数值方法实验报告

合集下载

数值分析综合实验报告

数值分析综合实验报告

一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。

二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。

(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。

2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。

(2)Newton法:利用函数的导数信息,通过迭代逼近根。

(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。

3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。

(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。

(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。

三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。

(2)计算插值多项式在未知点的函数值。

2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。

(2)计算插值多项式在未知点的函数值。

3. 方程求根方法(1)输入方程和初始值。

(2)选择求解方法(二分法、Newton法、不动点迭代法)。

(3)迭代计算,直到满足精度要求。

4. 数值积分方法(1)输入被积函数和积分区间。

(2)选择积分方法(矩形法、梯形法、辛普森法)。

(3)计算积分值。

四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。

(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。

2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。

(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。

(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。

3. 数值积分方法(1)矩形法:计算简单,但精度较低。

数值计算方法实验报告

数值计算方法实验报告

数值计算方法实验报告一、实验介绍本次实验是关于数值计算方法的实验,旨在通过计算机模拟的方法,实现对于数值计算方法的掌握。

本次实验主要涉及到的内容包括数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等。

二、实验内容1. 数值微积分数值微积分是通过计算机模拟的方法,实现对于微积分中的积分运算的近似求解。

本次实验中,我们将会使用梯形公式和辛普森公式对于一定区间上的函数进行积分求解,并比较不同公式的计算误差。

2. 线性方程组的求解线性方程组求解是数值计算领域中的重要内容。

本次实验中,我们将会使用高斯消元法、LU分解法等方法对于给定的线性方程组进行求解,并通过比较不同方法的计算效率和精度,进一步了解不同方法的优缺点。

3. 插值与拟合插值与拟合是数值计算中的另一个重要内容。

本次实验中,我们将会使用拉格朗日插值法和牛顿插值法对于给定的数据进行插值求解,并使用最小二乘法对于给定的函数进行拟合求解。

4. 常微分方程的数值解常微分方程的数值解是数值计算中的难点之一。

本次实验中,我们将会使用欧拉法和龙格-库塔法等方法对于给定的常微分方程进行数值解的求解,并比较不同方法的计算精度和效率。

三、实验结果通过本次实验,我们进一步加深了对于数值计算方法的理解和掌握。

在数值微积分方面,我们发现梯形公式和辛普森公式都能够有效地求解积分,但是辛普森公式的计算精度更高。

在线性方程组求解方面,我们发现LU分解法相对于高斯消元法具有更高的计算效率和更好的数值精度。

在插值与拟合方面,我们发现拉格朗日插值法和牛顿插值法都能够有效地进行插值求解,而最小二乘法则可以更好地进行函数拟合求解。

在常微分方程的数值解方面,我们发现欧拉法和龙格-库塔法都能够有效地进行数值解的求解,但是龙格-库塔法的数值精度更高。

四、实验总结本次实验通过对于数值计算方法的模拟实现,进一步加深了我们对于数值计算方法的理解和掌握。

在实验过程中,我们了解了数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等多个方面的内容,在实践中进一步明确了不同方法的特点和优缺点,并可以通过比较不同方法的计算效率和数值精度来选择合适的数值计算方法。

数值分析2024上机实验报告

数值分析2024上机实验报告

数值分析2024上机实验报告数值分析是计算数学的一个重要分支,它研究如何用数值方法来解决数学问题。

在数值分析的学习过程中,学生需要通过上机实验来巩固理论知识,并学会使用相应的数值方法来解决实际问题。

本篇报告将详细介绍2024年度数值分析上机实验的内容和结果。

一、实验内容2024年度数值分析上机实验分为四个部分,分别是:方程求根、插值与拟合、数值积分和常微分方程的数值解。

1.方程求根这部分实验要求使用数值方法求解给定的非线性方程的根。

常见的数值方法有二分法、牛顿法、割线法等。

在实验过程中,我们需要熟悉这些数值方法的原理和实现步骤,并对不同方法的收敛性进行分析和比较。

2.插值与拟合这部分实验要求使用插值和拟合方法对给定的一组数据进行拟合。

插值方法包括拉格朗日插值、牛顿插值等;拟合方法包括最小二乘拟合、多项式拟合等。

在实验中,我们需要熟悉插值和拟合方法的原理和实现步骤,并对不同方法的精度和稳定性进行比较。

3.数值积分这部分实验要求使用数值方法计算给定函数的积分。

常见的数值积分方法有梯形法则、辛普森法则、龙贝格积分等。

在实验过程中,我们需要熟悉这些数值积分方法的原理和实现步骤,并对不同方法的精度和效率进行比较。

4.常微分方程的数值解这部分实验要求使用数值方法求解给定的常微分方程初值问题。

常见的数值方法有欧拉法、改进的欧拉法、四阶龙格-库塔法等。

在实验中,我们需要熟悉这些数值解方法的原理和实现步骤,并对不同方法的精度和稳定性进行比较。

二、实验结果在完成2024年度数值分析上机实验后,我们得到了以下实验结果:1.方程求根我们实现了二分法、牛顿法和割线法,并对比了它们的收敛速度和稳定性。

结果表明,割线法的收敛速度最快,但在一些情况下可能会出现振荡;二分法和牛顿法的收敛速度相对较慢,但稳定性较好。

2.插值与拟合我们实现了拉格朗日插值和最小二乘拟合,并对比了它们的拟合效果和精度。

结果表明,拉格朗日插值在小区间上拟合效果较好,但在大区间上可能出现振荡;最小二乘拟合在整体上拟合效果较好,但可能出现过拟合。

数值分析积分实验报告(3篇)

数值分析积分实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,研究几种常见的数值积分方法,包括梯形法、辛普森法、复化梯形法和龙贝格法,并比较它们在计算精度和效率上的差异。

通过实验,加深对数值积分理论和方法的理解,提高编程能力和实际问题解决能力。

二、实验内容1. 梯形法梯形法是一种基本的数值积分方法,通过将积分区间分割成若干个梯形,计算梯形面积之和来近似积分值。

实验中,我们选取了几个不同的函数,对积分区间进行划分,计算积分近似值,并与实际积分值进行比较。

2. 辛普森法辛普森法是另一种常见的数值积分方法,它通过将积分区间分割成若干个等距的区间,在每个区间上使用二次多项式进行插值,然后计算多项式与x轴围成的面积之和来近似积分值。

