s7-200高速脉冲计数器及PTO和PWM

合集下载

S7-200脉冲输出_

S7-200脉冲输出_

上例是简化的情况,用于介绍目的,实际应用程序可能要求更复杂的信号波形轮廓。请记住: ∆周期只能指定为整数微秒或毫秒 可对每次脉冲执行周期修改
这两个项目产生的效果是计算某个特定段的∆周期数值可能要求一个循环方案。计算某个特定段的结束周期或脉 冲数目时可能要求一定的灵活性。 特定轮廓段期限对确定正确的轮廓表值程序有用。可利用以下公式计算完成特定轮廓段的时间长度:
多段管线作业
在多段管线作业中,S7-200从V内存中的轮廓表自动读取每个脉冲串段的特征。该模式中的SM位置是轮廓表的 控制字节、状态字节和起始V内存偏移量(SMW 168或SMW178)。可以为微秒或毫秒,但该选项适用于轮廓 表中的所有周期值,但在轮廓运行时不得变更。然后可由执行PLS指令开始多段操作。 每段输入的长度均为8个字节,由一个16位周期值、一个16位周期∆值和一个32位脉冲计值组成。 下表说明轮廓表的格式。多段PTO操作的另一个特征是能够通过指定每个脉冲的数量自动增加或减少周期。在周 期∆域编程正值会增加周期,在周期∆域编程负值会减少周期。若值为零,则周期不变。 如果您指定的周期∆数值在一定数量的脉冲后导致非法周期,则会出现数学溢出条件。PTO功能被终止,输出转 换成映象寄存器控制。此外,状态字节(SM66.4或SM76.4)中的∆计算错误位被设为一。 如果您以手动方式异常中止正在运行的PTO轮廓,状态字节(SM66.5或SM76.5)中的用户异常中止位则被设为 一。
控制字节中的PWM更新方法位(SM67.4或SM77.4)指定更新类型,在执行PLC指令时激活改动。请注意,如 果改变,则会发生异步更新,无论PWM更新方法位的状态如何。
PTO操作
PTO为指定的脉冲数和指定的周期提供方波(50%占空比)输出。PTO可提供单脉冲串或多脉冲串(使用脉冲 轮廓)。您指定脉冲数和周期(以微秒或毫秒递增)。

PTOPWM高速脉冲输出功能

PTOPWM高速脉冲输出功能

PTOPWM高速脉冲输出功能PTO/PWM高速脉冲输出功能S7200的CPU本体上有两个PTO/PWM高速脉冲发生器,它们每个都可以产生一个高速脉冲串(PTO)或者一个脉宽调制波形(PWM)。

其最高频率可达20K。

S7-200的新一代产品CPU 224 XP能够输出更高频率的脉冲。

新一代产品在PTO功能上也得到改进,通过新编程软件STEP 7-Micro/WIN V4.0内置的PTO/PWM编程向导,用户可以实现线性升、降速斜率曲线,以及多段速度包络曲线,或者输出连续脉冲并根据需要按降速曲线停止。

PTO/PWM与数字量输出过程映象寄存器共用输出点Q0.0和Q0.1。

当在Q0.0或Q0.1上激活PTO/PWM功能时,PTO/PWM发生器对Q0.0或Q0.1拥有控制权,同时普通输出点功能被禁止。

这时Q0.0/Q0.1的输出波形不受过程映象区状态,输出点强制值或者立即输出指令执行的影响。

脉冲串输出(PTO)PTO功能按照给定的脉冲个数和周期输出一串方波,占空比为50%。

PTO可以产生单段脉冲或通过使用脉冲包络产生多段脉冲。

必须为其设定脉冲个数和周期(以微秒或毫秒为单位):脉冲个数:1-4 294 967 295周期:50μs(20K)到65535μs或者2ms到65535ms(注:设定的周期应为偶数,否则会引起占空比失真。

CPU224 XP可以支持最短10μs脉冲周期。

)脉宽调制输出(PWM)PWM功能产生一个占空比变化周期固定的脉冲输出。

你可以为其设定周期和脉宽(以微秒或毫秒为单位):周期:50μs到65535μs或者2ms到65535ms(CPU224 XP可以支持最短10μs脉冲周期。

)脉宽:0μs到65535μs或者0ms到65535ms(最低50μs,设置为0μs等于禁止输出;CPU224 XP可以支持最短10μs脉冲周期。

)PTO/PWM发生器的详细参数和例程请参见《S7200系统手册》。

S7-200高速脉冲输出应用

S7-200高速脉冲输出应用

S7-200高速脉冲输出应用前面学习了高速计数器的内容,紧接着我们就来学习一下高速脉冲输出的内容,高速脉冲输出一般是用在运动控制里面,用来控制步进或伺服,高速脉冲输出也是比较重要的一部分,我们必须得掌握好它。

在S7-200中有两个PTO/PWM高速脉冲发生器,可以产生高速脉冲串(PTO)或脉宽调制信号波形(PWM)。

在S7-200中有脉冲输出指令PLS,它用来控制在高速脉冲输出(Q0.0和Q0.1)中提供的高速脉冲串输出(PTO)和脉宽调制(PWM)功能。

PTO/PWM与数字量输出过程映像区共用输出点Q0.0和Q0.1,当在Q0.0或Q0.1上激活了PTO/PWM功能时,是会禁止普通输出点功能的,这时Q0.0或Q0.1的输出波形是不受过程映像区状态、输出点强制值或者立即输出指令的影响的,我们使用状态表或趋势图是监控不了的。

要做高速脉冲输出,我们应该选用24VDC晶体管输出的CPU,而不能选用继电器输出的CPU,这是我们要注意的。

高速脉冲输出一般是用在运动控制里面,用来控制步进或伺服。

利用高速脉冲输出实现运动控制,除了有PTO、PWM,还有EM253定位模块,这三种方式都可以实现运动控制,不过要注意的是PTO和PWM可以使用脉冲输出指令PLS和向导来实现,而且PTO方式的甚至还可以使用运动控制库指令来实现,而使用EM253定位模块的话就只能通过向导来实现,而不能使用PLS指令或运动控制库指令。

我们先看一下脉冲串操作PTO,PTO是按照给定的脉冲个数和周期输出一串方波(占空比50%)。

在使用时,我们要设定其脉冲个数和周期,我们要注意的是设定是周期数应该是偶数,如果设定的周期数为奇数的话,是会引起占空比失真的。

而脉宽调制PWM,它是产生一个占空比变化周期固定的脉冲输出的,我们可以设定其周期和脉宽,我们要注意的是当设定的脉宽等于周期时,输出是一直为ON的,当设定的脉宽等于0时,输出是断开的。

