2016年中考数学压轴题精选及详解
专题16压轴题(第02期)2016年中考数学试题(附解析)

一、选择题1.(2016海南省第14题)如图,AD 是△ABC 的中线,∠ADC=45°,把△ADC 沿着直线AD 对折,点C 落在点E 的位置.如果BC=6,那么线段BE 的长度为( ) A .6 B .6 2 C .2 3 D .3 2【答案】D.考点:1折叠;2等腰直角三角形.2..(2016山东潍坊第12题)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A . x≥11B .11≤x <23C .11<x≤23D .x≤23 【答案】C. 【解析】试题分析:由题意得,解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x >11,所以,x 的取值范围是11<x≤23.故答案选C . 考点:一元一次不等式组的应用. 3.(2016湖北宜昌第15题)函数y=12x 的图象可能是( )【答案】C. 【解析】试题分析:函数y=12 x 的图象是反比例y=x2的图象向左移动一个单位得到的,故答案选C.考点:反比例函数的图象.4.(2016湖南张家界第8题)在同一平面直角坐标系中,函数y=ax+b 与y=ax 2﹣bx 的图象可能是( )A .B .C .D .【答案】C.考点:1一次函数图像;2二次函数图像.5.(2016江苏苏州第10题)如图,在四边形ABCD 中,∠ABC=90°,AB=BC=22,E 、F 分别是AD 、CD 的中点,连接BE 、BF 、EF .若四边形ABCD 的面积为6,则△BEF 的面积为( )A .2B .94C .52 D .3【答案】C.考点:1勾股定理;2三角形面积.6.(2016湖北武汉第10题)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8【答案】A.【解析】试题分析:构造等腰三角形,①分别以A,B为圆心,以AB的长为半径作圆;②作AB的中垂线.如图,一共有5个C点,注意,与B重合及与AB共线的点要排除。
2016年中考数学压轴题70题精选(含答案及解析)

2016年中考数学压轴题70题精选(含答案)【001】如图13,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),ΔABC 的面积为45。
(1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与ΔABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使四边形ABCD 为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由。
【002】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC 于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形? 请直接写出相应的t值。
【003】抛物线)0(2≠++=a c bx ax y 的顶点为M ,与x 轴的交点为A 、B (点B 在点A 的右侧),△ABM 的三个内角∠M 、∠A 、∠B 所对的边分别为m 、a 、b 。
若关于x 的一元二次方程0)(2)(2=+++-a m bx x a m 有两个相等的实数根。
(1)判断△ABM 的形状,并说明理由。
(2)当顶点M 的坐标为(-2,-1)时,求抛物线的解析式,并画出该抛物线的大致图形。
(3)若平行于x 轴的直线与抛物线交于C 、D 两点,以CD 为直径的圆恰好与x 轴相切,求该圆的圆心坐标。
【004】一次函数y ax b =+的图象分别与x 轴、y 轴交于点,M N ,与反比例函数ky x=的图象相交于点,A B .过点A 分别作AC x ⊥轴,AE y ⊥轴,垂足分别为,C E ;过点B 分别作BF x ⊥轴,BD y ⊥轴,垂足分别为F D ,,AC 与BD 交于点K ,连接CD . (1)若点A B ,在反比例函数ky x=的图象的同一分支上,如图1,试证明: ①AEDK CFBK S S =四边形四边形; ②AN BM =.(2)若点A B ,分别在反比例函数ky x=的图象的不同分支上,如图2,则AN 与BM 还相等吗?试证明你的结论.)【005】如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A 的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S 与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.【006】如图,抛物线23y ax bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且经过点(23)a -,,对称轴是直线1x =,顶点是M . (1)求抛物线对应的函数表达式;(2)经过C,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P A C N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)设直线3y x =-+与y 轴的交点是D ,在线段BD 上任取一点E (不与B D ,重合),经过AB E ,,三点的圆交直线BC 于点F ,试判断AEF △的形状,并说明理由; (4)当E 是直线3y x =-+上任意一点时,(3)中的结论是否成立?(请直接写出结论).【007】如图9,已知正比例函数和反比例函数的图象都经过点(33)A ,. (1)求正比例函数和反比例函数的解析式;(2)把直线O A 向下平移后与反比例函数的图象交于点(6)B m ,,求m 的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x 轴、y 轴分别交于C 、D ,求过A 、B 、D 三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E ,使四边形O ECD 的面积1S 与四边形O ABD 的面积S 满足:123S S?若存在,求点E 的坐标; 若不存在,请说明理由.【008】如图,在平面直角坐标系xOy 中,半径为1的圆的圆心O 在坐标原点,且与两坐标轴分别交于A B C D 、、、四点.抛物线2y ax bx c =++与y 轴交于点D ,与直线y x =交于点M N 、,且MA NC 、分别与圆O 相切于点A 和点C .(1)求抛物线的解析式;(2)抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF 的长. (3)过点B 作圆O 的切线交DC 的延长线于点P ,判断点P 是否在抛物线上,说明理由.【009】如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标.【010】如图,抛物线24y ax bx a =+-经过(10)A -,、(04)C ,两点,与x 轴交于另一点B .(1)求抛物线的解析式;(2)已知点(1)D m m +,在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标;(3)在(2)的条件下,连接BD ,点P 为抛物线上一点, 且45DBP ∠=°,求点P 的坐标.7),且顶点C的横坐标为4,该图象在【011】如图,二次函数的图象经过点D(0,39x 轴上截得的线段AB的长为6.⑴求二次函数的解析式;⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.【012】如图,已知抛物线2y x bx c =++经过(10)A ,,(02)B ,两点,顶点为D . (1)求抛物线的解析式;(2)将OAB △绕点A 顺时针旋转90°后,点B 落到点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与y 轴的交点为1B ,顶点为1D ,若点N 在平移后的抛物线上,且满足1NBB △的面积是1NDD △面积的2倍,求点N 的坐标.(第26【013】如图,点P 是双曲线11(00)k y k x x=<<,上一动点,过点P 作x 轴、y 轴的垂线,分别交x 轴、y 轴于A 、B 两点,交双曲线y =xk 2(0<k 2<|k 1|)于E 、F 两点. (1)图1中,四边形PEOF 的面积S 1= ▲ (用含k 1、k 2的式子表示); (2)图2中,设P 点坐标为(-4,3). ①判断EF 与AB 的位置关系,并证明你的结论;②记2PEF OEF S S S ∆∆=-,S 2是否有最小值?若有,求出其最小值;若没有,请说明理由。
2016中考数学压轴题解析版

上所述,满足条件的点 P 的坐标为(﹣8,﹣15) 、 (2 ,﹣ ) 、 (10,﹣39) .
.此时点 P 的坐标为(2 ,﹣ ) . ,即 m 2﹣7m﹣30=0.
解得 m= ﹣3(舍去)或 m=10 ,此时点 P 的坐标为(10,﹣39) .
6、十套模拟二:
8、山东模拟二:如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A (3,0)、B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛 物线于点M,设点P的横坐标为t. 2 y x 3 y x 2x 3 (1)分别求出直线AB和这条抛物线的解析式. (2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面 积. (3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四 边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.
(3) 存在点 P , 使得以点 P、 A、 N 为顶点的三角形与△MAO 相似. 设P (m, ) .
在 Rt△MAO 中,AO=3MO ,要使两个三角形相似,由题意可知,点 P 不可能在第一象限.
