电子类从无线电世界到单片机世界毕业论文外文文献翻译及原文
单片机 外文翻译 外文文献 英文文献 单片机简介 中英对
单片机外文翻译外文文献英文文献单片机简介中英对原文来源图书馆电子资源Single chip brief introductionThe monolithic integrated circuit said that the monolithic micro controller, it is not completes some logical function the chip, but integrates a computer system to a chip on. Summary speaking: A chip has become a computer. Its volume is small, the quality is light, and the price cheap, for the study, the application and the development has provided the convenient condition. At the same time, the study use monolithic integrated circuit is understands the computer principle and the structure best choice.The monolithic integrated circuit interior also uses with the computer function similar module, for instance CPU, memory, parallel main line, but also has with the hard disk behave identically the memory component7 what is different is its these part performance is opposite our home-use computer weak many, but the price is also low, generally does not surpass 10 Yuan then Made some control electric appliance one kind with it is not the 'very complex work foot, We use now the completely automatic drum washer, the platoon petti-coat pipe: VCD and so on Inside the electrical appliances may see its form! It is mainly takes the control section the core part.It is one kind of online -like real-time control computer, online -like is the scene control, needs to have the strong antijamming ability,the low cost, this is also and the off-line type computer (for instance home use PC,) main differenceThe monolithic integrated circuit is depending on the procedure, and may revise. Realizes the different function through the different procedure, particularly special unique some functions, this is other component needs to take the very big effort to be able to achieve, some are the flowered big strength is also very difficult to achieve. One is not the very complex function, if develops in the 50s with the US 74 series, or the 60s's CD4000 series these pure hardware do decides, the electric circuit certainly arc a big PCB board ! But if, if succeeded in the 70s with the US puts in the market the series monolithic integrated circuit, the result will have the huge difference. Because only the monolithic integrated circuit compiles through you the procedure may realize the high intelligence, high efficiency, as well as redundant reliabilityThe CPU is the key component of a digital computer. Its purpose isto decode instruction received from memory and perform transfers, arithmetic, logic, and control operations with data stored in internal registers, memory, or I/O interface units. Externally, the CPU provides one or more buses for transferring instructions, data, and control information to and from components connected to it. A microcontroller is present in the keyboard and in the monitor in the generic computer; thus these components are also shaded. In such microcontrollers, the CPU may be quite different from those discussed in this chapter. The wordlengths may be short, the number of registers small, and the instruction sets limited. Performance, relatively speaking, is poor, but adequatefor the task. Most important, the cost of these microcontrollers is very low, making their use cost effective.Because the monolithic integrated circuit to the cost is sensitive, therefore present occupies the dominant status the software is the most preliminary assembly language7 it was except the binary machine code above the most preliminary language, sincewhy were such preliminary must use?Why high-level did the language already achieve the visualization programming level not to use? The reason is very simple, is the monolithic integrated circuit docs not have home computer such CPU, and also has not looked like the hard disk such mass memory equipment. Inside even if a visualization higher order language compilation script only then a button, also will achieve several dozens K the sizes! Does not speak anything regarding the home use PC hard disk, but says regarding the monolithic integrated circuit cannot accept. The monolithic integrated circuit in the hardware source aspect's use factor must very Gao Caixing, therefore assembly, although primitive actually massively is using, Same truth, if attains supercomputer's on operating system and the application software home use PC to come up the movement, home use PC could also not withstand.It can be said that the 20th century surmounted three "the electricity" the time, namely the electrical time, the Electronic Ageand already entered computer time. However, this kind of computer, usually refers to the personal computer, is called PC machine. It by the main engine, the keyboard, the monitor and so on is composed. Also has a kind of computer, most people actually not how familiar. This kind of computer is entrusts with the intelligence each kind of mechanical monolithic integrated circuit (also to call micro controller). , This kind of computer's smallest system only has used as the name suggests a piece of integrated circuit, then carries on the simple operation and the control. Because its volume is small, usually hides in is accused the machinery "the belly". It in the entire installment, plays is having like the human brains role, it went wrong, the entire installment paralyzed. Now, this kind of monolithic integrated circuit's use domain already very widespread, like the intelligent measuring appliance, the solid work paid by time control, the communication equipment, the guidance system, the domestic electric appliances and so on, Once each product used the monolithic integrated circuit, could get up causes the effect which the product turned to a new generation, often before product range crown by adjective---- …intelligence?, like intelligence washer and so on. Now some factory's technical personnel or other extra-curricular electronic exploiter do certain products, are not theelectric circuit are too complex, is the function is too simple, and is imitated extremely easily. Investigates its reason, possibly on card, in the product has not used on the monolithic integrated circuit or other programmable logical component.单片机简介单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。
从无线电世界到单片机世界
英文From radio world to monolithic integrated circuit world The modern computer technology industrial revolution, leads the world economics from the capital economy to the knowledge economy time. In the electronic world domain, also enters from the 20th century radio times to the 21st century take computer technology as the central intellectualized modern electron system time. The modern electron system basic core is inserts the type computer system (abbreviation to insert type system), but the monolithic integrated circuit is most typical, is most broad popularly, inserts the type system.First, the radio world has accomplished several generation of people with outstanding ability In the 20th century 560 ages, most has the advanced electronic technology which represents is the radio technology, including radio broadcasting, reception, wireless communication (telegram), telemetering, remote control, remote letter technology and so on amateur station, radiolocation, navigation. The early time was these electronic technologies leads many young people to march into the marvelous electronic world, the radio technology has demonstrated at that time the technical life wonderful foreground. The electronic science started to form an emerging discipline. The radioelectronics, the wireless communication started the electronic world course.The radio technology not only has become at that time advanced science and technology representative, moreover from popularizes to the specialized scientific domain, has attracted the general young people, and caused them to find the infinite pleasure. From head of a bed crystal set to super-heterodyne; From wireless electrically initiated registration amateur station; From telephone, electric bell to radio operation model. The radio technology became the young people popular science, the technical education is most popular at that time, the most broad content. Until now, many older generations' engineers, the expert, professor in the past all were the radio amateur. The radio technical infinite pleasure, the radio technical comprehensive training, from the electronics basic principle, the electronic primary device foundation to the radio telecontrol, the telemetering, the remote letter electron system manufacture, trained several generation of technical people with outstanding ability. Second, from radio time to electronic technology popular time。
单片机技术发展与应用中英文对照外文翻译文献
(文档含英文原文和中文翻译)中英文对照外文翻译单片机技术的发展与应用从无线电世界到单片机世界现代计算机技术的产业革命,将世界经济从资本经济带入到知识经济时代。
在电子世界领域,从 20 世纪中的无线电时代也进入到 21 世纪以计算机技术为中心的智能化现代电子系统时代。
现代电子系统的基本核心是嵌入式计算机系统(简称嵌入式系统),而单片机是最典型、最广泛、最普及的嵌入式系统。
一、无线电世界造就了几代英才。
在 20 世纪五六十年代,最具代表的先进的电子技术就是无线电技术,包括无线电广播,收音,无线通信(电报),业余无线电台,无线电定位,导航等遥测、遥控、遥信技术。
早期就是这些电子技术带领着许多青少年步入了奇妙的电子世界,无线电技术展示了当时科技生活美妙的前景。
电子科学开始形成了一门新兴学科。
无线电电子学,无线通信开始了电子世界的历程。
无线电技术不仅成为了当时先进科学技术的代表,而且从普及到专业的科学领域,吸引了广大青少年,并使他们从中找到了无穷的乐趣。
从床头的矿石收音机到超外差收音机;从无线电发报到业余无线电台;从电话,电铃到无线电操纵模型。
无线电技术成为当时青少年科普、科技教育最普及,最广泛的内容。
至今,许多老一辈的工程师、专家、教授当年都是无线电爱好者。
无线电技术的无穷乐趣,无线电技术的全面训练,从电子学基本原理,电子元器件基础到无线电遥控、遥测、遥信电子系统制作,培养出了几代科技英才。
二、从无线电时代到电子技术普及时代。
早期的无线电技术推动了电子技术的发展,其中最主要的是真空管电子技术向半导体电子技术的发展。
半导体电子技术使有源器件实现了微小型化和低成本,使无线电技术有了更大普及和创新,并大大地开阔了许多非无线电的控制领域。
半导体技术发展导致集成电路器件的产生,形成了近代电子技术的飞跃,电子技术从分立器件时代走进了电路集成时代。
电子设计工程师不再用分立的电子元器件设计电路单元,而直接选择集成化的电路单元器件构成系统。
单片机英文文献及翻译)
Validation and Testing of Design Hardening for Single Event Effects Using the 8051 MicrocontrollerAbstractWith the dearth of dedicated radiation hardened foundries, new and novel techniques are being developed for hardening designs using non-dedicated foundry services. In this paper, we will discuss the implications of validating these methods for the single event effects (SEE) in the space environment. Topics include the types of tests that are required and the design coverage (i.e., design libraries: do they need validating for each application?). Finally, an 8051 microcontroller core from NASA Institute of Advanced Microelectronics (IAμE) CMOS Ultra Low Power Radiation Tolerant (CULPRiT) design is evaluated for SEE mitigative techniques against two commercial 8051 devices.Index TermsSingle Event Effects, Hardened-By-Design, microcontroller, radiation effects.I. INTRODUCTIONNASA constantly strives to provide the best capture of science while operating in a space radiation environment using a minimum of resources [1,2]. With a relatively limited selection of radiation-hardened microelectronic devices that are often two or more generations of performance behind commercialstate-ofthe-art technologies, NASA’s performance of this task is quite challenging. One method of alleviating this is by the use of commercial foundry alternatives with no or minimally invasive design techniques for hardening. This is often called hardened-by-design (HBD).Building custom-type HBD devices using design libraries and automated design tools may provide NASA the solution it needs to meet stringent science performance specifications in a timely,cost-effective, and reliable manner.However, one question still exists: traditional radiation-hardened devices have lot and/or wafer radiation qualification tests performed; what types of tests are required for HBD validation?II. TESTING HBD DEVICES CONSIDERATIONSTest methodologies in the United States exist to qualify individual devices through standards and organizations such as ASTM, JEDEC, and MIL-STD- 883. Typically, TID (Co-60) and SEE (heavy ion and/or proton) are required for device validation. So what is unique to HBD devices?As opposed to a “regular” commercial-off-the-shelf (COTS) device or application specific integrated circuit (ASIC) where no hardening has been performed, one needs to determine how validated is the design library as opposed to determining the device hardness. That is, by using test chips, can we “qualify” a future device using the same library?Consider if Vendor A has designed a new HBD library portable to foundries B and C. A test chip is designed, tested, and deemed acceptable. Nine months later a NASA flight project enters the mix by designing a new device using Vendor A’s library. Does this device require complete radiation qualification testing? To answer this, other questions must be asked.How complete was the test chip? Was there sufficient statistical coverage of all library elements to validate each cell? If the new NASA design uses a partially or insufficiently characterized portion of the design library, full testing might be required. Of course, if part of the HBD was relying on inherent radiation hardness of a process, some of the tests (like SEL in the earlier example) may be waived.Other considerations include speed of operation and operating voltage. For example, if the test chip was tested statically for SEE at a power supply voltage of 3.3V, is the data applicable to a 100 MHz operating frequency at 2.5V? Dynamic considerations (i.e., nonstatic operation) include the propagated effects of Single Event Transients (SETs). These can be a greater concern at higher frequencies.The point of the considerations is that the design library must be known, the coverage used during testing is known, the test application must be thoroughly understood and the characteristics of the foundry must be known. If all these are applicable or have been validated by the test chip, then no testing may be necessary. A task within NASA’s Electronic Parts and Packaging (NEPP) Program was performed to explore these types of considerations.III. HBD TECHNOLOGY EVALUATION USING THE 8051 MICROCONTROLLERWith their increasing capabilities and lower power consumption, microcontrollers are increasingly being used in NASA and DOD system designs. There are existing NASA and DoD programs that are doing technology development to provide HBD. Microcontrollers are one such vehicle that is being investigated to quantify the radiation hardness improvement. Examples of these programs are the 8051 microcontroller being developed by Mission Research Corporation (MRC) and the IAμE (the focus of this study). As these HBD technologies become available, validation of the technology, in the natural space radiation environment, for NASA’s use in spaceflight systems is required.The 8051 microcontroller is an industry standard architecture that has broad acceptance, wide-ranging applications and development tools available. There are numerous commercial vendors that supply this controller or have it integrated into some type of system-on-a-chip structure. Both MRC and IAμE chose this device to demonstrate two distinctly different technologies for hardening. The MRC example of this is to use temporal latches that require specific timing to ensure that single event effects are minimized. The IAμE technology uses ultra low power, and layout and architecture HBD design rules to achieve their results. These are fundamentally different than the approach by Aeroflex-United Technologies Microelectronics Center (UTMC), the commercial vendor of a radiation–hardened 8051, that built their 8051 microcontroller using radiationhardened processes. This broad range of technology within one device structure makes the 8051an ideal vehicle for performing this technology evaluation.The objective of this work is the technology evaluation of the CULPRiT process [3] from IAμE. The process has been baselined against two other processes, the standard 8051 commercial device from Intel and a version using state-of-the-art processing from Dallas Semiconductor. By performing this side-by-side comparison, the cost benefit, performance, and reliability trade study can be done.In the performance of the technology evaluation, this task developed hardware and software for testing microcontrollers. A thorough process was done to optimize the test process to obtain as complete an evaluation as possible. This included taking advantage of the available hardware and writing software that exercised the microcontroller such that all substructures of the processor were evaluated. This process is also leading to a more complete understanding of how to test complex structures, such as microcontrollers, and how to more efficiently test these structures in the future.IV. TEST DEVICESThree devices were used in this test evaluation. The first is the NASA CULPRiT device, which is the primary device to be evaluated. The other two devices are two versions of a commercial 8051, manufactured by Intel and Dallas Semiconductor, respectively.The Intel devices are the ROMless, CMOS version of the classic 8052 MCS-51 microcontroller. They are rated for operation at +5V, over a temperature range of 0 to 70 °C and at a clock speeds of 3.5 MHz to 24 MHz. They are manufactured in Intel’s P629.0 CHMOS III-E process.The Dallas Semiconductor devices are similar in that they are ROMless 8052 microcontrollers, but they are enhanced in various ways. They are rated for operation from 4.25 to 5.5 Volts over 0 to 70 °C at clock speeds up to 25 MHz. They have a second full serial port built in, seven additional interrupts, a watchdog timer, a power fail reset, dual data pointers and variable speed peripheral access. In addition, the core is redesigned so that the machine cycle is shortened for most instructions, resulting in an effective processing ability that is roughly 2.5 times greater (faster) than the standard 8052 device. None of these features, other than those inherent in the device operation, were utilized in order to maximize the similarity between the Dallas and Intel test codes.The CULPRiT technology device is a version of the MSC-51 family compatible C8051 HDL core licensed from the Ultra Low Power (ULP) process foundry. The CULPRiT technology C8051 device is designed to operate at a supply voltage of 500 mV and includes an on-chip input/output signal level-shifting interface with conventional higher voltage parts. The CULPRiT C8051 device requires two separate supply voltages; the 500 mV and the desired interface voltage. The CULPRiT C8051 is ROMless and is intended to be instruction set compatible with the MSC-51 family.V. TEST HARDWAREThe 8051 Device Under Test (DUT) was tested as a component of a functional computer. Aside from DUT itself, the other componentsof the DUT computer were removed from the immediate area of the irradiation beam.A small card (one per DUT package type) with a unique hard-wired identifier byte contained the DUT, its crystal, and bypass capacitors (and voltage level shifters for the CULPRiT DUTs). This "DUT Board" was connected to the "Main Board" by a short 60-conductor ribbon cable. The Main Board had all other components required to complete the DUT Computer, including some which nominally are not necessary in some designs (such as external RAM, external ROM and address latch). The DUT Computer and the Test Control Computer were connected via a serial cable and communications were established between the two by the Controller (that runs custom designed serial interface software). This Controller software allowed for commanding of the DUT, downloading DUT Code to the DUT, and real-time error collection from the DUT during and post irradiation. A 1 Hz signal source provided an external watchdog timing signal to the DUT, whose watchdog output was monitored via an oscilloscope. The power supply was monitored to provide indication of latchup.VI. TEST SOFTWAREThe 8051 test software concept is straightforward. It was designed to be a modular series of small test programs each exercising a specific part of the DUT. Since each test was stand alone, they were loaded independently of each other for execution on the DUT. This ensured that only the desired portion of the 8051 DUT was exercised during the test and helped pinpoint location of errors that occur during testing. All test programs resided on the controller PC until loaded via the serial interface to the DUT computer. In this way, individual tests could have been modified at any time without the necessity of burning PROMs. Additional tests could have also been developed and added without impacting the overall test design. The only permanent code, which was resident on the DUT, was the boot code and serial code loader routines that established communications between the controller PC and the DUT.All test programs implemented:• An external Universal Asynchronous Receive and Transmit device (UART) for transmission of error information and communication to controller computer.