一般来说,使用脉冲串PTO会比较多,所以后面学习时也是重点学习脉冲串PTO的。

西门子S7-200PLC的介绍及控制伺服和步进电机的详细资料概述

西门子S7-200PLC的介绍及控制伺服和步进电机的详细资料概述

西门子S7-200PLC的介绍及控制伺服和步进电机的详细资料概述S7-200 有两个置PTO/PWM 发生器,用以建立高速脉冲串(PTO)或脉宽调节(PWM)信号波形。

当组态一个输出为PTO 操作时,生成一个50%占空比脉冲串用于步进电机或伺服电机的速度和位置的开环控制。

置PTO 功能提供了脉冲串输出,脉冲周期和数量可由用户控制。

但应用程序必须通过PLC内置I/O 提供方向和限位控制。

为了简化用户应用程序中位控功能的使用,STEP7--Micro/WIN 提供的位控向导可以帮助您在几分钟内全部完成PWM,PTO 或位控模块的组态。

向导可以生成位置指令,用户可以用这些指令在其应用程序中为速度和位置提供动态控制。

2、开环位控用于步进电机或伺服电机的基本信息借助位控向导组态PTO 输出时,需要用户提供一些基本信息,逐项介绍如下:⑴最大速度(MAX_SPEED)和启动/停止速度(SS_SPEED)图1是这2 个概念的示意图。

MAX_SPEED 是允许的操作速度的最大值,它应在电机力矩能力的范围。

驱动负载所需的力矩由摩擦力、惯性以及加速/减速时间决定。

图1 最大速度和启动/停止速度示意SS_SPEED:该数值应满足电机在低速时驱动负载的能力,如果SS_SPEED 的数值过低,电机和负载在运动的开始和结束时可能会摇摆或颤动。

如果SS_SPEED 的数值过高,电机会在启动时丢失脉冲,并且负载在试图停止时会使电机超速。

通常,SS_SPEED 值是MAX_SPEED 值的5%至15%。

⑵加速和减速时间加速时间ACCEL_TIME:电机从SS_SPEED速度加速到MAX_SPEED速度所需的时间。

减速时间DECEL_TIME:电机从MAX_SPEED速度减速到SS_SPEED速度所需要的时间。

S7200脉冲输出的问题

S7200脉冲输出的问题

S7-200 PLC 脉冲输出MAP 库文件的使用1 概述S7--200提供了三种方式的开环运动控制:• 脉宽调制(PWM)--内置于S7--200,用于速度、位置或占空比控制。

• 脉冲串输出(PTO)--内置于S7--200,用于速度和位置控制。

• EM253位控模块--用于速度和位置控制的附加模块。

S7—200的内置脉冲串输出提供了两个数字输出通道(Q0.0和Q0.1),该数字输出可以通过位控向导组态为PWM或PTO的输出。

当组态一个输出为PTO操作时,生成一个50%占空比脉冲串用于步进电机或伺服电机的速度和位置的开环控制。

内置PTO功能仅提供了脉冲串输出。

您的应用程序必须通过PLC内置I/O 或扩展模块提供方向和限位控制。

PTO按照给定的脉冲个数和周期输出一串方波(占空比50%),如图1。

PTO可以产生单段脉冲串或者多段脉冲串(使用脉冲包络)。

可以指定脉冲数和周期(以微秒或毫秒为增加量): • 脉冲个数:1到4,294,967,295• 周期:10μs(100K)到65535μs或者2ms到65535ms。

图1200系列的PLC的最大脉冲输出频率除CPU224XP 以外均为20kHz。

CPU224XP可达100kHz。

如表1所示:表12 MAP库的应用2.1 MAP库的基本描述现在,200系列PLC 本体PTO 提供了应用库MAP SERV Q0.0 和MAP SERV Q0.1,分别用于Q0.0 和Q0.1 的脉冲串输出。

如图2所示:一致。

此时就需要对“Tune_Factor” 进行校正。

校正因子“Tune_Factor”“Tune_Factor” 的最优值取决于最大、最小和目标脉冲频率以及最大减速时间。

如图15:图15如图所示,运动的目标位置是B,算法会自动计算出减速起始点,当计算与实际不符时,当轴已经运动到B点时,尚未到达最低速度,此时若位”Disable_Auto_Stop” = 0,则轴运动到B 点即停止运动,若位”Disable_Auto_Stop” = 1,则轴会继续运动直至到达最低速度。

西门子PTO

西门子PTO

西门子PTO
7.2.4 S7-200 PLC 的脉冲输出功能
1、概述
S7-200 有两个PTO/PWM 发生器,用以建立高速脉冲串(PTO)或脉宽调节(PWM)信号
波形。

一个发生器指定给数字输出点Q0.0,
另一个发生器指定给数字输出点Q0.1。

其中,
PTO
提供方波(50%占空比)输出,脉冲周期和数量可由用户控制。

每个PTO/PWM 发生器有一个
控制字节(8 位),一个周期值和脉宽值(不带符号的16位值)和一个脉冲计值(不带符号
的32位值)。

这些值全部存储在特殊内存(SM)区域的指定位置。

一旦设置这些特殊内存位
的位置,
选择所需的操作后,
执行脉冲输出指令PLS 即启动操作。

该指令会从特殊存储器SM
中读取数据,
使程序按照其存储值控制PTO/PWM 发生器通过修改SM 区域中(包括控制字节)
要求的位置,就可以更改PTO 或PWM 的信号波形特征,然后执行PLS 指令。

PTO/PWM控制寄存器包括状态位控制寄存器、控制位控制寄存器及其其他PTO/PWM寄存
器。

用于Q0.0的这三种寄存器如表7-1,表7-2和表7-3所示。

表7-1 Q0.0的状态位控制寄存器。

S7-200PLC_PTOPWM应用技术大作业_报告

S7-200PLC_PTOPWM应用技术大作业_报告

PLC应用技术课程设计题目:PTO/PWM应用技术阮明光范明轲杨文孟目录1 引言 (1)2 PTO/PWM 应用技术 (1)3 步进电机 (2)4步进电机驱动器 (3)5 系统设计 (4)5.1 运动系统简单介绍 (4)5.2 系统构成 (5)5.3 硬件设计 (6)5.3.1 PLC选型 (6)5.3.2 I/O地址分配 (5)5.4 软件设计 (5)5.4.1 寻找原点子程序 (6)5.4.2 小车往返程序 (8)6 调试 (10)6.1 仿真软件 (10)6.2 遇到的问题和解决 (10)7 总结 (11)8 参考文献 (11)附录 ....................................................................1 引言PLC控制器是目前最常用的自动化控制方法由于其控制方便,能够承受恶劣的环境,因此,在工业上显示出优于单片机控制的很多特点。

