相渗曲线及其应用..35页PPT
cmg汽水模型相渗曲线
CMG汽水模型相渗曲线1. 介绍CMG汽水模型相渗曲线是一种用于描述岩石中气体、液体和固体相互作用的模型。
它是基于CMG模拟软件(Computer Modelling Group)开发的一种数学方法,可以模拟汽水在地下岩石中的渗透性和运移行为。
本文将详细介绍CMG汽水模型相渗曲线的原理、应用以及如何使用该模型进行相关研究。
2. 原理CMG汽水模型相渗曲线的原理基于渗透流动和相互作用的物理规律。
它将岩石分为多个相(Gas相、Water相和Solid相),通过描述相之间的互动关系来模拟汽水在岩石中的渗透和运移过程。
具体原理如下:•渗透性模型:CMG汽水模型通过描述岩石中的孔隙结构和渗透性来模拟渗透过程。
它将岩石划分为不同的网格单元,并为每个单元分配渗透性数值。
这些渗透性数值可以根据实验数据或者经验公式进行计算。
•相互作用模型:CMG汽水模型通过描述相之间的互动关系来模拟汽水在岩石中的运移过程。
它考虑了气体、液体和固体之间的质量平衡、动量平衡和能量平衡。
通过求解这些平衡方程,可以得到相渗曲线。
3. 应用CMG汽水模型相渗曲线在石油工程和地下水资源管理领域有广泛的应用。
以下是一些常见的应用场景:•天然气开采:CMG汽水模型相渗曲线可以用于模拟天然气在油藏中的运移过程,优化开采方案,预测产量和压力变化。
•地下水资源管理:CMG汽水模型相渗曲线可以用于模拟地下水的渗透和运移过程,评估地下水资源的可持续性,制定合理的水资源管理策略。
•地质储层评价:CMG汽水模型相渗曲线可以用于评估地质储层的渗透性和流动性,为石油勘探和开发提供重要的参考。
4. 使用方法使用CMG汽水模型相渗曲线进行相关研究需要以下步骤:1.建立模型:根据实际情况,选择合适的岩石参数和渗透性模型,建立相渗模型。
2.设定边界条件:设定模型的边界条件,包括初始条件、边界压力和温度等。
3.求解模型:使用CMG模拟软件求解相渗模型,得到相渗曲线。
4.分析结果:根据得到的相渗曲线,分析渗透性、流动性和运移行为,评估模型的可行性和准确性。
石油大学 油层物理课件 第三章(4)相渗及应用
第四节 饱和多相流体岩石的渗流特征
一、有效渗透率和相对渗透率的概念
2、有效渗透率(effective permeability)
例4: 设有一柱状岩样,L= 3 cm, A=4.9 cm2. 岩心中饱和50%的盐水 (μ w=1mPa·s)和50%的油(μ o=2.99 mPa·s)。当岩心两端压差为 △p=0.1MPa,盐水流量为0.09cm3/s,油的流量为0.05cm3/s,计算盐水 和油的有效渗透率。
三、影响相对渗透率曲线的因素
1、润湿性 一般情况下: 1)当岩石润湿性由亲油向亲 水转化时,油的相对渗透率趋 于升高,水的相对渗透率趋于 降低。 2)当岩石润湿性由亲油向亲 水转化时,油水相对渗透率曲 线右移。
随某相润湿程度的增强,其相对渗透率降低。
第四节 饱和多相流体岩石的渗流特征
三、影响相对渗透率曲线的因素
当岩石孔隙为一种流体100%饱和时测得的渗透 率。 绝对渗透率只是岩石本身的一种属性,与通 过岩石的流体性质无关。
QL 达西公式: k Ap
达西公式三个假设条件?