①设点 P 在第二象限时,∵点 P 不可能在直线 MN 上,∴只能 PN=3NM, ∴ ,即 m 2+11m+24=0.解得 m=﹣3(舍去)或 m=﹣8.又﹣3
2
∴AO=1,OC=3, OB=3,P M= x 2 x 3 ,PN =x. ∴S 四边形 ABPC= S AOC + S POB + S POC
2
y M O N
C
第 25 题图 2(备用)
1 1 1 = AO·OC + OB·PM+ OC ·PN 2 2 2 1 1 1 2 = ×1×3+ ×3×( x 2 x 3 )+ ×3×x 2 2 2 3 2 9 = x x6 2 2 3 3 2 75 = (x ) . ………………………8 分 2 2 8
(完整word版)2016年中考数学压轴题70题精选(含答案及解析),推荐文档

2016年中考数学压轴题70题精选(含答案)【001】如图13,二次函数y x px q( p 0)的图象与x轴交于A、B两点,与y轴交于点C( 0, -1),5A ABC的面积为4(1)求该二次函数的关系式;(2 )过y轴上的一点M (0, m)作y轴的垂线,若该垂线与A ABC的外接圆有公共点,求m的取值范围;(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。
【002】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B ( 4, 0)、C (8 , 0)、D (8 , 8)抛物线y=ax2+bx过A、C两点.(1) 直接写出点A的坐标,并求出抛物线的解析式;(2) 动点P从点A出发•沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒•过点P作PE丄AB交AC于点E,①过点E作EF丄AD 于点F,交抛物线于点G当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得厶CEQ是等腰三角形?请直接写出相应的t值。
【003】抛物线y ax2 bx c(a 0)的顶点为M,与x轴的交点为A、B (点B在点A的右侧),△ ABM的三个内角/ M、/ A> Z B所对的边分别为m、a、b。
若关于x的一元二次方程(m a)x2 2bx (m a) 0 有两个相等的实数根。
(1)判断△ ABM的形状,并说明理由。
(2)当顶点M的坐标为(一2,—1)时,求抛物线的解析式,并画出该抛物线的大致图形。
(3)若平行于x轴的直线与抛物线交于C、D两点,以CD为直径的圆恰好与x轴相切,求该圆的圆心坐标。
k【004】一次函数y ax b的图象分别与x轴、y轴交于点M,N,与反比例函数y 的图象相交于点xA, B •过点A分别作AC x轴,AE y轴,垂足分别为C,E ;过点B分别作BF x轴,BD y轴,垂足分别为F, D, AC与BD交于点K,连接CD •k(1 )若点A , B 在反比例函数y 仝的图象的同一分支上,如图1,试证明:x① S 四边形AEDKS 四边形CFBK ;② AN BM •k-的图象的不同分支上,如图 2,则AN 与BM 还相等吗?试证 x明你的结论.(2) 连接BM ,如图2,动点P 从点第A2出题图沿折线ABC 方向第25个单位/秒的速度向终点 C 匀速运 动,设△ PMB 的面积为S(S 工0),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量 t 的取值范围);(3) 在(2)的条件下,当t 为何值时,/ MPB 与/ BCO 互为余角,并求此时直线 OP 与直线AC 所 夹锐角的正切值.【006】如图,抛物线y ax 2 bx 3与x 轴交于A, B 两点,与y 轴交于C 点,且经过点(2, 3a),对称轴是直线x 1,顶点是M . (1 )求抛物线对应的函数表达式; (2)经过C,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点 P ,使以点P , A, C , N 为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3) 设直线y x 3与y 轴的交点是D ,在线段BD 上任取一点E (不与B , D 重合),经过 A, B, E 三点的圆交直线BC 于点F ,试判断△ AEF 的形状,并说明理由;(2)若点A ,B 分别在反比例函数S MK C F【005】如图1 ,在平面直角坐标系中,点点C 在x 轴的正半轴上,直线 AC 交y 轴于点(1)求直线AC 的解析式; y+ Ny,点A 的坐标为(一3, 4), O仝标原点,四边形ABCqE 校y 轴于点x ~ D K(4) 当E 是直线y x 3上任意一点时,(3)中的结论是否成立?(请直接写出结论).如图9,已知正比例函数和反比例函数的图象都经过点I{(第26题A(3,3).x函数和反比例函数的解析式;OA 向下平移m),求m 的值和这个一次函数的解析式;y I【007】(2 )把A O (1 )求 M(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积S与四边形OABD过点B作圆0的切线交DC的延长线于点P,判断点P是否在抛物线上,说明理由. NC分(3)yA(4,0, B(1,0, C(0, 2)三点.(1 )A(2三角形与F .-动点,过【009】如图,P作PM x轴,垂足为M,是否存在P点,使得以A, P, M为顶点的△OAC 相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得△ DCA的面积最大,求出点D的坐标.【010】如图,抛物线y ax2 bx 4a经过A( (1)求抛物线的解析式; B •(2)已知点D(m, m 1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;⑴求二次函数的解析式;⑵在该抛物线的对称轴上找一点 P ,使PA+PD 最小,求出点P 的坐标;⑶在抛物线上是否存在点 0,使厶QAB 与厶ABC 相似?如果存在,求出点 Q 的坐标;如果不存在,请 说明理由.【012】如图,已知抛物线y x 2 bx c 经过A(1,0) , B(0,2)两点,顶点为D . (1) 求抛物线的解析式;(2) 将厶OAB 绕点A 顺时针旋转90。
2016年全国中考数学真题分类 选择题中的压轴题——几何图形中的动点与函数图象的选择(习题解析)

2016年全国中考数学真题分类选择题中的压轴题——图形中的动点与函数图象的选择一、选择题1.(2016青海西宁,10,3分)如图4,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角ABCBAC,设点B的∆,使︒∠90=横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是[来源:Z§xx§]图4 A B C D【答案】A2.(2016甘肃定西,10,3分)如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.【分析】过A点作AH⊥BC于H,利用等腰直角三角形的性质得到∠B=∠C=45°,BH=CH=AH=BC=2,分类讨论:当0≤x≤2时,如图1,易得PD=BD=x,根据三角形面积公式得到y=x2;当2<x≤4时,如图2,易得PD=CD=4﹣x,根据三角形面积公式得到y=﹣x2+2x,于是可判断当0≤x≤2时,y与x的函数关系的图象为开口向上的抛物线的一部分,当2<x≤4时,y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.【解答】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=xx=x2;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=(4﹣x)x=﹣x2+2x,故选A【点评】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x 的函数关系式.3.(2016湖南衡阳,12,3分)如图,已知A,B是反比例函数y=(k >0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为()A.B.C.D.【分析】结合点P的运动,将点P的运动路线分成O→A、A→B、B→C三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【解答】解:设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S==a2•cos α•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选:A.4.(2016 镇江,17,3分)如图,在平面直角坐标系中,坐标原点O是正方形OABC 的一个顶点,已知点B坐标为(1,7),过点P(a,0)(a>0),作PE⊥x轴,与边OA交于点E(异于点O、A),现将四边形ABCE沿CE翻折,点A′、B′分别是点A、B的对应点,若点A′恰好落在直线PE上,则a的值等于()A. 54B.43C. 2D.3答案:C.二、填空题5.(2015•浙江舟山,16,4分)如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P运动一周时,点Q运动的总路程为 4 .【分析】首先根据题意正确画出从O→B→A运动一周的图形,分四种情况进行计算:①点P从O→B时,路程是线段PQ的长;②当点P从B→C时,点Q从O运动到Q,计算OQ的长就是运动的路程;③点P从C→A时,点Q由Q向左运动,路程为QQ′;④点P从A→O时,点Q运动的路程就是点P运动的路程;最后相加即可.【解答】解:在Rt△AOB中,∵∠ABO=30°,AO=1,∴AB=2,BO==,①当点P从O→B时,如图1、图2所示,点Q运动的路程为,②当点P从B→C时,如图3所示,这时QC⊥AB,则∠ACQ=90°∵∠ABO=30°∴∠BAO=60°∴∠OQD=90°﹣60°=30°∴cos30°=∴AQ==2∴OQ=2﹣1=1则点Q运动的路程为QO=1,③当点P从C→A时,如图3所示,点Q运动的路程为QQ′=2﹣,④当点P从A→O时,点Q运动的路程为AO=1,∴点Q运动的总路程为:+1+2﹣+1=4故答案为:4【点评】本题主要是应用三角函数定义来解直角三角形,此题的解题关键是理解题意,正确画出图形;线段的两个端点看成是两个动点,将线段移动问题转化为点移动问题.三、解答题6.(2016上海,25,14分) (本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图9所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.(1)求线段CD的长;(2)如果△AEG是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x 的函数解析式,并写出x的取值范围.【答案】解:(1)过点D作DH∥AB,垂足为点H.在Rt△DAH中,∠AHD=90°,AD=15,DH=12,∴AH22AD DH9.又∵AB=16,∴CD=BH=AB-AH=7.(2)∵∠AEG=∠DEA,又∠AGE=∠DAE,△AEG∽△DEA.由△AEG是以EG为腰的等腰三角形,可得△DEA是以AE为腰的等腰三角形.①当EG=EA时,∠EAG=∠AGE=∠DAB∴点G与点D重合过点E做EH⊥AD与H点cos∠A=AHAE =35,AH=152∴AE=252②当GE=GA时,△EAD∽△EGA.AE GE =ADAG∴AE=AD=15综上所述,AE=152或15(3)Rt △DHE 巾,∠DHE =90°,DE 22DH EH +2212(9)x +- ∵△AEG ∽△DEA ,AE DE =EGAE. ∴EG ()222129x +-DG =()22129x +-()222129x +-.∵DF ∥AE ,∴DF AE =DG EG ,yx =()2222129x x x +--.∴y =22518x x -,x 的取值范围为9<x <252.7. (2016 镇江,27,9分)(本小题满分9分)如图1,在菱形ABCD 中,5tan ∠ABC=2,点E 从点D 出发,以每秒1个单位长度的速度沿着射线DA 的方向匀速运动,设运动时间为t (秒).将线段CE 绕点C 顺时针旋转一个角α(α=∠BCD ),得到对应线段CF. (1)求证:BE=DF ;(2)当t= 秒时,DF 的长度有最小值,最小值等于 ;(3)如图2,连接BD ,EF ,BD 交EC ,EF 于点P 、Q ,当t 为何值时,△EPQ 是直角三角形?