PLC将传统的继电器控制技术,计算机技术和通信技术融为一体,专门为工业控制而设计的,具有功能强,通用灵活,可靠性高,环境适应能力强,编程简单,易于掌握,体积小,重量轻,功耗低使用方便等优点。

因此PLC在工业控制中的应用越来越广泛。

本课程设计的内容是使用PLC可编程控制器的高速脉冲输出端口对步进电机进行驱动和位置控制。

控制目标是通过PLC的PTO功能输出脉冲串作为驱动步进电机运行的信号。

电机运行方向由PLC的Q0.2数字输出端口给出。

实现控制运送小车在两端A,B之间来回运动,在启动之前先找出并停止在指定原点。

2 PTO/PWM 技术S7-200有两个PTO/PWM发生器,用以建立高速脉冲串(PTO)或脉冲宽调制(PWM)信号波形。

一个发生器指定给数字输出点Q0.0,另一个发生器指定给数字输出点 Q0.1。

PTO 功能可提供方波(占空比为50%)输出,脉冲周期值和脉冲个数可有用户程序来控制。

PWM功能可输出周期固定脉宽可调的脉冲信号。

S7-200的高速脉冲输出

S7-200的高速脉冲输出

S7—200的高速脉冲输出在需要对负载进行高精度控制时,如对步进电机的控制,需要对步进电机提供一系列的脉冲,高速脉需求而开发的。

1.1高速脉冲输出---输出端子的确定S7—200只有输出继电器Q0.0和Q0。

1具有高速脉冲输出功能,不用高速脉冲时,作普通的1.2高速脉冲输出的形式高速脉冲输出有两种的形式:高速脉冲序列(或称高速脉冲串)输出PTO脉冲宽度调制输出PWM可通过特殊继电器来定义输出的形式1.3高速脉冲输出相关寄存器每个高速脉冲发生器对应一定数量特殊标志寄存器,这些寄存器包括控制字节寄存器、状态字用以控制高速脉冲的输出形式、反映输出状态和参数值。

1。

4编程中的脉冲输出指令PLS指令功能:EN有效,检测各相关寄存器的状态,激活由控制字节定义的高速脉冲输出操作。

Q取0或1图1。

4‑12PWM简介及编程运用PWM(Pulse WidthModulation脉冲调制)宽度可调脉冲输出PWM功能提供带变量占空比的固定周期输出。

可以微秒或毫秒为时间基准指定周期和脉宽。

2。

1S7—200的PWMS7—200有两台PWM发生器,建立高速脉冲串或脉宽调节信号信号波形。

一台发生器指定给数字指定给数字输出点Q0。

1。

一个指定的特殊内存(SM)位置为每台发生器存储以下数据:一个控制字值(一个不带符号的32位值)和一个周期和脉宽值(一个不带符号的16位值)。

PWM功能在Q0。

0或Q0.1位置现用时,PWM发生器控制输出,并禁止输出点的正常使用。

输出信状态、点强迫数值、执行立即输出指令的影响。

如图2。

1‑1图2。

1‑12。

2 PWM周期和脉冲宽度脉冲宽度为16为无符号数,脉冲宽度增量单位为us或ms.范围0~65535,占空比为0~100%。

当输出将连续接通。

为0时,输出一直被关断。

如表1表1周期和脉冲宽度脉宽时间/周期反应脉宽时间 >=周期值占空比为100%:输出连续运行。

脉宽时间 = 0占空比为0%:输出关闭。

S7-200脉冲输出参数

S7-200脉冲输出参数

PTO/PWM功能控制位
控制位 PTO/PWM更新周期(0=无更新,1=更新周期) PWM更新脉宽时间(0=无更新,1=更新脉宽) PTO更新脉冲计数值(0=无更新,1=更新脉冲计数) PTO/PWM时间基准(0=1us/单位, 1=1ms/单位) PWM更新方法(0=异步, 1=同步) PTO单个/多个段操作(0=单段操作,1=多段操作) PTO/PWM模式选择(0=PTO,1=PWM) PTO/PWM启用(0=禁止,1=启用)
更新 更新
更新
PTO/PWM功能状态位
Q0.0 SM66.0 SM66.3 SM66.4 SM66.5 SM66.6 SM66.7 Q0.0 SM67.0 SM67.1 SM67.2 SM67.3 SM67.4 SM67.5 SM67.6 SM67.7 Q0.0 SMW68 SMW70 SMD72 SMB166 SMW168 SMB170 SMB171 SMD172 控制字节 16#81 16#84 16#85 16#89 16#8C 16#8D 16#A0 16#A8 16#D1 16#D2 16#D3 16#D9 16#DA 16#DB Q0.1 SM76.0 SM76.3 SM76.4 SM76.5 SM76.6 SM76.7 Q0.1 SM77.0 SM77.1 SM77.2 SM77.3 SM77.4 SM77.5 SM77.6 SM77.7 Q0.1 SMW78 SMW80 SMD82 SMB176 SMW178 SMB180 SMB181 SMD182 启用 是 是 是 是 是 是 是 是 是 是 是 是 是 是 状态位 保留 PTO包络中止(0=无错,1=由于计算错误中止) 用户中止了PTO包络(0=不中止,1=中止) PTO/PWM管线溢出(0=无溢出,1=溢出) PTO空闲位(0=PTO正在执行,1=PTO空闲)

s7-200控制伺服电机总结

s7-200控制伺服电机总结

s7-200控制伺服电机总结S7-200PLC具有脉冲输出功能,在运动控制系统中,伺服电机和步进电机是很重要的精确定位装置,而控制伺服电机和步进电机需要使用脉冲输出。

S7-200系列PLC可以输出20--100KHz的脉冲。

使用PTO和PWM指令可以输出普通脉冲和脉宽调制输出。

通过smb66-75,smb166-175来控制Q0.0的输出,通过smb76-85,smb176-185来控制Q0.1的脉冲输出。

控制伺服电机伺服电机是运动控制中一个很重要的器件,通过它可以进行精确的位置控制。

它一般带有编码器,通过高速计数功能,中断功能和脉冲输出功能,构成一个闭环系统,来进行精确的位置控制。

PLC的脉冲输出由于PLC在进行高速输出时需要使用晶体管输出。

当将高速输出点作为普通输出而带电感性负载时,例如电磁阀,继电器线圈等,一定要注意,在负载端加保护,例如并联二极管等。

以保护输出点。

心得二:步进电机的控制方法我带队参加《2021年全国职业院校技能大赛自动线的安装与调试》项目,我院选手和其他院校的三位选手组成了天津代表队,我院选手所在队获得了《2021年全国职业院校技能大赛自动线的安装与调试》项目二等奖,为天津市代表队争得了荣誉,也为我院争得了荣誉。