• An external real-time clock for data error tag.•A watchdog routine designed to provide visual verification of 8051 health and restart test code if necessary.• A "foul-up" routine to reset program counter if it wanders out of code space.• An external telemetry data storage memory to provide backup of data in the event of an interruption in data transmission.The brief description of each of the software tests used is given below. It should be noted that for each test, the returned telemetry (including time tag) was sent to both the test controller and the telemetry memory, giving the highest reliability that all data is captured.Interrupt –This test used 4 of 6 available interrupt vectors (Serial, External, Timer0 Overflow, and Timer1 Overflow) to trigger routines that sequentially modified a value in the accumulator which was periodically compared to a known value. Unexpected values were transmitted with register information.Logic –This test performed a series of logic and math computations and provided three types of error identifications: 1) addition/subtraction, 2) logic and 3) multiplication/division. All miscompares of computations and expected results were transmitted with other relevant register information.Memory – This test loaded internal data memory at locations D:0x20 through D:0xff (or D:0x20 through D:0x080 for the CULPRiT DUT), indirectly, with an 0x55 pattern. Compares were performed continuously and miscompares were corrected while error information and register values were transmitted.Program Counter -The program counter was used to continuously fetch constants at various offsets in the code. Constants were compared with known values and miscompares were transmitted along with relevant register information. Registers – This test loaded each of four (0,1,2,3) banks of general-purpose registers with either 0xAA (for banks 0 and 2) or 0x55 (for banks 1 and 3). The pattern was alternated in order to test the Program Status Word (PSW) special function register, which controls general-purpose register bank selection. General-purpose register banks were then compared with their expected values. All miscompares were corrected and error information was transmitted.Special Function Registers (SFR) – This test used learned static values of 12 out 21 available SFRs and then constantly compared the learned value with the current one. Miscompares were reloaded with learned value and error information was transmitted.Stack – This test performed arithmetic by pushing and popping operands on the stack. Unexpected results were attributed to errors on the stack or to the stack pointer itself and were transmitted with relevant register information.VII. TEST METHODOLOGYThe DUT Computer booted by executing the instruction code located at address 0x0000. Initially, the device at this location was an EPROM previously loaded with "Boot/Serial Loader" code. This code initialized the DUT Computer and interface through a serial connection to the controlling computer, the "Test Controller". The DUT Computer downloaded Test Code and put it into Program Code RAM (located on the Main Board of the DUT Computer). It then activated a circuit which simultaneously performed two functions: held the DUT reset line active for some time (~10 ms); and, remapped the Test Code residing in the Program Code RAM to locate it to address 0x0000 (the EPROM will no longer be accessible in the DUT Computer's memory space). Upon awaking from the reset, the DUT computer again booted by executing the instruction code at address 0x0000, except this time that code was not be the Boot/Serial Loader code but the Test Code.The Test Control Computer always retained the ability to force the reset/remap function, regardless of the DUT Computer's functionality. Thus, if the test ran without a Single Event Functional Interrupt (SEFI) either the DUT Computer itselfor the Test Controller could have terminated the test and allowed the post-test functions to be executed. If a SEFI occurred, the Test Controller forced a reboot into Boot/Serial Loader code and then executed the post-test functions. During any test of the DUT, the DUT exercised a portion of its functionality (e.g., Register operations or Internal RAM check, or Timer operations) at the highest utilization possible, while making a minimal periodic report to the Test Control Computer to convey that the DUT Computer was still functional. If this reportceased, the Test Controller knew that a SEFI had occurred. This periodic data was called "telemetry". If the DUT encountered an error that was not interrupting the functionality (e.g., a data register miscompare) it sent a more lengthy report through the serial port describing that error, and continued with the test.VIII.DISCUSSIONA. Single Event LatchupThe main argument for why latchup is not an issue for the CULPRiT devices is that the operating voltage of 0.5 volts should be below the holding voltage required for latchup to occur. In addition to this, the cell library used also incorporates the heavy dual guard-barring scheme [4]. This scheme has been demonstrated multiple times to be very effective in rendering CMOS circuits completely immune to SEL up to test limits of 120 MeV-cm2/mg. This is true in circuits operating at 5, 3.3, and 2.5 Volts, as well as the 0.5 Volt CULPRiT circuits. In one case, a 5 Volt circuit fabricated on noncircuits wafers even exhibited such SEL immunity.B. Single Event UpsetThe primary structure of the storage unit used in the CULPRiT devices is the Single Event Resistant Topology (SERT) [5]. Given the SERT cell topology and a single upset node assumption, it is expected that the SERT cell will be completely immune to SEUs occurring internal to the memory cell itself. Obviously there are other things going on. The CULPRiT 8051 results reported here are quite similar to some resultsobtained with a CULPRiT CCSDS lossless compression chip (USES) [6]. The CULPRiT USES was synthesized using exactly the same tools and library as the CULPRiT 8051.With the CULPRiT USES, the SEU cross section data [7] was taken as a function of frequency at two LET values, 37.6 and 58.5 MeV-cm2/mg. In both cases the data fit well to a linear model where cross section is proportional to clock. In the LET 37.6 case, the zero frequency intercept occurred essentially at the zero cross section point, indicating that virtually all of these SEUs are captured SETs from the combinational logic. The LET 58.5 data indicated that the SET (frequency dependent) component is sitting on top of a "dc-bias" component –presumably a second upset mechanism is occurring internal to the SERT cells only at a second, higher LET threshold.The SET mitigation scheme used in the CULPRiT devices is based on the SERT cell's fault tolerant input property when redundant input data is provided to separate storage nodes. The idea is that the redundant input data is provided through a total duplication of combinational logic (referred to as “dual rail design”) such that a simple SET on one rail cannot produce an upset. Therefore, some other upset mechanism must be happening. It is possible that a single particle strike is placing an SET on both halves of the logic streams, allowing an SET to produce an upset. Care was taken to separate the dual sensitive nodes in the SERT cell layouts but the automated place-and-route of the combinatorial logic paths may have placed dual sensitive nodes close enough.At this point, the theory for the CULPRiT SEU response is that at about an LET of 20, the energy deposition is sufficiently wide enough (and in the right locations) to produce an SET in both halves of the combinatorial logic streams. Increasing LET allows for more regions to be sensitive to this effect, yielding a larger cross section. Further, the second SEU mechanism that starts at an LET of about 40-60 has to do with when the charge collection disturbance cloud gets large enough to effectively upset multiples of the redundant storage nodes within the SERT cell itself. In this 0.35 μm library, the node separation is several microns. However, since it takes less charge to upset a node operating at 0.5 Volts, with transistors having effective thresholds around 70 mV, this is likely the effect being observed. Also the fact that the per-bit memory upset cross section for the CULPRiT devices and the commercial technologies are approximately equal, as shown in Figure 9, indicates that the cell itself has become sensitive to upset.IX. SUMMARYA detailed comparison of the SEE sensitivity of a HBD technology (CULPRiT) utilizing the 8051 microcontroller as a test vehicle has been completed. This paper discusses the test methodology used and presents a comparison of the commercial versus CULPRiT technologies based on the data taken. The CULPRiT devices consistently show significantly higher threshold LETs and an immunity to latchup. In all but the memory test at the highest LETs, the cross section curves for all upset events is one to two orders of magnitude lower than the commercial devices. Additionally, theory is presented, based on the CULPRiT technology, that explain these results.This paper also demonstrates the test methodology for quantifying the level of hardness designed into a HBD technology. By using the HBD technology in a real-world device structure (i.e., not just a test chip), and comparing results to equivalent commercial devices, one can have confidence in the level of hardness that would be available from that HBD technology in any circuit application.ACKNOWLEDGEMENTSThe authors of this paper would like to acknowledge the sponsors of this work. These are the NASA Electronic Parts and Packaging Program (NEPP), NASA Flight Programs, and the Defense Threat Reduction Agency (DTRA).。
单片机英文参考文献
单片机英文参考文献篇一:5-单片机+外文文献+英文文献+外文翻译中英对照AT89C51的介绍(原文出处:http:///resource/)描述AT89C51是一个低电压,高性能CMOS8位单片机带有4K字节的可反复擦写的程序存储器(PENROM)。
和128字节的存取数据存储器(RAM),这种器件采用ATMEL公司的高密度、不容易丢失存储技术生产,并且能够与MCS-51系列的单片机兼容。
片内含有8位中央处理器和闪烁存储单元,有较强的功能的AT89C51单片机能够被应用到控制领域中。
功能特性AT89C51提供以下的功能标准:4K字节闪烁存储器,128字节随机存取数据存储器,32个I/O口,2个16位定时/计数器,1个5向量两级中断结构,1个串行通信口,片内震荡器和时钟电路。
另外,AT89C51还可以进行0HZ的静态逻辑操作,并支持两种软件的节电模式。
闲散方式停止中央处理器的工作,能够允许随机存取数据存储器、定时/计数器、串行通信口及中断系统继续工作。
掉电方式保存随机存取数据存储器中的内容,但震荡器停止工作并禁止其它所有部件的工作直到下一个复位。
引脚描述VCC:电源电压 GND:地 P0口:P0口是一组8位漏极开路双向I/O口,即地址/数据总线复用口。
作为输出口时,每一个管脚都能够驱动8个TTL电路。
当“1”被写入P0口时,每个管脚都能够作为高阻抗输入端。
P0口还能够在访问外部数据存储器或程序存储器时,转换地址和数据总线复用,并在这时激活内部的上拉电阻。
P0口在闪烁编程时,P0口接收指令,在程序校验时,输出指令,需要接电阻。
沈阳航空工业学院电子工程系毕业设计(外文翻译)P1口:P1口一个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动4个TTL电路。
对端口写“1”,通过内部的电阻把端口拉到高电平,此时可作为输入口。
因为内部有电阻,某个引脚被外部信号拉低时输出一个电流。
闪烁编程时和程序校验时,P1口接收低8位地址。
单片机英文文献及翻译
附录A英文文献翻译原文Temperature Control Using a Microcontroller:An Interdisciplinary Undergraduate Engineering Design ProjectJames S. McDonaldDepartment of Engineering ScienceTrinity UniversitySan Antonio, TX 78212AbstractThis paper describes an interdisc iplinary design project which was done under the author’s supervision by a group of four senior students in the Department of Engineering Science at Trinity University. The objective of the project was to develop a temperature control system for an air-filled chamber. The system was to allow entry of a desired chamber temperature in a prescribed range and to exhibit overshoot and steady-state temperature error of less than 1 degree Kelvin in the actual chamber temperature step response. The details of the design developed by this group of students, based on a Motorola MC68HC05 family microcontroller, are described. The pedagogical value of the problem is also discussed through a description of some of the key steps in the design process. It is shown that the solution requires broad knowledge drawn from several engineering disciplines including electrical, mechanical, and control systems engineering.1 IntroductionThe design project which is the subject of this paper originated from a real-world application.A prototype of a microscope slide dryer had been developed around an OmegaTM modelCN-390 temperature controller, and the objective was to develop a custom temperature control system to replace the Omega system. The motivation was that a custom controller targeted specifically for the application should be able to achieve the same functionality at a much lower cost, as the Omega system is unnecessarily versatile and equipped to handle a wide variety of applications.The mechanical layout of the slide dryer prototype is shown in Figure 1. The main element of the dryer is a large, insulated, air-filled chamber in which microscope slides, each with a tissue sample encased in paraffin, can be set on caddies. In order that the paraffin maintain the proper consistency, the temperature in the slide chamber must be maintained at a desired (constant) temperature. A second chamber (the electronics enclosure) houses a resistive heater and the temperature controller, and a fan mounted on the end of the dryer blows air across theheater, carrying heat into the slide chamber. This design project was carried out during academic year 1996–97 by four students under the author’s supervision as a Senior Design project in the Department of Engineering Science at Trinity University. The purpose of this paper isto describe the problem and the students’ solution in some detail, and to discuss some of the pedagogical opportunities offered by an interdisciplinary design project of this type. The students’ own report was presented a t the 1997 National Conference on Undergraduate Research [1]. Section 2 gives a more detailed statement of the problem, including performance specifications, and Section 3 describes the students’ design. Section 4 makes up the bulk of the paper, and discusses in some detail several aspects of the design process which offer unique pedagogical opportunities. Finally, Section 5 offers some conclusions.2 Problem StatementThe basic idea of the project is to replace the relevant parts of the functionality of an Omega CN-390 temperature controller using a custom-designed system. The application dictates that temperature settings are usually kept constant for long periods of time, but it’s nonetheless important that step changes be tracked in a “reasonable” manner. Thus the main requirements boil down to·allowing a chamber temperature set-point to be entered,·displaying both set-point and actual temperatures, and·tracking step changes in set-point temperature with acceptable rise time, steady-state error, and overshoot.Although not explicitly a part of the specifications in Table 1, it was clear that the customer desired digital displays of set-point and actual temperatures, and that set-point temperature entry should be digital as well (as opposed to, say, through a potentiometer setting).3 System DesignThe requirements for digital temperature displays and setpoint entry alone are enough to dictate that a microcontrollerbased design is likely the most appropriate. Figure 2 shows a block diagram of the stude nts’ design.The microcontroller, a MotorolaMC68HC705B16 (6805 for short), is the heart of the system. It accepts inputs from a simple four-key keypad which allow specification of the set-point temperature, and it displays both set-point and measured chamber temperatures using two-digit seven-segment LED displays controlled by a display driver. All these inputs and outputs are accommodated by parallel ports on the 6805. Chamber temperature is sensed using apre-calibrated thermistor and input via one of the 6805’s analog-to-digital inputs. Finally, a pulse-width modulation (PWM) output on the 6805 is used to drive a relay which switches line power to the resistive heater off and on.Figure 3 shows a more detailed schematic of the electronics and their interfacing to the 6805. The keypad, a Storm 3K041103, has four keys which are interfaced to pins PA0{ PA3 of Port A, configured as inputs. One key functions as a mode switch. Two modes are supported: set mode and run mode. In set mode two of the other keys are used to specify the set-point temperature: