中考数学圆与相似-经典压轴题附答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学圆与相似-经典压轴题附答案解析

一、相似

1.如图,在△ABC中,AB=AC,∠BAC=90°,AH⊥BC于点H,过点C作CD⊥AC,连接AD,点M为AC上一点,且AM=CD,连接BM交AH于点N,交AD于点E.

(1)若AB=3,AD= ,求△BMC的面积;

(2)点E为AD的中点时,求证:AD= BN .

【答案】(1)解:如图1中,

在△ABM和△CAD中,∵AB=AC,∠BAM=∠ACD=90°,AM=CD,∴△ABM≌△CAD,

∴BM=AD= ,∴AM= =1,∴CM=CA﹣AM=2,∴S△BCM= •CM•BA= ×23=3.

(2)解:如图2中,连接EC、CN,作EQ⊥BC于Q,EP⊥BA于P.

∵AE=ED,∠ACD=90°,∴AE=CE=ED,∴∠EAC=∠ECA,∵△ABM≌△CAD,∴∠ABM=∠CAD,∴∠ABM=∠MCE,∵∠AMB=∠EMC,∴∠CEM=∠BAM=90°,

∴△ABM∽△ECM,∴,∴,∵∠AME=∠BMC,∴△AME∽△BMC,

∴∠AEM=∠ACB=45°,∴∠AEC=135°,易知∠PEQ=135°,∴∠PEQ=∠AEC,∴∠AEQ=∠EQC,∵∠P=∠EQC=90°,∴△EPA≌△EQC,∴EP=EQ,∵EP⊥BP,EQ⊥BC

∴BE平分∠ABC,∴∠NBC=∠ABN=22.5°,∵AH垂直平分BC,∴NB=NC,∴∠NCB=∠NBC=22.5°,∴∠ENC=∠NBC+∠NCB=45°,∴△ENC的等腰直角三角形,∴NC= EC,∴AD=2EC,∴2NC= AD,∴AD= NC,∵BN=NC,∴AD= BN.

【解析】【分析】(1)首先利用SAS判断出△ABM≌△CAD,根据全等三角形对应边相等得出BM=AD= ,根据勾股定理可以算出AM,根据线段的和差得出CM的长,利用

S△BCM= •CM•BA即可得出答案;

(2)连接EC、CN,作EQ⊥BC于Q,EP⊥BA于P.根据直角三角形斜边上的中线等于斜边的一半得出AE=CE=ED,根据等边对等角得出∠EAC=∠ECA,根据全等三角形对应角相等得出∠ABM=∠CAD,从而得出∠ABM=∠MCE,根据对顶角相等及三角形的内角和得出∠CEM=∠BAM=90°,从而判断出△ABM∽△ECM,由相似三角形对应边成比例得出BM∶CM= AM∶EM,从而得出BM∶AM= CM∶EM,根据两边对应成比例及夹角相等得出△AME∽△BMC,故∠AEM=∠ACB=45°,∠AEC=135°,易知∠PEQ=135°,故∠PEQ=∠AEC,∠AEQ=∠EQC,又∠P=∠EQC=90°,故△EPA≌△EQC,故EP=EQ,根据角平分线的判定得出BE平分∠ABC,故∠NBC=∠ABN=22.5°,根据中垂线定理得出NB=NC,根据等腰三角形的性质得出∠NCB=∠NBC=22.5°,故∠ENC=∠NBC+∠NCB=45°,△ENC的等腰直角三角形,根据等腰直角三角形边之间的关系得出NC= EC,根据AD=2EC,2NC= AD,AD= NC,又BN=NC,故AD= BN.

2.

(1)问题发现:

如图1,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为________;

(2)深入探究:

如图2,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;

(3)拓展延伸:

如图3,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN= ,试求EF的长.【答案】(1)NC∥AB

(2)解:∠ABC=∠ACN,理由如下:

∵ =1且∠ABC=∠AMN,

∴△ABC~△AMN

∴,

∵AB=BC,

∴∠BAC= (180°﹣∠ABC),

∵AM=MN

∴∠MAN= (180°﹣∠AMN),

∵∠ABC=∠AMN,

∴∠BAC=∠MAN,

∴∠BAM=∠CAN,

∴△ABM~△ACN,

∴∠ABC=∠ACN

(3)解:如图3,连接AB,AN,

∵四边形ADBC,AMEF为正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC 即∠BAM=∠CAN,

∵,

∴,

∴△ABM~△ACN

∴,

∴ =cos45°= ,

∴,

∴BM=2,

∴CM=BC﹣BM=8,

在Rt△AMC,

AM= ,

∴EF=AM=2 .

【解析】【解答】解:(1)NC∥AB,理由如下:

∵△ABC与△MN是等边三角形,

∴AB=AC,AM=AN,∠BAC=∠MAN=60°,

∴∠BAM=∠CAN,

在△ABM与△ACN中,

∴△ABM≌△ACN(SAS),

∴∠B=∠ACN=60°,

∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,

∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,

∴CN∥AB;

【分析】(1)由题意用边角边易得△ABM≌△ACN,则可得∠B=∠ACN=60°,所以∠BCN+∠B=∠BCA+∠ACN+∠B=180°,根据平行线的判定即可求解;

(2)由题意易得△ABC~△AMN,可得比例式,由三角形内角和定理易得∠BAM=∠CAN,根据相似三角形的判定可得△ABM~△ACN,由相似三角形的性质即可求解;

(3)要求EF的值,只须求得CM的值,然后解直角三角形AMC即可求解。连接AB,AN,由正方形的性质和相似三角形的判定易得△ABM~△ACN,可得比例式

,可求得BM的值,而CM=BC﹣BM,解直角三角形AMC即可求得AM的值,即为EF的值。

3.如图,在一间黑屋子里用一盏白炽灯照一个球.

(1)球在地面上的影子是什么形状?

(2)当把白炽灯向上平移时,影子的大小会怎样变化?

(3)若白炽灯到球心的距离是1 m,到地面的距离是3 m,球的半径是0.2 m,则球在地面上影子的面积是多少?

【答案】(1)解:球在地面上的影子的形状是圆.

相关文档
最新文档