半导体基础知识专题培训课件

合集下载

半导体器件基础课件(PPT-73页)精选全文完整版

半导体器件基础课件(PPT-73页)精选全文完整版

有限,因此由它们形成的电流很小。
电子 技 术
注意:
1、空间电荷区中没有载流子。
2、空间电荷区中内电场阻碍P 区中的空穴、N 区中的电子(
都是多子)向对方运动(扩散 运动)。
所以扩散和漂移这一对相反的运动最终达到平衡, 相当于两个区之间没有电荷运动,空间电荷区的厚 度固定不变。
电子 技 术
二、PN 结的单向导电性
电子 技 术
1. 1 半导体二极管的结构和类型
构成:实质上就是一个PN结
PN 结 + 引线 + 管壳 =
二极管(Diode)
+
PN
-
符号:P
N
阳极
阴极
分类:
按材料分 按结构分
硅二极管 锗二极管 点接触型 面接触型 平面型
电子 技 术
正极 引线
N 型锗片 负极 引线
外壳
触丝
点接触型
正极 负极 引线 引线
电子 技 术
半导体中存在两种载流子:自由电子和空穴。 自由电子在共价键以外的运动。 空穴在共价键以内的运动。
结论:
1. 本征半导体中电子空穴成对出现,且数量少。 2. 半导体中有电子和空穴两种载流子参与导电。 3. 本征半导体导电能力弱,并与温度有关。
电子 技 术
2、杂质半导体
+4
一、N 型半导体
电子 技 术
三、课程特点和学习方法
本课程是研究模拟电路(Analog Circuit)及其 应用的课程。模拟电路是产生和处理模拟信号的电路。 数字电路(Digital Circuit)的知识学习由数字电子技 术课程完成。
本课程有着下列与其他课程不同的特点和分析方 法。
电子 技 术

半导体基础知识PPT培训课件

半导体基础知识PPT培训课件
半导体基础知识ppt培 训课件
目录
• 半导体简介 • 半导体材料 • 半导体器件 • 半导体制造工艺 • 半导体技术发展趋势 • 案例分析
半导体简介
01
半导体的定义
总结词
半导体的定义
详细描述
半导体是指在常温下导电性能介于导体与绝缘体之间的材料,常见的半导体材 料有硅、锗等。
半导体的特性
总结词
化合物半导体具有宽的禁带宽度和高 的电子迁移率等特点,使得化合物半 导体在光电子器件和高速电子器件等 领域具有广泛的应用。
掺杂半导体
掺杂半导体是在纯净的半导体中掺入其他元素,改变其导电 性能的半导体。
掺杂半导体的导电性能可以通过掺入不同类型和浓度的杂质 来调控,从而实现电子和空穴的平衡,是制造晶体管、集成 电路等电子器件的重要材料。
掺杂的目的是形成PN结、调控载流 子浓度等,从而影响器件的电学性能。
掺杂和退火的均匀性和控制精度对器 件性能至关重要,直接影响最终产品 的质量和可靠性。
半导体技术发展趋势
05
新型半导体材料
硅基半导体材料
宽禁带半导体材料
作为传统的半导体材料,硅基半导体 在集成电路、微电子等领域应用广泛。 随着技术的不断发展,硅基半导体的 性能也在不断提升。
半导体制造工艺
04
晶圆制备
晶圆制备是半导体制造的第一步,其目的是获得具有特定晶体结构和纯度的单晶硅 片。
制备过程包括多晶硅的提纯、熔炼、长晶、切磨、抛光等步骤,最终得到可用于后 续工艺的晶圆。
晶圆的质量和表面光洁度对后续工艺的成败至关重要,因此制备过程中需严格控制 工艺参数和材料质量。
薄膜沉积
输入 标题
详细描述
集成电路的制作过程涉及微电子技术,通过一系列的 工艺步骤,将晶体管、电阻、电容等电子元件集成在 一块硅片上,形成复杂的电路。

半导体基本知识(PPT课件)

半导体基本知识(PPT课件)