以下是我这个作为教练参加大赛的心得二:步进电机的控制方法《2021年全国职业院校技能大赛自动线的安装与调试》项目的主要内容包括如气动控制技术、机械技术(机械传动、机械连接等)、传感器应用技术、PLC控制和组网、步进电机位置控制和变频器技术等。

但其中最为重要的就是PLC方面的知识,而PLC中最重要就是组网和步进电机的位置控制。

一、 S7-200 PLC 的脉冲输出功能 1、概述S7-200 有两个置PTO/PWM 发生器,用以建立高速脉冲串(PTO)或脉宽调节(PWM)信号波形。

当组态一个输出为PTO 操作时,生成一个50%占空比脉冲串用于步进电机或伺服电机的速度和位置的开环控制。

s7-200控制伺服电机总结

s7-200控制伺服电机总结

位装置,而控制伺服电机和步进电机需要使用脉冲输出。

S7-200系列PLC可以输出20--100KHz的脉冲。

使用PTO和PWM指令可以输出普通脉冲和脉宽调制输出。

通过smb66-75,smb166-175来控制Q0.0的输出,通过smb76-85,smb176-185来控制Q0.1的脉冲输出。

控制伺服电机伺服电机是运动控制中一个很重要的器件,通过它可以进行精确的位置控制。

它一般带有编码器,通过高速计数功能,中断功能和脉冲输出功能,构成一个闭环系统,来进行精确的位置控制。

PLC的脉冲输出由于PLC在进行高速输出时需要使用晶体管输出。

当将高速输出点作为普通输出而带电感性负载时,例如电磁阀,继电器线圈等,一定要注意,在负载端加保护,例如并联二极管等。

以保护输出点。

心得二:步进电机的控制方法我带队参加《2008年全国职业院校技能大赛自动线的安装与调试》项目,我院选手和其他院校的三位选手组成了天津代表队,我院选手所在队获得了《2008年全国职业院校技能大赛自动线的安装与调试》项目二等奖,为天津市代表队争得了荣誉,也为我院争得了荣誉。

以下是我这个作为教练参加大赛的心得二:步进电机的控制方法《2008年全国职业院校技能大赛自动线的安装与调试》项目的主要内容包括如气动控制技术、机械技术(机械传动、机械连接等)、传感器应用技术、PLC控制和组网、步进电机位置控制和变频器技术等。

但其中最为重要的就是PLC方面的知识,而PLC中最重要就是组网和步进电机的位置控制。

一、 S7-200 PLC 的脉冲输出功能1、概述S7-200 有两个置PTO/PWM 发生器,用以建立高速脉冲串(PTO)或脉宽调节(PWM)信号波形。

当组态一个输出为PTO 操作时,生成一个50%占空比脉冲串用于步进电机或伺服电机的速度和位置的开环控制。

置PTO 功能提供了脉冲串输出,脉冲周期和数量可由用户控制。

但应用程序必须通过PLC内置I/O 提供方向和限位控制。

s7-200高速脉冲计数器及PTO和PWM

s7-200高速脉冲计数器及PTO和PWM

word格式-可编辑-感谢下载支持高速脉冲计数器高速计数器专用输入高速计数器使用的输入HSC0I0.0,I0.1,0.2HSC1I0.6,I0.7,I1.0,I1.1HSC2I1.2,I1.3,I1.4,I1.5HSC3I0.1HSC4I0.3,I0.4,I0.5HSC5I0.4有些高速计数器和边缘中断的输入点赋值存在某些重叠。

同一个输入不能用于两种不同的功能;但是高速计数器当前模式未使用的任何输入均可用于其他目的。

例如,如果在模式2中使用HSCO,模式2使用I0.0和I0.2,则I0.1可用于边缘中断或用于HSC3。

如果所用的HSCO模式不使用输入I0.1,则该输入可用于HSC3或边缘中断。

与此相似,如果所选的HSCO模式不使用I0.2,则该输入可用于边缘中断;如果所选HSC4模式不使用I0.4,则该输入可用于HSC5。

请注意HSC0的所有模式均使用IO.O,HSC4的所有模式均使用I0.3,因此当使用这些计数器时,这些输入点绝不会用于其他用途。

四台计数器有三个控制位,用于配置复原和起始输入的激活状态并选择1x或4x计数模式(仅限正交计数器)。

这些控制位位于各自计数器的控制字节内,只在执行HDEF指令时才使用。

执行HDEF指令之前,必须将这些控制位设为所需的状态,否则计数器采用所选计数器模式的默认配置。

复原输入和起始输入的默认设置为现用水平高,正交计数速率为4x(或4乘以输入时钟频率)。

一旦执行了HDEF指令,就不能再改变计数器设置,除非首先将CPU设为STOP(停止)模式。

下表复位和启动输入的有效电平以及lx/4x控制位**缺省设置为:复位输入和启动输入高电平有效,正交计数率为四倍速(四倍输入时钟频率)。

制字节一旦定义了计数器和计数器模式,您就可以为计数器动态参数编程。

每台高速计数器均有一个控制字节,允许完成以下作业:*启用或禁止计数器*控制方向(仅限模式0、1和2)或初始化所有其他模式的计数方向*载入当前值通过执行HSC指令可激活控制字节以及相关当前值和预设值检查。

pto_pwm

pto_pwm

建议在允许 PTO 或 PWM 操作前把 Q0.0 和 Q0.1 的映像寄存器设定为 0 脉冲串 (PTO) 功能提供方波(50% 占空比) 输出 用户控制周期和脉冲数 脉冲宽度调制 (PWM) 功 能提供连续 变占空比输出 用户控制周期和脉冲宽度 每个 PTO/PWM 发生器有一个控制字节 (8 位) 16 位无符号的周期时间值和脉宽值各一个 还有一 个 32 位无符号的脉冲计数值 这些值全部存储在指定的特殊存储器中 一旦这些特殊存储器的位 被置成所需操作 可通过执行脉冲指令 (PLS) 来调用这些操作 这条指令使 S7-200 读取特殊存储 器中的位 并对相应的 PTO/PWM 发生器进行编程 修改特殊寄存器(SM)区(包括控制字节) 然后执行 PLS指令 可以改变 PTO 或 PWM 特性 把 PTO/PWM 控制字节 (SM66.7 或 SM77.7) 的允许位置为 0 并执行 PLS指令 可以在任何时候禁 止 PTO 或 PWM 波形的产生
l 同步更新 如果不需要改变时间基准 就可以进行同步更新 利用同步更新 波形特性的变 化发生在周期边沿 提供平滑转换
l 异步更新 PWM 的典型操作是当周期时间保持常数时变化脉冲宽度 所以 不需要改变时 间基准 但是 如果需要改变 PTO/PWM 发生器的时间基准 就要使用异步更新 异步更新 会造成 PTO/PWM 功能被瞬时禁止 和 PWM 波形不同步 这会引起被控设备的振动 由于 这个原因 建议采用PWM 同步更新 选择一个适合于所有周期时间的时间基准
Q0.0
Q0.1
SM66.4 SM76.4
SM66.5 SM76.5
状态字节 PTO 包络由于增量计算错误而终止
0 = 无错误 1 = 终止 PTO 包络由于用户命令而终止