(4)如图3,将线段CD 绕点C 顺时针旋转一个角α(α=∠BCD ),得到对应线段CG.在点E 的运动过程中,当它的对应点F 位于AD 上方时,直接写出点F 到直线AD 的距离y 关于时间t 的函数表达式.DCAE图2QPDC AE 图3DC GA(1)证明:∠ECF=∠BCD , ∴∠ECF -∠ECD=∠BCD -∠ECD , 即∠DCF=∠BCE. ∵四边形ABCD 是菱形, ∴DC=BC ,在△DCF 和△BCE 中,DCF=BCE DC=BC CF CE =⎧⎪⎨⎪⎩∠∠ ∴△DCF ≌△BCE ,∴DF=BE ;……………………………………………………2分(2)当56)秒时,……………………………………………………3分 当DF 的长度有最小值,最小值等于12;……………………………………………………4分 (3)∵CE=CF , ∴∠CEQ <90°.①当∠EQD=90°时,如图1,∠ECF=∠BCD,BC=DC,EC=FC, ∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°.在Rt△CDE中,∠CED=90°,∵,tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;……………………………………………………6分②当∠EPQ=90°时,如图2,∵菱形ABCD对角线AC⊥BD,∴EC和AC重合.∴,∴秒;……………………………………………………7分图1图2(4)y=5t-12-5.……………………………………………………9分略解:点G即为t=0时,点E的对应点.当点F在直线AD上方时,如图3,连接GF,分别交直线AD、BC于点M、N,过点F作FH⊥AD,垂足为H,由(1)得∠1=∠2.易证△DCE≌△GCF,2016年全国中考数学精品文档11 ∴∠3=∠4.∵DE ∥BC ,∴∠1=∠3.∴∠2=∠4.∴GF ∥CD ,易得∠BCD=∠DCN=∠CNG.∵tan ∠ABC=tan ∠CGN=2, ∴GN=12.∴+12.∵GF=DE=t ×1=t,FM =t --12,∵tan ∠FMH=tan ∠ABC=2, ∴FH=5(t -12), 即-12-。
2016年中考数学分类汇编:二次函数压轴题(含答案)

2016年中考数学与二次函数有关的压轴题纵观2016年全国各省市中考数学试卷其中与二次函数有关的压轴题,其考点涉及:一次函数、二次函数的性质,函数图像上点的坐标与方程的关系;轴对称和等腰三角形的性质;特殊平行四边形性质;图形的旋转变换;相似三角形的性质;锐角三角函数应用;圆的性质;阅读理解,等.数学思想涉及:分类讨论;数形结合;转化,等.现选取部分省市的2016年中考题展示,以飨读者.一、与特殊平行四边形性质的有关综合题【题1】(2016•成都第28题)如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.【考点】二次函数综合题.【分析】(1)把点C代入抛物线解析式即可求出a,令y=0,列方程即可求出点A、B坐标.(2)先求出四边形ABCD面积,分两种情形:①当直线l边AD相交与点M1时,根据S=×10=3,求出点M1坐标即可解决问题.②当直线l边BC相交与点M2时,同理可得点M2坐标.(3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,得到b=k,利用方程组求出点M坐标,求出直线DN解析式,再利用方程组求出点N坐标,列出方程求出k,即可解决问题.【解答】解:(1)∵抛物线与y轴交于点C(0,﹣).∴a﹣3=﹣,解得:a=,∴y=(x+1)2﹣3当y=0时,有(x+1)2﹣3=0,∴x 1=2,x 2=﹣4, ∴A (﹣4,0),B (2,0).(2)∵A (﹣4,0),B (2,0),C (0,﹣),D (﹣1,﹣3)∴S 四边形ABCD =S △ADH +S 梯形OCDH +S △BOC =×3×3+(+3)×1+×2×=10. 从面积分析知,直线l 只能与边AD 或BC 相交,所以有两种情况: ①当直线l 边AD 相交与点M 1时,则S =×10=3,∴×3×(﹣y)=3∴y=﹣2,点M 1(﹣2,﹣2),过点H (﹣1,0)和M 1(﹣2,﹣2)的直线l 的解析式为y =2x +2.②当直线l 边BC 相交与点M 2时,同理可得点M 2(,﹣2),过点H (﹣1,0)和M 2(,﹣2)的直线l 的解析式为y =﹣x ﹣.综上所述:直线l 的函数表达式为y =2x +2或y =﹣x ﹣.(3)设P (x 1,y 1)、Q (x 2,y 2)且过点H (﹣1,0)的直线PQ 的解析式为y =kx +b , ∴﹣k +b =0, ∴b =k , ∴y =kx +k . 由,∴+(﹣k )x ﹣﹣k =0,∴x 1+x 2=﹣2+3k ,y 1+y 2=kx 1+k +kx 2+k =3k 2,∵点M 是线段PQ 的中点,∴由中点坐标公式的点M (k ﹣1, k 2). 假设存在这样的N 点如图,直线DN ∥PQ ,设直线DN 的解析式为y =kx +k ﹣3 由,解得:x 1=﹣1,x 2=3k ﹣1,∴N (3k ﹣1,3k 2﹣3)∵四边形DMPN 是菱形, ∴DN =DM ,∴(3k )2+(3k 2)2=()2+()2,整理得:3k 4﹣k 2﹣4=0, ∵k 2+1>0, ∴3k 2﹣4=0, 解得k =±,∵k<0,∴k=﹣,∴P(﹣3﹣1,6),M(﹣﹣1,2),N(﹣2﹣1,1)∴PM=DN=2,∵PM∥DN,∴四边形DMPN是平行四边形,∵DM=DN,∴四边形DMPN为菱形,∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2﹣1,1).【题2】(2016•泰安第28题)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y 轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行与y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE 为其一边,求点M、N的坐标.【考点】此题是二次函数综合题,主要考查了待定系数法求函数关系式,函数极值额确定方法,平行四边形的性质和判定,解本题的关键是建立函数关系式求极值.【分析】(1)设出抛物线解析式,用待定系数法求解即可;(2)先求出直线AB解析式,设出点P坐标(x,﹣x2+4x+5),建立函数关系式S四边形APCD=﹣2x2+10x,根据二次函数求出极值;(3)先判断出△HMN≌△AOE,求出M点的横坐标,从而求出点M,N的坐标.【解答】解:(1)设抛物线解析式为y=a(x﹣2)2+9,∵抛物线与y轴交于点A(0,5),∴4a+9=5,∴a=﹣1,y=﹣(x﹣2)2+9=﹣x2+4x+5,(2)当y=0时,﹣x2+4x+5=0,∴x1=﹣1,x2=5,∴E(﹣1,0),B(5,0),设直线AB的解析式为y=mx+n,∵A(0,5),B(5,0),∴m=﹣1,n=5,∴直线AB的解析式为y=﹣x+5;设P(x,﹣x2+4x+5),∴D(x,﹣x+5),∴PD=﹣x2+4x+5+x﹣5=﹣x2+5x,∵AC=4,∴S四边形APCD=×AC×PD=2(﹣x2+5x)=﹣2x2+10x,∴当x=﹣=时,∴S四边形APCD最大=,(3)如图,过M作MH垂直于对称轴,垂足为H,∵MN∥AE,MN=AE,∴△HMN≌△AOE,∴HM=OE=1,∴M点的横坐标为x=3或x=1,当x=1时,M点纵坐标为8,当x=3时,M点纵坐标为8,∴M点的坐标为M1(1,8)或M2(3,8),∵A(0,5),E(﹣1,0),∴直线AE解析式为y=5x+5,∵MN∥AE,∴MN的解析式为y=5x+b,∵点N在抛物线对称轴x=2上,∴N(2,10+b),∵AE2=OA2+0E2=26∵MN=AE∴MN2=AE2,∴MN2=(2﹣1)2+[8﹣(10+b)]2=1+(b+2)2∵M点的坐标为M1(1,8)或M2(3,8),∴点M1,M2关于抛物线对称轴x=2对称,∵点N在抛物线对称轴上,∴M1N=M2N,∴1+(b+2)2=26,∴b=3,或b=﹣7,∴10+b=13或10+b=3∴当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3),【点评】此题是二次函数综合题,主要考查了待定系数法求函数关系式,函数极值额确定方法,平行四边形的性质和判定,解本题的关键是建立函数关系式求极值.【题2】(2016•东营第25题)参考答案:y ax bx的图像过点A(-1,3),顶点B的横坐标为【题3】(2016•扬州第28题)如图1,二次函数21.(1)求这个二次函数的表达式;(2)点P 在该二次函数的图像上,点Q 在x 轴上,若以A 、B 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标;(3)如图3,一次函数ykx (k >0)的图像与该二次函数的图像交于O 、C 两点,点T 为该二次函数图像上位于直线OC 下方的动点,过点T 作直线TM ⊥OC ,垂足为点M ,且M 在线段OC 上(不与O 、C 重合),过点T 作直线TN ∥y 轴交OC 于点N 。
2016年中考压轴题4及答案

压轴题(四)1. 有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC= 度;(2)如图3,在三角板DEF运动过程中,当EF经过点C时,求FC的长(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.【考点】相似形综合题.【专题】压轴题.【分析】(1)如题图2所示,由三角形的外角性质可得;(2)如题图3所示,在Rt△ACF中,解直角三角形即可;(3)认真分析三角板的运动过程,明确不同时段重叠图形的变化情况:(I)当0≤x≤2时,如答图1所示;(II)当2<x≤6-时,如答图2所示;(III)当6- <x≤6时,如答图3所示.(1)如题图2所示,∵在三角板DEF中,∠FDE=90°,DF=4,DE= ,∴tan∠DFE= ,【解答】解:∴∠DFE=60°,∴∠EMC=∠FMB=∠DFE-∠ABC=60°-45°=15°;(2)如题图3所示,当EF经过点C时,FC=(3)在三角板DEF运动过程中,(I)当0≤x≤2时,如答图1所示:设DE交BC于点G.过点M作MN⊥AB于点N,则△MNB为等腰直角三角形,MN=BN.又∵NF=,BN=NF+BF,∴NF+BF=MN,即MN+x=MN,解得:MN=y=S△BDG -S△BFM=BD•DG-BF•MN ==(II)当2<x≤时,如答图2所示:过点M作MN⊥AB于点N,则△MNB为等腰直角三角形,MN=BN.又∵NF== MN,BN=NF+BF,∴NF+BF=MN,即MN+x=MN,解得:MN=y=S△ABC-S△BFM=AB•AC- BF•MN==(III)当<x≤6时,如答图3所示:由BF=x,则AF=AB-BF=6-x,设AC与EF交于点M,则AM=AF•tan60°=y=S△AFM=AF•AM=综上所述,y与x的函数解析式为:【点评】本题是运动型综合题,解题关键是认真分析三角板的运动过程,明确不同时段重叠图形形状的变化情况.在解题计算过程中,除利用三角函数进行计算外,也可以利用三角形相似,殊途同归.2. 如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P 运动到C时,两点都停止.设运动时间为t秒.(1)求线段CD的长;(2)设△CPQ的面积为S,求S与t之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得S△CPQ:S△ABC=9:100?若存在,求出t的值;若不存在,则说明理由.(3)是否存在某一时刻t,使得△CPQ为等腰三角形?若存在,求出所有满足条件的t的值;若不存在,则说明理由.【考点】相似形综合题.【分析】(1)利用勾股定理可求出AB长,再用等积法就可求出线段CD的长.(2)过点P作PH⊥AC,垂足为H,通过三角形相似即可用t的代数式表示PH,从而可以求出S与t之间的函数关系式;利用S△CPQ:S△ABC=9:100建立t的方程,解方程即可解决问题.(3)可分三种情况进行讨论:由CQ=CP可建立关于t的方程,从而求出t;由PQ=PC或QC=QP不能直接得到关于t的方程,可借助于等腰三角形的三线合一及三角形相似,即可建立关于t的方程,从而求出t.【解答】解:(1)如图1,∵∠ACB=90°,AC=8,BC=6,∴AB=10.∵CD⊥AB,∴S△ABC=BC•AC=AB•CD.∴CD==4.8.∴线段CD的长为4.8;(2)①过点P作PH⊥AC,垂足为H,如图2所示.