实验中,我们对比了辛普森法和梯形法的计算结果,分析了它们的精度差异。

3. 复化梯形法复化梯形法是对梯形法的一种改进,通过将积分区间分割成多个小区间,在每个小区间上使用梯形法进行积分,然后计算所有小区间积分值的和来近似积分值。

实验中,我们对比了复化梯形法和辛普森法的计算结果,分析了它们的精度和效率。

4. 龙贝格法龙贝格法是一种通过外推加速提高计算精度的数值积分方法。

它通过比较使用不同点数(n和2n)的积分结果,得到更高精度的积分结果。

实验中,我们使用龙贝格法对几个函数进行积分,并与其他方法进行了比较。

三、实验步骤1. 编写程序实现梯形法、辛普森法、复化梯形法和龙贝格法。

2. 选取几个不同的函数,对积分区间进行划分。

3. 使用不同方法计算积分近似值,并与实际积分值进行比较。

4. 分析不同方法的精度和效率。

四、实验结果与分析1. 梯形法梯形法在计算精度上相对较低,但当积分区间划分足够细时,其计算结果可以接近实际积分值。

2. 辛普森法辛普森法在计算精度上优于梯形法,但当积分区间划分较细时,计算量较大。

3. 复化梯形法复化梯形法在计算精度上与辛普森法相当,但计算量较小。

4. 龙贝格法龙贝格法在计算精度上优于复化梯形法,且计算量相对较小。

数值计算基础实验报告(3篇)

数值计算基础实验报告(3篇)

第1篇一、实验目的1. 理解数值计算的基本概念和常用算法;2. 掌握Python编程语言进行数值计算的基本操作;3. 熟悉科学计算库NumPy和SciPy的使用;4. 分析算法的数值稳定性和误差分析。

二、实验内容1. 实验环境操作系统:Windows 10编程语言:Python 3.8科学计算库:NumPy 1.19.2,SciPy 1.5.02. 实验步骤(1)Python编程基础1)变量与数据类型2)运算符与表达式3)控制流4)函数与模块(2)NumPy库1)数组的创建与操作2)数组运算3)矩阵运算(3)SciPy库1)求解线性方程组2)插值与拟合3)数值积分(4)误差分析1)舍入误差2)截断误差3)数值稳定性三、实验结果与分析1. 实验一:Python编程基础(1)变量与数据类型通过实验,掌握了Python中变量与数据类型的定义方法,包括整数、浮点数、字符串、列表、元组、字典和集合等。

(2)运算符与表达式实验验证了Python中的算术运算、关系运算、逻辑运算等运算符,并学习了如何使用表达式进行计算。

(3)控制流实验学习了if-else、for、while等控制流语句,掌握了条件判断、循环控制等编程技巧。

(4)函数与模块实验介绍了Python中函数的定义、调用、参数传递和返回值,并学习了如何使用模块进行代码复用。

2. 实验二:NumPy库(1)数组的创建与操作通过实验,掌握了NumPy数组的基本操作,包括创建数组、索引、切片、排序等。

(2)数组运算实验验证了NumPy数组在数学运算方面的优势,包括加、减、乘、除、幂运算等。

(3)矩阵运算实验学习了NumPy中矩阵的创建、操作和运算,包括矩阵乘法、求逆、行列式等。

3. 实验三:SciPy库(1)求解线性方程组实验使用了SciPy库中的线性代数模块,通过高斯消元法、LU分解等方法求解线性方程组。

(2)插值与拟合实验使用了SciPy库中的插值和拟合模块,实现了对数据的插值和拟合,并分析了拟合效果。

数值计算方法实验报告

数值计算方法实验报告

数值计算方法实验报告实验目的:通过实验验证不同数值计算方法在求解数学问题时的精度和效率,并分析其优缺点。

实验原理:实验内容:本实验选取了三个典型的数值计算问题,并分别采用了二分法、牛顿迭代法和梯度下降法进行求解。

具体问题和求解方法如下:1. 问题一:求解方程sin(x)=0的解。

-二分法:利用函数值的符号变化将解空间不断缩小,直到找到满足精度要求的解。

-牛顿迭代法:通过使用函数的斜率来逼近方程的解,并不断逼近真实解。

-梯度下降法:将方程转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,进而找到方程的解。

2.问题二:求解函数f(x)=x^2-3x+2的极小值点。

-二分法:通过确定函数在一个区间内的变化趋势,将极小值所在的区间不断缩小,从而找到极小值点。

-牛顿迭代法:通过使用函数的导数和二阶导数来逼近极小值点,并不断逼近真实解。

-梯度下降法:将函数转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,进而找到函数的极小值点。

3. 问题三:求解微分方程dy/dx = -0.1*y的解。

-二分法:通过离散化微分方程,将微分方程转化为一个差分方程,然后通过迭代计算不同点的函数值,从而得到函数的近似解。

-牛顿迭代法:将微分方程转化为一个积分方程,并通过迭代计算得到不同点的函数值,从而得到函数的近似解。

-梯度下降法:将微分方程转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,从而得到函数的近似解。

实验步骤:1.编写代码实现各个数值计算方法的求解过程。

2.对每个数值计算问题,设置合适的初始值和终止条件。

3.运行程序,记录求解过程中的迭代次数和每次迭代的结果。

4.比较不同数值计算方法的精度和效率,并分析其优缺点。

实验结果:经过实验测试,得到了如下结果:-问题一的二分法迭代次数为10次,求解结果为x=0;牛顿迭代法迭代次数为4次,求解结果为x=0;梯度下降法迭代次数为6次,求解结果为x=0。

-问题二的二分法迭代次数为10次,求解结果为x=1;牛顿迭代法迭代次数为3次,求解结果为x=1;梯度下降法迭代次数为4次,求解结果为x=1-问题三的二分法迭代次数为100次,求解结果为y=e^(-0.1x);牛顿迭代法迭代次数为5次,求解结果为y=e^(-0.1x);梯度下降法迭代次数为10次,求解结果为y=e^(-0.1x)。

数值分析实验报告5篇

数值分析实验报告5篇

误差分析实验1.1(问题)实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。

对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。

通过本实验可获得一个初步体会。

数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。

病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。

问题提出:考虑一个高次的代数多项式)1.1()()20()2)(1()(201∏=-=---=k k x x x x x p显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。

现考虑该多项式的一个扰动)2.1(0)(19=+x x p ε其中ε是一个非常小的数。

这相当于是对(1.1)中19x 的系数作一个小的扰动。

我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。

实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。

roots(a)u =其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。

设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程01121=+++++-n n n n a x a x a x a的全部根;而函数poly(v)b =的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。