s7-200脉冲输出功能

s7-200脉冲输出功能

一、 S7-200 PLC 高速脉冲输出功能1、概述S7-200 有两个 置PTO/PWM 发生器,用以建立高速脉冲串(PTO)或脉宽调节(PWM) 信号波形。

当组态一个输出为PTO 操作时,生成一个50%占空比脉冲串用于步进电机或伺服电机的速度和位置的开环控制。

置PTO 功能提供了脉冲串输出,脉冲周期和数量可由用户控制。

但应用程序必须通过PLC内置I/O 提供方向和限位控制。

为了简化用户应用程序中位控功能的使用,STEP7--Micro/WIN 提供的位控向导可以帮助您在几分钟内全部完成PWM,PTO 或位控模块的组态。

向导可以生成位置指令,用户可以用这些指令在其应用程序中为速度和位置提供动态控制。

2、开环位控用于步进电机或伺服电机的基本信息借助位控向导组态PTO 输出时,需要用户提供一些基本信息,逐项介绍如下:⑴ 最大速度 (MAX_SPEED)和启动/停止速度 (SS_SPEED)图1是这2 个概念的示意图。

MAX_SPEED 是允许的操作速度的最大值,它应在电机力矩能力的范围 。

驱动负载所需的力矩由摩擦力、惯性以及加速/减速时间决定。

图1 最大速度和启动/停止速度示意SS_SPEED:该数值应满足电机在低速时驱动负载的能力,如果SS_SPEED 的数值过 低,电机和负载在运动的开始和结束时可能会摇摆或颤动。

如果SS_SPEED 的数值过高,电机会在启动时丢失脉冲,并且负载在试图停止时会使电机超速。

通常,SS_SPEED 值是MAX_SPEED 值的5%至15%。

⑵加速和减速时间加速时间ACCEL_TIME:电机从 SS_SPEED速度加速到MAX_SPEED速度所需的时间。

减速时间DECEL_TIME:电机从MAX_SPEED速度减速到SS_SPEED速度所需要的时间。

图2 加速和减速时间加速时间和减速时间的缺省设置都是1000 毫秒。

通常,电机可在小于1000 毫秒的时间工作。

参见图2。

西门子s7-200plc中高速脉冲输出的应用

西门子s7-200plc中高速脉冲输出的应用

Internal Combustion Engine & Parts
表 2 程序及注释
序号
程序
注释
· 195 ·
该块用于传递全局参
数,每个扫描周期都需
1
要被调用,用于实现正
反转方向。
图 3 脉冲输出向导界面
该块用于将一段脉冲
数转化为位移,或将一
个脉冲频率转化为速
2
度。设置电机转一圈
所需要
盂完成步进电动机增量位置控制。要求向正方向以增
量方式运行 1 转。
2 设计流程
2.1 绘制电气原理图,完成 I/O 地址分配。
根据控制要求,绘制电气原理图如图 2,I/O 地址分配
如表 1。
地址
表 1 I/O 地址分配表 输入地址
功能
输出地址
I0.1
正限位
I0.2
负限位
· 194 ·
内燃机与配件
西门子 S7-200PLC 中高速脉冲输出的应用
王宗伟
(包头铁道职业技术学院,包头 014030)
摘要院步进电动机是一种将脉冲信号转变成角位移的执行元件袁通过控制脉冲的个数及频率来实现位移和速度的控制遥本文基于 一个实际应用案例袁利用了西门子 S7-200 PLC 提供的高速脉冲输出功能袁逐步逐项的设计分析袁实现了对步进电动机的速度和位置 的控制遥
I0.3
反转
I0.4
正转
I0.5
正方向增量运转 1 转
Q0.0、Q0.1
要要要要要要要要要要要要要要要要要要要要要要要
基金项目院内蒙古自治区教育厅科研资助项目(NJZY20183)。 作者简介院王宗伟(1985-),男,河南鹤壁人,讲师,硕士研究生,

S7-200PLC的功能指令和运算指令

S7-200PLC的功能指令和运算指令

SMB76
状态字节,在PTO方式下,跟踪 脉冲串的输出状态
SMB67
SMB77
控制字节,控制PTO/PWM脉 冲输出的基本功能
PTO/PWM的周期值,字型, SMW68 SMW78 范围:2~65535,16位无符号

Q0.0的 Q0.1的 寄存器 寄存器
名称及功能描述
SMW70
SMW80
PWM的脉宽值,字型,范围0 ~65535,16位无符号数
● 1个 16位的脉宽值(SMW70、 SMW80)
● 1个 32位的脉冲数量(SMD72、 SMD82) 对于多段 PTO,还有
● 1个 8位的段字节(SMW166、
这些参数存放在系统指定的特殊标志寄存器中
表7-17 相关寄存器功能表
Q0.0的 Q0.1的 寄存器 寄存器
名称及功能描述
SMB66
S7-200PLC 的复杂功能指令
§7-12 高速脉冲输出指令
1. 高速脉冲输出的几个概念 1) 高速脉冲输出的形式
● 高速脉冲串输出 PTO :
( Pulse Train Output )
输出指定数量,占空比为50% 的方波脉冲串 。
● 宽度可调脉冲输出 PWM :
( Pulse Width Modulation )
●单段PTO:定义一个脉冲串,输出一个脉冲 串 (特性参数通过特殊寄存器分别定义) 。
●多段PTO:集中定义多个脉冲串,按顺序输 出多个脉冲串(特性参数通过包络表集中定义) 。
▲单段PTO 实现的方法
用指定的特殊标志寄存器定义脉冲串特性参 数(每次定义一个脉冲串)。一个脉冲串输出 完成后,产生中断。在中断服务程序中再为下 一个脉冲串更新参数,输出下一个脉冲串。

s7-200高速计数器使用技巧

s7-200高速计数器使用技巧

s7-200高速计数器详细解说一、高速计数器普通计数器是通过两次扫描中输入端子的电平变化实现计数的,可以用普通的寄存器通过加1指令实现。

特点是受扫描的影响,只能用于低频脉冲计数。

高速脉冲使用PLC内部的高速计数器,各种PLC都内置高速计数器。

S7-200 CPU具有集成的、硬件高速计数器。

CPU221和CPU222可以使用4个30kHz单相高速计数器或2个20kHz的两相高速计数器,而CPU224和CPU226可以使用6个30kHz单相高速计数器或4个20kHz的两相高速计数器。

