高一物理牛顿运动定律综合应用训练

合集下载

高中物理牛顿运动定律的应用计算题专题训练含答案

高中物理牛顿运动定律的应用计算题专题训练含答案

高中物理牛顿运动定律的应用计算题专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共20题)1、处于光滑水平面上的质量为2千克的物体,开始静止,先给它一个向东的6牛顿的力F1,作用2秒后,撤去F1,同时给它一个向南的8牛顿的力,又作用2秒后撤去,求此物体在这4秒内的位移是多少?2、一个质量为m的人站在电梯中,电梯加速上升,加速度大小为g.g为重力加速度,求人对电梯的压力的大小.3、一物块从倾角为θ、长为s的斜面的项端由静止开始下滑,物块与斜面的滑动摩擦系数为μ,求物块滑到斜面底端所需的时间.4、放在水平地面上的一物块,受到方向不变的水平推力F的作用,力F的大小与时间t的关系和物块速度v与时间t的关系如图所示.取重力加速度g=10 m/s2.试利用两图线求出物块的质量及物块与地面间的动摩擦因数.5、如图所示,质量为m=1l kg的物块放在水平地面上,在与水平方向成θ=37°角斜向上、大小为50N的拉力F作用下,以大小为v0=l0m/s的速度向右做匀速直线运动,(取当地的重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8)求(1)物块与水平面间的动摩擦因数;(2)若撤去拉力F,物块经过3秒在水平地面上滑行的距离是多少?6、质量为2kg的物体,静止于水平面上,物体与水平面间的动摩擦因数为0.2。

现对物体施加一个大小为6N的水平力,此力作用一段时间后立即改变,改变后的力与原来比较,大小不变、方向相反。

再经过一段时间,物体的速度变为零。

如果这一过程物体的总位移为15m。

求:(1)力改变前后物体加速度的大小a1、a2分别为多少?(2)在这一过程物体的最大速度;(3)全过程的总时间。

(g=10m/s2)7、直升机沿水平方向匀速飞往水源取水灭火,悬挂着m=500kg空箱的悬索与竖直方向的夹角=45°.直升机取水后飞往火场,加速度沿水平方向,大小稳定在a=1.5m/s2时,悬索与竖直方向的夹角=14°.如果空气阻力大小不变,且忽略悬索的质量,试求水箱中水的质量M。

高中物理牛顿运动定律的应用解题技巧和训练方法及练习题(含答案)

高中物理牛顿运动定律的应用解题技巧和训练方法及练习题(含答案)

高中物理牛顿运动定律的应用解题技巧和训练方法及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律的应用1.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。

(3)木板的最小长度L 是0.7m 。

【解析】 【详解】(1)对AB 整体分析,由牛顿第二定律得:F 1=(M +m )a 1 对B ,由牛顿第二定律得:f =ma 1联立解得f =1N ,方向水平向右;(2)对AB 整体,由牛顿第二定律得:F m =(M +m )a 2对B ,有:μmg =ma 2联立解得:F m =10N(3)因为F 2>F m ,所以AB 间发生了相对滑动,木块B 加速度为:a 2=μg =2m/s 2。

木板A 加速度为a 3,则:F 2-μmg =Ma 3解得:a 3=3m/s 2。

1s 末A 的速度为:v A =a 3t =3m/s B 的速度为:v B =a 2t =2m/s 1s 末A 、B 相对位移为:△l 1=2A Bv v t -=0.5m 撤去F 2后,t ′s 后A 、B 共速 对A :-μmg =Ma 4可得:a 4=-0.5m/s 2。

共速时有:v A +a 4t ′=v B +a 2t ′可得:t ′=0.4s 撤去F 2后A 、B 相对位移为:△l 2='2A Bv v t -=0.2m 为使物块不从木板上滑下,木板的最小长度为:L =△l 1+△l 2=0.7m 。