第四节 饱和多相流体岩石的渗流特征
一、有效渗透率和相对渗透率的概念
1、绝对渗透率(absolute permeability)
例1:已知: 柱状岩心A=4.9cm2, L=3cm,△P=0.1MPa (1)100%饱和盐水,Qw=0.497cm3/s (2)100%饱和油,Qo=0.166cm3/s. uo=2.99mPa.s uw=1mPa.s 求该岩样的绝对渗透率。 解:
第四节 饱和多相流体岩石的渗流特征
一、有效渗透率和相对渗透率的概念
2、有效渗透率(effective permeability) 70%盐水,30%油:kw=0.1837, ko=0.0366, ko+kw=0.2203 < k=0.304 50%盐水,50%油:kw=0.0055, ko=0.0915, ko+kw=0.097 < k=0.304 1) 有效渗透率不仅与岩石孔隙结构有关,而且与流 体饱和度大小有关。 2) 流体有效渗透之和总是小于岩石的绝对渗透率。
相渗曲线及其应用
2020年7月15日星期三
主要内容
油水两相相对渗透率曲线 相对渗透率曲线的处理(标准化) 相对渗透率曲线的应用
2
一、油水两相相对渗透率曲线
1、概念
油相和水相相对 渗透率与含水饱和度 的关系曲线,称为油 水两相相对渗透率曲 线。随着含水饱和度 的增加,油相相对渗 透率减小,水相相对 渗透率增大。
12
(3)根据以下公式分别对Sw、Kro、Krw进行标准化处 理,以消除各相对渗透率曲线不同的Swi、Sor带来的影 响。
13
(4)根据下列公式求取回归系数a、b。
(5)取Sw*=0,0.1,0.2,…,0.9,1.0。由公式计算出平 均的Krw*、Kro*值,并绘制标准化平均相对渗透率曲线。 (6)根据油藏的平均空气渗透率,利用回归关系式,求 取Swi、Sor、Krwmax。
前缘含水饱和度和两相区平均含水饱和度一般根据分 流量曲线,用图解法求得。
(1)前缘含水饱和度Swf
在分流量曲线上,过(Swi,0)点作分流量曲线的切 线,切点的横坐标即为前缘含水饱和度Swf,切点的纵坐标 为前缘含水fw(Swf)。其计算公式为:
20
(2)两相区平均含水饱和度
在分流量曲线上,过点(Swi,0)作分流量曲线的切 线,切线与直线fw=1相交于一点,该点的横坐标即为两相 区平均含水饱和度。其计算公式为:
10
(5)将平均标准化相对渗透率曲线上各分点的Sw*、Kro*、 Krw*,换算公式如下:
(6)根据上述公式,作出油藏的平均相对渗透率曲线 。
11
2、与束缚水饱和度相关法
此方法是利用各油藏的空气渗透率K来求油水相对渗 透率曲线的特征值。 (1)选择具有代表性的油水相对渗透率曲线。 (2)建立岩心的束缚水饱和度(Swi)、残余油饱和度( Sor)、残余油饱和度下的水相相对渗透率(Kromax)与空 气渗透率(K)的关系,并进行线性回归,以求取回归系 数,建立回归关系式。
相渗曲线及其应用.
数,建立回归关系式。
S wi a1 b1 lg K
S or a 2 b2 lg K S rw max a3 b3 lg K
(3)根据以下公式分别对Sw、Kro、Krw进行标准化处 理,以消除各相对渗透率曲线不同的Swi、Sor带来的影
响。
* w
S
S w S wi 1 S wi S or
无因次采液指数的计算公式为:
J0 ' fw J l '( f w ) 1 fw
5、确定采出程度与含水的关系
采出程度可表示为驱油效率与体积波及系数的乘积, 即:
R Ed Ev
其中Ed可根据相对渗透率资料,用式(**)求得;Ev 的求取方法有两个,一是由油田的实际资料统计求得;二
非润湿相驱替润湿相过程中测得的相对渗透率称为驱替
相对渗透率
吸入过程的非润湿相相对渗透率低于排驱过程的非润湿 相相对渗透率 润湿相的驱替和吸入过程的相对渗透率曲线总是比较接 近,可以重合
(2)岩石表面润湿性的影响
1 )强亲水岩石油水相渗曲线的等渗点的 Sw 大于 50 %,而
强亲油者小于50%; 2)亲水岩石油水相渗曲线的 Swi 一般大于 20%,亲油者小 于15%; 3)亲水岩石油水相渗曲线在最大含水饱和度(完全水淹)
所以有:
1 1 fw K ro w bs w w 1 1 ae K rw o o
(*)
根据此式绘制的 fw—Sw 关系曲线,称为水相的分流量曲线。 严格地讲,以上求得的水相分流量曲线,应为地层水
的体积分流量曲线,把地层水的体积分流量曲线换算为地
面水的质量分流量曲线,其换算公式为:
fw
油水相对渗透率曲线ppt课件
13
影响相对渗透率曲线的因素
• 岩石非均质(层理)的影响