高速计数器的主要功能就是对主机实际转速反馈进行测量,这是电子调速器的一项重要功能,因为主机实际转速反馈测量的准确与否直接关系到保证主机转速稳定,保证主机运行的安全。

重点介绍了S7-200 PLC高速计数器。

在开发研制中发现,采用S7-200 PLC高速计数器可以非常准确地对电动机实际转速反馈进行测量,而且硬件实现非常简单,价格也比较低,具有很大的应用价值。

(一)概述普通计数器是通过两次扫描输入端子电平变化来进行计数的,因此其端子输入脉冲的频率必须必扫描频率低得多。

对于高速脉冲而言,这种方法会出现丢失脉冲导致计数错误。

S7-200内置了高速计数器HSC,其工作情况类似于单片机中的计数器。

起动后不受扫描周期的影响,由硬件自动计数,当满足一定条件时发出中断申请。

其最高技术频率高达30KHz。

S7-200的计数器最多可以设置12种不同的工作模式,用于实现高速运动的精确控制。

S7-200还设有高速脉冲输出,输出频率可以高达20KHz。

用于PTO(脉冲串输出,输出一个频率可调,占空比50%的脉冲。

)和PWM(脉宽调制脉冲)。

PTO用于带有位置控制功能的步进电机控制或者伺服电机驱动器控制,通过输出脉冲的个数作为位置给定值的输入,以实现定位控制功能。

通过改变脉冲的输出频率,可以改变运动的速度。

PWM用于直接驱动调速系统或运动控制系统的输出,控制主逆变回路。

西门子PLC脉冲输出

西门子PLC脉冲输出

脉冲输出S7-200有两个PTO/PWM发生器(脉冲串输出/脉宽调制),它们可以产生一个高速脉冲串或者一个脉宽调制波形,分别是高速输出Q0.0和Q0.1。

PTO提供一个指定脉冲数量的方波输出(50%占空比)。

PTO可以产生单段脉冲串或者多段脉冲串(使用脉冲包络)。

PWM可输出周期固定但占空比可变的脉冲。

以指定频率(周期)启动后,PWM持续输出。

脉冲宽度根据所需的控制控制要求进行变化。

占空比可以表示为周期的一个百分比或者对应于脉冲宽度的一个时间值。

脉冲宽度可以从0%(无脉冲,一直为低电平)变化到100%(无脉冲,一直为高电平)。

由于PWM输出可以从0%变化到100%,在很多情况下,它可以提供类似于模拟量输出的数字量输出。

单段PTO(脉冲串输出)PTO按照给定的脉冲个数和周期输出一串方波(占空比50%)。

PTO可以产生单段脉冲串或者多段脉冲串(使用脉冲包络)。

可以指定脉冲数和周期(以微秒或毫秒为增加量),但必须设定脉冲数量。

PTO波形示意图:实现单段PTO的一般步骤:①定义控制字节Q0.0 Q0.1 控制字节SM67. 0 SM77.PTO/PWM更新周期0=禁止更新1=允许更新SM67. 1 SM77.1PWM更新脉冲宽度0=禁止更新1=允许更新SM67. 2 SM77.2PTO更新脉冲数0=禁止更新1=允许更新SM67. 3 SM77.3PTO/PWM时基选择0=μs1=msSM67. 4 SM77.4PWM更新方式0=异步更新1=同步更新SM67. 5 SM77.5PTO单段/多段选择0=单段1=多段SM67. 6 SM77.6PTO/PWM选择0=PTO 1=PWMSM67. 7 SM77.7PTO和PWM禁止/允许0=禁止1=允许②设置脉冲周期Q0.0 Q0.1SMW68 SMW78 单段PTO/PWM周期时间范围:2~65535③设定脉冲数量Q0.0 Q0.1SMD72 SMD82④激活端口指定哪一路脉冲输出,则需要在程序中激活相对应的端口,才能使脉冲串发送。

西门子S7-200实现高速脉冲输出

西门子S7-200实现高速脉冲输出
成本较高
与其他品牌的PLC相比,西门子S7-200的价格可 能较高,对于一些预算有限的项目来说可能不太 合适。改进方向可以是降低成本或提供更多性价 比高的产品选项。
复杂编程
对于不熟悉西门子编程环境的用户来说,实现高 速脉冲输出可能需要较复杂的编程过程。改进方 向可以是提供更直观、易用的编程工具或教程。
提升了系统性能
丰富了控制功能
西门子S7-200 PLC在高速脉冲输出的基础上 ,还可以实现多种复杂的控制功能,如位置 控制、速度控制等,进一步拓展了其应用领 域。
高速脉冲输出功能的实现,提高了控 制系统的响应速度和精度,使得整个 系统的性能得到了显著提升。
未来发展趋势预测
更高速度、更高精度的脉冲输出
纺织机械
通过S7-200输出的高速脉冲信号,控制纺织机械 的各执行机构,实现纺织品的精确编织和加工。
西门子S7-200实现高速脉冲
05
输出优势与不足
优势分析
高速性能
西门子S7-200 PLC具有高速脉冲输 出功能,可以实现快速、准确的脉冲 信号输出,满足高速运动控制的需求。
高精度控制
通过精确的定时器和计数器,S7200可以实现高精度的脉冲输出控制,
性能测试与验证
测试脉冲输出功能
使用示波器或逻辑分析仪等测试 工具,对S7-200 PLC输出的高 速脉冲进行测试,验证脉冲的频 率、数量、宽度等参数是否符合
要求。
验证控制精度
通过与实际设备或模拟负载的连 接,验证高速脉冲输出的控制精 度和稳定性,确保满足实际应用
需求。
优化性能参数
根据测试结果,对控制程序或硬 件配置进行调整和优化,进一步
02 连接脉冲输出模块
将选定的脉冲输出模块正确连接到S7-200 PLC的 相应插槽上,并确保模块与PLC之间的通讯连接 正常。