由题可知DP=t,CQ=t.则CP=4.8-t.∵∠ACB=∠CDB=90°,∴∠HCP=90°-∠DCB=∠B.∵PH⊥AC,∴∠CHP=90°.∴∠CHP=∠ACB.∴△CHP∽△BCA.∴,∴∴PH=∴S△CPQ=②存在某一时刻t,使得S△CPQ:S△ABC=9:100.∵S△ABC=×6×8=24,且S△CPQ:S△ABC=9:100,∴:24=9:100.整理得:5t2-24t+27=0.即(5t-9)(t-3)=0.解得:t=或t=3.∵0≤t≤4.8,∴当t= 或t=3秒时,S△CPQ:S△ABC=9:100;(3)存在①若CQ=CP,如图1,则t=4.8-t.解得:t=2.4.…(7分)②若PQ=PC,如图2所示.∵PQ=PC,PH⊥QC,∴QH=CH=QC=∵△CHP∽△B CA.∴∴解得;t=.③若QC=QP,过点Q作QE⊥CP,垂足为E,如图3所示.同理可得:t=.综上所述:当t为2.4秒或秒或秒时,△CPQ为等腰三角形.【点评】本题考查了相似三角形的判定与性质、等腰三角形的性质、一元二次方程的应用、勾股定理等知识,具有一定的综合性,而利用等腰三角形的三线合一巧妙地将两腰相等转化为底边上的两条线段相等是解决第三小题的关键.3. 如图,在直角坐标系xOy中,边长为2的等边△OAB的顶点B在第一象限,顶点A在x轴的正半轴上.另一等腰△OCA的顶点C在第四象限,OC=AC,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止.(1)求边OC的长;(2)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系式,并写出自变量t的取值范围;(3)在等边△OAB的边上(点A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标.【考点】相似形综合题.【分析】(1)作辅助线求得;(2)由于点Q从点O运动到点C需要秒,点P从点A→O→B需要秒,所以分两种情况讨论:①0<t<;②≤t<,针对每一种情况,根据P点所在的位置,由三角形的面积公式得出△OPQ的面积S与运动的时间t之间的函数关系,并且得出自变量t的取值范围;(3)如果△OCD为等腰三角形,那么分D在OA边或者OB边上或AB边上三种情形.每一种情形,都有可能O为顶点,C为顶点,D为顶点,分别讨论,得出结果.解答:(1)过点C作CD⊥OA于点D.(如图1)∵OC=AC,∠ACO=120°,∴∠AOC=∠OAC=30°.∵OC=AC,CD⊥OA,∴OD=DA=1.在Rt△ODC中,OC=(2)过点C作CD⊥OA于点D(如图)∵OC=AC,∠ACO=120°,∴∠AOC=∠OAC=30°.∵OC=AC,CD⊥OA,∴OD=DA=1.在Rt△ODC中,OC=①当0<t<时,OQ=t,AP=3t,OP=OA-AP=2-3t.过点Q作QE⊥OA于点E.(如图)在Rt△OEQ中∵∠AOC=30°,∴QE=OQ=,∴S△OPQ=OP•EQ=(2-3t)•=即S=②当时(如图)OQ=t,OP=3t-2.∵∠BOA=60°,∠AOC=30°,∴∠POQ=90°.∴S△OPQ= OQ•OP=t•(3t-2)=t2-t,即S=t2-t;故当0<t<时,S=当时,S=t2-t;(3)如图3,若点D在OA上时,OC=OD,则OD=OC=,D点的坐标为(,0),如图4,若OD=CD时,∵∠COD=30°,cos∠COD=,∴cos30°=,∴OD=∴D点的坐标为(,0);如图5,当点D在BA上时,若OD=CD,则点D在OC的垂直平分线上,设OC的垂直平分线DQ与x轴交于点P,则∠APD=60°,OQ=CQ= ,∵∠DAP=60°,∴△ADP是等边三角形,过点D作DM⊥PA于M,则PM=DM,∵∠AOC=30°,∴OP=∴AP=2- =,∴PM=,∴OM=,DM=tan60°•PM=,∴D点的坐标为如图6,当点D在OB上时,若OD=OC,则OD=,过点D作DM⊥OA于M,则OM=OD=,DM=1,则D点的坐标为(,1);综上所述;符合条件的点D的坐标是(,1)或(,0)或(,0)或().【点评】本题综合考查了相似形的综合,用到的知识点是等腰三角形、等边三角形的性质,全等三角形的判定,关键是根据题意画出图形,注意分类讨论时,做到不重复,不遗漏.4.如图,已知一次函数y=-x+7与正比例函数y=x的图象交于点A,且与x轴交于点B.(1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O-C-A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.【考点】一次函数综合题.【专题】压轴题.【分析】(1)根据图象与坐标轴交点求法直接得出即可,再利用直线交点坐标求法将两直线解析式联立即可得出交点坐标;(2)①利用S梯形ACOB-S△ACP-S△POR-S△ARB=8,表示出各部分的边长,整理出一元二次方程,求出即可;②根据一次函数与坐标轴的交点得出,∠OBN=∠ONB=45°,进而利用勾股定理以及等腰三角形的性质和直角三角形的判定求出即可.【解答】解:(1)∵一次函数y=-x+7与正比例函数y= x的图象交于点A,且与x轴交于点B.∴解得:∴A点坐标为:(3,4);∵y=-x+7=0,解得:x=7,∴B点坐标为:(7,0).(2)①当P在OC上运动时,0≤t<4时,PO=t,PC=4-t,BR=t,OR=7-t,∵当以A、P、R为顶点的三角形的面积为8,∴S梯形ACOB-S△ACP-S△POR-S△ARB=8,∴(AC+BO)×CO-AC×CP-PO×RO-AM×BR=8,∴(AC+BO)×CO-AC×CP-PO×RO-AM×BR=16,∴(3+7)×4-3×(4-t)-t×(7-t)-4t=16,∴t2-8t+12=0,解得:t1=2,t2=6(舍去),当t=4时,无法构成三角形,当4<t<7时,S△APR=AP×OC=2(7-t)=8,解得t=3,不符合4<t<7;综上所述,当t=2时,以A、P、R为顶点的三角形的面积为8;②存在.延长CA到直线l交于一点D,当l与AB相交于Q,∵一次函数y=-x+7与x轴交于(7,0)点,与y轴交于(0,7)点,∴NO=OB,∴∠OBN=∠ONB=45°,∵直线l∥y轴,∴RQ=RB,CD⊥L,当0≤t<4时,如图1,RB=OP=QR=t,DQ=AD=(4-t),AC=3,PC=4-t,∵以A、P、Q为顶点的三角形是等腰三角形,则AP=AQ,∴AC2+PC2=AP2=AQ2=2AD2,∴9+(4-t)2=2(4-t)2,解得:t1=1,t2=7(舍去),当AP=PQ时 32+(4-t)2=(7-t)2,解得t=4 (舍去)当PQ=AQ时,2(4-t)2=(7-t)2,解得t1=1+(舍去),t2=1-(舍去),当t=4时,无法构成三角形,当4<t<7时,如图(备用图),过A作AD⊥OB于D,则AD=BD=4,设直线l交AC于E,则QE⊥AC,AE=RD=t-4,AP=7-t,由cos∠OAC=得AQ=(t-4),若AQ=AP,则(t-4)=7-t,解得t=,当AQ=PQ时,AE=PE,即AE=AP,得t-4=(7-t),解得:t=5,当AP=PQ时,过P作PF⊥AQ于F,AF=AQ=×(t-4),在Rt△APF中,由cos∠PAF=,得AF=AP,即解得:t= ,综上所述,当t=1、5、、秒时,存在以A、P、Q为顶点的三角形是等腰三角形.【点评】此题主要考查了一次函数与坐标轴交点求法以及三角形面积求法和等腰直角三角形的性质等知识,此题综合性较强,利用函数图象表示出各部分长度,再利用勾股定理求出是解决问题的关键.5.如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(-4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).(1)写出∠PBD的度数和点D的坐标(点D的坐标用t表示);(2)探索△POE周长是否随时间t的变化而变化,若变化,说明理由;若不变,试求这个定值.(3)当t为何值时,△PBE为等腰三角形?【考点】四边形综合题.【分析】(1)易证△BAP≌△PQ D,从而得到DQ=AP=t,从而可以求出∠PBD的度数和点D的坐标;(2)由于∠EBP=45°,故图1是以正方形为背景的一个基本图形,容易得到EP=AP+CE.容易得到△POE 周长等于AO+CO=8,从而解决问题;(3)EP=AP+CE,由于△PBE底边不定,故分三种情况讨论,借助于三角形全等及勾股定理进行求解,然后结合条件进行取舍,最终确定符合要求的t值.【解答】解:(1)如图1,由题可得:AP=OQ=1×t=t(秒)∴AO=PQ.∵四边形OABC是正方形,∴AO=AB=BC=OC,∠BAO=∠AOC=∠OCB=∠ABC=90°.∵DP⊥BP,∴∠BPD=90°.∴∠BPA=90°-∠DPQ=∠PDQ.∵AO=PQ,AO=AB,∴AB=PQ.在△BAP和△PQD中,∴△BAP≌△PQD(AAS).∴AP=QD,BP=PD.∵∠BPD=90°,BP=PD,∴∠PBD=∠PDB=45°.∵AP=t,∴DQ=t.∴点D坐标为(t,t).故答案为:45°,(t,t).(2)∵∠EBP=45°,∴由图1可以得到EP=CE+AP,∴OP+PE+OE=OP+AP+CE+OE=AO+CO=4+4=8.∴△POE周长是定值,该定值为8.(3)①若PB=PE,由△PAB≌△DQP得PB=PD,显然PB≠PE,∴这种情况应舍去.②若EB=EP,则∠PBE=∠BPE=45°.∴∠BEP=90°.∴∠PEO=90°-∠BEC=∠EBC.在△POE和△ECB中,∴△POE≌△ECB(AAS).∴OE=CB=OC.∴点E与点C重合(EC=0).∴点P与点O重合(PO=0).∵点B(-4,4),∴AO=CO=4.此时t=AP=AO=4.③若BP=BE,在Rt△BAP和Rt△BCE中,∴Rt△BAP≌Rt△BCE(HL).∴AP=CE.∵AP=t,∴CE=t.∴PO=EO=4-t.∵∠POE=90°,∴PE=延长OA到点F,使得AF=CE,连接BF,如图2所示.在△FAB和△ECB中,∴△FAB≌△ECB.∴FB=EB,∠FBA=∠EBC.∵∠EBP=45°,∠ABC=90°,∴∠ABP+∠EBC=45°.∴∠FBP=∠FBA+∠ABP=∠EBC+∠ABP=45°.∴∠FBP=∠EBP.在△FBP和△EBP中,∴△FBP≌△EBP(SAS).∴FP=EP.∴EP=FP=FA+AP=CE+AP.∴EP=t+t=2t.∴(4-t)=2t.解得:t=4-4∴当t为4秒或(4-4)秒时,△PBE为等腰三角形.【点评】本题考查了正方形的性质、等腰三角形的性质、全等三角形的性质与判定、勾股定理等知识,考查了分类讨论的思想,考查了利用基本活动经验解决问题的能力,综合性非常强.熟悉正方形与一个度数为45°的角组成的基本图形(其中角的顶点与正方形的一个顶点重合,角的两边与正方形的两边分别相交)是解决本题的关键6.如图,直线EF交⊙O于A、B两点,AC是⊙O直径,DE是⊙O的切线,且D E⊥EF,垂足为E.(1)求证:AD平分∠CAE;(2)若DE=4cm,AE=2cm,求⊙O的半径.【考点】切线的性质;勾股定理;相似三角形的判定与性质.【专题】几何综合题;压轴题.【分析】(1)连接OD,得出∠OAD=∠ODA,再证明∠EAD=∠ODA,得出结论;(2)连接CD,证明△AED∽△ADC,根据勾股定理和相似三角形的性质求出半径.【解答】(1)证明:连接OD,∵OD=OA,∴∠ODA=∠OAD,∵DE是⊙O的切线,∴∠ODE=90°,OD⊥DE,又∵DE⊥EF,∴OD∥EF,∴∠ODA=∠DAE,∴∠DAE=∠OAD,∴AD平分∠CAE;(2)解:连接CD,∵AC是⊙O直径,∴∠ADC=90°,在Rt△ADE中,DE=4cm,AE=2cm,∴根据勾股定理得:AD=cm,由(1)知:∠DAE=∠OAD,∠AED=∠ADC=90°,∴△ADC∽△AED,∴,即,∴AC=10,∴⊙O的半径是5.【点评】本题考查了切线的性质及相似三角形的判定和性质,重在知识相互间的联系.7. 如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处;(1)求证:B′E=BF;(2)设AE=a,AB=b,BF=c,试猜想a,b,c之间的一种关系,并给予证明.【考点】勾股定理;翻折变换(折叠问题).【专题】压轴题;分类讨论.【分析】(1)首先根据题意得B′F=BF,∠B′FE=∠BFE,接着根据平行线的性质和等腰三角形的判定即可证明B′E=BF;(2)解答此类题目时要仔细读题,根据三角形三边关系求解分类讨论解答,要提高全等三角形的判定结合勾股定理解答.