例开关电路如图所示.输入信号U1是幅值为5V频率为 1KHZ的脉冲电压信号.已知 β=125,三极管饱和时 UBE=0.7V,UCES=0.25V.试分析电路的工作状态和输出电压 的波形
三极管的三种接法
• 共射极电路: • 共基极电路: • 共集极电路(射极跟随器)
MOS场效应管
• 压控电流源器件 • 分类:
• 难点:
– 1、载流子运动规律与器件外部特性的关系。 只须了解,不必深究
半导体基本知识
• 半导体:
– 定义:导电性能介于导体和绝缘之间的物质 – 材料:常见硅、锗 – 硅、锗晶体的每个原子均是靠共价键紧密
结合在一起。
本征半导体
• 本征半导体:纯净的半导体。0K时,价电子
不能挣脱共价键而参与导电,因此不导电。随 T上升晶体中少数的价电子获得能量。挣脱共 价键束缚,成为自由电子,原来共价键处留下 空位称为空穴。空穴与自由电子统称载流子。 • 自由电子:负电荷 • 空穴:正电荷 • 不导电– 增强源自、耗尽型 – PMOS管、NMOS管
• 特性曲线
– 转移特性曲线 – 输出特性曲线
MOS场效应管的主要参数
• 直流参数:
– 开启电压 UTN,UTP – 输入电阻 rgs
• 交流参数:
– 跨导gm – 导通电阻Rds – 极间电容
例NMOS管构成反相器如图示,其主要参数为UTN=2.0V, gM=1.3MA/V,rDS(ON)=875,电源电压UC=12V。输入脉 冲电压源辐值为5V,频率为1KHZ。试分析电路的工作状 态及输出电压UO的波形。
限幅电路如图示:假设输入UI为一周期性矩形 脉冲,低电压UIL=-5V,高电压UIH=5V。
• 当输入UI为-5V时,二极管D截止, • 视为“开路”,输出UO=0V。 • 当输入UI为+5V时,二极管D导通, • 由于其等效电阻RD相对于负载电 • 阻R的值小得多,故UI基本落在R上, • 即UO=UI=+5V。

半导体器件基础最新课件

半导体器件基础最新课件

半导体器件基础最新课件
2、三极管的开关特性 截止工作状态
c b
e
调节偏流电阻RP的阻 值,使基极的电流为零 或很小时,三极管的两 个PN结都处于反向偏置, 集电极中没有电流通过, 三极管处于截止状态, 集电极与发射极之间电 阻很大,相当开关断开。
半导体器件基础最新课件
饱和工作状态
调节偏流电阻RP的阻值, 使基极电流充分大时,集电 极电流也随之变得非常大, 三极管的两个PN结则都处于 正向偏置。集电极与发射极 之间的电压很小,小到一定 程度会削弱集电极收集电子 的能力,这时Ib再增大, Ic也不能相应地增大了, 三极管处于饱和状态,集电 极和发射极之间电阻很小, 相当开关接通。
放大、截止和饱和三种工作状态。
1、三极管的放大作用
三极管的放大作用是在一定的外部条件控 制下,通过内部载流子的传输体现出来。
外部条件:发射结正偏,集电结反偏。
半导体器件基础最新课件
三极管内部载流子的传输过程
▪发射区:发射载流子 ▪集电区:收集载流子 ▪基区:传送和控制载流子
发射区的多数载流子自 由电子不断通过发射结扩 散到基区,形成发射极电
半导体器件基础最新课件
2、反向截止特性:
给二极管加反向电压,则处于截止状态,二极管 两引脚之间的电阻很大,反向电流很小,相当于开关 断开。
当反向电压不超过某一范围时,反向电流的大小 基本保持不变,所以通常把反向电流又称为反向饱和 电流,但反向电流会随温度的升高而增长很快。
硅二极管的反向电流只有锗二极管的几十分之一 或几百分之一,所以硅管的温度稳定性比锗管好。
半导体器件基础最新课件
3、二极管反向击穿:
当所加的反向电压增大到一定数值时, 反向电流迅速增大,这种现象称为反向击穿, 二极管失去单向导电性,发生击穿时的反向电 压叫反向击穿电压。此时如果没有适当的限流 措施,因电流过大会使二极管过热而被烧毁。