PTO PWM

PTO PWM

脉冲输出(PLS)指令被用于控制在高速输入(Q0.0和Q0.1)中提供的"脉冲串输出"(PTO)和"脉宽调制"(PWM)功能。

PTO提供方波(50%占空比)输出,配备周期和脉冲数用户控制功能。

PWM提供连续性变量占空比输出,配备周期和脉宽用户控制功能。

脉冲输出范围Q0.0至Q0.1特殊内存PTO / PWM高速输出寄存器识别S7-200高速输出指令S7-200有两台PTO/PWM发生器,建立高速脉冲串或脉宽调节信号信号波形。

一台发生器指定给数字输出点Q0.0,另一台发生器指定给数字输出点Q0.1。

一个指定的特殊内存(SM)位置为每台发生器存储以下数据:一个控制字节(8位值)、一个脉冲计数值(一个不带符号的32位值)和一个周期和脉宽值(一个不带符号的16位值)。

PTO/PWM发生器和过程映像寄存器共用Q0.0和Q0.1。

PTO或PWM功能在Q0.0或Q0.1位置现用时,PTO/PWM发生器控制输出,并禁止输出点的正常使用。

输出信号波形不受过程映像寄存器状态、点强迫数值、执行立即输出指令的影响。

PTO/PWM发生器非现用时,输出控制转交给过程映像寄存器。

过程映像寄存器决定输出信号波形的初始和最终状态,使信号波形在高位或低位开始和结束。

注释:?在启用PTO或PWM操作之前,将用于Q0.0和Q0.1的过程映像寄存器设为0。

?所有的控制位、周期、脉宽和脉冲计数值的默认值均为0。

?PTO/PWM输出必须至少有10%的额定负载,才能完成从关闭至打开以及从打开至关闭的顺利转换。

?文档光盘"提示与技巧"中的提示7、22、23、30和50包含使用PTO/PWM操作PLS指令的程序。

脉冲串(PTO)功能提供方波(50%占空比)输出或指定的脉冲数和指定的周期。

脉宽调制(PWM)功能提供带变量占空比的固定周期输出。

每台PTO/PWM发生器有一个控制字节(8位),一个周期值和脉宽值(不带符号的16位值)和一个脉冲计值(不带符号的32位值)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高速脉冲计数器高速计数器专用输入高速计数器使用的输入HSC0 I0.0, I0.1, 0.2HSC1 I0.6, I0.7, I1.0, I1.1HSC2 I1.2, I1.3, I1.4, I1.5HSC3 I0.1HSC4 I0.3, I0.4, I0.5HSC5 I0.4有些高速计数器和边缘中断的输入点赋值存在某些重叠。

同一个输入不能用于两种不同的功能;但是高速计数器当前模式未使用的任何输入均可用于其他目的。

例如,如果在模式2中使用HSC0,模式2使用I0.0和I0.2,则I0.1可用于边缘中断或用于HSC3。

如果所用的HSC0模式不使用输入I0.1,则该输入可用于HSC3或边缘中断。

与此相似,如果所选的HSC0模式不使用I0.2,则该输入可用于边缘中断;如果所选HSC4模式不使用I0.4,则该输入可用于HSC5。

请注意HSC0的所有模式均使用I0.0,HSC4的所有模式均使用I0.3,因此当使用这些计数器时,这些输入点四台计数器有三个控制位,用于配置复原和起始输入的激活状态并选择1x或4x计数模式(仅限正交计数器)。

这些控制位位于各自计数器的控制字节内,只在执行HDEF指令时才使用。

执行HDEF指令之前,必须将这些控制位设为所需的状态,否则计数器采用所选计数器模式的默认配置。

复原输入和起始输入的默认设置为现用水平高,正交计数速率为4x(或4乘以输入时钟频率)。

一旦执行了HDEF指令,就不能再改变计数器设置,除非首先将CPU设为STOP(停止)模式。

下表复位和启动输入的有效电平以及1x/4x控制位**缺省设置为:复位输入和启动输入高电平有效,正交计数率为四倍速(四倍输入时钟频率)。

定义控制字节一旦定义了计数器和计数器模式,您就可以为计数器动态参数编程。

每台高速计数器均有一个控制字节,允许完成以下作业:* 启用或禁止计数器* 控制方向(仅限模式0、1和2)或初始化所有其他模式的计数方向* 载入当前值每台高速计数器都有一个32位初始值和一个32位预设值,初始值和预设值均为带符号的整数值。

欲向高速计数器载入新的初始值和预设值,您必须设置包含初始值和/或预设值的控制字节及特殊内存字节。

然后您必须执行HSC指令,将新数值传输至高速计数器。

下表说明用于包含新当前值和预设值的特殊内存字节。

除控制字节以及新预设值和当前值保持字节外,还可以使用数据类型HC(高速计数器当前值)加计数器号码(0、1、2、3、4或5)读取每台高速计数器的当前值。

因此,读取操作可直接存取当前值,但只有用上述HSC指令才能执行写入操作。

所指有定计中数断器模式都支持在HSC的当前值等于预设值时产生一个中断事件。

使用外部复位端的计数模式支持外部复位中断。

除去模式0、1和2之外,所有计数器模式支持计数方向改变中断。

每种中断条件都可以分别使能或者禁止。

要得到关于使用中断的更多信息,参见通讯和中断指令一节注:当使用外部复位中断时,不要写入初始值,或者是在该中断服务程序中禁止再允许高速计数器,否则会产生一个致命错误。

状态字节每个高速计数器都有一个状态字节,其中的状态存储位指出了当前计数方向,当前值是否大于或者等于预置值。

下表给出了每个高速计数器状态位的定义提示:只有在执行中断服务程序时,状态位才有效。

监视高速计数器状态的目的是使其它事件能够产生中断以完成更重要的操作。

HSC0 HSC1 HSC2 HSC3 HSC4 HSC5 中断描述SM36.0 SM46.0 SM56.0 SM136.0 SM146.0 SM156.0 不用SM36.1 SM46.1 SM56.1 SM136.1 SM146.1 SM156.1 不用SM36.2 SM46.2 SM56.2 SM136.2 SM146.2 SM156.2 不用SM36.3 SM46.3 SM56.3 SM136.3 SM146.3 SM156.3 不用SM36.4 SM46.4 SM56.4 SM136.4 SM146.4 SM156.4 不用SM36.5 SM46.5 SM56.5 SM136.5 SM146.5 SM156.5 当前计数方向状态位 0=减计数; 1=增计数SM36.6 SM46.6 SM56.6 SM136.6 SM146.6 SM156.6 当前值等于预置值状态位 0=不等; 1=相等SM36.7 SM46.7 SM56.7 SM136.7 SM146.7 SM156.7 当前值大于预置值状态位:0=小于等于;1=大于脉冲输出指令脉冲输出(PLS)指令被用于控制在高速输出(Q0.0和Q0.1)中提供的"脉冲串输出"(PTO)和"脉宽调制"(PWM)功能。