one increments it and one decrements. The fourth key is unused at present. The LED displays are driven by a Harris Semiconductor ICM7212 display driver interfaced to pins PB0{PB6 of Port B, configured as outputs. The temperature-sensing thermistor drives, through a voltage divider, pin AN0 (one of eight analog inputs). Finally, pin PLMA (one of two PWM outputs) drives the heater relay.Software on the 6805 implements the temperature control algorithm, maintains the temperature displays, and alters the set-point in response to keypad inputs. Because it is not complete at this writing, software will not be discussed in detail in this paper. The control algorithm in particular has not been determined, but it is likely to be a simple proportional controller and certainly not more complex than a PID. Some control design issues will be discussed in Section 4, however.4 The Design ProcessAlthough essentially the project is just to build a thermostat, it presents many nice pedagogical opportunities. The knowledge and experience base of a senior engineering undergraduate are just enough to bring him or her to the brink of a solution to various aspects of the problem. Yet, in each case, realworld considerations complicate the situation significantly.Fortunately these complications are not insurmountable, and the result is a very beneficial design experience. The remainder of this section looks at a few aspects of the problem which present the type of learning opportunity just described. Section 4.1 discusses some of the features of a simplified mathematical model of the thermal properties of the system and how it can beeasily validated experimentally. Section 4.2 describes how realistic control algorithm designs can be arrived at using introductory concepts in control design. Section 4.3 points out some important deficiencies of such a simplified modeling/control design process and how they can be overcome through simulation. Finally, Section 4.4 gives an overview of some of the microcontroller-related design issues which arise and learning opportunities offered.4.1 MathematicalModelLumped-element thermal systems are described in almost any introductory linear control systems text, and just this sort of model is applicable to the slide dryer problem. Figure 4 shows a second-order lumped-element thermal model of the slide dryer. The state variables are the temperatures Ta of the air in the box and Tb of the box itself. The inputs to the system are the power output q(t) of the heater and the ambient temperature T¥. ma and mb are the masses of the air and the box, respectively, and Ca and Cb their specific heats. μ1 and μ2 are heat transfer coefficients from the air to the box and from the box to the external world, respectively.It’s not hard to show that the (linearized) state equationscorresponding to Figure 4 areTaking Laplace transforms of (1) and (2) and solving for Ta(s), which is the output of interest, gives the following open-loop model of the thermal system:where K is a constant and D(s) is a second-order polynomial.K, tz, and the coefficients ofD(s) are functions of the variousparameters appearing in (1) and (2).Of course the various parameters in (1) and (2) are completely unknown, but it’s not hard to show that, regardless of their values, D(s) has two real zeros. Therefore the main transfer function of interest (which isthe one from Q(s), since we’ll assume constant ambient temperature) can be writtenMoreover, it’s not too hard to show that 1=tp1 <1=tz <1=tp2, i.e., that the zero lies between the two poles. Both of these are excellent exercises for the student, and the result is the openloop pole-zero diagram of Figure 5.Obtaining a complete thermal model, then, is reduced to identifying the constant K and the three unknown time constants in (3). Four unknown parameters is quite a few, but simple experiments show that 1=tp1 _ 1=tz;1=tp2 so that tz;tp2 _ 0 are good approximations. Thus the open-loop system is essentially first-order and can therefore be written(where the subscript p1 has been dropped).Simple open-loop step response experiments show that,for a wide range of initial temperatures and heat inputs, K _0:14 _=W and t _ 295 s.14.2 Control System DesignUsing the first-order model of (4) for the open-loop transfer function Gaq(s) and assuming for the moment that linear control of the heater power output q(t) is possible, the block diagram of Figure 6 represents the closed-loop system. Td(s) is the desired, or set-point, temperature,C(s) is the compensator transfer function, and Q(s) is the heater output in watts.Given this simple situation, introductory linear control design tools such as the root locus method can be used to arrive at a C(s) which meets the step response requirements on rise time, steady-state error, and overshoot specified in Table 1. The upshot, of course, is that a proportional controller with sufficient gain can meet all specifications. Overshoot is impossible, and increasing gains decreases both steady-state error and rise time.Unfortunately, sufficient gain to meet the specifications may require larger heat outputs than the heater is capable of producing. This was indeed the case for this system, and the result is that the rise time specification cannot be met. It is quite revealing to the student how useful such an oversimplified model, carefully arrived at, can be in determining overall performance limitations.4.3 Simulation ModelGross performance and its limitations can be determined using the simplified model of Figure 6, but there are a number of other aspects of the closed-loop system whose effects on performance are not so simply modeled. Chief among these are·quantization error in analog-to-digital conversion of the measured temperature and· the use of PWM to control the heater.Both of these are nonlinear and time-varying effects, and the only practical way to study them is through simulation (or experiment, of course).Figure 7 shows a SimulinkTM block diagram of the closed-loop system which incorporates these effects. A/D converter quantization and saturation are modeled using standard Simulink quantizer and saturation blocks. Modeling PWM is more complicated and requires a customS-function to represent it.This simulation model has proven particularly useful in gauging the effects of varying thebasic PWM parameters and hence selecting them appropriately. (I.e., the longer the period, the larger the temperature error PWM introduces. On the other hand, a long period is desirable to avoid excessiv e relay “chatter,” among other things.) PWM is often difficult for students to grasp, and the simulation model allows an exploration of its operation and effects which is quite revealing.4.4 The MicrocontrollerSimple closed-loop control, keypad reading, and display control are some of the classic applications of microcontrollers, and this project incorporates all three. It is therefore an excellent all-around exercise in microcontroller applications. In addition, because the project isto produce an actua l packaged prototype, it won’t do to use a simple evaluation board with theI/O pins jumpered to the target system. Instead, it’s necessary to develop a complete embedded application. This entails the choice of an appropriate part from the broad range offered in a typical microcontroller family and learning to use a fairly sophisticated development environment. Finally, a custom printed-circuit board for the microcontroller and peripherals must be designed and fabricated.Microcontroller Selection. In view of existing local expertise, the Motorola line of microcontrollers was chosen for this project. Still, this does not narrow the choice down much. A fairly disciplined study of system requirements is necessary to specify which microcontroller, out of scores of variants, is required for the job. This is difficult for students, as they generally lack the experience and intuition needed as well as the perseverance to wade through manufacturers’ selection guides.Part of the problem is in choosing methods for interfacing the various peripherals (e.g., what kind of display driver should be used?). A study of relevant Motorola application notes [2, 3, 4] proved very helpful in understandingwhat basic approaches are available, and what microcontroller/peripheral combinations should be considered.The MC68HC705B16 was finally chosen on the basis of its availableA/D inputs and PWMoutputs as well as 24 digital I/O lines. In retrospect this is probably overkill, as only oneA/D channel, one PWM channel, and 11 I/O pins are actually required (see Figure 3). The decision was made to err on the safe side because a complete development system specific to the chosen part was necessary, and the project budget did not permit a second such system to be purchased should the firstprove inadequate.Microcontroller Application Development. Breadboarding of the peripheral hardware, development of microcontroller software, and final debugging and testing of a customprinted-circuit board for the microcontroller and peripherals all require a development environment of some kind. The choice of a development environment, like that of themicrocontroller itself, can be bewildering and requires some faculty expertise. Motorola makes three grades of development environment ranging from simple evaluation boards (at around $100) to full-blown real-time in-circuit emulators (at more like $7500). The middle option was chosen for this project: the MMEVS, which consists of _ a platform board (which supports all 6805-family parts), _ an emulator module (specific to B-series parts), and _ a cable and target head adapter (package-specific). Overall, the system costs about $900 and provides, with some limitations, in-circuit emulation capability. It also comes with the simple but sufficient software development environment RAPID [5].Students find learning to use this type of system challenging, but the experience they gain in real-world microcontroller application development greatly exceeds the typical first-course experience using simple evaluation boards.Printed-Circuit Board. The layout of a simple (though definitely not trivial) printed-circuit board is another practical learning opportunity presented by this project. The final board layout, with package outlines, is shown (at 50% of actual size) in Figure 8. The relative simplicity of the circuit makes manual placement and routing practical—in fact, it likely gives better results than automatic in an application like this—and the student is therefore exposed to fundamental issues of printed-circuit layout and basic design rules. The layout software used was the very nice package pcb,2 and the board was fabricated in-house with the aid of our staff electronics technician.5 ConclusionThe aim of this paper has been to describe an interdisciplinary, undergraduate engineering design project: a microcontroller- based temperature control system with digital set-point entry and set-point/actual temperature display. A particular design of such a system has been described, and a number of design issues which arise—from a variety of engineering disciplines—have been discussed. Resolution of these issues generally requires knowledge beyond that acquired in introductory courses, but realistically accessible to advance undergraduate students, especiallywith the advice and supervision of faculty.Desirable features of the problem, from a pedagogical viewpoint, include the use of a microcontroller with simple peripherals, the opportunity to usefully apply introductorylevel modeling of physical systems and design of closed-loop controls, and the need for relatively simple experimentation (for model validation) and simulation (for detailed performance prediction). Also desirable are some of the technologyrelated aspects of the problem including practical use of resistive heaters and temperature sensors (requiring knowledge of PWM and calibration techniques, respectively), microcontroller selection and use of development systems, and printedcircuit design.AcknowledgementsThe author would like to acknowledge the hard work, dedication, and ability shown by the students involved in this project: Mark Langsdorf, Matt Rall, PamRinehart, and David Schuchmann. It is their project, and credit for its success belongs to them.References[1] M. Langsdorf, M. Rall, D. Schuchmann, and P. Rinehart,“Temperature control of a microscope slide dryer,” in1997 National Conference on Undergraduate Research,(Austin, TX), April 1997. Poster presentation.[2] Motorola, Inc., Phoenix, AZ, Temperature Measurementand Display Using the MC68HC05B4 and the MC14489,1990. Motorola SemiconductorApplicationNote AN431.[3] Motorola, Inc., Phoenix, AZ, HC05 MCU LED DriveTechniques Using the MC68HC705J1A, 1995. MotorolaSemiconductor Application Note AN1238.[4] Motorola, Inc., Phoenix, AZ, HC05MCU Keypad DecodingTechniques Using the MC68HC705J1A, 1995. MotorolaSemiconductor Application Note AN1239.[5] Motorola, Inc., Phoenix, AZ, RAPID Integrated DevelopmentEnvironment User’s Manual, 1993. (RAPID wasdeveloped by P & E Microcomputer Systems, Inc.).附录B英文文献翻译中文单片机温度控制:一个跨学科的本科生工程设计项目JamesS.McDonald工程科学系三一大学德克萨斯州圣安东尼奥市78212摘要本文所描述的是作者领导由四个三一大学高年级学生组成的团队进行的一个跨学科工程项目的设计。
毕业设计(论文)外文原文及译文
毕业设计(论文)外文原文及译文一、外文原文MCUA microcontroller (or MCU) is a computer-on-a-chip. It is a type of microcontroller emphasizing self-sufficiency and cost-effectiveness, in contrast to a general-purpose microprocessor (the kind used in a PC).With the development of technology and control systems in a wide range of applications, as well as equipment to small and intelligent development, as one of the single-chip high-tech for its small size, powerful, low cost, and other advantages of the use of flexible, show a strong vitality. It is generally better compared to the integrated circuit of anti-interference ability, the environmental temperature and humidity have better adaptability, can be stable under the conditions in the industrial. And single-chip widely used in a variety of instruments and meters, so that intelligent instrumentation and improves their measurement speed and measurement accuracy, to strengthen control functions. In short,with the advent of the information age, traditional single- chip inherent structural weaknesses, so that it show a lot of drawbacks. The speed, scale, performance indicators, such as users increasingly difficult to meet the needs of the development of single-chip chipset, upgrades are faced with new challenges.The Description of AT89S52The AT89S52 is a low-power, high-performance CMOS 8-bit microcontroller with 8K bytes of In-System Programmable Flash memory. The device is manufactured using Atmel's high-density nonvolatile memory technology and is compatible with the industry-standard 80C51 instruction set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with In-System Programmable Flash on a monolithic chip, the Atmel AT89S52 is a powerful microcontroller which provides a highly-flexible and cost-effective solution to many embedded control applications.The AT89S52 provides the following standard features: 8K bytes ofFlash, 256 bytes of RAM, 32 I/O lines, Watchdog timer, two data pointers, three 16-bit timer/counters, a six-vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator, and clock circuitry. In addition, the AT89S52 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port, and interrupt system to continue functioning. The Power-down mode saves the RAM contents but freezes the oscillator, disabling all other chip functions until the next interrupt or hardware reset.Features• Compatible with MCS-51® Products• 8K Bytes of In-System Programmable (ISP) Flash Memory– Endurance: 1000 Write/Erase Cycles• 4.0V to 5.5V Operating Range• Fully Static Operation: 0 Hz to 33 MHz• Three-level Program Memory Lock• 256 x 8-bit Internal RAM• 32 Programmable I/O Lines• Three 16-bit Timer/Counters• Eight Interrupt Sources• Full Duplex UART Serial Channel• Low-power Idle and Power-down Modes• Interrupt Recovery from Power-down Mode• Watchdog Timer• Dual Data Pointer• Power-off FlagPin DescriptionVCCSupply voltage.GNDGround.Port 0Port 0 is an 8-bit open drain bidirectional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high-impedance inputs.Port 0 can also be configured to be the multiplexed low-order address/data bus during accesses to external program and data memory. In this mode, P0 has internal pullups.Port 0 also receives the code bytes during Flash programming and outputs the code bytes during program verification. External pullups are required during program verification.Port 1Port 1 is an 8-bit bidirectional I/O port with internal pullups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pullups.In addition, P1.0 and P1.1 can be configured to be the timer/counter 2 external count input (P1.0/T2) and the timer/counter 2 trigger input (P1.1/T2EX), respectively.Port 1 also receives the low-order address bytes during Flash programming and verification.Port 2Port 2 is an 8-bit bidirectional I/O port with internal pullups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pullups.Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application, Port 2 uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register.Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.Port 3Port 3 is an 8-bit bidirectional I/O port with internal pullups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IIL) because of the pullups.Port 3 also serves the functions of various special features of the AT89S52, as shown in the following table.Port 3 also receives some control signals for Flash programming and verification.RSTReset input. A high on this pin for two machine cycles while the oscillator is running resets the device. This pin drives High for 96 oscillator periods after the Watchdog times out. The DISRTO bit in SFR AUXR (address 8EH) can be used to disable this feature. In the default state of bit DISRTO, the RESET HIGH out feature is enabled.ALE/PROGAddress Latch Enable (ALE) is an output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming.In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external data memory.If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.PSENProgram Store Enable (PSEN) is the read strobe to external program memory. When the AT89S52 is executing code from external program memory, PSENis activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.EA/VPPExternal Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset. EA should be strapped to VCC for internal program executions.This pin also receives the 12-volt programming enable voltage (VPP) during Flash programming.XTAL1Input to the inverting oscillator amplifier and input to the internal clock operating circuit.XTAL2Output from the inverting oscillator amplifier.Special Function RegistersNote that not all of the addresses are occupied, and unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indeterminate effect.User software should not write 1s to these unlisted locations, since they may be used in future products to invoke new features. In that case, the reset or inactive values of the new bits will always be 0.Timer 2 Registers:Control and status bits are contained in registers T2CON and T2MOD for Timer 2. The register pair (RCAP2H, RCAP2L) are the Capture/Reload registers for Timer 2 in 16-bit capture mode or 16-bit auto-reload mode.Interrupt Registers:The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the six interrupt sources in the IP register.Dual Data Pointer Registers: To facilitate accessing both internal and external data memory, two banks of 16-bit Data Pointer Registers areprovided: DP0 at SFR address locations 82H-83H and DP1 at 84H-85H. Bit DPS = 0 in SFR AUXR1 selects DP0 and DPS = 1 selects DP1. The user should always initialize the DPS bit to the appropriate value before accessing the respective Data Pointer Register.Power Off Flag:The Power Off Flag (POF) is located at bit 4 (PCON.4) in the PCON SFR. POF is set to “1” during power up. It can be set and rest under software control and is not affected by reset.Memory OrganizationMCS-51 devices have a separate address space for Program and Data Memory. Up to 64K bytes each of external Program and Data Memory can be addressed.Program MemoryIf the EA pin is connected to GND, all program fetches are directed to external memory. On the AT89S52, if EA is connected to VCC, program fetches to addresses 0000H through 1FFFH are directed to internal memory and fetches to addresses 2000H through FFFFH are to external memory.Data MemoryThe AT89S52 implements 256 bytes of on-chip RAM. The upper 128 bytes occupy a parallel address space to the Special Function Registers. This means that the upper 128 bytes have the same addresses as the SFR space but are physically separate from SFR space.When an instruction accesses an internal location above address 7FH, the address mode used in the instruction specifies whether the CPU accesses the upper 128 bytes of RAM or the SFR space. Instructions which use direct addressing access of the SFR space. For example, the following direct addressing instruction accesses the SFR at location 0A0H (which is P2).MOV 0A0H, #dataInstructions that use indirect addressing access the upper 128 bytes of RAM. For example, the following indirect addressing instruction, where R0 contains 0A0H, accesses the data byte at address 0A0H, rather than P2 (whose address is 0A0H).MOV @R0, #dataNote that stack operations are examples of indirect addressing, so the upper 128 bytes of data RAM are available as stack space.Timer 0 and 1Timer 0 and Timer 1 in the AT89S52 operate the same way as Timer 0 and Timer 1 in the AT89C51 and AT89C52.Timer 2Timer 2 is a 16-bit Timer/Counter that can operate as either a timer or an event counter. The type of operation is selected by bit C/T2 in the SFR T2CON (shown in Table 2). Timer 2 has three operating modes: capture, auto-reload (up or down counting), and baud rate generator. The modes are selected by bits in T2CON.Timer 2 consists of two 8-bit registers, TH2 and TL2. In the Timer function, the TL2 register is incremented every machine cycle. Since a machine cycle consists of 12 oscillator periods, the count rate is 1/12 of the oscillator frequency.In the Counter function, the register is incremented in response to a1-to-0 transition at its corresponding external input pin, T2. In this function, the external input is sampled during S5P2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which the transition was detected. Since two machine cycles (24 oscillator periods) are required to recognize a 1-to-0 transition, the maximum count rate is 1/24 of the oscillator frequency. To ensure that a given level is sampled at least once before it changes, the level should be held for at least one full machine cycle.InterruptsThe AT89S52 has a total of six interrupt vectors: two external interrupts (INT0 and INT1), three timer interrupts (Timers 0, 1, and 2), and the serial port interrupt. These interrupts are all shown in Figure 10.Each of these interrupt sources can be individually enabled or disabledby setting or clearing a bit in Special Function Register IE. IE also contains a global disable bit, EA, which disables all interrupts at once.Note that Table 5 shows that bit position IE.6 is unimplemented. In the AT89S52, bit position IE.5 is also unimplemented. User software should not write 1s to these bit positions, since they may be used in future AT89 products. Timer 2 interrupt is generated by the logical OR of bits TF2 and EXF2 in register T2CON. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine may have to determine whether it was TF2 or EXF2 that generated the interrupt, and that bit will have to be cleared in software.The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S5P2 of the cycle in which the timers overflow. The values are then polled by the circuitry in the next cycle. However, the Timer 2 flag, TF2, is set at S2P2 and is polled in the same cycle in which the timer overflows.二、译文单片机单片机即微型计算机,是把中央处理器、存储器、定时/计数器、输入输出接口都集成在一块集成电路芯片上的微型计算机。
单片机-毕业论文外文文献翻译
单片机单片机也被称为微控制器(Microcontroller Unit),常用英文字母的缩写MCU 表示单片机,它最早是被用在工业控制领域。
单片机由芯片内仅有CPU的专用处理器发展而来。
最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。
INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。
早期的单片机都是8位或4位的。
其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。
此后在8031上发展出了MCS51系列单片机系统。
基于这一系统的单片机系统直到现在还在广泛使用。
随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。
90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。
随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。
而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。
目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端的型号也只有10美元。
当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。
而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。
单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。
事实上单片机是世界上数量最多的计算机。
现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。
手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。
而个人电脑中也会有为数不少的单片机在工作。
汽车上一般配备40多部单片机,复杂的工业控制系统上甚至可能有数百台单片机在同时工作!单片机的数量不仅远超过PC机和其他计算的总和,甚至比人类的数量还要多。
单片机外文文献翻译(2024)
引言:单片机(Microcontroller)是一种广泛应用于嵌入式系统中的小型计算机芯片。
它集成了处理器核心、存储器、外设接口和时钟电路等核心部件,可以独立运行。
随着全球化的发展,外文文献对于学习和研究单片机领域来说至关重要。
本文翻译的外文文献《MicrocontrollerbasedTrafficLightControlSystem》详细介绍了基于单片机的交通信号灯控制系统。
概述:交通信号灯控制是现代都市交通系统中至关重要的一环。
传统的交通信号灯控制系统通常由定时器控制,不能根据实际交通情况动态调整信号灯的时间。
而基于单片机的交通信号灯控制系统可以实现根据实时交通流量来动态调整信号灯的时间,优化交通效率。
本文将详细介绍该系统的设计和实现。
正文:一、单片机选型1.1.CPU性能:本文选择了一款高性能的32位单片机作为控制核心,它具有较高的处理能力和较大的存储器容量,可以同时处理多条交通路口的信号控制。
1.2.外设接口:该单片机具有丰富的外设接口,可以与交通信号灯、传感器和通信设备等进行连接,实现信号控制和数据交互。
1.3.低功耗设计:为了节约能源和延长系统寿命,在单片机选型时考虑了低功耗设计,降低系统运行的能耗。
二、硬件设计2.1.交通信号灯:在设计交通信号灯时,考虑了日夜可见性和能耗。
采用了高亮度LED作为信号灯光源,同时添加了光敏传感器控制信号灯的亮度,以满足不同时间段的亮度需求。
2.2.传感器:通过安装车辆感应器和行人感应器等传感器,可以在实时监测交通流量的基础上,智能调整信号灯时间,提高路口的交通效率。
2.3.通信设备:在交通信号灯控制系统中引入了通信设备,可以实现各交通路口之间的信息交互和协调控制,提高整体交通系统的效率。
三、软件设计3.1.程序架构:采用了多任务的实时操作系统,将交通信号灯控制、传感器数据处理和通信设备控制等功能分别封装成不同的任务,实现了系统的高效运行和任务调度。
单片机外文翻译---从无线电世界到单片机世界
附录A英文翻译原文From the world of radio in the world to a single chipModern computer technology, industrial revolution, the world economy from the capital into the economy to knowledge economy. Field in the electronic world, from the 20th century into the era of radio to computer technology in the 21st century as the center of the intelligent modern era of electronic systems. The basic core of modern electronic systems are embedded computer systems (referred to as embedded systems), while the microcontroller is the most typical and most extensive and most popular embedded systems.1, radio has created generations of excellence in the worldFifties and sixties in the 20th century, the most representative of the advanced electronic technology is wireless technology, including radio broadcasting, radio, wireless communications (telegraph), Amateur Radio, radio positioning, navigation and other telemetry, remote control, remote technology. Early that these electronic technology led many young people into the wonderful digital world, radio show was a wonderful life, the prospects for science and technology. Electronics began to form a new discipline. Radio electronics, wireless communications began e-world journey.Radio technology not only as a representative of advanced science and technology at that time, but also from popular to professional fields of science, attracting the young people and enable them to find a lot of fun. Ore from the bedside to the superheterodyne radio radio; report issued from the radio amateur radio stations; from the telephone, electric bell to the radio control model. Became popular youth radio technology, science and technology education is the most popular and most extensive content. So far, many of the older generation of engineers, experts, Professor of the year are radio enthusiasts. Fun radio technology, radio technology, comprehensive training, from basic principles of electronics, electronic components to the radio-based remote control, telemetry, remote electronic systems, has trained several generations of technological excellence.2, from the popularity of the radio era to era of electronic technologyThe early radio technology to promote the development of electronic technology, most notably electronic vacuum tube technology to semiconductor electronic technology. Semiconductor technology to realize the active device miniaturization and low cost, so more popular with radio technology and innovation, and to greatly broaden the number of non-radio-control areas.The development of semiconductor technology lead to the production of integrated circuit, forming the modern electronic technology leap from discrete electronics into the era of era of integrated circuits. Electronic design engineers no longer use the discrete electronic components designed circuit modules, and direct selection of integrated circuit components constitute a single system. They freed the design of the circuit unit dedicated to system design, greatly liberating the productive forces of science and technology, promote the wider spread of electronic systems.Semiconductor integrated circuits in the basic digital logic circuits first breakthrough.A large number of digital logic circuits, such as gates, counters, timers, shift registers, and analog switches, comparators, etc., for the electronic digital control provides excellent conditions for the traditional mechanical control to electronic control. Power electronic devices and sensor technology to make the original to the radio as the center of electronic technology turned to mechanical engineering in the field of digitalcontrol systems, testing in the field of information collection, movement of electrical mechanical servo drive control object.Semiconductor and integrated circuit technology will bring us a universal age of electronic technology, wireless technology as the field of electronic technology a part of.70 years into the 20th century, large scale integrated circuit appeared to promote the conventional electronic circuit unit-specific electronic systems development. Many electronic systems unit into a dedicated integrated devices such as radios, electronic clocks, calculators, electronic engineers in these areas from the circuit, the system designed to debug into the device selection, peripheral device adapter work. Electronic technology, and electronic products enriched, electronic engineers to reduce the difficulty, but at the same time, radio technology, electronic technology has weakened the charm. The development of semiconductor integrated circuits classical electronic systems are maturing, remain in the large scale integrated circuit other thanthe shrinking of electronic technology, electronic technology is not the old days of radio fun times and comprehensive engineering training.3, from the classic era of electronic technology to modern electronic technology of the times80 years into the 20th century, the century of economic change is the most important revolution in the computer. The computer revolution in the most important sign is the birth of the computer embedded applications. Modern computer numerical requirements should be born. A long period of time, is to develop the massive computer numerical duty. But the computer shows the logic operation, processing, control, attracting experts in the field of electronic control, they want development to meet the control object requirements of embedded applications, computer systems. If you meet the massive data-processing computer system known as general-purpose computer system, then the system can be the embedded object (such as ships, aircraft, motorcycles, etc.) in a computer system called the embedded computer. Clearly, both the direction of technology development are different. The former requires massive data storage, handling, processing and analysis of high-speed data transmission; while the latter requires reliable operation in the target environment, the external physical parameters on high-speed acquisition, analysis and processing logic and the rapid control of external objects. It will add an early general-purpose computer data acquisition unit, the output driver circuit reluctance to form a heat treatment furnace temperature control system. This general-purpose computer system is not possible for most of the electronic system used, and to make general-purpose computer system meets the requirements of embedded applications, will inevitably affect the development of high-speed numeric processing. In order to solve the contradiction between the development of computer technology, in the 20th century 70s, semiconductor experts another way, in full accordance with the electronic system embedded computer application requirements, a micro-computer's basic system on a chip, the formation of the early SCM (Single Chip Microcomputer). After the advent of single chip in the computer industry began to appear in the general-purpose computer systems and embedded systems the two branches. Since then, both the embedded system, or general-purpose computer systems have been developed rapidly.Although the early general-purpose computer converted the embedded computer systems, and real embedded system began in the emergence of SCM. Because the microcontroller is designed specifically for embedded applications, the MCU can only achieve embedded applications. MCU embedded applications that best meetenvironmental requirements, for example, chip-level physical space, large-scale integrated circuits low-cost, good peripheral interface bus and outstanding control of instruction.A computer system microcontroller core, embedded electronic systems, intelligent electronic systems for the foundation. Therefore, the current single chip electronic system in widespread use of electronic systems to enable rapid transition to the classical modern intelligent electronic systems.4, single chip to create the modern era of electronic systems1 A microcontroller and embedded SystemsEmbedded computer systems from embedded applications, embedded systems for early general-purpose computer adapted to the object system embedded in a variety of electronic systems, such as the ship's autopilot, engine monitoring systems. Embedded system is primarily a computer system, followed by it being embedded into the object system, objects in the object system to achieve required data collection, processing, status display, the output control functions, as embedded in the object system, embedded system computer does not have an independent form and function of the computer. SCM is entirely in accordance with the requirements of embedded system design, so SCM is the most typical embedded systems. SCM is the early application of technical requirements in accordance with the design of embedded computer chip integration, hence the name single chip. Subsequently, the MCU embedded applications to meet the growing demands of its control functions and peripheral interface functions, in particular, highlight the control function, so has international name the single chip microcontroller (MCU, Microcontroller Unit).2 MCU modern electronic systems consisting of electronic systems will become mainstreamMCU is a device-level computer systems, it can be embedded into any object system to achieve intelligent control. Small to micro-machinery, such as watches, hearing aids. Low-cost integrated device-level, low-to a few dollars, ten dollars, enough to spread to many civilian SCM appliances, electronic toys to go. SCM constitutes a modern electronic systems has in-depth to the households, are changing our lives, such as home audio, televisions, washing machines, microwave ovens, telephones, security systems, and air conditioners. SCM innovation the original electronic systems, such as microwave ovens use SCM, it can easily set the clock, the program memory, power control; air conditioner after use of SCM is not only convenient for remote parameter setting, running automatically transform, frequency control can be achieved. At present, many household appliances such as VCD, DVD only single chip to achieve its function may occur before.3 Embedded Systems led the entire electronics industryCurrent electronic components industry, in addition to microprocessors, embedded system devices, the most modern electronic systems around the supporting components industries, such as keys used to meet the human-computer interaction, LED / LCD display drivers, LED / LCD display units, voice integrated device, etc., to meet the requirements of data acquisition channel digital sensor, ADC, data