2025高考物理 牛顿运动定律的综合应用

2025高考物理   牛顿运动定律的综合应用

2025高考物理 牛顿运动定律的综合应用一、多选题1.用水平拉力使质量分别为m 甲、m 乙的甲、乙两物体在水平桌面上由静止开始沿直线运动,两物体与桌面间的动摩擦因数分别为μ甲和μ乙。

甲、乙两物体运动后,所受拉力F 与其加速度a 的关系图线如图所示。

由图可知( )A .甲乙<m mB .m m >甲乙C .μμ<甲乙D .μμ>甲乙 2.用一水平力F 拉静止在水平面上的物体,在外力F 从零开始逐渐增大的过程中,物体的加速度a 随外力F 变化的关系如图所示,2=10m /s g 。

则下列说法正确的是( )A .物体与水平面间的最大静摩擦力为14NB .物体做变加速运动,F 为14N 时,物体的加速度大小为27m /sC .物体与水平面间的动摩擦因数为0.3D .物体的质量为2kg3.如图所示,一物块以初速度0v 沿粗糙斜面上滑,取沿斜面向上为正向。

则物块速度随时间变化的图像可能正确的是( )A.B.C.D.4.如图(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t=0时,木板开始受到水平外力F的作用,在t=4s时撤去外力.细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取g=10m/s2.由题给数据可以得出A.木板的质量为1kgB.2s~4s内,力F的大小为0.4NC.0~2s内,力F的大小保持不变D.物块与木板之间的动摩擦因数为0.2二、单选题5.某运送物资的班列由40节质量相等的车厢组成,在车头牵引下,列车沿平直轨道匀加速行驶时,第2节对第3节车厢的牵引力为F。

若每节车厢所受摩擦力、空气阻力均相等,则倒数第3节对倒数第2节车厢的牵引力为()A.F B.1920FC.19FD.20F6.如图,两物块P、Q用跨过光滑轻质定滑轮的轻绳相连,开始时P静止在水平桌面上。

高中物理牛顿运动定律应用专项训练100(附答案)

高中物理牛顿运动定律应用专项训练100(附答案)