可见“roots ”和“poly ”是两个互逆的运算函数。

;000000001.0=ess );21,1(zeros ve = ;)2(ess ve =))20:1((ve poly roots +上述简单的Matlab 程序便得到(1.2)的全部根,程序中的“ess ”即是(1.2)中的ε。

实验要求:(1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。

数值计算方法实验报告

数值计算方法实验报告

一、实验目的1. 熟悉数值计算的基本概念和方法;2. 掌握数值计算的基本原理和算法;3. 提高编程能力和数值计算能力;4. 通过实验,加深对数值计算方法的理解和应用。

二、实验内容1. 矩阵运算2. 线性方程组求解3. 函数求值4. 微分方程求解三、实验步骤1. 矩阵运算(1)编写程序实现矩阵的加法、减法、乘法运算;(2)编写程序实现矩阵的转置运算;(3)编写程序实现矩阵的逆运算。

2. 线性方程组求解(1)编写程序实现高斯消元法求解线性方程组;(2)编写程序实现雅可比迭代法求解线性方程组;(3)编写程序实现高斯-赛德尔迭代法求解线性方程组。

3. 函数求值(1)编写程序实现牛顿迭代法求函数的零点;(2)编写程序实现二分法求函数的零点;(3)编写程序实现割线法求函数的零点。

4. 微分方程求解(1)编写程序实现欧拉法求解一阶微分方程;(2)编写程序实现龙格-库塔法求解一阶微分方程;(3)编写程序实现龙格-库塔-法求解二阶微分方程。

四、实验结果与分析1. 矩阵运算(1)矩阵加法、减法、乘法运算结果正确;(2)矩阵转置运算结果正确;(3)矩阵逆运算结果正确。

2. 线性方程组求解(1)高斯消元法求解线性方程组,结果正确;(2)雅可比迭代法求解线性方程组,结果正确;(3)高斯-赛德尔迭代法求解线性方程组,结果正确。

3. 函数求值(1)牛顿迭代法求函数的零点,结果正确;(2)二分法求函数的零点,结果正确;(3)割线法求函数的零点,结果正确。

4. 微分方程求解(1)欧拉法求解一阶微分方程,结果正确;(2)龙格-库塔法求解一阶微分方程,结果正确;(3)龙格-库塔-法求解二阶微分方程,结果正确。

五、实验总结本次实验通过对数值计算方法的学习和实践,使我对数值计算有了更深入的了解。

以下是我对本次实验的总结:1. 矩阵运算是数值计算的基础,熟练掌握矩阵运算对于解决实际问题具有重要意义;2. 线性方程组求解是数值计算中常见的问题,高斯消元法、雅可比迭代法和高斯-赛德尔迭代法是常用的求解方法;3. 函数求值是数值计算中另一个常见问题,牛顿迭代法、二分法和割线法是常用的求解方法;4. 微分方程求解是数值计算中的难点,欧拉法、龙格-库塔法和龙格-库塔-法是常用的求解方法。

数值计算方法实验报告(含所有)

数值计算方法实验报告(含所有)

本科实验报告课程名称:计算机数值方法实验项目:计算机数值方法实验实验地点:虎峪校区致远楼B401专业班级:软件学院1217班学号:******xxxx 学生姓名:xxx指导教师:xxx2014 年 5 月21 日太原理工大学学生实验报告五、实验结果与分析二分法割线法分析:由程序知,使用二分法和割线法均能计算出方程的根,但利用割线法要比二分法计算的次数少,并且能够较早的达到精度要求。

相比之下,割线法程序代码量较少,精简明了。

六、讨论、心得本次数值计算方法程序设计实验从习题练习中跳脱出来,直接面对实用性较强的程序代码编写。

效果很好,不仅加深对二分法、割线法的理解,还加强了实际用运能力。

将理论知识成功地转化成实践结果。

实验地点虎峪校区致远楼B401指导教师xx太原理工大学学生实验报告l[i][k]=a[i][k];for(r=1;r<k;++r){l[i][k]-=l[i][r]*u[r][k];}l[i][k]/= u[k][k];}l[k][k]=1.0;}for(i=1;i<=n;++i){y[i] = b[i];for(j=1;j<i;++j){y[i]-=l[i][j]*y[j];}}for(i=n;i>0;--i){x[i] = y[i];for(j=i+1;j<=n;++j){x[i]-=u[i][j]*x[j];}x[i]/= u[i][i];}for(i=1;i<=n;++i){printf("%0.2lf\n",x[i]);}return 0;}五、实验结果与分析完全主元素消元法:列主元素消元法:LU分解法:分析:对于两种高斯解方程,完全主元素跟列主元素都是先消元、再回代,由程序段可以发现,始终消去对角线下方的元素。

即,为了节约内存及时效,可以不必计算出主元素下方数据。

列主元素消元法的算法设计上优于完全主元素消元法,它只需依次按列选主元素然后换行使之变到主元素位置,再进行消元即可。

数值计算方法实验报告

数值计算方法实验报告

数值计算方法实验报告一、实验目的本实验旨在通过Python语言编写数值计算方法程序,掌握常见数值计算方法的实现原理及应用。

具体包括:插值法、最小二乘法、数值微积分、数值解方程、数值解微分方程等。

二、实验环境Python编程语言、Jupyter Notebook环境三、实验内容1.插值法(1)代码实现:在Python中使用Scipy库中的Interpolate模块实现拉格朗日插值法和牛顿插值法,并通过数据可视化展示其效果。

(2)实验步骤:- 导入所需库,准备所需数据;- 定义拉格朗日插值法函数;- 定义牛顿插值法函数;- 测试函数并可视化结果。

(3)实验结果:2.最小二乘法(1)代码实现:在Python中使用Numpy库实现最小二乘法,并通过数据可视化展示其效果。

(2)实验步骤:- 导入所需库,准备所需数据;- 定义最小二乘法函数;- 测试函数并可视化结果。

(3)实验结果:3.数值微积分(1)代码实现:在Python中实现梯形法和辛普森法,并通过数据可视化展示其效果。

(2)实验步骤:- 导入所需库,准备所需数据;- 定义梯形法函数和辛普森法函数;- 测试函数并可视化结果。

(3)实验结果:4.数值解方程(1)代码实现:在Python中实现二分法、牛顿法和割线法,并通过数据可视化展示其效果。

(2)实验步骤:- 导入所需库,准备所需数据;- 定义二分法函数、牛顿法函数和割线法函数;- 测试函数并可视化结果。

(3)实验结果:5.数值解微分方程(1)代码实现:在Python中实现欧拉法和龙格-库塔法,并通过数据可视化展示其效果。

(2)实验步骤:- 导入所需库,准备所需数据;- 定义欧拉法函数和龙格-库塔法函数;- 测试函数并可视化结果。

(3)实验结果:四、实验总结通过本次实验,我学习了数值计算方法的常用算法和实现原理,掌握了Python 语言实现数值计算方法的方法,加深了对数值计算方法的理解和应用。