acquisition module, signal conditioning modules to meet the servo drive control in the DAC, solid state relays, stepper motor controller, frequency control unit, etc., to meet the communication requirements various bus driver, level converters.Electronic components in the embedded systems world, driven by embedded applications along fully meet requirements of modern electronic systems development.This makes the original classic world of increasingly small electronicsystems. Practitioners in the various electronic systems to modern electronic systems as early as possible to stay.5, SCM will create a new generation of electronic eliteIf the 50's, radio has created several generations of the world elite, then today's SCM will create a new generation of e-world elite.1 A single chip with you to the intelligent electronicsIf we as a dead classic electronic system electronic system, then the intelligent modern electronic systems is a "life" of the electronic system. Application System of hardware, electronic systems, "body", microcontroller applications, the application gives it "life." For example, in the design of intelligent machines monitor display, it can boot the system self-test results show, not to enter the work shows a variety of stand-by state, equipment run-time display running processes, work can be displayed after the end of the current results, self results, raw data, reports and other various processing. Unattended, it can run automatically given a variety of functions.Intelligent electronic systems for the endless realm, often without additional hardware resources can achieve all kinds of renovated function. It is also present in many household appliances feature a large number of additional factors.2 single chip computer with you to the industrial areaThe 21st century is the century of humanity into the computer age, many people are not used in the manufacture of computer is the computer. People using the computer, only the people engaged in embedded system applications really into the internal computer system hardware and software systems, can we truly understand the nature of the computer's intelligence and grasp the knowledge of intelligent design. MCU applications starting from the learning technology applications in today's computer software training, hardware and technical personnel of one of the best roads.3 SCM bring you into the most attractive in the digital worldCharming single chip to enable you to experience the true meaning of the computer, you can design intelligent microcontroller hands-on toys, different applications can be designed to achieve different functions. Both software design and hardware making there, both mental and physical, but also hands. Primary level can develop intelligent toys, with macro programming. Intermediate levels can develop some intelligent controller, such as computer mouse, smart cars, all kinds of remote control model. High levels can be developed robots, such as robot soccer, the development of industrial control units, network communications, and high-level language with assembly language or design application. Microcontroller and embedded systems around the formation of the future of the electronics industry, will provide a vast world of electronic fans, an even broader than the current wireless world, richer, more durable, more attractive in the digital world. Plunge into the microcontroller in the world to, will benefit your life.附录B英文翻译译文从无线电世界到单片机世界现代计算机技术的产业革命,将世界经济从资本经济带入到知识经济时代.在电子世界领域,从20世纪中的无线电时代也进入到21世纪以计算机技术为中心的智能化现代电子系统时代.现代电子系统的基本核心是嵌入式计算机系统(简称嵌入式系统),而单片机是最典型,最广泛,最普及的嵌入式系统.一, 无线电世界造就了几代英才在20世纪五六十年代,最具代表的先进的电子技术就是无线电技术,包括无线电广播,收音,无线通信(电报),业余无线电台,无线电定位,导航等遥测,遥控,遥信技术.早期就是这些电子技术带领着许多青少年步入了奇妙的电子世界,无线电技术展示了当时科技生活美妙的前景.电子科学开始形成了一门新兴学科.无线电电子学,无线通信开始了电子世界的历程.无线电技术不仅成为了当时先进科学技术的代表,而且从普及到专业的科学领域,吸引了广大青少年,并使他们从中找到了无穷的乐趣.从床头的矿石收音机到超外差收音机;从无线电发报到业余无线电台;从电话,电铃到无线电操纵模型.无线电技术成为当时青少年科普,科技教育最普及,最广泛的内容.至今,许多老一辈的工程师、专家、教授当年都是无线电爱好者.无线电技术的无穷乐趣,无线电技术的全面训练,从电子学基本原理,电子元器件基础到无线电遥控,遥测,遥信电子系统制作,培养出了几代科技英才.二, 从无线电时代到电子技术普及时代早期的无线电技术推动了电子技术的发展,其中最主要的是真空管电子技术向半导体电子技术的发展.半导体电子技术使有源器件实现了微小型化和低成本,使无线电技术有了更大普及和创新,并大大地开阔了许多非无线电的控制领域.半导体技术发展导致集成电路器件的产生,形成了近代电子技术的飞跃,电子技术从分立器件时代走进了电路集成时代.电子设计工程师不再用分立的电子元器件设计电路单元,而直接选择集成化的电路单元器件构成系统.他们从电路单元设计中解放出来,致力于系统设计,大大地解放了科技生产力,促进了电子系统更大范围的普及.半导体集成电路首先在基本数字逻辑电路上取得突破.大量数字逻辑电路,如门电路,计数器,定时器,移位寄存器以及模拟开关,比较器等,为电子数字控制提供了极佳的条件,使传统的机械控制转向电子控制.功率电子器件以及传感技术的发展使原先以无线电为中心的电子技术开始转向工程领域中的机械系统的数字控制,检测领域中的信息采集,运动机械对象的电气伺服驱动控制.半导体及其集成电路技术将我们带入了一个电子技术普及时代,无线电技术成为电子技术应用领域的一个部分.进入20 世纪70 年代,大规模集成电路出现,促进了常规的电子电路单元的专用电子系统发展.许多专用电子系统单元变成了集成化器件,如收音机,电子钟,计算器等,在这些领域的电子工程师从电路,系统的精心设计,调试转变为器件选择,外围器件适配工作.电子技术发展了,电子产品丰富了,电子工程师的难度减少了,但与此同时,无线电技术,电子技术的魅力却削弱了.半导体集成电路的发展使经典电子系统日趋完善, 留在大规模集成电路以外的电子技术日益减少,电子技术没有了往昔无线电时代的无穷乐趣和全面的工程训练.三, 从经典电子技术时代到现代电子技术时代进入20世纪80年代,世纪经济中最重要的变革是计算机的产业革命.而计算机产业革命的最重要标志则是计算机嵌入式应用的诞生.近代电子计算机是应数值计算要求诞生的.在很长的时间内,电子计算机都是以发展海量数值计算为己任.但是电子计算机表现出的逻辑运算,处理,控制能力,吸引了电子控制领域的专家,他们要求发展能满足控制对象要求,实现嵌入式应用的计算机系统.如果将满足海量数据处理的计算机系统称为通用计算机系统,那么则可把嵌入到对象体系(如舰船、飞机、机车等) 中的计算机系统称作嵌入式计算机.显而易见,两者的技术发展方向是不同的.前者要求海量数据存储,吞吐,高速数据处理分析及传输;而后者要求在对象环境中可靠运行,对外部物理参数的高速采集,逻辑分析处理和对外部对象的快速控制等.早期人们将通用计算机加上数据采集单元,输出驱动电路勉为其难地构成一个热处理炉的温控系统.这样的通用计算机系统不可能为大多数电子系统采用,而且要使通用计算机系统满足嵌入式应用要求,必然影响高速数值处理技术的发展.为了解决计算机技术发展的矛盾,在20世纪70年代,半导体专家另辟蹊径,完全按照电子系统的计算机嵌入式应用要求,将一个微型计算机的基本系统集成在一个芯片上,形成了早期的单片机(Single Chip Microcomputer).单片机问世后,在计算机领域中开始出现了通用计算机系统和嵌入式系统的两大分支.此后, 无论是嵌入式系统,还是通用计算机系统都得到了飞速的发展.早期虽然有通用计算机改装而成的嵌入式计算机系统,而真正意义上的嵌入式系统始于单片机的出现.因为单片机是专门为嵌入式应用设计的,单片机只能实现嵌入式应用.单片机能最好地满足嵌入式应用的环境要求,例如,芯片级的物理空间,大规模集成电路的低价位,良好的外围接口总线和突出控制功能的指令系统.单片机有计算机系统内核,嵌入到电子系统中,为电子系统智能化奠定了基础.因此,当前单片机在电子系统中的广泛使用,使经典电子系统迅速过渡到智能化的现代电子系统.四, 单片机开创了现代电子系统时代1 单片机与嵌入式系统嵌入式系统源于计算机的嵌入式应用,早期嵌入式系统为通用计算机经改装后嵌入到对象体系中的各种电子系统,如舰船的自动驾驶仪,轮机监测系统等.嵌入式系统首先是一个计算机系统,其次它被嵌入到对象体系中,在对象体系中实现对象要求的数据采集,处理,状态显示,输出控制等功能,由于嵌入在对象体系中,嵌入式系统的计算机没有计算机的独立形式及功能.单片机完全是按照嵌入式系统要求设计的,因此单片机是最典型的嵌入式系统.早期的单片机只是按嵌入式应用技术要求设计的计算机单芯片集成,故名单片机.随后,单片机为满足嵌入式应用要求不断增强其控制功能与外围接口功能,尤其是突出控制功能,因此国际上已将单片机正名为微控制器(MCU,Microcontroller Unit).2 单片机构成的现代电子系统将成为主流电子系统单片机是器件级计算机系统,它可以嵌入到任何对象体系中去,实现智能化控制.小到微型机械,如手表,助听器.集成器件级的低价位,低到几元,十几元,足以使单片机普及到许多民用家电,电子玩具中去.单片机构成的现代电子系统已深入到各家各户,正改变我们的生活,如家庭中的音响,电视机,洗衣机,微波炉,电话,防盗系统,空调机等.单片机革新了原有电子系统,如微波炉采用单片机控制后,可方便地进行时钟设置,程序记忆,功率控制;空调机采用单片机后不但遥控参数设置方便, 运行状态自动变换,还可实现变频控制.目前许多家用电器如VCD,DVD 只有单片机出现后才可能实现其功能.3 嵌入式系统带动了整个电子产业目前电子元器件产业除了微处理器,嵌入式系统器件外,大多是围绕现代电子系统配套的元器件产业,例如满足人机交互用的按键,LED/LCD 显示驱动,LED/LCD 显示单元,语音集成器件等,满足数据采集通道要求的数字传感器,ADC,数据采集模块,信号调理模块等,满足伺服驱动控制的DAC,固体继电器,步进电机控制器,变频控制单元等,满足通信要求的各种总线驱动器,电平转换器等.世界电子元器件在嵌入式系统带动下,沿着充分满足嵌入式应用的现代电子系统要求发展.这就使原来经典电子系统的天地愈来愈小.电子系统中的各类从业人员应尽早转向现代电子系统的康庄大道.五, 单片机将造就新一代电子精英如果说五十年代起,无线电世界造就了几代精英,那么当今的单片机世界将会造就出新一代电子精英.1 单片机带你进入智能化电子领域若将经典电子系统当作一个僵死的电子系统,那么智能化的现代电子系统则是一个具有"生命"的电子系统.单片机应用系统的硬件结构给予电子系统"身躯",单片机应用系统的应用程序赋予其"生命".例如,在设计智能化仪器显示器的显示功能时,可在开机时显示系统自检结果,未进入工作时显示各种待机状态,仪器运行时显示运行过程,工作结束后可显示当前结果,自检结果,原始数据,各种处理报表等.在无人值守时,可给定各种自动运行功能.电子系统的智能化为无止境境界,常常不需硬件资源的增添就能实现各种翻新功能.这也是当前许多家用电器功能大量增设的因素之一.2 单片机带你进入计算机工控领域21 世纪是全人类进入计算机时代的世纪,许多人不是在制造计算机便是在使用计算机.在使用计算机的人们中,只有从事嵌入式系统应用的人才真正地进入到计算机系统的内部软,硬件体系中,才能真正领会计算机的智能化本质并掌握智能化设计的知识.从学习单片机应用技术入手是当今培养计算机应用软,硬件技术人才的最佳道路之一.3 单片机带你进入最具魅力的电子世界独具魅力的单片机能使你体会到电脑的真谛,你可以用单片机亲自动手设计智能玩具,可以设计不同的应用程序实现不同的功能.既有硬件制作又有软件设计,既动脑,又动手.初级水平可开发智能玩具,用宏指令编程.中级水平可开发一些智能控制器,如电脑鼠,智能车,各种遥控模型.高级水平可开发机器人,如机器人足球赛,开发工业控制单元,网络通信等,并用汇编语言或高级语言设计应用程序.围绕单片机及嵌入式系统形成的电子产业的未来,将会为电子爱好者提供广阔的天地,一个比当年无线电世界更广阔,更丰富,更持久,更具魅力的电子世界.投身到单片机世界来,将使你一生受益./。
单片机外文翻译外文文献英文文献单片机的发展与应用
单片机外文翻译外文文献英文文献单片机的发展与应用THE Application and Development ofMicrocontroller UnitMonolithic integrated circuits are a computer chip. It uses tec hnology will have a data processing ability of the microprocessor (cpu), storage in rom (program memory and data storage ram ), the input, output interfaces circuit (I/O) integration interface i tu rned around with a chip in that small, constitutes a very good and the computer hardware system, where the application under the c ontrol of a monolithic integrated circuits can be accurate, fast and efficient procedures provided in advance to complete the task. So, a monolithic integrated circuits will have a computer chip of all t he functions.Thus, the microprocessor (monolithic integrated circuits has generally cpu )chips are not functional, it can independently com plete modern industrial control required for intelligent control func tions, it is monolithic integrated circuits of the biggest characteristi c.Monolithic integrated circuits, however, and different from mac hines ( a microprocessor chips, the memory chip and input and o utput interfaces chip in with a piece of printed circuit board of a microcomputer ), Monolithic integrated circuits chip in developing ago, it is only a function vlsi will have a strong, If of application development, it is a small microcomputer control system, but it m achine or a personal computer (pc is essential. the difference betw een).Monolithic integrated circuits of the application of chips at the level of application, the user (monolithic integrated circuits lear ners with users understand the structure of the chip )monolithic integrated circuits and instruction system, and the integrated use o f technology and system design to the theory and techniques, in th is particular chip design application, thereby, the chip with a parti cular function.Different monolithic integrated circuits have different hardware and software, or the technical features are different, Character de pends on a hardware chip monolithic integrated circuits the intern al structure of the user to use some monolithic integrated circuits, we must know this type of product whether to meet the needs of the facilities and application of the indicators required. The tech nical features include functional characteristics, control and electric al attributes, These information to manufacturers in the technical manual. Software features refers to an instruction system and devel opment support of the environment, the quality of instruction or monolithic integrated circuits for reference, data processing and log ical processing, output characteristics and to the power input requi rements, etc. Development support of the environment, including th e instructions of compatible and portable. support software (contai ns can support the development and application software and hard ware resources. resources). To take advantage of the model of deve lopment of a monolithic integrated circuits application systems, lea rn its structural features and technological characteristic is require d.Monolithic integrated circuits to control system will ever use o f sophisticated electronic circuit or circuit, a control system to achi eve the software controls and enable intelligent, It is monolithic in tegrated circuits to control areas, such as communications products and household appliances, the instruments and processes to contr ol and control devices, theapplication of more monolithic integrate d circuits sector.Monolithic integrated circuits, of course, the application is not limited to the application or the category of the economic perfor mance is more important it is a fundamental change in the traditi onal methods designed to control and mind control techniques. it i s a revolution is an important milestone.Can say now is the policy, a hundred schools of thought conte nd "monolithic integrated circuits, World chip all the company unv eiled his monolithic integrated circuits, from 8, 16 to 32 bits, and,with mainstream c51 series of, and there is not compatible with e ach other, but they, as complementary to monolithic integrated circ uits, the application of the world provide a broad.Throughout monolithic integrated circuits of the development p rocess, the trend of a monolithic integrated circuits, has :1.the low TDP COMSMcs -51 8031 a series of TDP for 630mw, and now a monolit hic integrated circuits, and generally in 100mw. As to ask for lowe r TDP monolithic integrated circuits, and now each monolithic inte grated circuits are used in the basic cmos (complementary metal o xides semiconductor technology). Like 80c51 adopt a hmos (the hig h density metal oxides semiconductor technology) and chmos (com plementary high density metal oxides semiconductor technology). C mos although TDP low, but owing to their physical characteristics to their work at a speed isn't high enough, but it has a high-spee d chmos TDP and low, these features are more appropriate to ask for lower TDP in a battery operated applications. so this process will be for a period of development. the main way to monolithic i ntegrated circuits。
单片机论文外文文献和中文翻译(有出处)
微机发展简史IEEE的论文剑桥大学,2004/2/5莫里斯威尔克斯计算机实验室剑桥大学第一台存储程序的计算开始出现于1950前后,它就是1949年夏天在剑桥大学,我们创造的延迟存储自动电子计算机(EDSAC)。
最初实验用的计算机是由象我一样有着广博知识的人构造的。
我们在电子工程方面都有着丰富的经验,并且我们深信这些经验对我们大有裨益。
后来,被证明是正确的,尽管我们也要学习很多新东西。
最重要的是瞬态一定要小心应付,虽然它只会在电视机的荧幕上一起一个无害的闪光,但是在计算机上这将导致一系列的错误。
在电路的设计过程中,我们经常陷入两难的境地。
举例来说,我可以使用真空二级管做为门电路,就象在EDSAC中一样,或者在两个栅格之间用带控制信号的五级管,这被广泛用于其他系统设计,这类的选择一直在持续着直到逻辑门电路开始应用。
在计算机领域工作的人都应该记得TTL,ECL和CMOS,到目前为止,CMOS已经占据了主导地位。
在最初的几年,IEE(电子工程师协会)仍然由动力工程占据主导地位。
为了让IEE 认识到无线工程和快速发展的电子工程并行发展是它自己的一项权利,我们不得不面对一些障碍。
由于动力工程师们做事的方式与我们不同,我们也遇到了许多困难。
让人有些愤怒的是,所有的IEE出版的论文都被期望以冗长的早期研究的陈述开头,无非是些在早期阶段由于没有太多经验而遇到的困难之类的陈述。
60年代的巩固阶段60年代初,个人英雄时代结束了,计算机真正引起了重视。
世界上的计算机数量已经增加了许多,并且性能比以前更加可靠。
这些我认为归因与高级语言的起步和第一个操作系统的诞生。
分时系统开始起步,并且计算机图形学随之而来。
综上所述,晶体管开始代替正空管。
这个变化对当时的工程师们是个不可回避的挑战。
他们必须忘记他们熟悉的电路重新开始。
只能说他们鼓起勇气接受了挑战,尽管这个转变并不会一帆风顺。
小规模集成电路和小型机很快,在一个硅片上可以放不止一个晶体管,由此集成电路诞生了。
单片机 外文翻译 外文文献 英文文献ROM的单片机
单片机外文翻译外文文献英文文献ROM的单片机外文翻译外文原文Method of manufacturing a single chip semiconductor integratedcircuit device including a mask rom in a short timeThis application is based upon and claims the benefit of priorityfrom Japanese patent application No. 2006-207797, filed on Jul. 31, 2006, the disclosure of which is incorporated herein its entirety by reference.BACKGROUND OF THE INVENTIONThis invention relates to a method of manufacturing a single chip semiconductor integrated circuit device (a microcontroller) and a method of debugging a program of the single chip semiconductor integratedcircuit device.As well know in the art, a microcomputer is defined by aminiaturized electronic computer constituted by a microprocessor. The microprocessor is a processor where in a central processing unit (CPU)of the computer is integrated on one or few large-scale integratedcircuits (LSIs). The microcomputer normally comprises the CPU, aninput/output device, and a main memory device. The main memory device comprises a random access memory (RAM) and a read only memory (ROM). An input/output control LSI is used as a connecting circuit portion for the input/output device. A single chip microcomputer is a microcomputerwhere the CPU, the RAM, the ROM, and the input/output LSI are mounted ina one chip. The single chip microcomputer is called a one chip microcomputer.A program is read from an outside of a chip of the microprocessor while the program is preliminarily installed in the inside in the chip of the signal chip microcomputer. The microprocessor is capable of changing processing contents by renewing the program of the outside while it is almost impossible for the single chip microcomputer to change processing contents by a user because the program is already installed in the inside in the chip thereof. Herein, the program is preliminarily stored in the ROM.In addition, as well know in the art, read only memories (ROMs) are broadly divided into mask ROMs wherein wiring of contents is carried out at a manufacturing process in a semiconductor maker and programmable ROMs (PROMs) where a user can electrically write with the program therein.The mask ROMs can be manufactured at the lowest price among the semiconductor memories in principle. Therefore, products having a large memory capacity are manufactured as the mask ROMs. On the other hand, the programmable ROMs have features wherein the writing of the program can carry out by a user at hand. The programmable ROMs are classified into EPROM in a narrow sense wherein the user can program only once, erasable and programmable ROMs (EPROMs) which can be electrically programmed and can be erased by ultraviolet light or the like, and electrically erasable programmable ROMs (EEPROMs).In the EPROM, the user can program and all of data can be erased by irradiating it with ultraviolet light to be enable to rewrite therein. Inasmuch as a glass window for erasing by ultraviolet light is required in the EPROM, the EPROM is commonly contained in a ceramic package. There is a one time programmable ROM (OTP) as the EPROM in a narrow sense. The OPT comprises a semiconductor chip embedded there in that is similar to that of the EPROM but the OTP cannot be erased by ultraviolet light because the OTP comprises a package with no window. By using an ordinary EPROM programmer, the user can program information to each memory cell in the OTP only once. The OTP has a cost which is higher than that of the mast ROM and which is lower than that of the EPROM. There is a flash EEPROM as a kind of the EEROMs. The flash EEPROM is also called a flash memory which can electrically erase all of bit contents (which may erase every block) to rewrite contents therein among the programmable read only memories (PROMs).Such a single chip microcomputer is mounted in an ordinary electric calculator, a printer, a keyboard, a microprocessor-controlled automatic (electric) rice cooker, a microprocessor-controlled camera, an engine controller for an automobile, an so on. Inasmuch as the single chip microcomputer mainly often controls operations of its equipment with it installed in the equipment, the single chip microcomputer may be called a microcontroller. In addition, the microcontroller is a kind of the single chip semiconductor integrated circuit devices.In order to effectively carry out development of the equipment (an electronic device) in which such a single chip microcomputer (microcontroller) is installed, various development systems (development tools) are delivered by semiconductor makers or development tool makers. Inasmuch as the single chip microcomputer (microcontroller) comprises hardware and software which are closely related to each other and has a short time period of development, debug of the software and checking of the hardware must be simultaneously carried out. That is, development of the hardware and the software must often carried out concurrently. In this event, the debug of the software is required with a yet-to-be-completed hardware.There is an emulator as one of debug tools (development tools). Herein, the emulator is a device or a computer program for imitating, by using a system, another system. With the help of the emulator, verification of functional operations of the equipment (electronic device) installed with the software is carried out. Emulators are divided into an in-circuit emulator (ICE) which is used with it directly connected to the equipment (the electronic device) under development and a software emulator using a logic simulator. That is, the in-circuit emulator is a development tool for supporting the verification of the functional operations of the equipment (electronic device) by directly connecting it to the equipment (electronic device) mounting a program-controlled microcontroller under development.Usually, development of the hardware of the microcontroller iscarried out by the semiconductor maker side while development of the software of the microcontroller is carried out by the user side. That is, development of the microcontroller is carried out by cooperative working of the semiconductor maker and the user.Now, the description will proceed to a conventional method of manufacturing ofa microcontroller. Herein, the description will be directed to the method of manufacturing, as an ultimate product, a microcontroller comprising a mask ROM in which an ultimate program is stored.