在各向异性的Berea砂岩上 发现,平行层理流动的相对渗 透率值高于垂直于层理流动的 相应值。同时沙粒大小、分布 颗粒形状以及方向性,孔隙大 小分布,几何形态,岩石比面 以及后生作用等都会影响相渗 曲线。
精选ppt课件2021
14
影响相对渗透率曲线的因素
• 经验法则 (1) 水湿 油湿
束缚水饱和度 >20-25 <10%
交点饱和度
>50% <50%
Kw(Sor)
<30% >50%
(2)如果气-油相对渗透率曲线中的油相相对渗透率 与水-油相对渗透率曲线中的水相相对渗透率相近,
则岩样是水湿的;
• 注意:此方法只能用于强润湿行为的定性判断,对于 中间润湿性或混合润湿性,则无规律可循。
精选ppt课件2021
9
影响相对渗透率曲线的因素
• 流体形态的影响
有表面活性剂存在时,油水相态有三种:油为分散相, 油为分散介质,乳化状态。油水在孔隙介质中共同渗 流,分散介质的渗流能力会大于分散相。
精选ppt课件2021
10
影响相对渗透率曲线的因素
• 饱和历程的影响——滞后现象
其滞后现象是由毛管压力滞后引起的。非湿相的相渗受 饱和顺序的影响要远大于对湿相的影响;湿相的驱替 和吸入过程的相渗曲线比较接近。
• 稳态法
• 理论依据:忽略毛管压力和重力作用的两相不可压缩、 不互溶流体的一维渗流方程;
• 做法:让固定比例的流体通过岩样,直到达到稳定状 态(压力分布、饱和度分布不随时间而改变,各相流 体在孔隙中分布达到平衡),求得此平衡状态下的饱 和度、压力和流量,然后直接用达西定律计算油水相 对渗透率。
cmg汽水模型相渗曲线
cmg汽水模型相渗曲线
CMG汽水模型的相渗曲线用于描述在负压条件下,汽水在多孔介质中的相对渗透率随饱和度的变化关系。
相渗曲线通常呈现S型曲线,即随着饱和度的增加,相对渗透率呈现逐渐增加、逐渐饱和的过程。
在低饱和度时,相对渗透率较小或接近于0,主要受到两相流作用的限制,液相和气相之间的作用力较强,使得气相难以渗入多孔介质。
当饱和度逐渐增加时,相对渗透率开始迅速增加,此阶段的增加速度较快,主要原因是多孔介质中气相的连通性开始增强,气相能够更容易地渗入多孔介质。
随着饱和度的进一步增加,相对渗透率的增加速度逐渐减缓,直至趋于饱和,此时相对渗透率趋近于1,表示多孔介质中水相和气相的渗透能力基本相当,达到了平衡状态。
需要注意的是,不同的多孔介质结构和水气性质可能会导致相渗曲线的形状有所差异,因此在具体应用中需要根据实际条件进行调整和修正。
相渗曲线详解ppt课件
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
π值是毛管力和压力梯度的比值, π值减小,压力梯度增加.
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
相渗曲线及其应用 PPT课件
fw Sw
Qo
Qw
o
Bo
Qw
1
1
w o o Bo
K ro K rw
1
w
1
o
aebsw
o Bo
2、计算Swf和两相区平均含水饱和度
前缘含水饱和度和两相区平均含水饱和度一般根据分 流量曲线,用图解法求得。
(1)前缘含水饱和度Swf
在分流量曲线上,过(Swi,0)点作分流量曲线的切 线,切点的横坐标即为前缘含水饱和度Swf,切点的纵坐标 为前缘含水fw(Swf)。其计算公式为:
又由于油水两相相对渗透率的比值常表示为含水饱和 度的函数,即:
K ro aebsw K rw
所以有:
1
1
fw
1
K ro
w
1 aebsw w
(*)
Krw o
o
根据此式绘制的fw—Sw关系曲线,称为水相的分流量曲线。 严格地讲,以上求得的水相分流量曲线,应为地层水
的体积分流量曲线,把地层水的体积分流量曲线换算为地 面水的质量分流量曲线,其换算公式为:
n
K
* ro
S
* w
k
K
* ro
(S
* w
)
k
i 1
n
i
n
K
* rw
(
S
* w
)
k
i 1
K
* rw
S
* w
n
k
i
(4)将各样品的Swi、Swmax、Kromax、Krwmax等特征值分别 进行算术平均,并将平均值作为平均相对渗透率曲线的特 征值。计算公式如下:
n
Swi i
(3)岩石孔隙几何形态和大小分布的影响
相渗实验研究
姓 名:孙 媛 媛 班 级:石工0801
一、课题的目的及意义
1.计算分流量 曲线
2.计算油井 产量、水 油比和流 度比
相渗曲 线应用
3.判断润湿 性
4.计算驱油效率 和采收率
5.其他应用
油水相对渗透率曲线反映了油水两 相在多孔介质中的流动规律,它是 油田开发设计、油藏计算中的一项 非常重要的资料。