【解答】(1)证明:由题意得B′F=BF,∠B′FE=∠BFE,在矩形ABCD中,AD∥BC,∴∠B′EF=∠BFE,∴∠B′FE=∠B'EF,∴B′F=B′E,∴B′E=BF;(2)答:a,b,c三者关系不唯一,有两种可能情况:(ⅰ)a,b,c三者存在的关系是a2+b2=c2.证明:连接BE,由(1)知B′E=BF=c,∵B′E=BE,∴四边形BEB′F是平行四边形,∴BE=c.在△ABE中,∠A=90°,∴AE2+AB2=BE2,∵AE=a,AB=b,∴a2+b2=c2;(ⅱ)a,b,c三者存在的关系是a+b>c.证明:连接BE,则BE=B′E.由(1)知B′E=BF=c,∴BE=c,在△ABE中,AE+AB>BE,∴a+b>c.【点评】此题以证明和探究结论形式来考查矩形的翻折、等角对等边、三角形全等、勾股定理等知识.第一,较好考查学生表述数学推理和论证能力,第(1)问重点考查了学生逻辑推理的能力,主要利用等角对等边、翻折等知识来证明;第二,试题呈现显示了浓郁的探索过程,试题设计的起点低,图形也很直观,也可通过自已动手操作,寻找几何元素之间的对应关系,形成较为常规的方法解决问题,第(2)问既考查了学生对勾股定理掌握的程度又考查学生的数学猜想和探索能力,这对于培养学生创新意识和创新精神十分有益;第三,解题策略多样化在本题中得到了充分的体现.8.(2015•福建)在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF 之间的数量关系.考点:四边形综合题.专题:压轴题.分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AE G≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.解答:(1)证明:∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)证明:设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG= BM= DF=NF,∴EF2=ME2+NF2;3)解:EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,∴EF=HE,DF=GH,BE=BM,由(2)知HM⊥ME,∴HM2+ME2=HE2=EF2,HM2=HG2+GM2=2HG2=2DF2,ME2=BM2+BE2=2BE2,∴EF2=2BE2+2DF2.。
2016年中考数学十大压轴题

一、动点型问题:例1.(基础题)如图,已知抛物线y=x2﹣2x﹣3与x轴从左至右分别交于A、B两点,与y 轴交于C点,顶点为D.(1)求与直线BC平行且与抛物线只有一个交点的直线解析式;(2)若线段AD上有一动点E,过E作平行于y轴的直线交抛物线于F,当线段EF取得最大值时,求点E的坐标.变式练习:如图,已知抛物线经过点A(﹣2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点D平行于x轴的直线交射线OM于点C,B 在x轴正半轴上,连接BC.(1)求该抛物线的解析式;(2)若动点P从点O出发,以每秒l个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问:当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?(3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒l个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动设它们运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值.(4)在(3)中当t为何值时,以O,P,Q为顶点的三角形与△OAD相似?(直接写出答案)1、如图,在矩形ABCD 中,AD =acm ,AB =bcm (a >b >4),半径为2cm 的⊙O 在矩形内且与AB 、AD 均相切.现有动点P 从A 点出发,在矩形边上沿着A →B →C →D 的方向匀速移动,当点P 到达D 点时停止移动;⊙O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O 回到出发时的位置(即再次与AB 相切)时停止移动.已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P 从A →B →C →D ,全程共移动了 cm (用含a 、b 的代数式表示); (2)如图①,已知点P 从A 点出发,移动2s 到达B 点,继续移动3s ,到达BC 的中点.若点P 与⊙O 的移动速度相等,求在这5s 时间内圆心O 移动的距离;(3)如图②,已知a =20,b =10.是否存在如下情形:当⊙O 到达⊙O 1的位置时(此时圆心O 1在矩形对角线BD 上),DP 与⊙O 1恰好相切?请说明理由.(第28题)(图②)(图①)二.几何图形的变换(平移、旋转、翻折)例2.如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,1)、B(3,1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线..OA,垂足为Q.设P点移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线解析式;(2)求S与t的函数关系式;(3)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.1、如图1,在平面直角坐标系xOy 中,直线l :y =x +m 与x 轴、y 轴分别交于点A 和点B(0,-1),抛物线y =x 2+bx +c 经过点B ,且与直线l 的另一个交点为C(4,n). (1)求n 的值和抛物线的解析式;(2)点D 在抛物线上,且点D 的横坐标为t(0<t<4).DE ∥y 轴交直线l 于点E ,点F 在直线l 上,且四边形DFEG 为矩形(如图2).若矩形DFEG 的周长为p ,求p 与t 的函数关系式以及p 的最大值;(3)将△AOB 在平面内经过一定的平移得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,请直接写出点A 1的横坐标为 .3412三.相似与三角函数问题例3.如图,二次函数的图象经过点D (0,),且顶点C 的横坐标为4,该图象在x 轴上截得的线段AB 的长为6. (1)求该二次函数的解析式;(2)在该抛物线的对称轴上找一点P ,使PA +PD 最小,求出点P 的坐标;(3)在抛物线上是否存在点Q ,使△QAB 与△ABC 相似?如果存在,求出点Q 的坐标;如果不存在,请说明理由.397变式练习:如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的长为;(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t(秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.1、如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm.点E,F,G分别从A,B,C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s.当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB'F,设点E,F,G运动的时间为t(单位:s).(1)当t=s时,四边形EBFB'为正方形;(2)若以点E,B,F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B'与点O重合?若存在,求出t的值;若不存在,请说明理由.面积与相似:如图,已知抛物线与x 轴的正半轴分别交于点A 、B (点A 位于点B 的左侧),与y 轴的正半轴交于点C .⑴点B 的坐标为 ,点C 的坐标为 (用含b 的代数式表示);⑵请探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由; ⑶请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.x yPO CBA四.三角形问题(等腰直角三角形、等边三角形、全等三角形等)例4.已知矩形纸片OABC的长为4,宽为3,以长OA所在的直线为x轴,O为坐标原点建立平面直角坐标系;点P是OA边上的动点(与点OA不重合),现将△POC沿PC翻折得到△PEC,再在AB边上选取适当的点D,将△PAD沿PD翻折,得到△PFD,使得直线PE、PF 重合.(1)若点E落在BC边上,如图①,求点P、C、D的坐标,并求过此三点的抛物线的函数关系式;(2)若点E落在矩形纸片OABC的内部,如图②,设OP=x,AD=y,当x为何值时,y取得最大值?(3)在(1)的情况下,过点P、C、D三点的抛物线上是否存在点Q,使△PDQ是以PD为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.变式.已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1).(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.①当△BDE是等腰三角形时,直接写出....此时点E的坐标.②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.xx 图21、如图,已知抛物线y =x 2+bx +c (b ,c 是常数,且c<0)与x 轴分别交于点A ,B (点A 位于点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0). (1)b = ,点B 的横坐标为 (上述结果均用含c 的代数式表示);(2)连接BC ,过点A 作直线AE ∥BC ,与抛物线y =x 2+bx +c 交于点E .点D 是x 轴上一点,其坐标为(2,0),当C ,D ,E 三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连接PB ,PC ,设所得△PBC 的面积为S .①求S 的取值范围;②若△PBC 的面积S 为整数,则这样的△PBC 共有 个.1212五、与四边形有关的二次函数问题例5.如图,Rt △ABC 的顶点坐标分别为A (0,),B (-,),C (1,0),∠ABC =90°,BC 与y 轴的交点为D ,D 点坐标为(0,),以点D 为顶点、y 轴为对称轴的抛物线过点B .(1)求该抛物线的解析式;(2)将△ABC 沿AC 折叠后得到点B 的对应点B ′,求证:四边形AOCB ′是矩形,并判断点B ′是否在(1)的抛物线上;(3)延长BA 交抛物线于点E ,在线段BE 上取一点P ,过P 点作x 轴的垂线,交抛物线于点F ,是否存在这样的点P ,使四边形PADF 是平行四边形?若存在,求出点P 的坐标,若不存在,说明理由.3212333变式练习:已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD.(1)如图①,当PA的长度等于时,∠PAB=60°;当PA的长度等于时,△PAD是等腰三角形;(2)如图②,以AB边所在直线为x轴、AD边所在直线为y轴,建立如图所示的直角坐标系(点A即为原点O),把△PAD、△PAB、△PBC的面积分别记为S1、S2、S3.坐标为(a,b),试求2 S1 S3-S22的最大值,并求出此时a,b的值.1、已知二次函数的图象与x 轴分别交于点A 、B ,与y 轴交于点C .点D 是抛物线的顶点.(1)如图①,连接AC ,将△OAC 沿直线AC 翻折,若点O 的对应点O'恰好落在该抛物线的对称轴上,求实数a 的值;(2)如图②,在正方形EFGH 中,点E 、F 的坐标分别是(4,4)、(4,3),边HG 位于边EF 的右侧.小林同学经过探索后发现了一个正确的命题:“若点P 是边EH 或边HG 上的任意一点,则四条线段PA 、PB 、PC 、PD 不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).”若点P 是边EF 或边FG 上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;(3)如图②,当点P 在抛物线对称轴上时,设点P 的纵坐标t 是大于3的常数,试问:是否存在一个正数a ,使得四条线段PA 、PB 、PC 、PD 与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.