[0013]First of all, between the semiconductor maker and the user, investigation of specifications of the microcontroller (the single chip semiconductor integrated circuit device) to be manufactured is carried out. Herein, the ultimate microcontroller to be manufactured comprises a CPU, an RAM, a mask ROM, and an input/output control LSI which are incorporated into a one chip. In addition, the CPU, the RAM, the mask ROM, and the input/output control LSI are mutually connected to each other via an internal bus. The internal bus comprises an address bus and a data bus.The semiconductor maker provides the user with the emulator (the software emulator and the in-circuit emulator) as the envelopment tool while the user develops, by using the emulator, software (a program) to be stored in the above-mentioned mask ROM.Subsequently, the semiconductor maker designs a product in OTP version and the user carries out debug of the program using the software emulator. Herein, the product in OTP version (a provisional microcontroller) to be designed comprises a CPU, an RAM, the OTP, and an input/output control LSI which are incorporated into a one chip. In other words, the provisional microcontroller is similar in structure to the ultimate microcontroller except that the OTP is used in lieu of the mask ROM. However, any program is not stored in the OTP and storing of the program to the OTP is carried out by the user side in the manner which will later be described. The provisional microcontroller is sealed in a semiconductor package. On the other hand, carried out by the user, debug of the program using the software emulator is carried out with the hardware put into a yet-to-be-completed state.The semiconductor maker provides the user with a plurality of the provisional microcontrollers which are similar in structure to one another. The user stores, by using the EPROM programmer (writer), a provisional program (which is a program debugged by using the software emulator) in the OTP in one selected from the plurality of the provisional microcontrollers, mounts the selected provisional microcontroller in question in an equipment (a target board), andcarries out a test of the provisional program. That is, by using the above-mentioned in-circuit emulator, the user carries out verification of functional operations of the equipment (target board). In the manner which is described above, the OTP is a PROM in which information can bewritten only once. Accordingly, if any correction place (error) is found out in the provisional program by the test, the user stores a corrected provisional program in another provisional microcontroller, and carries out retest and re-correction of the corrected provisional program. That is, the test and the correction (the retest and the re-correction) of the provisional program is repeatedly carried out. By repeating operations of the test and the correction (the retest and the re-correction) for the provisional program, an ultimate program is determined by the user side.On the other hand, after the provisional controllers are provided to the user, the semiconductor maker subsequently carries out design of a produce in mask ROM version. Herein, the product in mask ROM version (an actual microcontroller to bemounted in the equipment) to be designed comprises a CPU, an ROM,the mask ROM, and an input/output control LSI which are incorporated in a one chip. However, at this time instance, the ultimate program has yet to be written in the mask ROM of the actual microcontroller.[0018]The user sends (provides) the above-mentioned determined ultimate program to the semiconductor maker. The semiconductor maker stores, using ion implantation, the ultimate program in the mask ROM of the actual microcontroller, thereby a microcontroller as the ultimate product is manufactured. In addition, the microcontroller manufacturedin the manner which is described above is sealed in a semiconductor package and is produced in large quantity. And, ultimatemicrocontrollers produced in large quantity are provided to the user. [0019]The user mounts the ultimate microcontrollers in the respective equipments (electronic devices), thereby the equipments are produced in large quantity.Although the above-mentioned microcontroller comprises one semiconductor chip, U.S. Pat. No. 7,199,469 or U.S. Pat. No. 7,199,469B2 issued to Ishida et al. discloses a semiconductor device (a microcontroller) having stacked two semiconductor chips sealed with a resin seal member. As the semiconductor device, a semiconductor device called a multi chip package (MCP) type is known. Although ones having various structures are developed and manufactured in the MCP type semiconductor devices, the MCP type semiconductor device comprising the stacked two semiconductor devices sealed with the resin seal member becomes most widespread. Ishida et al. discloses the semiconductordevice wherein a chip for a microcomputer (a first semiconductor chip) and a chip for EEPROM (a second semiconductor chip) are incorporated in a package. That is, Ishida et al. discloses the semiconductor device wherein the chip for EEPROM (the second semiconductor chip) is stackedon the chip for the microcomputer (the first semiconductor chip) and the two chips are sealed with the resin seal member. The chip for the microcomputer comprises a processor unit (CPU), an ROM unit, an RAM unit, a timer unit, an A/D conversion unit, a serial communication interface unit, a data input/output circuit unit, and so on which are mounted on the same board. Those units are mutually connected through a data busand an address bus. The processor unit mainly comprises a central processing portion, a control circuit portion, an arithmetic circuit portion, and so on. The chip for the microcomputer having such a structure is operated by a program. On the other hand, the chip for the EEPROM comprises a serial communication interface unit, a nonvolatile storage unit, and so on which are mounted on the same board. According to Ishida et al., electrical connection between the first semiconductor chip and the second semiconductor chip is carried out by internal leads among leads disposed around the first semiconductor chip and two bonding wires. [0021]In addition, United States Patent Application Publication No. 2002/0027281 A1 or US 2002/0027281 A1 discloses a multi chip package (a semiconductor device) which is capable of controlling a rise in temperature, which occurs inside a package due to heat (self-heating) radiated from a semiconductor chip. According to US 2002/0027281 A1, the multi chip package constructing a microcontroller comprises a lower semiconductor chip on which the microcontroller including a mask ROM is formed and an upper semiconductor chip including flash memory mounted on the lower semiconductor chip. Inasmuch as no transistor is formed on the lower semiconductor chip under the upper semiconductor chip, it is possible to neglect the self-heating in this area. In addition, US 2002/0027281 A1 discloses an embodiment wherein transistors having a mask ROM function are formed on the lower semiconductor chip at a mounting area (a substantially central area) for the upper semiconductor chip and the upper semiconductor chip (the flash memory)is mounted on the mounting area. In this event, the mask ROM function in the lower semiconductor chip is discarded.In the above-mentioned conventional method of manufacturing the microcontroller, the semiconductor maker must carry out design of two kinds of products, namely, design of a product of the OTP version and design of a product of the mask ROM version. As a result, the conventional method is disadvantageous in that it takes very much time (e.g. one year or one and half years) to develop the microcontroller as the ultimate product.In addition, the product of the OTP version and the product of the mask ROM version are a pin-for-pin equivalent in a package state and can be substituted by each other. However, the product of the OTP version and the product of the mask ROM version are different from each other as semiconductor chips and cannot be compatible in characteristics in abundance. That is, when the product of the mask ROM version is replaced with the product of the OTP which is completed with evaluation, there are cases where a malfunction such as no operation occurs. 译文在短时间内制造集成在电路器件中含有掩膜ROM的单片机的方法此应用程序是基于在2006年7月31日从日本申请的专利号2006-207797中,提交了关于披露注册在这里的完整参考,拥有优先索赔利益的权利。
单片机英文文献外文翻译
单片机英文文献Principle of MCUSingle-chip is an integrated on a single chip a complete computer system. Even though most of his features in a small chip, but it has a need to complete the majority of computer components: CPU, memory, internal and external bus system, most will have the Core. At the same time, such as integrated communication interfaces, timers, real-time clock and other peripheral equipment. And now the most powerful single-chip microcomputer system can even voice, image, networking, input and output complex system integration on a single chip.Also known as single-chip MCU (Microcontroller), because it was first used in the field of industrial control. Only by the single-chip CPU chip developed from the dedicated processor. The design concept is the first by a large number of peripherals and CPU in a single chip, the computer system so that smaller, more easily integrated into the complex and demanding on the volume control devices. INTEL the Z80 is one of the first design in accordance with the idea of the processor, From then on, the MCU and the development of a dedicated processor parted ways.Early single-chip 8-bit or all of the four. One of the most successful is INTEL's 8031, because the performance of a simple and reliable access to a lot of good praise. Since then in 8031 to develop a single-chip microcomputer system MCS51 series. Based on single-chip microcomputer system of the system is still widely used until now. As the field of industrial control requirements increase in the beginning of a 16-bit single-chip, but not ideal because the price has not been very widely used. After the 90's with the big consumer electronics product development, single-chip technology is a huge improvement. INTEL i960 Series with subsequent ARM in particular, a broad range of applications, quickly replaced by 32-bit single-chip 16-bit single-chip high-end status, and enter the mainstream market. Traditional 8-bit single-chip performance has been the rapid increase in processing power compared to the 80's to raise a few hundred times. At present, the high-end 32-bit single-chip frequency over 300MHz, the performance of the mid-90's close on the heels of a special processor, while the ordinary price of the model dropped to one U.S. dollars, the most high-end models, only 10 U.S. dollars. Contemporary single-chip microcomputer system is no longer only the bare-metal environment in the development and use of a large number of dedicated embedded operating system is widely used in the full range of single-chip microcomputer. In PDAs and cell phones as the core processing of high-end single-chip or even a dedicated direct access to Windows and Linux operating systems.More than a dedicated single-chip processor suitable for embedded systems, so it was up to the application. In fact the number of single-chip is the world's largest computer. Modern human life used in almost every piece of electronic and mechanical products will have a single-chip integration. Phone, telephone, calculator, home appliances, electronic toys, handheld computers and computer accessories such as a mouse in the Department are equipped with 1-2 single chip. And personal computers also have a large number of single-chip microcomputer in the workplace. Vehicles equipped with more than 40 Department of the general single-chip, complex industrial control systems and even single-chip may have hundreds of work at the same time! SCM is not only far exceeds the number of PC and other integrated computing, even more than the numberof human beings.Hardwave introductionThe 8051 family of micro controllers is based on an architecture which is highly optimized for embedded control systems. It is used in a wide variety of applications from military equipment to automobiles to the keyboard on your PC. Second only to the Motorola 68HC11 in eight bit processors sales, the 8051 family of microcontrollers is available in a wide array of variations from manufacturers such as Intel, Philips, and Siemens. These manufacturers have added numerous features and peripherals to the 8051 such as I2C interfaces, analog to digital converters, watchdog timers, and pulse width modulated outputs. Variations of the 8051 with clock speeds up to 40MHz and voltage requirements down to 1.5 volts are available. This wide range of parts based on one core makes the 8051 family an excellent choice as the base architecture for a company's entire line of products since it can perform many functions and developers will only have to learn this one platform.The basic architecture consists of the following features:·an eight bit ALU·32 descrete I/O pins (4 groups of 8) which can be individually accessed·two 16 bit timer/counters·full duplex UART· 6 interrupt sources with 2 priority levels·128 bytes of on board RAM·separate 64K byte address spaces for DA TA and CODE memoryOne 8051 processor cycle consists of twelve oscillator periods. Each of the twelve oscillator periods is used for a special function by the 8051 core such as op code fetches and samples of the interrupt daisy chain for pending interrupts. The time required for any 8051 instruction can be computed by dividing the clock frequency by 12, inverting that result and multiplying it by the number of processor cycles required by the instruction in question. Therefore, if you have a system which is using an 11.059MHz clock, you can compute the number of instructions per second by dividing this value by 12. This gives an instruction frequency of 921583 instructions per second. Inverting this will provide the amount of time taken by each instruction cycle (1.085 microseconds).单片机原理单片机是指一个集成在一块芯片上的完整计算机系统。
单片机的外文文献及中文翻译教学内容