实验中遇到的问题,我通过查找资料和与同学的讨论得到了解决,也更加熟练地掌握了Python语言的使用。

计算方法数值实验报告

计算方法数值实验报告

计算方法数值实验报告(一)班级:0902 学生:苗卓芳 倪慧强 岳婧实验名称: 解线性方程组的列主元素高斯消去法和LU 分解法实验目的: 通过数值实验,从中体会解线性方程组选主元的必要性和LU 分解法的优点,以及方程组系数矩阵和右端向量的微小变化对解向量的影响。

实验内容:解下列两个线性方程组(1) ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--11134.981.4987.023.116.427.199.103.601.3321x x x (2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----15900001.582012151526099999.23107104321x x x x 解:(1) 用熟悉的算法语言编写程序用列主元高斯消去法和LU 分解求解上述两个方程组,输出Ax=b 中矩阵A 及向量b, A=LU 分解的L 及U ,detA 及解向量。

①先求解第一个线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--11134.981.4987.023.116.427.199.103.601.3321x x x在命令窗口中运行A=[3.01,6.03,1.99;1.27,4.16,-1.23;0.987,-4.81,9.34] 可得A =3.0100 6.0300 1.99001.2700 4.1600 -1.23000.9870 -4.8100 9.3400b=[1,1,1]可得b =1 1 1H =det(A)可得 H =-0.0305列主元高斯消去法:在命令窗口中运行function x=Gauss_pivot(A,b)、A=[3.01,6.03,1.99;1.27,4.16,-1.23;0.987,-4.81,9.34];b=[1,1,1];n=length(b);x=zeros(n,1);c=zeros(1,n);dl=0;for i=1:n-1max=abs(A(i,i));m=i;for j=i+1:nif max<abs(A(j,i))max=abs(A(j,i));m=j;endendif(m~=i)for k=i:nc(k)=A(i,k);A(i,k)=A(m,k);A(m,k)=c(k);enddl=b(i);b(i)=b(m);b(m)=dl;endfor k=i+1:nfor j=i+1:nA(k,j)=A(k,j)-A(i,j)*A(k,i)/A(i,i);endb(k)=b(k)-b(i)*A(k,i)/A(i,i);A(k,i)=0;endendx(n)=b(n)/A(n,n);for i=n-1:-1:1sum=0;for j=i+1:nsum =sum+A(i,j)*x(j);endx(i)=(b(i)-sum)/A(i,i);end经程序可得实验结果ans =1.0e+003 *1.5926-0.6319-0.4936LU分解法:在命令窗口中运行function x=lu_decompose(A,b)A=[3.01,6.03,1.99;1.27,4.16,-1.23;0.987,-4.81,9.34];b=[1,1,1];L=eye(n);U=zeros(n,n);x=zeros(n,1);c=zeros(1,n);for i=1:nU(1,i)=A(1,i);if i==1;L(i,1)=1;elseL(i,1)=A(i,1)/U(1,1);endendfor i=2:nfor j=i:nsum=0;for k=1:i-1sum =sum+L(i,k)*U(k,j);endU(i,j)=A(i,j)-sum;Ifj~=nsum=0;for k=1:i-1sum=sum+L(j+1,k)*U(k,i);endL(j+1,i)=(A(j+1,i)-sum)/U(I,i);endendendy(1)=b(1);for k=2:nsum=0;forj=1:k-1sum=sum+L(k,j)*y (j);endy(k)=b(k)-sum;endx(n)=y(n)/U(n,n);260页最后一行c(k)=A(i,k);A(i,k)=A(m,k);A(m,k)=c(k);enddl=b(i);b(i)=b(m);b(m)=dl;endfor k=i+1:nfor j=i+1:nA(k,j)=A(k,j)-A(i,j)*A(k,i)/A(i,i);endb(k)=b(k)-b(i)*A(k,i)/A(i,i);A(k,i)=0;endendx(n)=b(n)/A(n,n);for i=n-1:-1:1sum=0;for j=i+1:nsum =sum+A(i,j)*x(j);endx(i)=(b(i)-sum)/A(i,i);end经程序可得结果ans =1.0e+003 *1.5926-0.6319-0.4936②再求解第二个线性方程组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----15900001.582012151526099999.23107104321x x x x 即A=[10,-7,0,1;-3,2.099999,6,2;5,-1,5,-1;2,1,0,2];b=[8,5.900001,5,1];重复上述步骤可的结果为ans =0.0000-1.00001.00001.0000(2)将方程组(1)中系数3.01改为3.00,0.987改为0.990,用列主元高斯消去法求解变换后的方程组,输出列主元行交换次序,解向量x 及detA ,并与(1)中结果比较。

数值实训实验报告

数值实训实验报告

一、实验目的1. 熟悉数值计算的基本原理和方法;2. 掌握数值分析中常用算法的编程实现;3. 通过实验验证算法的数值稳定性和收敛性;4. 提高运用MATLAB进行数值计算的能力。

二、实验内容1. 矩阵运算实验2. 线性方程组求解实验3. 矩阵特征值与特征向量计算实验4. 微分方程数值解法实验三、实验步骤1. 矩阵运算实验(1)编写程序实现矩阵的加法、减法、乘法、转置等基本运算;(2)编写程序实现矩阵的逆矩阵计算;(3)编写程序实现矩阵的行列式计算。

2. 线性方程组求解实验(1)编写程序实现高斯消元法求解线性方程组;(2)编写程序实现LU分解法求解线性方程组;(3)编写程序实现迭代法求解线性方程组。

3. 矩阵特征值与特征向量计算实验(1)编写程序实现幂法求矩阵的特征值与特征向量;(2)编写程序实现逆幂法求矩阵的特征值与特征向量;(3)编写程序实现QR算法求矩阵的特征值与特征向量。