()()2680y a x x a =-+>六、初中数学中的最值问题例6.如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.变式练习.如图,已知直线y =x +1与y 轴交于点A ,与x 轴交于点D ,抛物线y =x2+bx +c 与直线y =x +1交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为(1,0). (1)求该抛物线的解析式;(2)动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标;(3)在抛物线的对称轴上找一点M ,使|AM -MC |的值最大,求出点M 的坐标.2121211、如图,已知半径为2的⊙O 与直线l 相切于点A ,点P 是直径AB 左侧半圆上的动点,过点P 作直线l 的垂线,垂足为C ,PC 与⊙O 交于点D ,连接PA 、PB ,设PC 的长为x.⑴ 当x=2 时,求弦PA 、PB 的长度; ⑵ 当x 为何值时,PB 2+PD 2的值最小?lPD BOA七、定值的问题例7.如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B的坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.(1)求点A的坐标(用m表示);(2)求抛物线的解析式;(3)设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结BQ 并延长交AC于点F,试证明:FC(AC+EC)为定值.变式练习:如图,正方形ABCD 的边AD 与矩形EFGH 的边FG 重合,将正方形ABCD 以1cm/s 的速度沿FG 方向移动,移动开始前点A 与点F 重合.在移动过程中,边AD 始终与边FG 重合,连接CG ,过点A 作CG 的平行线交线段GH 于点P ,连接PD .已知正方形ABCD 的边长为1cm ,矩形EFGH 的边FG 、GH 的长分别为4cm 、3cm.设正方形移动时间为x (s ),线段GP 的长为y (cm ),其中.⑴试求出y 关于x 的函数关系式,并求出y =3时相应x 的值; ⑵记△DGP 的面积为,△CDG 的面积为,试说明是常数;⑶ 当线段PD 所在直线与正方形ABCD 的对角线AC 垂直时,求线段PD 的长.P HG FEDCB A1、如图,二次函数y=a(x2﹣2mx﹣3m2)(其中a,m是常数,且a>0,m>0)的图象与x 轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.八、存在性问题(如:平行、垂直,动点,面积等)例8、将一矩形纸片放在平面直角坐标系中,,,.动点从点出发以每秒1个单位长的速度沿向终点运动,运动秒时,动点从点出发以相等的速度沿向终点运动.当其中一点到达终点时,另一点也停止运动.设点的运动时间为(秒). (1)用含的代数式表示;(2)当时,如图1,将沿翻折,点恰好落在边上的点处,求点的坐标;(1) 连结,将沿翻折,得到,如图2.问:与能否平行?与能否垂直?若能,求出相应的值;若不能,说明理由.OABC (00)O ,(60)A ,(03)C ,Q O OC C 23P A AO O P t t OP OQ ,1t OPQ △PQ O CB D D AC OPQ △PQ EPQ △PQ AC PE ACt变式练习:如图,已知抛物线y=ax2+bx+3与x轴交于A(1,0),B(﹣3,0)两点,与y 轴交于点C,抛物线的顶点为P,连接AC.(1)求此抛物线的解析式;(2)在抛物线上找一点D,使得DC与AC垂直,且直线DC与x轴交于点Q,求直线DC 的解析式;(3)抛物线对称轴上是否存在一点M,使得S△MAP=2S△ACP?若存在,求出M点的坐标;若不存在,请说明理由.1、如图,已知二次函数(其中0<m <1)的图像与x 轴交于A 、B两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接PA 、PC ,PA =P C .(1)∠ABC 的度数为 °; (2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△PAC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.()21y x m x m =+--2、在如图的直角坐标系中,已知点A(1,0)、B(0,﹣2),将线段AB绕点A按逆时针方向旋转90°至AC,若抛物线y=﹣x2+bx+2经过点C.(1)求抛物线的解析式;(2)如图,将抛物线平移,当顶点至原点时,过Q(0,﹣2)作不平行于x轴的直线交抛物线于E、F两点,问在y轴的正半轴上是否存在一点P,使△PEF的内心在y轴上?若存在,求出点P的坐标;若不存在,说明理由.(3)在抛物线上是否存在一点M,使得以M为圆心,以为半径的圆与直线BC相切?若存在,请求出点M的坐标;若不存在,请说明理由.九、与圆有关的二次函数综合题:例9.如图,已知二次函数y=﹣x2+bx+c的图象与x轴交于点A、B,与y轴交于点C,其顶点为D,且直线DC的解析式为y=x+3.(1)求二次函数的解析式;(2)求△ABC外接圆的半径及外心的坐标;(3)若点P是第一象限内抛物线上一动点,求四边形ACPB的面积最大值.变式练习:如图,已知抛物线y=a(x﹣2)2+1与x轴从左到右依次交于A、B两点,与y 轴交于点C,点B的坐标为(3,0),连接AC、BC.(1)求此抛物线的解析式;(2)若P为抛物线的对称轴上的一个动点,连接PA、PB、PC,设点P的纵坐标表示为m.试探究:①当m为何值时,|PA﹣PC|的值最大?并求出这个最大值.②在P点的运动过程中,∠APB能否与∠ACB相等?若能,请求出P点的坐标;若不能,请说明理由.1、如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.2、如图,已知二次函数(其中0<m <1)的图像与x 轴交于A 、B两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接PA 、PC ,PA =P C .(1)∠ABC 的度数为 ▲ °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△PAC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.()21y x m x m =+--十、其它(如新定义型题、面积问题等):例10. 在平面直角坐标系中,抛物线y=x 2+2x ﹣3与x 轴交于A 、B 两点,(点A 在点B 左侧).与y 轴交于点C ,顶点为D ,直线CD 与x 轴交于点E . (1)请你画出此抛物线,并求A 、B 、C 、D 四点的坐标;(2)将直线CD 向左平移两个单位,与抛物线交于点F (不与A 、B 两点重合),请你求出F 点坐标; (3)在点B 、点F 之间的抛物线上有一点P ,使△PBF 的面积最大,求此时P 点坐标及△PBF 的最大面积;(4)若平行于x 轴的直线与抛物线交于G 、H 两点,以GH 为直径的圆与x 轴相切,求该圆半径.(第1题)(第2题)2. 练习:我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :与x 轴、y 轴分别交于A 、B ,∠OAB =30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A .6B .8C .10D .12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考数学压轴题精选解析中考压轴题分类专题三——抛物线中的等腰三角形基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对称轴上),若ABP ∆为等腰三角形,求点P 坐标。
分两大类进行讨论: (1)AB 为底时(即PA PB =):点P 在AB 的垂直平分线上。
利用中点公式求出AB 的中点M ;利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出AB 的垂直平分线的斜率k ;利用中点M 与斜率k 求出AB 的垂直平分线的解析式;将AB 的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。
(2)AB 为腰时,分两类讨论:①以A ∠为顶角时(即AP AB =):点P 在以A 为圆心以AB 为半径的圆上。
②以B ∠为顶角时(即BP BA =):点P 在以B 为圆心以AB 为半径的圆上。
利用圆的一般方程列出A e (或B e )的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。
中考压轴题分类专题四——抛物线中的直角三角形基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对称轴上),若ABP ∆为直角三角形,求点P 坐标。
分两大类进行讨论:(1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。
利用中点公式求出AB 的中点M ;利用圆的一般方程列出M e 的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。
(2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥):利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出PA (或PB )的斜率k ;进而求出PA (或PB )的解析式;将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。
所需知识点:一、 两点之间距离公式:已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()221221y y x x PQ -+-=。
二、 圆的方程:点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。
则()()R b y a x PM =-+-=22,得到方程☆:()()222R b y a x =-+-。
∴P 在☆的图象上,即☆为⊙M 的方程。
三、中点公式:四、 已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为⎪⎭⎫⎝⎛++222121y y ,x x 。
五、 任意两点的斜率公式:已知两点()()2211y ,x Q ,y ,x P ,则直线PQ 的斜率: 2121x x y y k PQ --=。
中考压轴题分类专题五——抛物线中的四边形基本题型:一、已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对称轴上),若四边形ABPQ 为平行四边形,求点P 坐标。
分两大类进行讨论:(1)AB 为边时 (2)AB 为对角线时二、已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对称轴上),若四边形ABPQ 为距形,求点P 坐标。
在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边互相垂直 (2)对角线相等三、已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对称轴上),若四边形ABPQ 为菱形,求点P 坐标。
在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边相等 (2)对角线互相垂直四、已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对称轴上),若四边形ABPQ 为正方形,求点P 坐标。
在四边形ABPQ 为矩形的基础上,运用以下两种方法进行讨论: (1)邻边相等 (2)对角线互相垂直在四边形ABPQ 为菱形的基础上,运用以下两种方法进行讨论: (1)邻边互相垂直 (2)对角线相等五、已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对称轴上),若四边形ABPQ 为梯形,求点P 坐标。