20-半导体基础知识PPT模板

20-半导体基础知识PPT模板

电工电子技术
半导体之所以被作为制造电子器件的主要材料在于它 具有热敏性、光敏性和掺杂性。
热敏性:是指半导体的导电能力随着温度的升高而迅 速增加的特性。利用这种特性可制成各种热敏元件,如热 敏电阻等。
光敏性:是指半导体的导电能力随光照的变化有显著 改变的特性。利用这种特性可制成光电二极管、光电.1 半导体的基本特性
根据导电性能的不同,自然界的物质大体可分为导体、 绝缘体和半导体三大类。其中,容易导电、电阻率小于 10-4Ω·cm的物质称为导体,如铜、铝、银等金属材料;很难 导电、电阻率大于104Ω·cm的物质称为绝缘体,如塑料、橡 胶、陶瓷等材料;导电能力介于导体和绝缘体之间的物质 称为半导体,如硅、锗、硒及大多数金属氧化物和硫化物 等。
(2)反向偏置
给PN结加反向偏置电压,即N区接电源正极,P区接电源 负极,称PN结反向偏置,如下图所示。
由于外加电场与内电场的 方向一致,因而加强了内电场, 促进了少子的漂移运动,阻碍 了多子的扩散运动,使空间电 荷区变宽。此时,主要由少子 的漂移运动形成的漂移电流将 超过扩散电流,方向由N区指向 P区,称为反向电流。由于常温 下少子的数量很少,所以反向 电流很小。此时,PN结处于截 止状态。
(2)P型半导体
在本征半导体硅(或锗)中掺入微量三价元素硼,由 于硼原子只有3个价电子,它与周围硅原子组成共价键时, 因缺少一个价电子而形成一个空穴,相邻的价电子很容易 填补这个空穴,形成新的空穴。这种半导体导电主要靠空 穴,所以称为空穴型半导体或P型半导体,如下图所示。P 型半导体中,空穴是多子,自由电子是少子。
2.PN结的单向导电性
(1)正向偏置
给PN结外加正向偏置电压,即P区接电源正极,N区接电 源负极,称PN结为正向偏置,如下图所示。

半导体的基本知识77509 PPT资料共92页

半导体的基本知识77509 PPT资料共92页

的扩散受抑制。少子漂
移加强,但少子数量有
限,只能形成较小的反
向电流。
+
N
内电场
外电场
R
E
(1-24)
2.1.3 半导体二极管
一、基本结构
PN 结加上管壳和引线,就成为半导体二极管。
点接触型
触丝线
PN结
引线 外壳线
基片
二极管的电路符号: PFra bibliotek面接触型
N
(1-25)
二、伏安特性
I
死区电压 硅管 0.6V,锗管0.2V。
在本征半导体中掺入某些微量的杂质,就会 使半导体的导电性能发生显著变化。其原因是掺 杂半导体的某种载流子浓度大大增加。
N 型半导体:自由电子浓度大大增加的杂质半导体, 也称为(电子半导体)。
P 型半导体:空穴浓度大大增加的杂质半导体,也 称为(空穴半导体)。
(1-12)
一、N 型半导体
在硅或锗晶体中掺入少量的五价元素磷 (或锑),晶体点阵中的某些半导体原子被 杂质取代,磷原子的最外层有五个价电子, 其中四个与相邻的半导体原子形成共价键, 必定多出一个电子,这个电子几乎不受束缚, 很容易被激发而成为自由电子,这样磷原子 就成了不能移动的带正电的离子。每个磷原 子给出一个电子,称为施主原子。
(1-10)
本征半导体中电流由两部分组成: 1. 自由电子移动产生的电流。 2. 空穴移动产生的电流。
本征半导体的导电能力取决于载流子的浓度。
温度越高,载流子的浓度越高。因此本征半 导体的导电能力越强,温度是影响半导体性 能的一个重要的外部因素,这是半导体的一 大特点。
(1-11)
1.1.3 杂质半导体
i
iL