4. 微分方程数值解法实验(1)编写程序实现欧拉法求解常微分方程;(2)编写程序实现改进的欧拉法求解常微分方程;(3)编写程序实现龙格-库塔法求解常微分方程。

四、实验结果与分析1. 矩阵运算实验通过实验,验证了矩阵的基本运算、逆矩阵和行列式的计算正确性。

2. 线性方程组求解实验通过实验,验证了高斯消元法、LU分解法和迭代法求解线性方程组的正确性。

同时,分析了不同算法的收敛速度和稳定性。

3. 矩阵特征值与特征向量计算实验通过实验,验证了幂法、逆幂法和QR算法求矩阵特征值与特征向量的正确性。

同时,分析了不同算法的收敛速度和稳定性。

4. 微分方程数值解法实验通过实验,验证了欧拉法、改进的欧拉法和龙格-库塔法求解常微分方程的正确性。

同时,分析了不同算法的收敛速度和稳定性。

五、实验总结通过本次数值实训实验,我对数值计算的基本原理和方法有了更深入的了解。

在实验过程中,我学会了如何运用MATLAB进行编程实现数值计算算法,并验证了算法的正确性和稳定性。

数值分析计算方法实验报告

数值分析计算方法实验报告

数值分析计算方法实验报告实验报告:数值分析计算方法摘要:数值计算方法是现代科学与工程领域中常用的重要工具。

本实验通过对比分析三种不同的数值计算方法,包括二分法、牛顿迭代法和弦截法的优劣,以及在实际问题中的应用。

实验结果表明,不同的数值计算方法适用于不同的问题,合理选择方法可以提高计算的精度和效率。

一、引言在科学研究和工程实践中,很多问题并不能通过解析方法得到精确解。

数值计算方法可以通过近似计算得到问题的数值解,为科学研究和工程设计提供可靠依据。

本实验主要研究三种常见的数值计算方法,即二分法、牛顿迭代法和弦截法,并通过实例验证其有效性和适用性。

二、方法介绍1.二分法:二分法是一种简单但有效的数值计算方法,适用于通过连续函数的反函数求解根的问题。

其基本思想是将查找区间通过中点划分为两个子区间,根据函数值的符号变化,选择新的查找区间,直到满足精度要求为止。

2.牛顿迭代法:牛顿迭代法是一种基于函数导数的数值计算方法,适用于求解非线性方程的根的问题。

其基本思想是通过对初始值的不断迭代来逼近方程的根,在每次迭代中利用切线的斜率来更新迭代值。

3.弦截法:弦截法是一种近似求解非线性方程根的数值计算方法。

其基本思想是通过初始两个近似解的连线与坐标轴交点的位置,来逼近真实解。

在每次迭代中,通过计算连线与坐标轴的交点来更新迭代值,直到满足精度要求为止。

三、实验内容1.实现二分法、牛顿迭代法和弦截法的数值计算算法;2.通过给定的实例,在同样的精度要求下对三种方法进行比较;3.分析并总结三种方法的优缺点及适用范围。

四、实验结果通过对比实例的计算结果可得到如下结果:1.二分法在给定的实例中,二分法需要进行较多的迭代次数才能达到所要求的精度,计算效率较低,但由于其简单的计算过程和保证收敛性的特点,适用于绝大多数连续函数的求根问题。

2.牛顿迭代法牛顿迭代法的计算速度快且稳定,收敛速度相对较快,但对初始值的选择要求较高。

如果初始值选择不当,可能会导致迭代结果发散。

数值方法实验报告

数值方法实验报告

数值方法实验报告数值方法实验报告引言:数值方法是一种通过数学模型和计算机算法来解决实际问题的方法。

在现代科学和工程领域,数值方法被广泛应用于求解复杂的数学方程、优化问题以及模拟和预测等任务。

本实验报告旨在介绍数值方法的基本原理和应用,并通过实验验证其有效性和可靠性。

一、数值方法的基本原理1.1 近似方法数值方法的核心是通过近似方法来求解问题。

由于大多数实际问题无法用解析方法求解,因此需要使用近似方法来获得问题的数值解。

常见的近似方法包括插值法、拟合法、数值积分和数值微分等。

1.2 数值算法数值算法是实现数值方法的具体计算步骤和流程。

常见的数值算法有牛顿法、迭代法、高斯消元法等。

这些算法通过迭代和逼近的方式,逐步逼近问题的解,并最终得到数值解。

二、数值方法的应用2.1 方程求解数值方法可以用于求解各种类型的方程,如线性方程组、非线性方程、微分方程等。

通过数值方法,可以得到这些方程的数值解,并在实际问题中进行应用。

例如,通过数值方法可以计算电路中的电压和电流分布,从而优化电路设计。

2.2 优化问题数值方法可以用于求解各种优化问题,如线性规划、非线性规划、整数规划等。

通过数值方法,可以找到问题的最优解,并在实际问题中进行决策和优化。

例如,通过数值方法可以确定最佳的生产计划,使得生产成本最小或者利润最大。

2.3 模拟和预测数值方法可以用于模拟和预测实际问题的行为和变化。

通过建立数学模型和使用数值方法,可以模拟天气变化、交通流量、金融市场等复杂系统的行为,并进行预测和分析。

例如,通过数值方法可以预测飓风路径和强度,从而提前做好防灾准备。

三、实验验证为了验证数值方法的有效性和可靠性,我们进行了一系列实验。

以线性方程组求解为例,我们使用高斯消元法和迭代法两种数值方法,并与解析解进行对比。

实验结果表明,高斯消元法和迭代法都可以得到线性方程组的数值解。

与解析解相比,数值解的误差较小,且在实际问题中具有较好的适用性。

数值分析拟合实验报告(3篇)

数值分析拟合实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析方法对一组已知数据点进行拟合,掌握线性插值、多项式插值、样条插值等方法的基本原理和实现过程,并学会使用MATLAB进行数值拟合。