0.14 0.12
0.1 0.08 0.06 0.04 0.02
0 0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 渗透率(×10-3μ m2)
图5 渗透率与等渗点处油水相对渗透率的关 系
(3)
表1、气测渗透率与等渗点处Sw
岩心号
2 4 3 6 5 1
气测渗透率×10‐³ µm²
0.263 0.277 0.325 0.373 0.598 2.56
0.0908
0.053
0.021
三、相渗曲线
1.0
0.8
A
0.6
Kro Krw
B
C
Kro&Krw
0.4
0.2
0.0 0
10 20 30 40 50 60 70 80 90 100
Sw%
图1 1#岩心相渗曲线 两条曲线、三个区域、四个特征点
图2 2#、 3#岩心相渗曲线
图3 分别为 4#、5#、 6#岩心的相 渗曲线
汇报完毕 请各位老师指导
10围直径cm长度cm气测渗透率10cm孔隙度地层水测渗透率1025060225643615100782504600263225109002246504032530212500622495100277284142009082475100598336136005324451503733141250021两条曲线三个区域四个特征点000204060810102030405060708090100swkrokrw23岩心相渗曲线106岩心的相渗曲线11岩心束缚水时交点处残余油时swko10swkrokrwsorkrw气测渗透率10m32570021558800993153031225615139040001658500055372901836026310933800095595000853347027070325125363004965267007235502960277142315500246155012431640322059813631620006590001093691023903731251油水相渗曲线综合数据表12303234363840渗透率103m2swisor渗透率与swi和sor的关系2物性对特征点值的影响0020040060080101201401020304050607渗透率103m214岩心号气测渗透率100263585027752670325595037359059861552565588151判断润湿性岩心号swi等渗点sw残余油时krw3257558803123904585001843385950027136352670296315561550322316259000239162计算驱油效率岩心号swisor驱油效率32573153388339043729442733833474944363355460231553164537831623691532417806010343计算分流量曲线以2岩心为例
相对渗透率及相对渗透率曲线应用课件
根据相对渗透率曲线和油藏类型,预测油田的采收率,评估油田的 开发潜力和经济效益。
动态监测
通过实时监测油田的动态数据,如产液量、注水量等,结合相对渗透 率曲线,分析油田的开发效果和存在的问题。
油田开发方案调整
层间调整
根据相对渗透率数据,了解各油层的渗透率和孔隙度,对层间差 异较大的油田进行层间调整,以提高开发效果。
开发方案优化
井网优化
根据相对渗透率曲线和油藏工程 模型,可以优化井网布置方案,
提高开发效果和经济效益。
采收率预测
通过相对渗透率曲线和油藏工程 模型,可以预测不同开发方案下 的采收率,为制定合理的开发方
案提供依据。
开发策略调整
根据相对渗透率曲线的变化趋势 和开发效果,可以及时调整开发 策略和措施,提高开发效益和油
产能预测
单井产能预测
根据相对渗透率曲线和油藏工程 模型,可以预测单井在不同生产 条件下的产能,为制定合理的开
发方案提供依据。
区块产能预测
通过对区块内各单井的产能进行预 测,可以评估区块的整体产能和开 发潜力,为制定区块开发方案提供 参考。
产能变化趋势分析
通过分析相对渗透率曲线在不同开 发阶段的形态变化,可以了解产能 变化趋势和规律,为优化开发方案 提供依据。
意义
相对渗透率是描述多相流体在多 孔介质中流动特性的重要参数, 对于油藏工程、采油工程和渗流 力学等领域具有重要意义。
计算方法
理论计算方法
基于达西定律和渗流力学理论,推导 相对渗透率公式。
实验测定方法
通过实验测定多相流体在多孔介质中 的渗透率,再计算相对渗透率。
影响因素
孔隙结构
孔隙结构直接影响多相流 体的流动特性,从而影响