡经国第2章地槽-地台学说一、地槽及其特征1、地槽的一般概念1873年,丹纳(J.Dana)正式把地壳上强烈下降并逐渐被沉积物充填的坳陷称为地槽(Geosyncline),而将地槽之间沉积岩层变薄或缺失的相对隆起区叫做地背斜(Geanticline)。
地槽是地壳上的槽形坳陷。
地槽具有以下特征:呈长条状分布于大陆边缘或二个大陆之间,具有特征性的沉积建造并组成地槽型建造序列,广泛发育强烈的岩浆活动,构造变形强烈,区域变质作用发育等。
地槽是地壳上强烈活动的构造带,曾经为巨大的坳陷带,沉积有巨厚的海相沉积物,坳陷被沉积物补偿充填;以后,挤压力就把这些沉积物挤压成褶曲;最后,转变为造山带(褶皱山脉)。
阿尔卑斯山沉积物中没有浅海相沉积层,却有厚度不大的深海或远海相沉积物。
地槽是在大陆之间的海洋地区内发育起来的一个狭长的深海槽。
现代板块构造理论认为,地槽是岩石圈板块边缘部分的阿坳陷带。
2、关于地槽概念的一般理解关于地槽概念的一般理解包括:⑴、地槽的概念具有两重性质:早期主要表现为在地壳上形成深坳陷,这种深坳陷可以被沉积物所补偿,从而形成被巨厚沉积物所占据的沉降带,也可不被沉积物所补偿,形成深海盆地;晚期强烈褶皱上升形成巨大的造山带(褶皱山系)。
⑵、在时间上,指古生代以来曾经有过强烈活动的地带。
⑶、在空间上,地槽主要位于大陆边缘,少数位于两个大陆之间。
3、地槽的基本特征⑴、空间位置特征地槽通常出现在大陆边缘地带或两个大陆之间。
因此,地槽一般都具有狭长的槽形形态,呈长条状分布;规模很大,长几百至几千公里,宽几百公里。
现今地槽多为造山带(褶皱山脉)。
⑵、沉积特征地槽沉积物分布在长条状的坳陷内。
沉积物以海相为主,分选性差,厚度巨大,可达上万米。
常常形成特殊的沉积建造和建造序列,由下而上依次为:①、硬砂岩建造这种建造多出现在地槽形成初期构造环境不稳定的情况下。
②、硅质-火山岩建造(细碧角斑岩组合)相当于蛇绿岩套的一部分,标志地槽下沉最强烈的阶段,断裂、火山活动发育。
大地构造学说教程课件
保护与利用
通过大地构造学的知识,可以制定科学的地下水资源保护方案,同时公道利用 地下水资源,满足人类生产和生活需求。
05
大地构造学的前沿问题与 展望
地球深部结构与地球动力学
地球深部结构研究
随着地球物理学和深钻技术的发展,人们对地球深部结构 的认识越来越深入。这涉及到地壳、地幔和地核的结构、 组成和性质,以及它们之间的相互作用。
地质力学的意义
地质力学的发展对于人类认识地球 、保护环境和利用资源具有重要意 义。
地球动力系统
01
地球动力系统的概念
地球动力系统是一个复杂的系统,包括地球内部的热能、化学能、重力
能以及地球表面的气候、水文、地貌等多种因素相互作用。
02
地球动力系统的研究方法
地球动力系统的研究需要综合运用地质学、地球物理学、气象学等多种
气候变化与大地构造之间存在着复杂的相互作用机制,包括碳循环、水循环、生物地球化 学循环等过程。这些机制的研究有助于深入了解地球系统的整体行为和变化规律。
月球与火星的大地构造研究
月球大地构造研究
月球是离地球最近的天然卫星,对其大地构造的研究有助于了解地球自身的构造 和演变历史。月球表面和内部的结构、组成和性质都是重要的研究内容。