半导体基础知识PPT

半导体基础知识PPT

03
半导体器件
二极管
工作原理
二极管是由一个PN结组成的电子器件, 具有单向导电性。在正向偏置时,电流可 以流通;而在反向偏置时,电流被阻止。
应用
类型
常见的二极管类型有硅二极管和锗二 极管,它们在电气性能上略有差异。
二极管在电子线路中广泛应用,如整 流、检波、开关等。
三极管
1 2
工作原理
三极管是由两个PN结组成的电子器件,具有电 流放大作用。通过调整基极电流,可以控制集电 极和发射极之间的电流。
感谢观看
半导体的导电机制主要是由其 内部的电子和空穴的运动决定 的。
半导体的特性
半导体材料的导电能力受温度、光照、电场等因素影响,具有热敏、光敏、掺杂等 特点。
半导体的电阻率可在很大范围内变化,通过改变温度、光照、电场等条件,可以控 制其电阻率的变化。
半导体的载流子类型和浓度决定了其导电性能,可以通过掺杂等方式改变载流子类 型和浓度。
物理沉积
通过物理过程如真空蒸发、溅 射等,将所需材料沉积在晶圆
表面形成薄膜。
化学气相沉积
利用化学反应在晶圆表面生成 所需材料的薄膜。
外延生长
在单晶基底上通过控制温度、 气体流量等参数,使薄膜按照 单晶的晶体结构生长。
离子注入
将离子化的材料注入到晶圆内 部的特定区域,形成具有一定
特性的薄膜。
掺杂与刻蚀
功耗具有重要意义。
集成电路设计
01
02
03
人工智能辅助设计
利用人工智能技术进行集 成电路自动化设计,提高 设计效率和准确性。
异构集成技术
将不同工艺类型的芯片集 成在一个封装内,实现高 性能、低功耗的系统级芯 片。
定制化设计
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所以扩散和漂移这一对相反的运动最终达到平衡, 相当于两个区之间没有电扩散荷运运动动,空间电荷区的厚 度固定不变。
(1-20)
电位V
V0
---- - - ---- - - ---- - - ---- - -
+ +++++ + +++++ + +++++ + +++++
(1-14)
多余 电子
磷原子
+4 +4 +5 +4
N 型半导体中 的载流子是什 么?
1、由施主原子提供的电子,浓度与施主原子相同。 2、本征半导体中成对产生的电子和空穴。
掺杂浓度远大于本征半导体中载流子浓度,所以,自 由电子浓度远大于空穴浓度。自由电子称为多数载流 子(多子),空穴称为少数载流子(少子)。
+ +++++ + +++++ + +++++ + +++++
空间电荷区, 也称耗尽层。
扩散运动
扩散的结果是使空间电 荷区逐渐加宽,空间电 荷区越宽。
(1-19)
漂移运动
P型半导体
内电场E N型半导体
---- - - ---- - - ---- - - ---- - -
+ +++++ + +++++ + +++++ + +++++
(1-17)
§1.2 PN结及半导体二极管
2.1.1 PN 结的形成
在同一片半导体基片上,分别制造P 型半导 体和N 型半导体,经过载流子的扩散,在它们的 交界面处就形成了PN 结。
(1-18)
内电场越强,就使漂移 运动越强,而漂移使空 间电荷区变薄。
漂移运动
P型半导体
内电场E N型半导体
---- - - ---- - - ---- - - ---- - -
在常温下,由于热激发,使一些价电子获 得足够的能量而脱离共价键的束缚,成为自由电 子,同时共价键上留下一个空位,称为空穴。
(1-9)
空穴
+4
+4
+4
+4
自由电子 束缚电子
(1-10)
2.本征半导体的导电机理
本征半导体中存在数量相等的两种载流子,即 自由电子和空穴。
+4
+4
+4
+4
在其它力的作用下, 空穴吸引附近的电子 来填补,这样的结果 相当于空穴的迁移, 而空穴的迁移相当于 正电荷的移动,因此 可以认为空穴是载流 子。
(1-11)
本征半导体中电流由两部分组成: 1. 自由电子移动产生的电流。 2. 空穴移动产生的电流。
本征半导体的导电能力取决于载流子的浓度。
温度越高,载流子的浓度越高。因此本征半 导体的导电能力越强,温度是影响半导体性 能的一个重要的外部因素,这是半导体的一 大特点。
(1-12)
1.1.3 杂质半导体
• 往纯净的半导体中掺入某些杂质,会使 它的导电能力明显改变。
(1-4)
1.1.2 本征半导体
一、本征半导体的结构特点
现代电子学中,用的最多的半导体是硅和锗,它们 的最外层电子(价电子)都是四个。
Ge
Si
通过一定的工艺过程,可以将半导体制成晶体。
(1-5)
ቤተ መጻሕፍቲ ባይዱ
本征半导体:完全纯净的、结构完整的半导体晶体。 在硅和锗晶体中,原子按四角形系统组成
晶体点阵,每个原子都处在正四面体的中心, 而四个其它原子位于四面体的顶点,每个原子 与其相临的原子之间形成共价键,共用一对价 电子。
硅和锗的晶 体结构:
(1-6)
硅和锗的共价键结构
+4表示 除去价电 子后的原