二、实验内容1. 线性插值线性插值是一种简单的插值方法,适用于数据点分布较为均匀的情况。

其基本原理是通过两个相邻的数据点,利用线性关系拟合出一条直线,然后通过该直线来估算未知的值。

2. 多项式插值多项式插值是一种较为精确的插值方法,通过构造一个多项式函数来逼近已知数据点。

其基本原理是利用最小二乘法求解多项式的系数,使得多项式在已知数据点上的误差最小。

3. 样条插值样条插值是一种更灵活的插值方法,通过构造一系列样条曲线来逼近已知数据点。

其基本原理是利用最小二乘法求解样条曲线的系数,使得样条曲线在已知数据点上的误差最小。

三、实验步骤1. 线性插值(1)在MATLAB中输入已知数据点,如:x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];(2)使用MATLAB内置函数`linspace`生成插值点:xi = linspace(1, 5, 100);(3)使用MATLAB内置函数`interp1`进行线性插值:yi = interp1(x, y, xi, 'linear');(4)绘制插值曲线:plot(xi, yi, 'b-', x, y, 'ro');2. 多项式插值(1)在MATLAB中输入已知数据点,如:x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];(2)使用MATLAB内置函数`polyfit`求解多项式系数:p = polyfit(x, y, 3);(3)使用MATLAB内置函数`polyval`进行多项式插值:yi = polyval(p, xi);(4)绘制插值曲线:plot(xi, yi, 'b-', x, y, 'ro');3. 样条插值(1)在MATLAB中输入已知数据点,如:x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];(2)使用MATLAB内置函数`spline`进行样条插值:yi = spline(x, y, xi);(3)绘制插值曲线:plot(xi, yi, 'b-', x, y, 'ro');四、实验结果与分析1. 线性插值线性插值方法简单易行,但精度较低,适用于数据点分布较为均匀的情况。

数值计算方法实验报告

数值计算方法实验报告

数值计算方法实验报告数值计算方法实验报告引言:数值计算方法是一种通过数学模型和计算机算法来解决实际问题的方法。

在科学研究和工程应用中,数值计算方法被广泛应用于求解方程、优化问题、模拟仿真等领域。

本实验报告将介绍数值计算方法的基本原理和实验结果。

一、二分法求根二分法是一种通过不断折半缩小搜索区间来求解方程根的方法。

在实验中,我们选取了一个简单的方程f(x) = x^2 - 4 = 0来进行求根实验。

通过不断将搜索区间进行二分,我们可以逐步逼近方程的根。

实验结果表明,通过二分法,我们可以得到方程的根为x = 2。

二、牛顿迭代法求根牛顿迭代法是一种通过不断逼近方程根的方法。

在实验中,我们同样选取了方程f(x) = x^2 - 4 = 0进行求根实验。

牛顿迭代法的基本思想是通过对方程进行线性近似,求得近似解,并不断迭代逼近方程的根。

实验结果表明,通过牛顿迭代法,我们可以得到方程的根为x = 2。

三、高斯消元法求解线性方程组高斯消元法是一种通过变换线性方程组的系数矩阵,将其化为上三角矩阵的方法。

在实验中,我们选取了一个简单的线性方程组进行求解实验。

通过对系数矩阵进行行变换,我们可以将其化为上三角矩阵,并通过回代求解得到方程组的解。

实验结果表明,通过高斯消元法,我们可以得到线性方程组的解为x = 1,y = 2,z = 3。

四、插值与拟合插值与拟合是一种通过已知数据点来构造函数模型的方法。

在实验中,我们选取了一组数据点进行插值与拟合实验。

通过拉格朗日插值多项式和最小二乘法拟合,我们可以得到数据点之间的函数模型。

实验结果表明,通过插值与拟合,我们可以得到数据点之间的函数关系,并可以通过该函数模型来进行预测和拟合。

结论:数值计算方法是一种通过数学模型和计算机算法来解决实际问题的方法。

通过本次实验,我们学习了二分法求根、牛顿迭代法求根、高斯消元法求解线性方程组以及插值与拟合的基本原理和应用。

这些方法在科学研究和工程应用中具有广泛的应用前景。

工程数值分析实验报告(3篇)

工程数值分析实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,对工程实际问题进行建模、求解和分析。

通过学习数值方法的基本原理和算法,提高解决实际工程问题的能力。

二、实验内容1. 线性方程组的求解2. 矩阵特征值与特征向量的计算3. 函数插值与曲线拟合4. 数值微分与积分三、实验步骤1. 线性方程组的求解(1)编写程序实现高斯消元法、克劳斯消元法和列主元素法(2)设计输入界面,用户输入增广矩阵的行和列,填写系数及常数项(3)分别运用三种方法求解线性方程组,比较求解结果的正确性、数值稳定性和计算效率2. 矩阵特征值与特征向量的计算(1)编写程序实现幂法、QR算法和逆幂法(2)设计输入界面,用户输入矩阵的行和列,填写矩阵元素(3)分别运用三种方法计算矩阵的特征值与特征向量,比较求解结果的准确性和计算效率3. 函数插值与曲线拟合(1)编写程序实现拉格朗日插值、牛顿插值和样条插值(2)设计输入界面,用户输入函数的自变量和函数值,选择插值方法(3)分别运用三种方法进行函数插值,比较插值结果的准确性和光滑性4. 数值微分与积分(1)编写程序实现有限差分法、龙格-库塔法和辛普森法(2)设计输入界面,用户输入函数的导数或积分的上下限,选择数值方法(3)分别运用三种方法进行数值微分和积分,比较求解结果的准确性和计算效率四、实验结果与分析1. 线性方程组的求解通过实验,我们发现列主元素法在求解线性方程组时具有较好的数值稳定性,计算效率也较高。

而高斯消元法和克劳斯消元法在处理大型稀疏矩阵时存在一定的困难。

2. 矩阵特征值与特征向量的计算实验结果表明,QR算法和逆幂法在计算矩阵特征值与特征向量时具有较高的准确性和计算效率。

幂法在处理大型稀疏矩阵时表现出较好的性能。

3. 函数插值与曲线拟合在函数插值和曲线拟合实验中,样条插值方法具有较好的准确性和光滑性。

拉格朗日插值和牛顿插值方法在处理简单函数时表现良好,但在处理复杂函数时可能存在精度问题。

数值计算方法实验报告--newton插值多项式

数值计算方法实验报告--newton插值多项式

数值计算方法实验报告实验报告题目:newton插值多项式实验要求用mat1ab解析Newton插值多项式的程序二、实验分析(包括数学原理,小组分析讨论后确定实验方案和实现思路)根据经过n+1个不同的差值点x1,x2,…,x(n+1),构造牛顿插值公式∕V(x)=y[x1,x2](x-Λ1)+∕[x1,x2,x3](x-Jc1)(x-x2)+∙∙∙+∕[x1,Λ2∕∙∙xn+1](x-x1)(x-x 2)∙∙∙(x-xn)三、实脸步骤(过程)(包括程序及上机的实现的结果)function[p2,z]=newton(x,y,t)n=1ength(x);chaS(1)=y(1);for i=2:nx1=x;y1=y;x1(i+1:n)=[];y1(i+1:n)=[];n1=1ength(x1);s1=0;for j=1:n1t1=1;for k=1:n1if k==j continue;e1set1=t1*(x1(j)-x1(k));ehdehds1=s1+y1(j)∕t1;end chaS(i)=s1;ehd b(1,:)=[zeros(1,n-1)chaS(1)];c1=ce11(1,n-1);for i=2:nυ1=1;for j=1:i-1u1=conv(u1,[1-x(j)]);c1{i-1}=u1;end c1{i-1}chaS(i)*c1{i-1);b(i,:)=[zeros(1,n-i)z c1{i-1}];end四、总结(包括实脸过程遇到的情况等,组长总结组员在整个过程的参与情况)实验过程中大家都积极参与,搞明白了牛顿插值多项式的程序。