与其他学科领域相结合,形成了多学科交叉的研究格局。
02
大地构造学的基本理论
大陆漂移学说
大陆漂移学说
大陆漂移学说的意义
魏格纳提出,地球上原始的大陆是单 一的超大陆,后来由于地球自转产生 的离心力导致大陆块从原始大陆分离 ,并漂移到现在的位置。
大陆漂移学说解释了地壳的运动和演 变,为地质的板块运动、地震活动和火山喷发等地质现象。这些现象又会 对气候变化产生反馈作用,从而影响全球气候的演变。
2.2大地构造学说
板块构造的基本内容
• (1)地球最上部被划分为岩石圈和软流圈。 • (2)地球表层刚性的岩石圈并非铁板一块,它被一系列 构造活动带分割成许多大小不等的球面板状块体,简称板 块。 • (3)板块内部是稳定的,边界是地球上最具活动性的构 造带。 • (4)海底扩张实际上是一对岩石圈板块自中脊轴向两侧 的拉张运动,而位于岩石圈板块上面的大陆块作为载体, 伴随着板块的运动而被动地发生长距离水平位移——大陆 漂移
• 2)转换断层transform fault ——大洋底部的海岭常被一 系列断层所错开。不过这同一般的平移断层不同,它一面 向两侧分裂,一面发生水平错动,形成一系列垂直断裂带, 故称为转换断层。水平断距常达数十、数百公里,甚至可 达1000公里。这类边界仅见于大洋地壳中。
• (三)大陆漂移说的衰亡
• 大陆漂移的机制不清,大陆不可能在硅镁层上漂移。 • 一组不可思议的大地测量数据:格陵兰与欧洲之间的距离逐年增加 9-32M,比现在利用卫星技术测得的大几百倍,因此为固定论者提 供了反对的口实。 • 有科学家估计,大西洋两岸可类比的生物仅占生物种属的5%。 • 大陆漂移仅仅在地史的最近一个时期,人们要问,地球最近发生了 什么变化,导致大陆分离漂移?在更老的地质时期,大陆地壳又怎 样运动呢? • 1930年WEGENER遇难。 • 大陆漂移说这支航船,在茫茫大海中迷失了方向,四处漂泊,期盼 着战胜惊涛波浪,到达胜利的彼岸。
第二节 板块构造学说
• 一 大陆漂移continental drift hypothesis
• (一)概述
• 1912年魏格纳(A.wegener)注意到大陆几何形态的相拼。认为: • 在3亿年前地球上只有一个庞大的联合古陆,称为泛大陆,中生代 开始分裂。 • 南美和非洲在7000万年前的白垩纪分离,更新世时大西洋完成张 裂,格陵兰和挪威在150万年前才分离; • 在印度洋方面,最先分离出澳洲,原来是长形的印度与马尔加什 分开 向东北漂移与亚洲大陆挤压形成喜山; • 当运动着的大陆前缘遭到大洋底的抵抗时,便被挤压褶皱成山, 如美洲西部的科迪勒拉——安第斯山。 • 格陵兰和南美洲的尖细末端,亚洲以东的岛弧,实际上是一些被 遗留在运动着的岛弧中的落伍者。
石大自然地理学课件02地壳-3大地构造学说
• 在上述现象的发现后,赫斯和迪茨首先提出了 海底扩张理论。
三、板块构造学说
• 地表岩石圈分为若 干不连续的板块, 板块内部稳定,边 缘为活动带,大陆 边缘并非板块边界。
板块的边界有三种类型:
• 扩张型(或增生)边界:新地壳增深的地方, 喷出物多为玄武岩,以张应力产生的正断层和 节理为主。