单片机的外文文献及中文翻译SCM is an integrated circuit chip, is the use of large scale integrated circuit technology to a data processing capability of CPU CPU random access memory RAM, read-only memory ROM, a variety of I / O port and interrupt system, timers / timer functions (which may also include display driver circuitry, pulse width modulation circuit, analog multiplexer, A / D converter circuit) integrated into a silicon constitute a small and complete computer systems.SCM is also known as micro-controller (Microcontroller), because it is the first to be used in industrial control. Only a single chip by the CPU chip developed from a dedicated processor. The first design is by a large number of peripherals and CPU on a chip in the computer system, smaller, more easily integrated into a complex and demanding on the volume control device which. The Z80 INTEL is the first designed in accordance with this idea processor, then on the development of microcontroller and dedicated processors will be parting ways.Are 8-bit microcontroller early or 4 bits. One of the most successful is the INTEL 8031, for a simple, reliable and good performance was a lot of praise. Then developed in 8031 out of MCS51 MCU Systems. SCM systems based on this system until now is still widely used. With the increased requirements of industrial control field, began a 16-bit microcontroller, but not ideal because the cost has not been very widely used. After 90 years with the great development of consumer electronics, microcontroller technology has been a huge increase. With INTEL i960 series, especially the later series of widely used ARM, 32-bit microcontroller quickly replace high-end 16-bit MCU status and enter the mainstream market. The traditional 8-bit microcontroller performance have been the rapid increase capacity increase compared to 80 the number of times. Currently, high-end 32-bit microcontroller clocked over 300MHz, the performance catching the mid-90s dedicated processor, while the average model prices fall to one U.S. dollar, the most high-end [1] model only 10 dollars. Modern SCM systems are no longer only in the development and use of bare metal environment, a large number of proprietary embedded operating system is widely used in the full range of SCM. The handheld computers and cell phones as the core processing of high-end microcontroller can even use a dedicated Windows and Linux operating systems.SCM is more suitable than the specific processor used in embedded systems, so it was up to the application. In fact the number of SCM is the world's largest computer. Modern human life used in almost every piece of electronic and mechanical products will be integrated single chip. Phone, telephone, calculator, home appliances, electronic toys, handheld computers and computer accessories such as a mouse with a 1-2 in both the Department of SCM. Personal computer will have a large number of SCM in the work. General car with more than 40 microcontroller, a complex industrial control systems may even hundreds of single chip at the same time work! SCM is notonly far exceeds the number of PC and other computing the sum, or even more than the number of human beings.Single chip, also known as single-chip microcontroller, it is not complete a certain logic chips, but to a computer system integrated into a chip. Equivalent to a micro-computer, and computer than just the lack of a microcontroller I / O devices. General talk: a chip becomes a computer. Its small size, light weight, cheap, for the study, application and development of facilities provided. At the same time, learning to use the MCU is to understand the principle and structure of the computer the best option.Microcontroller and the computer functions internally with similar modules, such as CPU, memory, parallel bus, the same effect there, and hard disk memory device, is it different properties of these components are relatively weak many of our home computer, but the price is low , usually not more than 10 yuan you can do with it ...... some control for a class is not very complicated electrical work is enough of. We are using automatic drum washing machine, smoke hood, VCD and so on appliances which could see its shadow! ...... It is mainly part of the core components as the control.t is an online real-time control computer, on-line is on-site control, need to have strong anti-interference ability, low cost, and this is, and off-line computer (such as home PC), the main difference. Single chipMCU is through running, and can be modified. Through different procedures to achieve different functions, in particular special unique features, this is another device much effort needs to be done, some are great efforts are very difficult to achieve. A not very complex functions if the 50's with the United States developed 74 series, or the 60's CD4000 series of these pure hardware buttoned, then the circuit must be a large PCB board! But if the United States if the 70's with a series of successful SCM market, the result will be a drastic change! Just because you are prepared by microcomputer programs can achieve high intelligence, high efficiency and high reliability!As the microcontroller on the cost-sensitive, so now the dominant software or the lowest level assembly language, which is the lowest level in addition to more than binary machine code language, and as so low why is the use? Many high-level language has reached the level of visual programming Why is not it? The reason is simply that there is no home computer as a single chip CPU, not as hard as a mass storage device. A visualization of small high-level language program is only one button on it though, will reach tens of K in size! For the home PC's hard drive in terms of nothing but speaking for the MCU is not acceptable. SCM in the utilization of hardware resources to be very high for the job so although the original is still in the compilation of a lot of use. The same token, if the giant computer operating system and applications run up get home PC, home PC, also bear not work.Can be said that the twentieth century across the three "power" era, that is, the age of electricity, the electronic age and has entered into the computer age. However, this computer, usually refers to the personal computer, referred to as PC. It consists of the host, keyboard, monitor and other components. Another type of computer, most people do not know how. This computer is to give all kinds of machinery, intelligent single chip (also known as micro-controller). As the name suggests, this computer system took only a minimal integrated circuit, can be a simple operation and control. Because it is small, usually in the charged with possession of mechanical "stomach" in. It is in the device, like the human brain plays a role, it goes wrong, the whole plant was paralyzed. Now, this microcontroller has been very widely used in the field, such as smart meters, real-time industrial control, communications equipment, navigation systems, and household appliances. Once all kinds of products were using SCM, can serve to upgrade the effectiveness of products, often in the product name preceded by the adjective - "intelligent", such as intelligent washing machines. Now some technical personnel of factories or other amateur electronics developers to engage in out of certain products, not the circuit is too complicated, that function is too simple and can easily be copied. The reason may be stuck in the product did not use a microcontroller or other programmable logic device.外文文献的翻译:单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。
电子科学与技术 外文翻译 外文文献 英文文献 51系列单片机的结构和功能
外文出处:Structure and function of(用外文写)the MCS-51 series附件2:外文原文Structure and function of the MCS-51 series Structure and function of the MCS-51 series one-chip computer MCS-51 is a name of a piece of one-chip computer series which Intel Company produces. This company introduced 8 top-grade one-chip computers of MCS-51 series in 1980 after introducing 8 one-chip computers of MCS-48 series in 1976. It belong to a lot of kinds this line of one-chip computer the chips have,such as 8051, 8031, 8751, 80C51BH, 80C31BH,etc., their basic composition, basic performance and instruction system are all the same. 8051 daily representatives- 51 serial one-chip computers .Early MCU 8-bit or all of the four. One of the most successful is the INTEL 8031, because the performance of a simple and reliable access to a lot of good praise. Then developed in 8031 out of MCS51 MCU Systems. SCM systems based on this system until now is still widely used. With the increased requirements of industrial control field, began a 16-bit microcontroller, because the cost is not satisfactory but have not been very widely used. After 90 years with the great development of consumer electronics, microcontroller technology has been a huge increase. With INTEL i960 series, especially the later series of widely used ARM, 32-bit microcontroller quickly replace high-end 16-bit MCU status and enter the mainstream market. The traditional 8-bit microcontroller performance have been the rapid increase capacity increase compared to 80 the number of times. Currently, high-end 32-bit microcontroller clocked over 300MHz, the performance catching the mid-90's dedicated processor, while the average model prices fall to one U.S. dollars, the most high-end [1] model only 10 dollars.Modern SCM systems are no longer only in the development and use of bare metal environment, a large number of proprietary embedded operating system is widely used in the full range of SCM. The handheld computers and cell phones as the core processing of high-end microcontroller can even use a dedicated Windows andLinux operating systems.More than a dedicated MCU processor suitable for embedded systems, so it was up to the application. In fact the number of SCM is the world's largest computer. Modern human life used in almost every piece of electronic and mechanical products will be integrated single chip.Phone, telephone, calculator, home appliances, electronic toys, handheld computers and computer accessories such as a mouse with a 1-2 in both the Department of SCM. Personal computer will have a large number of SCM in the work. General car with more than 40 SCM, complex industrial control systems may even have hundreds of SCM in the same time work! SCM is not only far exceeds the number of PC and other computing the sum, or even more than the number of human beings.An one-chip computer system is made up of several following parts: ( 1) One microprocessor of 8 (CPU). ( 2) At slice data memory RAM (128B/256B),it use not depositting not can reading /data that write, such as result not middle of operation, final result and data wanted to show, etc. ( 3) Procedure memory ROM/EPROM (4KB/8KB ), is used to preserve the procedure , some initial data and form in slice. But does not take ROM/EPROM within some one-chip computers, such as 8031 , 8032, 80C ,etc.. ( 4) Four 8 run side by side I/O interface P0 four P3, each mouth can use as introduction , may use as exporting too. ( 5) Two timer / counter, each timer / counter may set up and count in the way, used to count to the external incident, can set up into a timing way too, and can according to count or result of timing realize the control of the computer. ( 6) Five cut off cutting off the control system of the source . ( 7) One all duplexing serial I/O mouth of UART (universal asynchronous receiver/transmitter (UART) ), is it realize one-chip computer or one-chip computer and serial communication of computer to use for. ( 8) Stretch oscillator and clock produce circuit, quartz crystal finely tune electric capacity need outer. Allow oscillation frequency as 12 megahertas now at most. Every the above-mentioned part was joined through the inside data bus .Among them, CPU is a core of the one-chip computer, it is the control of the computer and command centre, made up of such parts as arithmetic unit and controller , etc.. The arithmetic unit can carry on 8 persons of arithmetic operation and unit ALU of logic operation while including one, the 1 storing device temporarilies of 8, storing device 2 temporarily, 8's accumulation device ACC, register B and procedure state register PSW, etc. Person who accumulate ACC count by 2 input ends entered ofchecking etc. temporarily as one operation often, come from person who store 1 operation is it is it make operation to go on to count temporarily , operation result and loopback ACC with another one. In addition, ACC is often regarded as the transfer station of data transmission on 8051 inside . The same as general microprocessor, it is the busiest register. Help remembering that agreeing with A expresses in the order. The controller includes the procedure counter , the order is depositted, the order decipher, the oscillator and timing circuit, etc. The procedure counter is made up of counter of 8 for two, amounts to 16. It is a byte address counter of the procedure in fact, the content is the next IA that will carried out in PC. The content which changes it can change the direction that the procedure carries out . Shake the circuit in 8051 one-chip computers, only need outer quartz crystal and frequency to finely tune the electric capacity, its frequency range is its 12MHZ of 1.2MHZ. This pulse signal, as 8051 basic beats of working, namely the minimum unit of time. 8051 is the same as other computers, the work in harmony under the control of the basic beat, just like an orchestra according to the beat play that is commanded.There are ROM (procedure memory , can only read ) and RAM in 8051 slices (data memory, can is it can write ) two to read, they have each independent memory address space, dispose way to be the same with general memory of computer. Procedure 8051 memory and 8751 slice procedure memory capacity 4KB, address begin from 0000H, used for preserving the procedure and form constant. Data 8051- 8751 8031 of memory data memory 128B, address false 00FH, use for middle result to deposit operation, the data are stored temporarily and the data are buffered etc.. In RAM of this 128B, there is unit of 32 byteses that can be appointed as the job register, this and general microprocessor is different, 8051 slice RAM and job register rank one formation the same to arrange the location. It is not very the same that the memory of MCS-51 series one-chip computer and general computer disposes the way in addition. General computer for first address space, ROM and RAM can arrange in different space within the range of this address at will, namely the addresses of ROM and RAM, with distributing different address space in a formation. While visiting the memory, corresponding and only an address Memory unit, can ROM, it can be RAM too, and by visiting the order similarly. This kind of memory structure is called the structure of Princeton. 8051 memories are divided into procedure memory space and data memory space on the physics structure, there are four memory spaces in all: The procedurestores in one and data memory space outside data memory and one in procedure memory space and one outside one, the structure forms of this kind of procedure device and data memory separated form data memory, called Harvard structure. But use the angle from users, 8051 memory address space is divided into three kinds: (1) In the slice, arrange blocks of FFFFH , 0000H of location , in unison outside the slice (use 16 addresses). (2) The data memory address space outside one of 64KB, the address is arranged from 0000H 64KB FFFFH (with 16 addresses ) too to the location. (3) Data memory address space of 256B (use 8 addresses). Three above-mentioned memory space addresses overlap, for distinguishing and designing the order symbol of different data transmission in the instruction system of 8051: CPU visit slice, ROM order spend MOVC , visit block RAM order uses MOVX outside the slice, RAM order uses MOV to visit in slice.8051 one-chip computer have four 8 walk abreast I/O port, call P0, P1, P2 and P3. Each port is 8 accurate two-way mouths, accounts for 32 pins altogether. Every one I/O line can be used as introduction and exported independently. Each port includes a latch (namely special function register ), one exports the driver and a introduction buffer . Make data can latch when outputting, data can buffer when making introduction , but four function of passway these self-same. Expand among the system of memory outside having slice, four port these may serve as accurate two-way mouth of I/O in common use. Expand among the system of memory outside having slice, P2 mouth see high 8 address off; P0 mouth is a two-way bus, send the introduction of 8 low addresses and data / export in timesharingOutput grade , P3 of mouth , P1 of P1 , connect with inside have load resistance of drawing , every one of they can drive 4 Model LS TTL load to output. As while inputting the mouth, any TTL or NMOS circuit can drive P1 of 8051 one-chip computers as P3 mouth in a normal way . Because draw resistance on output grade of them have, can open a way collector too or drain-source resistance is it urge to open a way, do not need to have the resistance of drawing outerly . Mouths are all accurate two-way mouths too. When the conduct is input, must write the corresponding port latch with 1 first . As to 80C51 one-chip computer, port can only offer milliampere of output electric currents, is it output mouth go when urging one ordinary basing of transistor to regard as, should contact a resistance among the port and transistor base , in order to the electricity while restraining the high level from exporting P1~P3 Beingrestored to the throne is the operation of initializing of an one-chip computer. Its main function is to turn PC into 0000H initially , make the one-chip computer begin to hold the conduct procedure from unit 0000H. Except that the ones that enter the system are initialized normally,as because procedure operate it make mistakes or operate there aren't mistake, in order to extricate oneself from a predicament , need to be pressed and restored to the throne the key restarting too. It is an input end which is restored to the throne the signal in 8051 China RST pin. Restore to the throne signal high level effective , should sustain 24 shake cycle (namely 2 machine cycles ) the above its effective times. If 6 of frequency of utilization brilliant to shake, restore to the throne signal duration should exceed 4 delicate to finish restoring to the throne and operating. Produce the logic picture of circuit which is restored to the throne the signal: Restore to the throne the circuit and include two parts outside in the chip entirely. Outside that circuit produce to restore to the throne signal (RST ) hand over to Schmitt's trigger, restore to the throne circuit sample to output , Schmitt of trigger constantly in each S5P2 , machine of cycle in having one more , then just got and restored to the throne and operated the necessary signal insidly. Restore to the throne resistance of circuit generally, electric capacity parameter suitable for 6 brilliant to shake, can is it restore to the throne signal high level duration greater than 2 machine cycles to guarantee. Being restored to the throne in the circuit is simple, its function is very important. Pieces of one-chip computer system could normal running,should first check it can restore to the throne not succeeding. Checking and can pop one's head and monitor the pin with the oscillograph tentatively, push and is restored to the throne the key, the wave form that observes and has enough range is exported (instantaneous), can also through is it restore to the throne circuit group holding value carry on the experiment to change.附件1:外文资料翻译译文51系列单片机的结构和功能51系列单片机是英特尔公司生产的具有一定结构和功能的单片机产品。
单片机+外文文献+英文文献+外文翻译中英对照