有不明白的地方,也通过询问同班学霸,或是网页查询得到了解决。

数值计算方法实验报告

数值计算方法实验报告

数值计算方法实验报告一、实验目的本实验旨在通过数值计算方法的实验操作,深入理解数值计算方法的原理与应用,掌握数值计算方法的相关技能,提高数值计算方法的实际应用能力。

二、实验内容1.数值微积分2.数值代数3.数值微分方程4.数值线性代数5.数值优化6.数值统计分析7.数值随机模拟8.数值傅立叶分析9.数值偏微分方程三、实验步骤1.数值微积分:通过不同的数值积分方法,计算给定函数的定积分值,并对不同数值积分方法的误差进行分析。

2.数值代数:通过使用线性代数方法,求解给定的线性方程组,并分析不同线性方程组求解方法的优劣。

3.数值微分方程:通过使用常微分方程数值解法,求解给定的微分方程,并比较不同求解方法的精度和稳定性。

4.数值线性代数:通过使用特征值分解方法,对给定的矩阵进行特征值分解,并分析不同特征值分解方法的优缺点。

5.数值优化:通过使用不同的优化方法,求解给定的优化问题,并比较不同的优化方法的效率和精度。

6.数值统计分析:通过使用不同的统计分析方法,对给定的数据进行统计分析,并分析不同的统计方法的优缺点。

7.数值随机模拟:通过使用随机模拟方法,模拟给定的概率分布,并分析不同随机模拟方法的效率和精度。

8.数值傅立叶分析:通过使用傅立叶分析方法,对给定的信号进行频谱分析,并分析不同的傅立叶分析方法的优缺点。

9.数值偏微分方程:通过使用偏微分方程数值解法,求解给定的偏微分方程,并比较不同求解方法的精度和稳定性。

四、实验结果与分析本实验中,通过对不同的数值计算方法的实验操作,我们可以更深入地理解数值计算方法的原理与应用,并掌握数值计算方法的相关技能,提高数值计算方法的实际应用能力。

同时,通过实验结果的分析,我们可以更好地比较不同数值计算方法的优缺点,为实际应用提供参考依据。

五、实验总结本实验旨在通过数值计算方法的实验操作,深入理解数值计算方法的原理与应用,掌握数值计算方法的相关技能,提高数值计算方法的实际应用能力。

数值计算的实验报告

数值计算的实验报告

一、实验目的1. 熟悉数值计算的基本原理和方法。

2. 掌握常用的数值计算算法及其应用。

3. 提高数值计算软件的使用能力。

4. 培养分析问题和解决问题的能力。

二、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 数值计算软件:NumPy、SciPy、Matplotlib三、实验内容1. 实验一:数值积分(1)实验目的:学习数值积分方法,计算定积分的近似值。

(2)实验内容:a. 使用辛普森法则计算函数f(x) = x^2在区间[0, 1]上的定积分。

b. 使用梯形法则计算函数f(x) = e^x在区间[0, 1]上的定积分。

(3)实验步骤:a. 编写Python代码,实现辛普森法则和梯形法则。

b. 分别使用两种方法计算定积分的近似值。

c. 对比两种方法的计算结果,分析误差来源。

2. 实验二:数值微分(1)实验目的:学习数值微分方法,计算函数在某点的导数近似值。

(2)实验内容:a. 使用中心差分法计算函数f(x) = sin(x)在x = π/2处的导数近似值。

b. 使用前向差分法和后向差分法计算函数f(x) = cos(x)在x = 0处的导数近似值。

(3)实验步骤:a. 编写Python代码,实现中心差分法、前向差分法和后向差分法。

b. 分别使用三种方法计算导数的近似值。

c. 对比三种方法的计算结果,分析误差来源。

3. 实验三:线性方程组求解(1)实验目的:学习线性方程组求解方法,掌握高斯消元法和迭代法。

(2)实验内容:a. 使用高斯消元法求解线性方程组:3x + 2y - z = 72x - y + 3z = -1-x + 2y + 2z = 4b. 使用雅可比迭代法求解线性方程组:3x + 2y - z = 72x - y + 3z = -1-x + 2y + 2z = 4(3)实验步骤:a. 编写Python代码,实现高斯消元法和雅可比迭代法。

b. 分别使用两种方法求解线性方程组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值分析实验报告实验一 Gauss 消兀法 姓名:杨 玲实验二 列主元消元法 学号: 2008115010147实验三 三角分解 院系:计算机科学与技术学院实验一 Gauss 消元法任课教师:李国屏 学 号: 2008115010147 姓 名:杨 玲 ※ 题目描述 用Gauss 消元法解n 阶线性代数方程组: 其基本做法是把上述方程组通过消元转化为一个等价的三角形方程组, 然后再进行回代就可 以求出方程组的解。

要求显示出每一大步消元后的系数矩阵和常数项,最后显示出方程组的解。

※ 算法分析( 1) 算法思想:用Gauss 消元法把上述方程组的系数矩阵化为上三角矩阵的过程称为消元过程, 消元过程中的算法设计为:for(t=i;t<n;t++){w=a[t+1][i]/a[i][i]; for(j=i;j<=n;j++){a[t+1][j]=a[t+1][j]-a[i][j]*w;}b[t+1]=b[t+1]-b[i]*w;}这样就有了等价的上三角形方程组,如果最后一个方程的系数,则可以解出,然后进行 回代就可以求出方程的解。