全新世 1万年 第四纪Q 更新世 260万年
新生代Cz 新近纪N 古近纪E
上新世 中新世 渐新世 始新世 古新世
530万年 2330万年 3200万年 5650万年 6500万年
二、海底扩张学说
➢ 海底扩张学说来源于二战后对洋底调查所发现 的现象部位,是岩石圈的巨型张裂谷,也是岩浆的涌 出口和地热排泄口。
• 构造体系是地质力学的基本概念。它是指“许 多不同形态、不同性质、不同等级和不同次序, 但具有成生联系的各项结构要素所组成的构造 带以及它们之间所夹的岩块或地块组合而成的 总体”
• 构造体系可划分为三种基本类型(型式):纬 向构造体系,经向构造体系,扭动构造体系。
槽演化而来。 • 地槽是地壳活动强烈的地带,在地表呈长条状
分布,升降幅度大,岩浆活动敏频繁。 • 地台则是地壳稳定区域,构造变动与岩浆活动
较弱。
五、地质力学学说
• 地质力学学说是地质学家李 四光创立的,其基本观点是: 全球地质构造的展布不是乱 杂无章的,而具有一定的方 向和方位。这是在地壳运动 的一定动力方式作用下,形 成了相应形式的构造应力场 的结果,从而产生出一定方 向和方位的构造体系。
第三节 大地构造学说
一、大陆漂移说
地质构造方面的证据; 大陆边缘的吻合 ; 古生物化石方面的证据 ; 气候的证据 ; 古磁场的证据;
2大地构造学第二章地槽PPT课件
二.地槽概念的进一步发展
德国的施蒂勒(1936) 将地壳分为克拉通(稳定区) 和正地槽(活动区); 克拉通分为高克拉通(大陆地壳)和低克拉通 (大洋地壳);
正地槽分为优地槽(eugeosyncline)和冒地槽 (miogeosyncline )。
优地槽:离高克拉通远,有蛇绿岩及火山物质。 冒地槽:离高克拉通近,无蛇绿岩,缺乏火山物质。
20
冈底斯山南缘盆地
西瓦里克盆地
21
6.山间拗陷:地槽褶皱返回后,在褶皱山系内部于不 同时期形成的大小与形状各异的拗陷或断陷。
7.中间地块:是地槽褶皱区中面积较大、呈三角形或 菱形、相对较稳定且固结程度较高的地区。它是地槽 褶皱区中保存的古地台碎块或早期固结的褶皱区。中 新生界陆相地层广泛发育,断裂、岩浆活动较弱。
冈底斯喜马拉雅中生代冈底斯喜马拉雅中生代冈瓦纳大陆边缘造山系冈瓦纳大陆边缘造山系羌塘三江晚古生代羌塘三江晚古生代泛华夏大陆边缘造山系泛华夏大陆边缘造山系秦祁昆早古生代秦祁昆早古生代泛华夏大陆边缘造山系泛华夏大陆边缘造山系康西瓦南昆仑康西瓦南昆仑玛訫略阳对接带玛訫略阳对接带班公湖双湖怒班公湖双湖怒江昌宁对接带江昌宁对接带一个特提斯大洋一个特提斯大洋数控冲床冲压件数控冲床落料后再数控折弯件普通冲床开模冲压件剪板机落料及其它加工方式成形的钣金件点焊氩弧焊组焊件拉铆组件等其它方式加工而成的金属零件或组件
滑塌结束之后,继续接受
正常沉积。在后期的造山
作用过程中,遭受叠加变
形
42
四川九龙县江浪穹窿地区发育的二叠系滑塌灰岩堆积
43
复理石建造:多次重复的韵律性层理(复理石韵
律),每一韵律包括砂岩到泥质岩或灰质岩的韵律
层序(鲍马序列),总厚达数千米至万米。主要为
大地构造学基础理论纲要(2)