分三大类进行讨论:(1)AB 为底时 (2)AB 为腰时 (3)AB 为对角线时典型例题:典型例题:例一(08深圳中考题)、如图9,在平面直角坐标系中,二次函数)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),OB =OC ,tan ∠ACO =31. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由. (3)若平行于x 轴的直线与该抛物线交于M 、N 两点,且以MN 为直径的圆与x 轴相切,求该圆半径的长度.(4)如图10,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大?求出此时P 点的坐标和△APG 的最大面积.(2009年烟台市)如图,抛物线23y ax bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且经过点(23)a -,,对称轴是直线1x =,顶点是M .(1) 求抛物线对应的函数表达式;(2) 经过C,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P A C N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3) 设直线3y x =-+与y 轴的交点是D ,在线段BD 上任取一点E (不与B D ,重合),经过AB E ,,三点的圆交直线BC 于点F ,试判断AEF △的形状,并说明理由; (4) 当E 是直线3y x =-+上任意一点时,(3)中的结论是否成立?(请直接写出结论).(2009•临沂)如图,抛物线经过A (4,0),B (1,0),C (0,-2)三点.(1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM ⊥x 轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上有一点D ,使得△DCA 的面积最大,求出点D 的坐标.思路点拨1.已知抛物线与x 轴的两个交点,用待定系数法求解析式时,设交点式比较简便. 2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长. 3.按照两条直角边对应成比例,分两种情况列方程.4.把△DCA 可以分割为共底的两个三角形,高的和等于OA .满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x .①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4. 如果2==CO AOPM AM ,那么24)4)(1(21=----xx x .解得5=x 不合题意. yxOEDCBAGAB CD O xyOBxyA MC1 3- (第26题图)如果21==COAOPMAM,那么214)4)(1(21=----xxx.解得2=x.此时点P的坐标为(2,1).②如图3,当点P在点A的右侧时,x>4,)4)(1(21--=xxPM,4-=xAM.解方程24)4)(1(21=---xxx,得5=x.此时点P的坐标为)2,5(-.解方程214)4)(1(21=---xxx,得2=x不合题意.③如图4,当点P在点B的左侧时,x<1,)4)(1(21--=xxPM,xAM-=4.解方程24)4)(1(21=---xxx,得3-=x.此时点P的坐标为)14,3(--.解方程214)4)(1(21=---xxx,得0=x.此时点P与点O重合,不合题意.综上所述,符合条件的点P的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4(3)如图5,过点D作x轴的垂线交AC于E.直线AC的解析式为221-=xy.设点D的横坐标为m)41(<<m,那么点D的坐标为)22521,(2-+-mmm,点E的坐标为)221,(-mm.所以)221()22521(2---+-=mmmDE mm2212+-=.因此4)221(212⨯+-=∆mmSDACmm42+-=4)2(2+--=m.当2=m时,△DCA的面积最大,此时点D的坐标为(2,1).图5 图6如图1,已知抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限.①当线段34PQ AB=时,求tan∠CED的值;②当以C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.思路点拨1.第(1)、(2)题用待定系数法求解析式,它们的结果直接影响后续的解题.2.第(3)题的关键是求点E的坐标,反复用到数形结合,注意y轴负半轴上的点的纵坐标的符号与线段长的关系.3.根据C、D的坐标,可以知道直角三角形CDE是等腰直角三角形,这样写点E的坐标就简单了.满分解答(1)设抛物线的函数表达式为2(1)y x n=-+,代入点C(0,-3),得4n=-.所以抛物线的函数表达式为22(1)423y x x x=--=--.(2)由223(1)(3)y x x x x=--=+-,知A(-1,0),B(3,0).设直线BC的函数表达式为y kx b=+,代入点B(3,0)和点C(0,-3),得30,3.k bb+=⎧⎨=-⎩解得1k=,3b=-.所以直线BC的函数表达式为3y x=-.(3)①因为AB=4,所以334PQ AB==.因为P、Q关于直线x=1对称,所以点P的横坐标为12-.于是得到点P的坐标为17,24⎛⎫--⎪⎝⎭,点F的坐标为70,4⎛⎫-⎪⎝⎭.所以75344FC OC OF=-=-=,522EC FC==.进而得到51322OE OC EC=-=-=,点E的坐标为10,2⎛⎫-⎪⎝⎭.直线BC:3y x=-与抛物线的对称轴x=1的交点D的坐标为(1,-2).过点D作DH⊥y轴,垂足为H.在Rt△EDH中,DH=1,13222EH OH OE=-=-=,所以tan∠CED23DHEH==.②1(12,2)P--,265 (1,)22P--.图2 图3 图4考点伸展第(3)题②求点P的坐标的步骤是:如图3,图4,先分两种情况求出等腰直角三角形CDE的顶点E的坐标,再求出CE的中点F的坐标,把点F的纵坐标代入抛物线的解析式,解得的x的较小的一个值就是点P的横坐标.(2010•河南)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S、求S 关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.解:(1)设抛物线的解析式为y=a(x+4)(x-2),①如图1,当OB为边时,根据平行四边形的性质知PQ∥OB,∴Q的横坐标等于P的横坐标,又∵直线的解析式为y=-x,则Q(x,-x).②如图2,当BO为对角线时,知A与P应该重合,OP=4.四边形PBQO为平行四边形则BQ=OP=4,Q横坐标为4,代入y=-x得出Q为(4,-4).故满足题意的Q点的坐标有四个,分别是(-4,4),(4,-4),(2013•眉山)如图,在平面直角坐标系中,点A、B在x轴上,点C、D在y轴上,且OB=OC=3,OA=OD=1,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点,直线AD与抛物线交于另一点M.(1)求这条抛物线的解析式;(2)P为抛物线上一动点,E为直线AD上一动点,是否存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由..∴抛物线的解析式为:y=x2+2x-3.(2)存在.△APE为等腰直角三角形,有三种可能的情形:①以点A为直角顶点.如解答图,过点A作直线AD的垂线,与抛物线交于点P,与y轴交于点F.∵OA=OD=1,则△AOD为等腰直角三角形,∵PA⊥AD,则△OAF为等腰直角三角形,∴OF=1,F(0,-1).设直线PA的解析式为y=kx+b,将点A(1,0),F(0,-1)的坐标代入得:解得k=1,b=-1,∴y=x-1.将y=x-1代入抛物线解析式y=x2+2x-3得,x2+2x-3=x-1,整理得:x2+x-2=0,解得x=-2或x=1,当x=-2时,y=x-1=-3,∴P(-2,-3);②以点P为直角顶点.此时∠PAE=45°,因此点P只能在x轴上或过点A与y轴平行的直线上.过点A与y轴平行的直线,只有点A一个交点,故此种情形不存在;因此点P只能在x轴上,而抛物线与x轴交点只有点A、点B,故点P与点B重合.∴P(-3,0);③以点E为直角顶点.此时∠EAP=45°,由②可知,此时点P只能与点B重合,点E位于直线AD与对称轴的交点上,即P(-3,0);综上所述,存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形.点P的坐标为(-2,-3)或(-3,0).(2010•宜宾)将直角边长为6的等腰Rt△A O C放在如图所示的平面直角坐标系中,点O 为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(-3,0).(1)求该抛物线的解析式;(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接A P,当△A PE 的面积最大时,求点P的坐标;(3)在第一象限内的该抛物线上是否存在点G,使△A G C的面积与(2)中△A PE的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.解:(1)如图,∵抛物线y=ax2+bx+c(a≠0)的图象经过点A(0,6),∴c=6.(1分)∵抛物线的图象又经过点(-3,0)和(6,0),(2012•从化市一模)如图(1),在平面直角坐标系中,抛物线y=ax2+bx-3a经过A(-1,0)、B(0,3)两点,与x轴交于另一点C,顶点为D.(1)求该抛物线的解析式及点C、D的坐标;(2)经过点B、D两点的直线与x轴交于点E,若点F是抛物线上一点,以A、B、E、F为顶点的四边形是平行四边形,求点F的坐标;(3)如图(2)P(2,3)是抛物线上的点,Q是直线AP上方的抛物线上一动点,求△APQ的最大面积和此时Q点的坐标.(1)y=-x2+2x+3=-(x-1)2+4 ∴D(1,4)204.(四川省遂宁市)如图,二次函数的图象经过点D (0,397),且顶点C 的横坐标为4,该图象在x 轴上截得的线段AB 的长为6. (1)求该二次函数的解析式;(2)在该抛物线的对称轴上找一点P ,使PA +PD 最小,求出点P 的坐标;(3)在抛物线上是否存在点Q ,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.(1)设二次函数的解析式为:y=a (x-h )2+k(2)∵点A 、B 关于直线x=4对称 ∴PA=PB∴PA+PD=PB+PD≥DB∴当点P 在线段DB 上时PA+PD 取得最小值 ∴DB 与对称轴的交点即为所求点P 设直线x=4与x 轴交于点M∵PM∥OD,∴∠BPM=∠BDO,又∵∠PBM=∠DBO ∴△BPM∽△BD O207.(四川省内江市)如图所示,已知点A (-1,0),B (3,0),C (0,t ),且t >0,tan ∠BAC =3,抛物线经过A 、B 、C 三点,点P (2,m )是抛物线与直线l :y =k (x +1)的一个交点. (1)求抛物线的解析式;(2)对于动点Q (1,n ),求PQ +QB 的最小值;(3)若动点M 在直线l 上方的抛物线上运动,求△AMP 的边AP 上的高h 的最大值.CD O BAyx(3)过点P 作PN⊥x轴于点N ,过点M 作MK⊥x 轴于点K ,设点M的坐标为(x ,-x 2+2x+3),(广东省深圳市)已知:Rt △ABC 的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB 与x 轴重合(其中OA <OB ),直角顶点C 落在y 轴正半轴上(如图1). (1)求线段OA 、OB 的长和经过点A 、B 、C 的抛物线的关系式. (2)如图2,点D 的坐标为(2,0),点P (m ,n )是该抛物线上的一个动点(其中m >0,n >0),连接DP 交BC 于点E .①当△BDE 是等腰三角形时,直接写出....此时点E 的坐标. ②又连接CD 、CP (如图3),△CDP 是否有最大面积?若有,求出△CDP 的最大面积和此时点P 的坐标;若没有,请说明理由.(1)(注:只回答有最大面积,而没有说明理由的,不给分;点P 的坐标,或最大面积计算错误的,扣(1分);其他解法只要合理,酌情给分.)A B xy O P D图3C1.