最新高中物理牛顿运动定律的应用专项训练100( 附答案 )一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m=0.5 kg、长L=1 m的平板车 B 静止在圆滑水平面上,某时辰质量M=l kg 的物体 A(视为质点)以v0=4 m/s 向右的初速度滑上平板车 B 的上表面,在 A 滑上 B 的同时,给 B 施加一个水平向右的拉力.已知 A 与 B 之间的动摩擦因数μ=0.2,重力加快度 g 取 10 m/s 2.试求:(1)假如要使 A 不至于从 B 上滑落,拉力 F 大小应知足的条件;(2)若 F=5 N,物体 A 在平板车上运动时相对平板车滑行的最大距离.【答案】 (1) 1N F 3N(2)x0.5m【分析】【剖析】物体 A 不滑落的临界条件是 A 抵达 B 的右端时, A、 B 拥有共同的速度,联合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界状况是A、 B 速度同样后,一同做匀加快直线运动,依据牛顿第二定律求出拉力的最大值,进而得出拉力 F 的大小范围.【详解】(1)物体 A 不滑落的临界条件是 A 抵达 B 的右端时, A、 B 拥有共同的速度v1,则:v02 -v12v12+L2a A2a B又:v-v1 =v1 a A a B解得: a B=6m/s 2再代入 F+μMg=ma B得: F=1N若 F<1N,则 A 滑到 B 的右端时,速度仍大于 B 的速度,于是将从 B 上滑落,因此 F 一定大于等于 1N当 F 较大时,在 A 抵达 B 的右端以前,就与 B 拥有同样的速度,以后, A 一定相对 B 静止,才不会从 B 的左端滑落,则由牛顿第二定律得:对整体: F=(m+ M)a对物体 A:μMg=Ma解得: F=3N若F 大于 3N, A 就会相对 B 向左滑下综上所述,力 F 应知足的条件是 1N≤F≤3N(2)物体 A 滑上平板车 B 此后,做匀减速运动,由牛顿第二定律得:μ Mg=Ma A解得: a A=μg=2m/s 2平板车 B 做匀加快直线运动,由牛顿第二定律得:F+μMg=ma B解得: a B=14m/s2二者速度同样时物体相对小车滑行最远,有:v 0- a A t=a B t解得: t=0.25s1 215 A 滑行距离 x A =v 0t -a A t =m216B 滑行距离: x B = 1 a B t 2= 7m216最大距离: Δx =x A - x B =0.5m【点睛】解决此题的重点理清物块在小车上的运动状况,抓住临界状态,联合牛顿第二定律和运动学公式进行求解.2. 如下图,质量为 M =10kg 的小车停放在圆滑水平面上.在小车右端施加一个F=10N 的水平恒力.当小车向右运动的速度达到2.8m/s 时,在其右端轻轻放上一质量 m=2.0kg 的小黑煤块(小黑煤块视为质点且初速度为零),煤块与小车间动摩擦因数 μ 0.20.假设小 = 车足够长.( 1)求经过多长时间煤块与小车保持相对静止 ( 2) 求 3s 内煤块行进的位移( 3)煤块最后在小车上留下的印迹长度【答案】 (1) 2s (2) 8.4m (3) 2.8m【分析】【剖析】分别对滑块和平板车进行受力剖析,依据牛顿第二定律求出各自加快度,物块在小车上停止相对滑动时,速度同样,依据运动学基本公式即能够求出时间.经过运动学公式求出位移.【详解】(1)依据牛顿第二定律,刚开始运动时对小黑煤块有:F Nma 1F N -mg =0代入数据解得: a 1=2m/s 2刚开始运动时对小车有:FF NMa 2解得: a 2=0.6m/s 2经过时间 t ,小黑煤块和车的速度相等,小黑煤块的速度为:v 1=a 1t车的速度为:v 2=v+a 2 t解得: t=2s;(2)在 2s 内小黑煤块行进的位移为:x11a1t 24m22s 时的速度为:v1 a1t1 2 2m/s 4m/s今后加快运动的加快度为:a F 5m/s23M m6而后和小车共同运动t 2=1s 时间,此 1s 时间内位移为:x2v1t21a3t22 4.4m 2因此煤块的总位移为:x1x28.4m (3)在 2s 内小黑煤块行进的位移为:x11a1t 24m2小车行进的位移为:x v1t 1a1t2 6.8m 2二者的相对位移为:x x x1 2.8m即煤块最后在小车上留下的印迹长度 2.8m.【点睛】该题是相对运动的典型例题,要仔细剖析两个物体的受力状况,正确判断两物体的运动状况,再依据运动学基本公式求解.3.如图,质量M=4kg 的长木板静止处于粗拙水平川面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v0=14m/s 的速度从一端滑上木板,恰巧未从木板上滑下,滑块与长木板的动摩擦因数μ2,求:2=0.5,g取10m/s(1)木块刚滑上木板时,木块和木板的加快度大小;(2)木板长度;(3)木板在地面上运动的最大位移。

高中物理牛顿运动定律的应用综合题专题训练含答案

高中物理牛顿运动定律的应用综合题专题训练含答案

高中物理牛顿运动定律的应用综合题专题训练含答案高中物理牛顿运动定律的应用填空题专题训练含答案姓名:__________班级:__________考号:__________一、填空题(共30题)1、如图所示,在水平方向上加速前进的车厢里,悬挂着小球的悬线与竖直方向保持α=30°角。

同时放在车厢里的水平桌面上的物体A 和车厢保持相对静止,已知A的质量是0.5kg,则A受到摩擦力大小是________N,方向为___________。

(取g=10m/s2)2、如图所示,是一辆汽车在两站间行驶的速度图象。

两站之间是一段平直的公路,汽车所受阻力大小不变,且BC段的牵引力为零,已知汽车的质量为4000kg,则汽车在BC段所受的阻力是________N,3、用水平向右、大小为0.4N的拉力可拉着一个物体在水平面上匀速运动,当用2.0N的水平向左拉力拉着这个物体在同一水平面上从静止开始运动,2s内物体位移是1.6m,则物体运动的加速度为m/s2,物体质量为kg。