大地构造学基础理论纲要(2)胡经国第四章魏格纳的大陆漂移学说一、大陆漂移论据1、大陆拼合2、不同大陆之间地层、构造之间的联系北美-欧洲,南非与非洲之间地层、褶皱带可以衔接。
3、古生物例如,中龙在巴西、南非C-P(石炭-二叠纪)淡水湖泊相中出现。
4、古冰川南美、非洲、印度、澳大利亚都发育有C(石炭纪)大陆冰川。
5、古气候C冰川、煤、石膏、岩盐、沙漠砂岩分布对古气候的反映。
第五章板块构造学说一、海底磁异常特征1、线条性每一个磁异常条带宽20~30公里,正、负相间排列。
2、定向性磁异常条带平行于洋中脊。
3、对称性磁异常条带对称于洋中脊。
二、转换断层的概念(Wilson,1965)“转换是指一种构造转换为另一种构造,是运动方式或构造带类型的转换。
转换断层就是指位移错动突然终止或者改变运动方式和方向的断层。
”换句话说,它就是在断层转换点转换为走向不同和力学性质不同的构造带的断层。
相应断层的运动方式表现为:沿断层的水平剪切运动在转换点突然终止,并转换为扩张的洋中脊、裂谷带,或者转换为挤压的海沟或造山带。
三、贝尼奥夫带(Benioff带)的概念20世纪30年代,日本学者和达清夫首先发现这个倾斜的震源带。
到50年代,美国地质学家Benioff对该带详加研究,并将其作为大陆与大洋地块之间的巨型逆断层带。
到60年代,人们在研究洋底岩石圈的俯冲消亡作用时,Benioff带很自然地被当作板块的俯冲带(或消亡带、消减带),认为这一倾斜震源带标示出了板块俯冲的行迹。
Benioff带倾角15°~85°,平均45°。
在太平洋东缘较缓,平均25°;而在太平洋西缘则较陡,平均41°。
其中,马里亚纳海沟达85°。
贝尼奥夫带的长度和倾角,与板块俯冲速度有关;若速度大,则长度大而倾角小。
四、岩石圈、软流圈、岩石圈板块的概念在固体地球的上层,存在着物理性质截然不同的两个圈层。
其中,下面的圈层为塑性的软流圈(Asthenosphere);上面的圈层包括地壳和地幔上部的橄榄岩层,具有较高的刚性和弹性,叫做岩石圈(Lithosphere)。
第2章 大地构造学(板块构造理论—2岩石圈及岩石圈板块)
软流圈(低速层)
对陆壳成分结构的新认识 (主要针对下地壳成分)
超深钻钻探表明,地壳内部可能不存在康拉德面 (硅铝/硅镁)---科拉半岛设计15km,钻至 11.5km结束,原预测的7km深处的康拉德面并不 存在,在该深度以下仍为斜长片麻岩、花岗片麻 岩和角闪岩 ,只是随着深度增加角闪岩夹层增多。 而不是“玄武岩层” 剥露到地表的麻粒岩相下地壳成分往往以长英质 片麻岩、麻粒岩为主体。 很多新的火山岩携带的大量下地壳包体往往也以 长英质片麻岩、麻粒岩为主体。
因此,陆壳的下地壳成分可能仍以长英质或花 岗质成分为主。
大陆岩石圈成分的不均一性
大陆岩石圈的组成和物性变化很大,缺乏一
个共同的成因方式,大陆岩石圈的组成上部是 由非均一成分和具有复杂构造和热演化史的不 同块体拼合而成,因而它们具有不同的强度。 大陆下地壳的性质因地而异,不同的性质造成 了复杂多样的效应与结果,诸如活动断裂带的 宽度、造山带高度、沉积盆地以及被动大陆边 缘的下沉速度的差异等.