+4
+4
+4
+4
共价键共 用电子对
(1-7)
形成共价键后,每个原子的最外层电子是 八个,构成稳定结构。
半导体基础知识
第一章 半导体器件
§ 1.1 半导体的基本知识 § 1.2 PN 结及半导体二极管 § 1.3 特殊二极管 § 1.4 半导体三极管 § 1.5 场效应晶体管
(1-2)
§1.1 半导体的基本知识
1.1.1 导体、半导体和绝缘体
导体:自然界中很容易导电的物质称为导体,金属 一般都是导体。
受主原子。
硼原子
P 型半导体中空穴是多子,电子是少子。
(1-16)
三、杂质半导体的示意表示法
---- - - ---- - - ---- - - ---- - -
+ +++++ + +++++ + +++++ + +++++
P 型半导体
N 型半导体
杂质型半导体多子和少子的移动都能形成电流。
但由于数量的关系,起导电作用的主要是多子。 近似认为多子与杂质浓度相等。
+4
+4
+4
+4
共价键有很强的结合力,使原子规 则排列,形成晶体。
共价键中的两个电子被紧紧束缚在共价键中,称为 束缚电子,常温下束缚电子很难脱离共价键成为自 由电子,因此本征半导体中的自由电子很少,所以 本征半导体的导电能力很弱。
(1-8)
二、本征半导体的导电机理 1.载流子、自由电子和空穴
在绝对0度(T=0K)和没有外界激发时,价 电子完全被共价键束缚着,本征半导体中没有 可以运动的带电粒子(即载流子),它的导电 能力为 0,相当于绝缘体。
(1-15)
二、P 型半导体
在硅或锗晶体中掺入少量的三价元素,如硼
(或铟),晶体点阵中的某些半导体原子被杂质
取代,硼原子的最外层有三个价电子,与相邻的
半导体原子形成共价键时, 空穴
产生一个空穴。这个空穴
可能吸引束缚电子来填补,
+4
+4
使得硼原子成为不能移动
的带负电的离子。由于硼
+3
+4
原子接受电子,所以称为
在本征半导体中掺入某些微量的杂质,就会 使半导体的导电性能发生显著变化。其原因是掺 杂半导体的某种载流子浓度大大增加。
N 型半导体:自由电子浓度大大增加的杂质半导体, 也称为(电子半导体)。
P 型半导体:空穴浓度大大增加的杂质半导体,也 称为(空穴半导体)。
(1-13)
一、N 型半导体
在硅或锗晶体中掺入少量的五价元素磷 (或锑),晶体点阵中的某些半导体原子被 杂质取代,磷原子的最外层有五个价电子, 其中四个与相邻的半导体原子形成共价键, 必定多出一个电子,这个电子几乎不受束缚, 很容易被激发而成为自由电子,这样磷原子 就成了不能移动的带正电的离子。每个磷原 子给出一个电子,称为施主原子。
绝缘体:有的物质几乎不导电,称为绝缘体,如橡 皮、陶瓷、塑料和石英。
半导体:另有一类物质的导电特性处于导体和绝缘 体之间,称为半导体,如锗、硅、砷化镓 和一些硫化物、氧化物等。
(1-3)
半导体的导电机理不同于其它物质,所以它具有 不同于其它物质的特点。例如:
• 当受外界热和光的作用时,它的导电能 力明显变化。
相关文档
最新文档