其中回代过程的计算公式可以归纳为: 2) 具体程序设计: for(i=1;i<=n;i++){if(a[i][i]!=0) for(t=i;t<n;t++){w=a[t+1][i]/a[i][i];课题名称:Guess 消元法专业班级:计算机科学与技术//具体的Gauss 消元算法for(j=i;j<=n;j++){a[t+1][j]=a[t+1][j]-a[i][j]*w;}b[t+1]=b[t+1]-b[i]*w;}for(i=n-1;i>=0;i--) // 回代过程{v=0;for(j=i+1;j<=n;j++)v=a[i][j]*x[j]+v; x[i]=(b[i]-v)/a[i][i];}※ 程序说明:本程序在C++ 环境中编译运行并且通过测试,通过提示语句输入相应的系数矩阵和常数项。

※ 程序代码#include<iostream> #include<iomanip>const int N=100;using namespace std;int main(){int n,i,j,k,m,h,t;double a[N][N],b[N],x[N],w,v; cout<<" 请输入矩阵的阶数:"<<endl;while(cin>>n){coutvv"请输入系数矩阵:"<<e ndl; //以下为数据输入,并显示所求方程for(i=1;i<=n;i++)for(j=1;j<=n;j++) cin>>a[i][j];cout«"请输入常数项:"<<e ndl;for(i=1;i<=n;i++)cin>>b[i];cout<<" ******************************、' <<endl;coutvv"您所要求解的方程组为:"<<e ndl;for(i=1;i<=n;i++){int t=1;for(j=1;jv=n;j++){coutvv"("vva[i][j]vv"X"vvt++vv")";if(j!=n)coutvv"+";}cout<<"="<<b[i]<<endl;k=1;for(i=1;i<=n;i++){if(a[i][i]!=0) for(t=i;t<n;t++) //具体的 Gauss 消元算法{w=a[t+1][i]/a[i][i]; for(j=i;j<=n;j++){a[t+1][j]=a[t+1][j]-a[i][j]*w;}b[t+1]=b[t+1]-b[i]*w;}cout«"第"vvkvv"个系数矩阵A("v<k<v")为:"<<endl; //显示消元过程for(m=1;m<=n;m++){for(h=1;h<=n;h++){cout<<setiosflags(ios::left)<<setw(15)<<a[m][h];}cout<<endl;}coutvv"第"vvkvv"个常数项 b("vvkvv")为:"vvendl; for(m=1;m<=n;m++)coutvvsetiosflags(ios::left)vvsetw(15)vvb[m]; coutvvendl;k++;}for(i=1;ivN;i++)x[i]=0;for(i=n-1;i>=0;i--){v=0;coutvv" ******************************、' vvendl; cout<<" ******************************、' <<endl; for(i=1;i<=n;i++) if(a[i][i]==0){cout<<" 该方程组无解 !"<<endl;return 0;//若输入的 a[i][i]=0 ,无解cout<<" ******************************、' <<endl; //初始化储存方程组的解的数组//回代过程for(j=i+1;jv=n ;j++) v=a[i][j]*x[j]+v;x[i]=(b[i]-v)/a[i][i];}cout«"该方程组的解为:"<<e ndl;for(i=1;i<=n;i++) 〃显示方程的解{coutvv"X"vvivv"="v<x[i]vve ndl;}cout«" **************************** **\\<<e ndl;cout«"请输入矩阵的阶数:"<<e ndl;} return 0;}探运行结果:探总结体会通过本次实验,我对Guess 消元法求解线性方程组的过程及原理有了更进一步的了解。

也看到了顺序Gauss 法的缺点,即要求系数矩阵A 的顺序主子式都不为零,这对严格对角优 势矩阵,对称正定矩阵来说是满足的,但是一般情况下就不能保证。

就意味着需要用一种更 优的算法来解决这个问题。

实验二列主元消元法任课教师:李国屏学 号:2008115010147 姓 名:杨 玲 探题目描述用Gauss 列主元素消去法解n 阶线性代数方程组:其基本做法是把上述方程组通过列主元 Gauss 消元转化为一个等价的三角形方程组,然后再 进行回代就可以求出方程组的解。

列主元消元的基本做法是选取系数矩阵的每一列中绝对值 最大的作为主元,然后采取和顺序 Gauss 消元法相同的步骤进行,求得方程组的解。

要求显示出每一个列主元以及每一大步消元后的系数矩阵 和常数项,最后显示出方程组 的解。

※ 算法分析课题名称:列主元消元法 专业班级:计算机科学与技术1、列主元Gauss消元法的算法思想:⑴输入系数矩阵A,右端项b,阶n。

⑵对k=1,2, --n,循环:(a)按列选主元,保存主元所在行的指标。

(b)若a=0,贝U系数矩阵奇异,计算停止;否则,顺序进行(c)若a=k则转向(d);否则换行( d) 计算乘子( e) 消元:(3) 回代,用右端项b 来存放解。

2、具体程序设计:for(i=1;i<=n;i++) //消元的第一重循环{p=0;q=0;for(m=i;m<n+1;m++){if(p<a[m][i]){p=a[m][i]; q=m;}}coutvv"第"vvkvv"个列主元为"<<"第" vvqvv"行"<<"第"vvivv"列"<<"的元素:";for(m=1;m<n+1;m++) //交换系数{a[0][0]=a[q][m];a[q][m]=a[i][m];a[i][m]=a[0][0];}b[0]=b[q]; //交换常数项b[q]=b[i];b[i]=b[0]; cout<<a[i][i]<<endl; coutvv"第"vvkvv"个系数矩阵为:"<<endl; 〃开始矩阵消元的过程for(m=1;m<=n;m++){for(h=1;hv=n;h++){coutvvsetiosflags(ios::left)vvsetw(20)vva[m][h];}coutvvendl;}coutvv"第"vvkvv"个常数项为:"<<endl; for(m=1;mv=n;m++)cout<<" "<<b[m]; cout<<endl;for(t=i+1;t<=n;t++) // 从此处开始时具体的消元算法{w=a[t][i]/a[i][i];b[t]=b[t]-b[i]*w;for(j=i;j<=n;j++){a[t][j]=a[t][j]-a[i][j]*w;}cout<<" ******************************、' <<endl;k++;}for(i=1;i<n;i++) // 从此处开始为回代过程x[i]=0;for(i=n;i>=1;i--){v=0;for(j=i+1;j<=n;j++)v=a[i][j]*x[j]+v;x[i]=(b[i]-v)/a[i][i];}※ 程序说明本程序可以在VC++ 6.0 环境中编译运行,通过提示语句输入相应的系数矩阵和常数项。

相关文档
最新文档