4、如图所示,两个用轻线相连的位于光滑水平面上的物块,质量分别为m1和m2,拉力F1和F2方向相反,与轻线沿同一水平直线,且F1>F2。

则两个物块运动的加速度为__________,运动过程中轻线对m2的拉力为__________。

5、如图所示,质量均为的、两球之间系着一根不计质量的弹簧,放在光滑的水平面上,球紧靠竖直墙壁,今用水平力将球向左推压弹簧,平衡后,突然将撤去,在这一瞬间球的加速度大小为??,球的加速度的大小为。

6、两个物块M、N,质量之比和初速度之比都是2∶3,沿同一水平面滑动.它们与水平面间的动摩擦因数之比为2∶1,则它们沿该水平面滑行的最大距离之比是??.7、如图所示,木块A、B静止叠放在光滑水平面上,A的质量为m,B的质量为2m。

现施加水平力F拉B,A、B刚好不发生相对滑动,一起沿水平面运动。

若改为水平力F′拉A,使A、B也保持相对静止,一起沿水平面运动,则F′不得超过。

物理牛顿运动定律的应用题20套(带答案)

物理牛顿运动定律的应用题20套(带答案)

物理牛顿运动定律的应用题20套(带答案)一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.如图甲所示,长为L =4.5 m 的木板M 放在水平地而上,质量为m =l kg 的小物块(可视为质点)放在木板的左端,开始时两者静止.现用一水平向左的力F 作用在木板M 上,通过传感器测m 、M 两物体的加速度与外力F 的变化关系如图乙所示.已知两物体与地面之间的动摩擦因数相同,且最大静摩擦力等于滑动摩擦力,g = 10m /s 2.求:(1)m 、M 之间的动摩擦因数;(2)M 的质量及它与水平地面之间的动摩擦因数;(3)若开始时对M 施加水平向左的恒力F =29 N ,且给m 一水平向右的初速度v o =4 m /s ,求t =2 s 时m 到M 右端的距离. 【答案】(1)0.4(2)4kg ,0.1(3)8.125m 【解析】 【分析】 【详解】(1)由乙图知,m 、M 一起运动的最大外力F m =25N , 当F >25N 时,m 与M 相对滑动,对m 由牛顿第二定律有:11mg ma μ=由乙图知214m /s a =解得10.4μ=(2)对M 由牛顿第二定律有122()F mg M m g Ma μμ--+=即12122()()F mg M m g mg M m g Fa M M Mμμμμ--+--+==+乙图知114M = 12()94mg M m g M μμ--+=-解得M = 4 kg μ2=0. 1(3)给m 一水平向右的初速度04m /s v =时,m 运动的加速度大小为a 1 = 4 m/s 2,方向水平向左,设m 运动t 1时间速度减为零,则111s v t a == 位移21011112m 2x v t a t =-=M 的加速度大小2122()5m /s F mg M m ga Mμμ--+==方向向左, M 的位移大小22211 2.5m 2x a t == 此时M 的速度2215m /s v a t ==由于12x x L +=,即此时m 运动到M 的右端,当M 继续运动时,m 从M 的右端竖直掉落,设m 从M 上掉下来后M 的加速度天小为3a ,对M 由生顿第二定律23F Mg Ma μ-=可得2325m /s 4a =在t =2s 时m 与M 右端的距离2321311()()8.125m 2x v t t a t t =-+-=.3.如图所示,倾角θ=30°的足够长光滑斜面底端A 固定有挡板P ,斜面上B 点与A 点的高度差为h .将质量为m 的长木板置于斜面底端,质量也为m 的小物块静止在木板上某处,整个系统处于静止状态.已知木板与物块间的动摩擦因数32μ=,且最大静摩擦力等于滑动摩擦力,重力加速度为g .(1)若对木板施加一沿斜面向上的拉力F 0,物块相对木板刚好静止,求拉力F 0的大小; (2)若对木板施加沿斜面向上的拉力F =2mg ,作用一段时间后撤去拉力,木板下端恰好能到达B 点,物块始终未脱离木板,求拉力F 做的功W . 