岩石圈的化学结构
大陆地壳:复杂的成分结构 地幔岩石圈:多认为是橄榄石、辉石和石榴石的 某种组合 壳幔的化学过程:主要通过几个方面研究: 玄武质岩石的信息 花岗质岩石的信息 捕虏体与捕虏晶的研究:岩石探针 流体包裹体的研究
•通过观察来自岩石圈深处的岩石,了解深部特征
岩石圈深部岩石到达地表的方式 •构造剥露(如逆冲岩席)
• 1960,5,22 智利8.9级大地震,发现全球 大部分地区存在低速层。
地 震 波 显 示 的 地 幔 结 构 和 不 连 续 面
岩石圈lithosphere
• 地球上上部(外层)刚性的部分,实际上 包括地壳和刚性上地幔部分。也有人用 1300°等温面以上的圈层。 • 刚性:厚50-200km • 成分径向变化:上部-花岗岩和玄武岩; 下部-橄榄岩、辉橄岩 • 被地震活动带分割成若干块体
2-3大地构造学说
1.基本观点: ①现在的大陆在2亿前年是联合在一起的,此 后才逐渐分开。 ②大陆移动的形式是硅铝质陆块在硅镁质洋块 上浮移。 ③漂移的动力是地球自转产生的离心力和其他 天体对地球表面的引力。
2.主要证据 ①魏格纳(A.Wegener)的证据 大陆漂移学说首先是德国气象学家A.Wegener 于1912年提出来的。其主要证据是大西洋两岸 的陆地轮廓吻合性以及地层、构造、古生物、 古气候和冰川等其他现象的相似性、相关性和 连续性。 ②五十年代以后的新证据 • A.各大陆岩石的古地磁极与现代地磁极不重合当前学术界最有影响的 一个大地构造学说。
人6 米 裂 “而 大 大 道 是 形, , 谷 东神 无 陆 巨 世 象气 谷 宽 非奇 朋 的 大 界 地势 壁 约 大的 的 赤 的 大 将宏 如 几 峡感 “ 道 伤 陆 其伟 刀 十 谷觉 刀 上 疤 上 称, 削 至 ”, 痕 空 。 最 为景 斧 2 或这 ” 时 当 大 “色 劈 0 “就 呈 , 乘 的 地壮 一 0 东是 现 从 飞 断 球观 般 公 非著 在 机 机 裂 表, , 里 大名 眼 窗 越 带 皮是 长 , 地的 前 向 过 , 上世 度 深 沟“ , 下 浩 从 的界 相 达 ”东 顿 俯 翰 卫 一上 当 1 。非 时 视 的 星 条最 于 0 大 让 , 印 照 大大 地 0 裂 人 地 度 片 伤的 球 0 谷 产 面 洋 上 痕裂 周 至 ” 生 上 , 看 ”谷 长 2 , 一 有 进 去 。带 的 0 亦 种 一 入 犹 ,10 称惊条东如 异硕非一 有/0
•
前边已经说过,海底扩张的速度为1-5cm/ 年,据此计算在1-2亿年中,海底扩张的速度 可达几千公里,整个洋底可以更换一次。所以 在大洋地壳中不可能发现1.9亿年以前的岩石。 以前的岩石那里了,俯冲到了地幔中又变地幔 物质。 最近的研究表明,洋底的年龄中央岭脊处 最年轻,向两侧逐渐变老,并呈对称分布。
大地构造学
大地构造学大地构造学第一章大地构造学引言绪论《大地构造学》是地球科学各专业的一门重要基础理论课程。
大地构造问题“已成为许多地球科学家研究活动的中心议题”,在地球科学研究活动中占据着统领地位。
理论体系:活动论、新全球构造大陆、动力学思想第一节大地构造学的研究对象、任务和特点一、 What are Tectonics[tek't?niks]大地构造学 and Structural Geology[地质] 构造地质学? (1)大地构造学研究地壳和岩石圈(大陆、洋盆、造山带、地震带和其他地球表面大尺度构造)结构和构架Tectonics------------architectures (2)大地构造学研究地壳和岩石圈构造(大陆、洋盆、造山带、地震带和其他地球表面大尺度构造)形成和发展演化规律(3)大地构造学研究引起地壳和岩石圈(大陆、洋盆、造山带、地震带和其他地球表面大尺度构造)构造形成、发展和演化的动力学。
研究地壳岩石圈形成演化基本动力的大地构造学分支统称为“地球动力学”—Geodynamics)Tectonics and Structural geology相同点:1. 均涉及对已发生变形的地球外层演化的重建,如地壳的破裂、大洋裂解大洋关闭碰撞等2. 均涉及地壳和上地慢的运动和变形不同点: 大地构造学主要研究区域或全球尺度的运动和变形构造地质学主要研究亚微—区域尺度岩石变形两个研究领域相互独立。
但在区域尺度上,他们有相当多的重叠。
因为我们对大尺度构造运动的理解的重要来源有赖于于对岩石中变形的观察;相反对大尺度构造演化历史的了解有助于理解构造变形的动力起因。
Tectonics 与Plate tectonics及其他学科关系Tectonics depends on other branches of geologyTectonics— Plate tectonics: Plate tectonics即建立在板块构造理论基础上大地构造学。
大地构造学
--板块构造及沉积盆地
一、基本概念
大地构造学(Tectonics/Geotectonics):是 研究岩石圈组成、结构、运动(包括变形 和变位)和演化的一门综合性很强的构造 地质学分支学科。(万天丰,2004)。
大地构造学是以整个地球和整个岩石圈作 为研究对象,也可称为全球构造学,侧重 于理论方面的研究,因而富于推理性和探 索性。其基础为区域大地构造学。
主要参考书目 杨桥.2004.地球科学概论.石油工业出版社. 陆克政等.2001.含油气盆地分析.石油工业出版社. 张恺.1995.中国大陆板块构造与含油气盆地评价.石油工业出版社.