(2008年四川省宜宾市)已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D. (1) 求该抛物线的解析式;(2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a bac a b 44,22)满分解答:1. 解:( 1)由已知得:310c b c =⎧⎨--+=⎩解得c=3,b =2∴抛物线的线的解析式为223y x x =-++ (2)由顶点坐标公式得顶点坐标为(1,4)所以对称轴为x=1,A,E 关于x=1对称,所以E(3,0) 设对称轴与x 轴的交点为F 所以四边形ABDE 的面积=ABO DFE BOFD S S S ∆∆++梯形=111()222AO BO BO DF OF EF DF ⋅++⋅+⋅ =11113(3124222⨯⨯++⨯+⨯⨯ =9 (3)相似. 如图,BD=2222112BG DG +=+= BE=22223332BO OE +=+=22222425DF EF +=+=所以22BD BE +=所以90AOB DBE ∠=∠=︒,且22AO BO BD BE ==, 所以AOB DBE ∆∆:. .(2008年辽宁省十二市)如图16,在平面直角坐标系中,直线33y x =-x 轴交于点A ,与y 轴交于点C ,抛物线223(0)y ax x c a =+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.17. 解:(1)Q 直线33y x =-x 轴交于点A ,与y 轴交于点C .(10)A ∴-,,(03)C , ············································································································ 1分 Q 点A C ,都在抛物线上,2303a c c ⎧=+⎪∴⎨⎪=⎩ 33a c ⎧=⎪∴⎨⎪=-⎩ ∴抛物线的解析式为23233y x x =-······································································· 3分 ∴顶点431F ⎛- ⎝⎭, ·················································································································· 4分 (2)存在 ····································································································································· 5分 1(03)P ·································································································································· 7分 2(23)P ·································································································································· 9分 (3)存在 ··································································································································· 10分 理由:解法一:延长BC 到点B ',使B C BC '=,连接B F '交直线AC 于点M ,则点M 就是所求的点.A O xyBFCyxD EABFOG······································································································· 11分 过点B '作B H AB '⊥于点H .B Q 点在抛物线23233y x x =--上,(30)B ∴, 在Rt BOC △中,3tan 3OBC ∠=, 30OBC ∴∠=o ,23BC =,在Rt BB H '△中,1232B H BB ''==, 36BH B H '==,3OH ∴=,(323)B '∴--, ···························································· 12分 设直线B F '的解析式为y kx b =+233433k b k b ⎧-=-+⎪∴⎨-=+⎪⎩ 解得3332k b ⎧=⎪⎪⎨⎪=-⎪⎩333y x ∴=- ············································ 13分3333362y x y x ⎧=--⎪∴⎨=-⎪⎩ 解得371037x y ⎧=⎪⎪⎨⎪=-⎪⎩,31037M ⎛⎫∴- ⎪ ⎪⎝⎭, ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时31037M ⎛⎫- ⎪ ⎪⎝⎭,. ·········· 14分解法二:过点F 作AC 的垂线交y 轴于点H ,则点H 为点F 关于直线AC 的对称点.连接BH 交AC 于点M ,则点M 即为所求. ································································································· 11分 过点F 作FG y ⊥轴于点G ,则OB FG ∥,BC FH ∥.90BOC FGH ∴∠=∠=o ,BCO FHG ∠=∠HFG CBO ∴∠=∠同方法一可求得(30)B ,.在Rt BOC △中,3tan 3OBC ∠=,30OBC ∴∠=o,可求得33GH GC ==, GF ∴为线段CH 的垂直平分线,可证得CFH △为等边三角形,AC ∴垂直平分FH .即点H 为点F 关于AC 的对称点.5303H ⎛⎫∴- ⎪ ⎪⎝⎭, ·························································· 12分设直线BH 的解析式为y kx b =+,由题意得03533k b b =+⎧⎪⎨=-⎪⎩ 解得539533k b ⎧=⎪⎪⎨⎪=-⎪⎩553393y ∴=- ························································· 13分 55339333y x y x ⎧=-⎪∴⎨⎪=--⎩ 解得371037x y ⎧=⎪⎪⎨⎪=-⎪⎩ 31037M ⎛⎫∴- ⎪ ⎪⎝⎭,线AC 上存在点M ,使得MBF △的周长最小,此时310377M ⎛⎫- ⎪ ⎪⎝⎭,. ·························································································· 1 ∴在直19.(2008年四川省巴中市) 已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E .(1)写出直线BC 的解析式. (2)求ABC △的面积. (3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?19. 解:(1)在2334y x =-+中,令0y = 23304x ∴-+=12x ∴=,22x =-A O xyBFCHB M AO xy BF C H M G(20)A ∴-,,(20)B ,····························································· 1分 又Q 点B 在34y x b =-+上 302b ∴=-+ 32b = BC ∴的解析式为3342y x =-+ ······························································································· 2分 (2)由23343342y x y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,得11194x y =-⎧⎪⎨=⎪⎩ 2220x y =⎧⎨=⎩ ·································································· 4分 914C ⎛⎫∴- ⎪⎝⎭,,(20)B , 4AB ∴=,94CD =·················································································································· 5分 1994242ABC S ∴=⨯⨯=△············································································································ 6分 (3)过点N 作NP MB ⊥于点PEO MB ⊥QNP EO ∴∥BNP BEO ∴△∽△ ··················································································································· 7分 BN NP BE EO ∴= ······························································································································· 8分 由直线3342y x =-+可得:302E ⎛⎫ ⎪⎝⎭, ∴在BEO △中,2BO =,32EO =,则52BE = 25322t NP ∴=,65NP t ∴= ········································································································· 9分 16(4)25S t t ∴=-g g 2312(04)55S t t t =-+<< ······································································································ 10分 2312(2)55S t =--+ ················································································································ 11分 Q 此抛物线开口向下,∴当2t =时,125S =最大 ∴当点M 运动2秒时,MNB △的面积达到最大,最大为125. (2010•内江)如图,抛物线y=mx2-2mx-3m (m >0)与x 轴交于A 、B 两点,与y 轴交于C 点.(1)请求出抛物线顶点M 的坐标(用含m 的代数式表示),A 、B 两点的坐标;(2)经探究可知,△BCM 与△ABC 的面积比不变,试求出这个比值;(3)是否存在使△BCM 为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由 满分解答:(1)∴A 、B 两点的坐标为(-1,0)、(3,0).(4分)(3)存在使△BCM 为直角三角形的抛物线; 《3题图》 过点C 作CN ⊥DM 于点N ,则△CMN 为Rt △,CN=OD=1,DN=OC=3m , ∴MN=DM-DN=m .∴CM 2=CN 2+MN 2=1+m 2;在Rt △OBC 中,BC 2=OB 2+OC 2=9+9m 2,在Rt △BDM 中,BM 2=BD 2+DM 2=4+16m 2;①如果△BCM 是Rt △,且∠BMC=90°,那么CM 2+BM 2=BC 2,即1+m 2+4+16m 2=9+9m 2,②如果△BCM 是Rt △,且∠BCM=90°,那么BC 2+CM 2=BM 2,即9+9m 2+1+m 2=4+16m 2,解得m=±1,∵m >0,∴m=1;∴存在抛物线y=x 2-2x-3,使得△BCM 是Rt △;③如果△BCM 是Rt △,且∠CBM=90°,那么BC 2+BM 2=CM 2,。