【答案】(1) 32mg (2) 94mgh 【解析】(1)木板与物块整体:F 0−2mg sinθ=2ma 0 对物块,有:μmg cosθ−mg sinθ═ma 0 解得:F 0=32mg (2)设经拉力F 的最短时间为t 1,再经时间t 2物块与木板达到共速,再经时间t 3木板下端到达B 点,速度恰好减为零. 对木板,有:F −mg sinθ−μmg cosθ=m a 1 mg sinθ+μmg cosθ=ma 3对物块,有:μmg cosθ−mg sinθ=ma 2 对木板与物块整体,有2mg sinθ=2m a 4另有:1132212 ()a t a t a t t -=+ 21243 ()a t t a t +=222111123243111222sin h a t a t t a t a t θ+⋅-+= 21112W F a t =⋅解得W =94mgh 点睛:本题考查牛顿第二定律及机械能守恒定律及运动学公式,要注意正确分析物理过程,对所选研究对象做好受力分析,明确物理规律的正确应用即可正确求解;注意关联物理过程中的位移关系及速度关系等.4.滑雪运动中当滑雪板压在雪地时会把雪内的空气逼出来,在滑雪板和雪地之间形成暂时的“气垫”从而减小雪地对滑雪板的摩擦,然后当滑雪板的速度较小时,与雪地接触时间超过某一时间就会陷下去,使得它们间的摩擦阻力增大.假设滑雪者的速度超过4m/s 时,滑雪板与雪地间的动摩擦因数就会从0.25变为0.125.一滑雪者从倾角为θ=37°斜坡雪道的某处A 由静止开始自由下滑,滑至坡底B 处(B 处为一长度可忽略的光滑小圆弧)后又滑上一段水平雪道,最后停在水平雪道BC 之间的某处.如图所示,不计空气阻力,已知AB 长14.8m ,取g =10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)滑雪者从静止开始到动摩擦因数发生变化时(即速度达到4m/s )所经历的时间; (2)滑雪者到达B 处的速度;(3)滑雪者在水平雪道上滑行的最大距离. 【答案】(1)1s ;(2)12m/s ;(3)54.4m . 【解析】 【分析】(1)根据牛顿第二定律求出滑雪者在斜坡上从静止开始加速至速度v 1=4m/s 期间的加速度,再根据速度时间公式求出运动的时间.(2)再根据牛顿第二定律求出速度大于4m/s 时的加速度,球心速度为4m/s 之前的位移,从而得出加速度变化后的位移,根据匀变速直线运动的速度位移公式求出滑雪者到达B 处的速度.(3)分析滑雪者的运动情况,根据牛顿第二定律求解每个过程的加速度,再根据位移速度关系求解. 【详解】(1)滑雪者从静止开始加速到v 1=4m/s 过程中: 由牛顿第二定律得:有:mgsin37°-μ1mgcos37°=ma 1; 解得:a 1=4m/s 2; 由速度时间关系得 t 1=11v a =1s (2)滑雪者从静止加速到4m/s 的位移:x 1=12a 1t 2=12×4×12=2m 从4m/s 加速到B 点的加速度:根据牛顿第二定律可得:mgsin37°-μ2mgcos37°=ma 2; 解得:a 2=5m/s 2;根据位移速度关系:v B 2−v 12=2a 2(L −x 1) 计算得 v B =12m/s(3)在水平面上第一阶段(速度从12m/s 减速到v=4m/s ):a 3=−μ2g =−1.25m /s 222223341251.222 1.25B v v x m a --===-⨯ 在水平面上第二阶段(速度从4m/s 减速到0)a 4=−μ1g =−2.5m /s 2,2443.22vx m a -== 所以在水平面上运动的最大位移是 x=x 3+x 4=54.4m 【点睛】对于牛顿第二定律的综合应用问题,关键是弄清楚物体的运动过程和受力情况,利用牛顿第二定律或运动学的计算公式求解加速度,再根据题目要求进行解答;知道加速度是联系静力学和运动学的桥梁.5.如图1所示, 质量为M 的长木板,静止放置在粗糙水平地面上,有一个质量为m 、可视为质点的物块,以某一水平初速度v 0从左端冲上木板。