Davies.G.F.1999.Dynamic and Mantle Convection. Cambridge: Cambridge University Press. 杨森楠,杨巍然。1985。中国区域大地构造学。地质出版社。 程裕淇。1994。中国区域构造概论。地质出版社。 张宗命。1982。中国石油大地构造学。石油工业出版社。
示盆地内石油生成的数量与热体制有关。盆地 内温度高不仅有利于石油生成,而且有利于油 气运移。
热流值的常用对数衰变值(据Dickinson)
盆地沉积类型和构造型式在很大程度上取 决于盆地的板块构造位置
自青海高原至四国海盆剖面,示地壳分异及 第三纪以来沉积发展(据王鸿祯)。 东部为过渡型地壳盆地,沉积类型属外海、边缘海和活 动陆棚类型沉积,然后从东而西为大陆地壳盆地类型, 分别属近海盆地、内陆盆地和山间盆地类型沉积。
国内外大地构造学的理论体系,有以下四种:
1)以区域地质学为主线:
杨森楠,杨巍然,1985,中国区域大地构造学,地质出版社。
程裕淇,1994式为主线:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Vast deserts covered western Pangea during the Permian as reptiles spread across the face of the supercontinent. 99% of all life perished during the extinction event that marked the end of the Paleozoic Era.
During the Early Carboniferous the Paleozoic oceans between Euramerica and Gondwana began to close, forming the Appalachian and Variscan mountains. An ice cap grew at the South Pole as four-legged vertebrates evolved in the coal swamps near the Equator.
By the Early Jurassic, south-central Asia had assembled. A wide Tethys ocean separated the northe continents from Gondwana. Though Pangea was intact, the first rumblings of continental break up could be heard.
During the Ordovician ancient oceans separated the barren continents of Laurentia, Baltica, Siberia and Gondwana. The end of the Ordovician was one of the coldest times in Earth history. Ice covered much of the southern region of Gondwana.
This map illustrates the break-up of the supercontinent, Rodinia, which formed 1100 million years ago. The Late Precambrian was an "Ice House" World, much like the present-day.
During the Early Carboniferous Pangea Begins to Form.
By the Late Carboniferous the continents tபைடு நூலகம்at make up modern North America and Europe had collided with the southern continents of Gondwana to form the western half of Pangea. Ice covered much of the southern hemisphere and vast coal swamps formed along the equator.
Animals with hard-shells appeared in great numbers for the first time during the Cambrian. The continents were flooded by shallow seas. The supercontinent of Gondwana had just formed and was located near the South Pole.
The supercontinent of Pangea began to break apart in the Middle Jurassic. In the Late Jurassic the Central Atlantic Ocean was a narrow ocean separating Africa from eastern North America. Eastern Gondwana had begun to separate form Western Gondwana.
By the Devonian the early Paleozoic oceans were closing, forming a "pre-Pangea". Freshwater fish were able to migrate from the southern hemisphere continents to North America and Europe. Forests grew for the first time in the equatorial regions of Artic Canada.
Laurentia collides with Baltica closing the northen branch of the Iapetus Ocean and forming the "Old Red Sandstone" continent. Coral reefs expand and land plants begin to colonize the barren continents.
The supercontinent of Pangea, mostly assembled by the Triassic, allowed land animals to migrate from the South Pole to the North Pole. Life began to rediversify after the great Permo-Triassic extinction and warm-water faunas spread across Tethys.