AT89C51的介绍(原文出处:http:89C89C89C89CPROG89C89Ctechnology and is compatible with the industry-standard MCS-51 instruction set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C51 is a powerful microcomputer which provides a highly-flexible and cost-effective solution to many embedded control applications.Function characteristicThe AT89C51 provides the following standard features: 4K bytes of Flash, 128 bytes of RAM, 32 I/O lines, two 16-bit timer/counters, a five vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator and clock circuitry. In addition, the AT89C51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The Power-down Mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset.Pin DescriptionVCC:Supply voltage.GND:Ground.Port 0:Port 0 is an 8-bit open-drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as highimpedance 0 may also be configured to be the multiplexed loworder address/data bus during accesses to external program and data memory. In this mode P0 has internal 0 also receives the code bytes during Flash programming,and outputs the code bytes during programverification. External pullups are required during programverification.Port 1Port 1 is an 8-bit bi-directional I/O port with internal pullups.The Port 1 output buffers can sink/source four TTL 1s are written to Port 1 pins they are pulled high by the internal pullups and can be used as inputs. As inputs,Port 1 pins that are externally being pulled low will source current (IIL) because of the internal 1 also receives the low-order address bytesduring Flash programming and verification.Port 2Port 2 is an 8-bit bi-directional I/O port with internal pullups.The Port 2 output buffers can sink/source four TTL 1s are written to Port 2 pins they are pulled high by the internal pullups and can be used as inputs. As inputs,Port 2 pins that are externally being pulled low will source current, because of the internal 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses. In this application, it uses strong internal pullupswhen emitting 1s. During accesses to external data memory that use 8-bit addresses, Port 2 emits the contents of the P2 Special Function 2 also receives the high-order address bits and some control signals during Flash programming and verification.Port 3Port 3 is an 8-bit bi-directional I/O port with internal pullups.The Port 3 output buffers can sink/source four TTL 1s are written to Port 3 pins they are pulled high by the internal pullups and can be used as inputs. As inputs,Port 3 pins that are externally being pulled low will source current (IIL) because of the 3 also serves the functions of various special features of the AT89C51 as listed below:Port 3 also receives some control signals for Flash programming and verification.RSTReset input. A high on this pin for two machine cycles while the oscillator is running resets the device.ALE/PROGAddress Latch Enable output pulse for latching the low byte of the addressduring accesses to external memory. This pin is also the program pulse input (PROG) during Flash normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.PSENProgram Store Enable is the read strobe to external program the AT89C51 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.EA/VPPExternal Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on should be strapped to VCC for internal program pin also receives the 12-volt programming enable voltage(VPP) during Flash programming, for parts that require12-volt VPP.XTAL1Input to the inverting oscillator amplifier and input to the internal clock operating circuit.XTAL2Output from the inverting oscillator amplifier.Oscillator CharacteristicsXTAL1 and XTAL2 are the input and output, respectively,of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.Figure 1. Oscillator Connections Figure 2. External Clock Drive ConfigurationIdle ModeIn idle mode, the CPU puts itself to sleep while all the onchip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware should be noted that when idle is terminated by a hard ware reset, the device normally resumes program execution,from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.Power-down ModeIn the power-down mode, the oscillator is stopped, and the instruction that invokes power-down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the power-down mode is terminated. The only exit from power-down is a hardware reset. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before VCC is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.Program Memory Lock BitsOn the chip are three lock bits which can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in the table below.When lock bit 1 is programmed, the logic level at the EA pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value, and holds that value until reset is activated. It is necessary that the latched value of EA be in agreement with the current logic level at that pin in order for the device to function properly.。
单片机的外文文献及中文翻译
单片机的外文文献及中文翻译一、外文文献Title: The Application and Development of SingleChip Microcontrollers in Modern ElectronicsSinglechip microcontrollers have become an indispensable part of modern electronic systems They are small, yet powerful integrated circuits that combine a microprocessor core, memory, and input/output peripherals on a single chip These devices offer significant advantages in terms of cost, size, and power consumption, making them ideal for a wide range of applicationsThe history of singlechip microcontrollers can be traced back to the 1970s when the first microcontrollers were developed Since then, they have undergone significant advancements in technology and performance Today, singlechip microcontrollers are available in a wide variety of architectures and capabilities, ranging from simple 8-bit devices to complex 32-bit and 64-bit systemsOne of the key features of singlechip microcontrollers is their programmability They can be programmed using various languages such as C, Assembly, and Python This flexibility allows developers to customize the functionality of the microcontroller to meet the specific requirements of their applications For example, in embedded systems for automotive, industrial control, and consumer electronics, singlechip microcontrollers can be programmed to control sensors, actuators, and communication interfacesAnother important aspect of singlechip microcontrollers is their low power consumption This is crucial in batterypowered devices and portable electronics where energy efficiency is of paramount importance Modern singlechip microcontrollers incorporate advanced power management techniques to minimize power consumption while maintaining optimal performanceIn addition to their use in traditional electronics, singlechip microcontrollers are also playing a significant role in the emerging fields of the Internet of Things (IoT) and wearable technology In IoT applications, they can be used to collect and process data from various sensors and communicate it wirelessly to a central server Wearable devices such as smartwatches and fitness trackers rely on singlechip microcontrollers to monitor vital signs and perform other functionsHowever, the design and development of systems using singlechip microcontrollers also present certain challenges Issues such as realtime performance, memory management, and software reliability need to be carefully addressed to ensure the successful implementation of the applications Moreover, the rapid evolution of technology requires developers to constantly update their knowledge and skills to keep up with the latest advancements in singlechip microcontroller technologyIn conclusion, singlechip microcontrollers have revolutionized the field of electronics and continue to play a vital role in driving technological innovation Their versatility, low cost, and small form factor make them an attractive choice for a wide range of applications, and their importance is expected to grow further in the years to come二、中文翻译标题:单片机在现代电子领域的应用与发展单片机已成为现代电子系统中不可或缺的一部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计(论文)外文文献翻译文献、资料中文题目:从无线电世界到单片机世界文献、资料英文题目:文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期: 2017.02.14中文翻译:从无线电世界到单片机世界现代计算机技术的产业革命,将世界经济从资本经济带入到知识经济时代.在电子世界领域,从20 世纪中的无线电时代也进入到21 世纪以计算机技术为中心的智能化现代电子系统时代.现代电子系统的基本核心是嵌入式计算机系统(简称嵌入式系统),而单片机是最典型,最广泛,最普及的嵌入式系统. 一, 无线电世界造就了几代英才在20 世纪五六十年代,最具代表的先进的电子技术就是无线电技术, 包括无线电广播,收音,无线通信(电报),业余无线电台,无线电定位,导航等遥测,遥控,遥信技术.早期就是这些电子技术带领着许多青少年步入了奇妙的电子世界,无线电技术展示了当时科技生活美妙的前景.电子科学开始形成了一门新兴学科.无线电电子学,无线通信开始了电子世界的历程. 无线电技术不仅成为了当时先进科学技术的代表,而且从普及到专业的科学领域,吸引了广大青少年,并使他们从中找到了无穷的乐趣. 从床头的矿石收音机到超外差收音机;从无线电发报到业余无线电台;从电话,电铃到无线电操纵模型.无线电技术成为当时青少年科普,科技教育最普及,最广泛的内容.至今,许多老一辈的工程师,专家,教授当年都是无线电爱好者.无线电技术的无穷乐趣,无线电技术的全面训练,从电子学基本原理,电子元器件基础到无线电遥控,遥测,遥信电子系统制作,培养出了几代科技英才. 二, 从无线电时代到电子技术普及时代早期的无线电技术推动了电子技术的发展,其中最主要的是真空管电子技术向半导体电子技术的发展.半导体电子技术使有源器件实现了微小型化和低成本,使无线电技术有了更大普及和创新,并大大地开阔了许多非无线电的控制领域. 半导体技术发展导致集成电路器件的产生,形成了近代电子技术的飞跃,电子技术从分立器件时代走进了电路集成时代.电子设计工程师不再用分立的电子元器件设计电路单元,而直接选择集成化的电路单元器件构成系统.他们从电路单元设计中解放出来,致力于系统设计,大大地解放了科技生产力,促进了电子系统更大范围的普及.半导体集成电路首先在基本数字逻辑电路上取得突破.大量数字逻辑电路,如门电路,计数器,定时器,移位寄存器以及模拟开关,比较器等, 为电子数字控制提供了极佳的条件,使传统的机械控制转向电子控制.功率电子器件以及传感技术的发展使原先以无线电为中心的电子技术开始转向工程领域中的机械系统的数字控制,检测领域中的信息采集,运动机械对象的电气伺服驱动控制. 半导体及其集成电路技术将我们带入了一个电子技术普及时代,无线电技术成为电子技术应用领域的一个部分. 进入20 世纪70 年代,大规模集成电路出现,促进了常规的电子电路单元的专用电子系统发展.许多专用电子系统单元变成了集成化器件,如收音机,电子钟,计算器等,在这些领域的电子工程师从电路,系统的精心设计,调试转变为器件选择,外围器件适配工作.电子技术发展了,电子产品丰富了,电子工程师的难度减少了,但与此同时,无线电技术,电子技术的魅力却削弱了.半导体集成电路的发展使经典电子系统日趋完善, 留在大规模集成电路以外的电子技术日益减少,电子技术没有了往昔无线电时代的无穷乐趣和全面的工程训练. 三, 从经典电子技术时代到现代电子技术时代进入20 世纪80 年代,世纪经济中最重要的变革是计算机的产业革命. 而计算机产业革命的最重要标志则是计算机嵌入式应用的诞生.近代电子计算机是应数值计算要求诞生的.在很长的时间内,电子计算机都是以发展海量数值计算为己任.但是电子计算机表现出的逻辑运算,处理,控制能力,吸引了电子控制领域的专家,他们要求发展能满足控制对象要求, 实现嵌入式应用的计算机系统.如果将满足海量数据处理的计算机系统称为通用计算机系统, 那么则可把嵌入到对象体系(如舰船,飞机,机车等) 中的计算机系统称作嵌入式计算机.显而易见,两者的技术发展方向是不同的.前者要求海量数据存储,吞吐,高速数据处理分析及传输;而后者要求在对象环境中可靠运行,对外部物理参数的高速采集,逻辑分析处理和对外部对象的快速控制等.早期人们将通用计算机加上数据采集单元, 输出驱动电路勉为其难地构成一个热处理炉的温控系统.这样的通用计算机系统不可能为大多数电子系统采用,而且要使通用计算机系统满足嵌入式应用要求,必然影响高速数值处理技术的发展.为了解决计算机技术发展的矛盾,在20 世纪70 年代,半导体专家另辟蹊径,完全按照电子系统的计算机嵌入式应用要求,将一个微型计算机的基本系统集成在一个芯片上,形成了早期的单片机(Single Chip Microcomputer).单片机问世后,在计算机领域中开始出现了通用计算机系统和嵌入式系统的两大分支.此后, 无论是嵌入式系统,还是通用计算机系统都得到了飞速的发展. 早期虽然有通用计算机改装而成的嵌入式计算机系统,而真正意义上的嵌入式系统始于单片机的出现.因为单片机是专门为嵌入式应用设计的, 单片机只能实现嵌入式应用.单片机能最好地满足嵌入式应用的环境要求, 例如,芯片级的物理空间,大规模集成电路的低价位,良好的外围接口总线和突出控制功能的指令系统. 单片机有计算机系统内核,嵌入到电子系统中,为电子系统智能化奠定了基础.因此,当前单片机在电子系统中的广泛使用,使经典电子系统迅速过渡到智能化的现代电子系统. 四, 单片机开创了现代电子系统时代 1 单片机与嵌入式系统嵌入式系统源于计算机的嵌入式应用,早期嵌入式系统为通用计算机经改装后嵌入到对象体系中的各种电子系统,如舰船的自动驾驶仪,轮机监测系统等.嵌入式系统首先是一个计算机系统,其次它被嵌入到对象体系中,在对象体系中实现对象要求的数据采集,处理,状态显示,输出控制等功能,由于嵌入在对象体系中,嵌入式系统的计算机没有计算机的独立形式及功能.单片机完全是按照嵌入式系统要求设计的,因此单片机是最典型的嵌入式系统.早期的单片机只是按嵌入式应用技术要求设计的计算机单芯片集成,故名单片机.随后,单片机为满足嵌入式应用要求不断增强其控制功能与外围接口功能,尤其是突出控制功能,因此国际上已将单片机正名为微控制器(MCU,Microcontroller Unit). 2 单片机构成的现代电子系统将成为主流电子系统单片机构成的现代电子系统将成为主流电子系统单片机是器件级计算机系统,它可以嵌入到任何对象体系中去,实现智能化控制.小到微型机械,如手表,助听器.集成器件级的低价位,低到几元,十几元,足以使单片机普及到许多民用家电,电子玩具中去.单片机构成的现代电子系统已深入到各家各户,正改变我们的生活,如家庭中的音响,电视机,洗衣机,微波炉,电话,防盗系统,空调机等.单片机革新了原有电子系统,如微波炉采用单片机控制后,可方便地进行时钟设置,程序记忆,功率控制;空调机采用单片机后不但遥控参数设置方便, 运行状态自动变换,还可实现变频控制.目前许多家用电器如VCD,DVD 只有单片机出现后才可能实现其功能. 3 嵌入式系统带动了整个电子产业目前电子元器件产业除了微处理器,嵌入式系统器件外,大多是围绕现代电子系统配套的元器件产业,例如满足人机交互用的按键,LED/LCD 显示驱动,LED/LCD 显示单元,语音集成器件等,满足数据采集通道要求的数字传感器,ADC,数据采集模块,信号调理模块等,满足伺服驱动控制的DAC,固体继电器,步进电机控制器,变频控制单元等,满足通信要求的各种总线驱动器,电平转换器等. 世界电子元器件在嵌入式系统带动下,沿着充分满足嵌入式应用的现代电子系统要求发展.这就使原来经典电子系统的天地愈来愈小.电子系统中的各类从业人员应尽早转向现代电子系统的康庄大道. 五, 单片机将造就新一代电子精英如果说五十年代起,无线电世界造就了几代精英,那么当今的单片机世界将会造就出新一代电子精英. 1 单片机带你进入智能化电子领域若将经典电子系统当作一个僵死的电子系统,那么智能化的现代电子系统则是一个具有"生命"的电子系统. 单片机应用系统的硬件结构给予电子系统"身躯",单片机应用系统的应用程序赋予其"生命".例如,在设计智能化仪器显示器的显示功能时,可在开机时显示系统自检结果,未进入工作时显示各种待机状态,仪器运行时显示运行过程,工作结束后可显示当前结果,自检结果,原始数据,各种处理报表等.在无人值守时,可给定各种自动运行功能. 电子系统的智能化为无止境境界,常常不需硬件资源的增添就能实现各种翻新功能.这也是当前许多家用电器功能大量增设的因素之一. 2 单片机带你进入计算机工控领域21 世纪是全人类进入计算机时代的世纪,许多人不是在制造计算机便是在使用计算机.在使用计算机的人们中,只有从事嵌入式系统应用的人才真正地进入到计算机系统的内部软,硬件体系中,才能真正领会计算机的智能化本质并掌握智能化设计的知识.从学习单片机应用技术入手是当今培养计算机应用软,硬件技术人才的最佳道路之一. 3 单片机带你进入最具魅力的电子世界独具魅力的单片机能使你体会到电脑的真谛,你可以用单片机亲自动手设计智能玩具,可以设计不同的应用程序实现不同的功能.既有硬件制作又有软件设计,既动脑,又动手.初级水平可开发智能玩具,用宏指令编程.中级水平可开发一些智能控制器,如电脑鼠,智能车,各种遥控模型.高级水平可开发机器人,如机器人足球赛,开发工业控制单元,网络通信等,并用汇编语言或高级语言设计应用程序.围绕单片机及嵌入式系统形成的电子产业的未来,将会为电子爱好者提供广阔的天地,一个比当年无线电世界更广阔,更丰富,更持久,更具魅力的电子世界.投身到单片机世界来,将使你一生受益. 单片机攻击技术目前,攻击单片机主要有四种技术,分别是: ( 1 ) 软件攻击该技术通常使用处理器通信接口并利用协议,加密算法或这些算法中的安全漏洞来进行攻击.软件攻击取得成功的一个典型事例是对早期A TMEL AT89C 系列单片机的攻击.攻击者利用了该系列单片机擦除操作时序设计上的漏洞,使用自编程序在擦除加密锁定位后,停止下一步擦除片内程序存储器数据的操作,从而使加过密的单片机变成没加密的单片机,然后利用编程器读出片内程序. ( 2 ) 电子探测攻击该技术通常以高时间分辨率来监控处理器在正常操作时所有电源和接口连接的模拟特性,并通过监控它的电磁辐射特性来实施攻击.因为单片机是一个活动的电子器件,当它执行不同的指令时,对应的电源功率消耗也相应变化.这样通过使用特殊的电子测量仪器和数学统计方法分析和检测这些变化,即可获取单片机中的特定关键信息. ( 3 ) 过错产生技术该技术使用异常工作条件来使处理器出错,然后提供额外的访问来进行攻击.使用最广泛的过错产生攻击手段包括电压冲击和时钟冲击.低电压和高电压攻击可用来禁止保护电路工作或强制处理器执行错误操作.时钟瞬态跳变也许会复位保护电路而不会破坏受保护信息.电源和时钟瞬态跳变可以在某些处理器中影响单条指令的解码和执行. ( 4 ) 探针技术该技术是直接暴露芯片内部连线,然后观察,操控,干扰单片机以达到攻击目的.为了方便起见,人们将以上四种攻击技术分成两类,一类是侵入型攻击(物理攻击),这类攻击需要破坏封装,然后借助半导体测试设备,显微镜和微定位器,在专门的实验室花上几小时甚至几周时间才能完成.所有的微探针技术都属于侵入型攻击.另外三种方法属于非侵入型攻击,被攻击的单片机不会被物理损坏.在某些场合非侵入型攻击是特别危险的,但是因为非侵入型攻击所需设备通常可以自制和升级,因此非常廉价. 大部分非侵入型攻击需要攻击者具备良好的处理器知识和软件知识. 与之相反,侵入型的探针攻击则不需要太多的初始知识,而且通常可用一整套相似的技术对付宽范围的产品. 单片机侵入型攻击的一般过程侵入型攻击的第一步是揭去芯片封装.有两种方法可以达到这一目的: 第一种是完全溶解掉芯片封装,暴露金属连线.第二种是只移掉硅核上面的塑料封装.第一种方法需要将芯片绑定到测试夹具上,借助绑定台来操作.第二种方法除了需要具备攻击者一定的知识和必要的技能外,还需要个人的智慧和耐心,但操作起来相对比较方便. 芯片上面的塑料可以用小刀揭开,芯片周围的环氧树脂可以用浓硝酸腐蚀掉.热的浓硝酸会溶解掉芯片封装而不会影响芯片及连线.该过程一般在非常干燥的条件下进行,因为水的存在可能会侵蚀已暴露的铝线连接. 接着在超声池里先用丙酮清洗该芯片以除去残余硝酸,然后用清水清洗以除去盐分并干燥.没有超声池,一般就跳过这一步.这种情况下,芯片表面会有点脏,但是不太影响紫外光对芯片的操作效果.最后一步是寻找保护熔丝的位置并将保护熔丝暴露在紫外光下.一般用一台放大倍数至少100倍的显微镜,从编程电压输入脚的连线跟踪进去,来寻找保护熔丝.若没有显微镜,则采用将芯片的不同部分暴露到紫外光下并观察结果的方式进行简单的搜索.操作时应用不透明的纸片覆盖芯片以保护程序存储器不被紫外光擦除.将保护熔丝暴露在紫外光下5~10分钟就能破坏掉保护位的保护作用,之后,使用简单的编程器就可直接读出程序存储器的内容. 对于使用了防护层来保护EEPROM单元的单片机来说,使用紫外光复位保护电路是不可行的.对于这种类型的单片机,一般使用微探针技术来读取存储器内容.在芯片封装打开后,将芯片置于显微镜下就能够很容易的找到从存储器连到电路其它部分的数据总线. 由于某种原因,芯片锁定位在编程模式下并不锁定对存储器的访问. 利用这一缺陷将探针放在数据线的上面就能读到所有想要的数据.在编程模式下,重启读过程并连接探针到另外的数据线上就可以读出程序和数据存储器中的所有信息. 还有一种可能的攻击手段是借助显微镜和激光切割机等设备来寻找保护熔丝,从而寻查和这部分电路相联系的所有信号线.由于设计有缺陷, 因此,只要切断从保护熔丝到其它电路的某一根信号线,就能禁止整个保护功能.由于某种原因,这根线离其它的线非常远,所以使用激光切割机完全可以切断这根线而不影响临近线.这样,使用简单的编程器就能直接读出程序存储器的内容. 虽然大多数普通单片机都具有熔丝烧断保护单片机内代码的功能,但由于通用低档的单片机并非定位于制作安全类产品,因此,它们往往没有提供有针对性的防范措施且安全级别较低.加上单片机应用场合广泛,销售量大,厂商间委托加工与技术转让频繁,大量技术资料外泻,使得利用该类芯片的设计漏洞和厂商的测试接口,并通过修改熔丝保护位等侵入型攻击或非侵入型攻击手段来读取单片机的内部程序变得比较容易. 常用单片机芯片简介STC 单片机STC 公司的单片机主要是基于8051 内核,是新一代增强型单片机,指令代码完全兼容传统8051,速度快8~12 倍,带ADC,4 路PWM,双串口,有全球唯一ID 号,加密性好,抗干扰强. PIC 单片机: 单片机: 是MICROCHIP 公司的产品,其突出的特点是体积小,功耗低,精简指令集,抗干扰性好,可靠性高,有较强的模拟接口,代码保密性好,大部分芯片有其兼容的FLASH 程序存储器的芯片.EMC 单片机: 单片机: 是台湾义隆公司的产品,有很大一部分与PIC 8 位单片机兼容,且相兼容产品的资源相对比PIC 的多,价格便宜,有很多系列可选,但抗干扰较差. ATMEL 单片机单片机(51 单片机: 单片机): ATMEl 公司的8 位单片机有AT89,AT90 两个系列,AT89 系列是8 位Flash 单片机,与8051 系列单片机相兼容,静态时钟模式;AT90 系列单片机是增强RISC 结构,全静态工作方式,内载在线可编程Flash 的单片机,也叫A VR 单片机. PHLIPIS 51PLC 系列单片机系列单片机(51 单片机: 单片机): PHILIPS 公司的单片机是基于80C51 内核的单片机,嵌入了掉电检测,模拟以及片内RC 振荡器等功能,这使51LPC 在高集成度,低成本,低功耗的应用设计中可以满足多方面的性能要求. HOLTEK 单片机: 单片机: 台湾盛扬半导体的单片机,价格便宜,种类较多,但抗干扰较差,适用于消费类产品. TI 公司单片机公司单片机(51 单片机: 单片机): 德州仪器提供了TMS370 和MSP430 两大系列通用单片机.TMS370 系列单片机是8 位CMOS 单片机,具有多种存储模式,多种外围接口模式, 适用于复杂的实时控制场合;MSP430 系列单片机是一种超低功耗,功能集成度较高的16 位低功耗单片机,特别适用于要求功耗低的场合是台湾松翰公司的单片,大多为8 位机,有一部分与PIC 8 位单片机兼容,价格便宜,系统时钟分频可选项较多,有PMW ADC 内振内部杂讯滤波.缺点RAM 空间过小,抗干扰较好.英文翻译:From the world of radio in the world to a single chipModern computer technology, industrial revolution, the world economy from the capital into the economy to knowledge economy. Field in the electronic world, from the 20th century into the era of radio to computer technology in the 21st century as the center of the intelligent modern era of electronic systems. The basic core of modern electronic systems are embedded computersystems (referred to as embedded systems), while the microcontroller is the most typical and most extensive and most popular embedded systems.First, radio has created generations of excellence in the worldFifties and sixties in the 20th century, the most representative of the advanced electronic technology is wireless technology, including radio broadcasting, radio, wireless communications (telegraph), Amateur Radio, radio positioning, navigation and other telemetry, remote control, remote technology. Early that these electronic technology led many young people into the wonderful digital world, radio show was a wonderful life, the prospects for science and technology. Electronics began to form a new discipline. Radio electronics, wireless communications began e-world journey. Radio technology not only as a representative of advanced science and technology at that time, but also from popular to professional fields of science, attracting the young people and enable them to find a lot of fun. Ore from the bedside to the superheterodyne radio radio; report issued from the radio amateur radio stations; from the telephone, electric bell to the radio control model. Became popular youth radio technology, science and technology education is the most popular and most extensive content. So far, many of the older generation of engineers, experts, Professor of the year are radio enthusiasts. Fun radio technology, radio technology, comprehensive training, from basic principles of electronics, electronic components to the radio-based remote control, telemetry, remote electronic systems, has trained several generations of technological excellence.Second, from the popularity of the radio era to era of electronic technologyThe early radio technology to promote the development of electronic technology, most notably electronic vacuum tube technology to semiconductor electronictechnology. Semiconductor technology to realize the active device miniaturization and low cost, so more popular with radio technology and innovation, and to greatly broaden the number of non-radio-control areas. The development of semiconductor technology lead to the production of integrated circuit, forming the modern electronic technology leap from discrete electronics into the era of era of integrated circuits. Electronic design engineers no longer use the discrete electronic components designed circuit modules, and direct selection of integrated circuit components constitute a single system. They freed the design of the circuit unit dedicated to system design, greatly liberating the productive forces of science and technology, promote the wider spread of electronic systems. Semiconductor integrated circuits in the basic digital logic circuits first breakthrough. A large number of digital logic circuits, such as gates, counters, timers, shift registers, and analog switches, comparators, etc., for the electronic digital control provides excellent conditions for the traditional mechanical control to electronic control. Power electronic devices and sensor technology to make the original to the radio as the center of electronic technology turned to mechanical engineering in the field of digital control systems, testing in the field of information collection, movement of electrical mechanical servo drive control object. Semiconductor and integrated circuit technology will bring us a universal age of electronic technology, wireless technology as the field of electronic technology a part of. 70 years into the 20th century, large scale integrated circuit appeared to promote the conventional electronic circuit unit-specific electronic systems development. Many electronic systems unit into a dedicated integrated devices such as radios, electronic clocks, calculators, electronic engineers in these areas from the circuit, the system designed to debug into the device selection, peripheral device adapter work. Electronic technology, and electronic products enriched, electronic engineers to reduce the。