PTO提供方波(50%占空比)输出,配备周期和脉冲数用户控制功能。

PWM提供连续性变量占空比输出,配备周期和脉宽用户控制功能。

识别S7-200高速输出指令S7-200有两台PTO/PWM发生器,建立高速脉冲串或脉宽调节信号信号波形。

一台发生器指定给数字输出点Q0.0,另一台发生器指定给数字输出点Q0.1。

一个指定的特殊内存(SM)位置为每台发生器存储以下数据:一个控制字节(8位值)、一个脉冲计数值(一个不带符号的32位值)和一个周期和脉宽值(一个不带符号的16位值)。

PTO/PWM发生器和过程映像寄存器共用Q0.0和Q0.1。

PTO或PWM功能在Q0.0或Q0.1位置现用时,PTO/PWM发生器控制输出,并禁止输出点的正常使用。

输出信号波形不受过程映像寄存器状态、点强迫数值、执行立即输出指令的影响。

PTO/PWM发生器非现用时,输出控制转交给过程映像寄存器。

过程映像寄存器决定输出信号波形的初始和最终状态,使信号波形在高位或低位开始和结束。

注释●在启用PTO或PWM操作之前,将用于Q0.0和Q0.1的过程映像寄存器设为0。

●所有的控制位、周期、脉宽和脉冲计数值的默认值均为0●PTO/PWM输出必须至少有10%的额定负载,才能提供陡直的上升沿和下降沿。

每台PTO/PWM发生器有一个控制字节(8位),一个周期值和脉宽值(不带符号的16位值)和一个脉冲计值(不带符号的32位值)。

这些值全部存储在特殊内存(SM)区域的指定位置。

一旦设置这些特殊内存位的位置,选择所需的操作后,执行脉冲输出指令(PLS)即启动操作。

该指令使S7-200读取SM位置,并为PTO/PWM 发生器编程。

通过修改SM区域中(包括控制字节)要求的位置,您可以更改PTO或PWM的信号波形特征,然后执行PLS 指令。

您可以在任意时间向控制字节(SM67.7或SM77.7)的PTO/PWM启用位写入零,禁用PTO或PWM信号波形的生成,然后执行PLS指令。

脉冲串操作(PTO)PTO按照给定的脉冲个数和周期输出一串方波(占空比50%)。

(见右图)PTO可以产生单段脉冲串或者多段串(使用脉冲包络)。

可以指定脉冲数和周期(以微秒或毫秒为增加量):- 脉冲个数: 1到4,294,967,295- 周期: 10μs到 65,535μs或者2ms 到 65,535ms。

如果为周期指定一个奇微秒数或毫秒数(例75ms )将会引起占空比失真下表中是对计数和周期的限定。

PTOPTO功能允许脉冲串“链接”或者“排队”。

当当前脉冲串输出完成时,会立即开始输出一个新的脉冲串。

这保证了多个输出脉冲串之间的连续性。

PTO脉管冲的单段管线在单段线串模式,需要为下一个脉冲串更新特殊寄存器。

一旦启动了起始PTO段,就必须按照第二个波形的要求改变特殊寄存器,并再次执行PLS指令。

第二个脉冲串的属性在管线中一直保持到第一个脉冲串发送完成。

在管线中一次只能存储一段脉冲串的属性。

当第一个脉冲串发送完成时,接着输出第二个波形,此时管线可以用于下一个新的脉冲串。

重复这个过程可以再次设定下一个脉冲串的特性。

除去以下两种情况之外,脉冲串之间可以作到平滑转换:时间基准发生了变化或者在利用PLS指令捕捉到新脉冲之前,启动的脉冲串已经完成。

如果您在管线已满时尝试载入,状态寄存器(SM66.6或SM76.6)中的PTO溢出位被设置。

进入RUN(运行)模式时,该位被初始化为0。

如果您希望探测随后出现的溢出,则必须在探测到溢出之后以手动方式清除该位。

PTO脉冲线串的多段管线在多段脉管模式, CPU自动从V存储器区的包络表中读出每个脉冲串的特性。

在该模式下,仅使用特殊存储器区的控制字节和状态字节。

选择多段操作,必须装入包络表在V存储器中的起始地址偏移量(SMW168或SMW178)。

时间基准可以选择微秒或者毫秒,但是,在包络表中的所有周期值必须使用同一个时间基准,而且在包络正在运行时不能改变。

执行PLS指令来启动多段操作。

每段记录的长度为8个字节,由16位周期值、16位周期增量值和32位脉冲个数值组成。

下表中给出了包络表的格式。

您可以通过编程的方式使脉冲的周期自动增减。

在周期增量处输入一个正值将增加周期;输入一个负值将减少周期;输入0将不改变周期。

如果您指定的周期增量在一定数量的脉冲后导致非法周期则会出现数学溢出条件。

PTO功能被终止,输出转换成映象寄存器控制。

此外,状态字节(SM66.4或SM76.4)中的增量计算错误位被设为一。

如果您以手动方式异常中止正在运行的PTO包络,状态字节(SM66.5或SM76.5)中的用户异常中止位则被设为一。

当PTO包络执行时,当前启动的段的编号保存在SMB166(或SMB176)。

多段PTO操作的包络表格式1 输入0作为脉冲串的段数会产生一个非致命错误,将不产生PTO输出脉宽调制(PWM)PWM产生一个占空比变化周期固定的脉冲输出,(见下图)您可以以微秒或者毫秒为单位指定其周期和脉冲宽度:- 周期: 10μs到65,535μs或者2ms到65,535ms- 脉宽: 0μs到65,535μs或者0ms到65,535ms。

如下表所示,设定脉宽等于周期(使占空比为100%),输出连续接通。

设定脉宽等于0(使占空比为0%),输出断开。

脉宽、周期和PWM功能的执行结果。

脉宽/周期结果脉宽≥周期值占空比为100%:输出连续接通脉宽=0 占空比为0%:输出断开。

周期<2个时间单位将周期缺省地设定为2个时间单位。

有两个方法改变PWM波形的特性:- 同步更新:如果不需要改变时间基准,就可以进行同步更新。

利用同步更新,波形特性的变化发生在周期边沿,提供平滑转换。

- 异步更新:PWM的典型操作是当周期时间保持常数时变化脉冲宽度。

所以,不需要改变时间基准。

但是,如果需要改变PTO/PWM发生器的时间基准,就要使用异步更新。

异步更新会造成PTO/PWM功能被瞬时禁止,和PWM波形不同步。

这会引起被控设备的振动。

由于这个原因,建议采用PWM同步更新。

相关文档
最新文档