2024年新高一物理初升高衔接《牛顿运动定律的应用》含答案解析

2024年新高一物理初升高衔接《牛顿运动定律的应用》含答案解析

第18讲牛顿运动定律的应用模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三教材习题学解题模块四核心考点精准练模块五小试牛刀过关测1.能用牛顿运动定律解决两类主要问题:已知物体受力确定运动情况,已知物体运动确定受力;2.掌握利用牛顿运动定律解决问题的基本思路和方法,首先对研究对象受力分和运动情况分析,然后利用牛顿第二定律将二者联系起来;■知识点一:从受力确定运动情况如果已知物体的受力情况,可以由求出物体的加速度,再通过的规律确定物体的运动情况。

■知识点二:从运动情况确定受力如果已知物体的运动情况,根据运动学规律求出物体的,结合受力分析,再根据求出力。

【参考答案】1.从受力确定运动情况牛顿第二定律、运动学2.从运动情况确定受力加速度、牛顿第二定律【答案】(1)28.9m;(2)2.1m。

【答案】650N,方向垂直于山坡向下;教材习题一辆货车运载着圆柱形光滑的空油桶。

层油桶平整排列,相互紧贴并被牢牢固定,考向一:从受力确定运动情况【例1】如图所示,位于水平地面上的质量为M 的小木块,在大小为F 、方向与水平方向成α角的拉力作用下沿地面做加速运动。

若木块与地面之间的动摩擦因数为μ,则木块的加速度为()A.FM B .F cos αMC.F cos α-μMgMD .F cos α-μ(Mg -F sin α)M【巩固1】如图所示,楼梯口一倾斜的天花板与水平面成θ=37°角,一装潢工人手持木杆绑着刷子粉刷天花板,工人所持木杆对刷子的作用力始终保持竖直向上,大小为F =10N ,刷子的质量为m =0.5kg ,刷子可视为质点,刷子与天花板间的动摩擦因数μ=0.5,天花板长为L =4m ,sin37°=0.6,cos37°=0.8,g 取10m/s 2。

试求:(1)刷子沿天花板向上的加速度大小;(2)工人把刷子从天花板底端由静止推到顶端所用的时间。

考向二:从运动情况确定受力【例2】光滑水平面上,质量为4kg的物体在水平推力F1的作用下由静止开始运动,0~2s内的位移为6m;质量为2.5kg的物体在水平推力F2的作用下由静止开始运动,0~3s 内的位移为9m。

2023年高考物理一轮复习《牛顿运动定律的综合应用(练)》含答案解析

2023年高考物理一轮复习《牛顿运动定律的综合应用(练)》含答案解析

3.2 牛顿运动定律的综合应用1.已知列车向左做直线运动,某同学为了研究列车在水平直轨道上的运动情况,他在列车车厢顶部用细线悬挂一个小球。

某段时间内,细线偏离竖直方向一定角度θ,并相对车厢保持静止,如图所示,重力加速大小为g,则列车在这段时间内( )A.水平向右做匀速直线运动B.列车速度正在变大C.列车加速度的大小为g tanθ,方向水平向右D.加速度的大小为gsinθ,方向水平向左【答案】C【解析】A.对小球受力分析可知小球所受合力方向向右具有向右的加速度,列车与小球相对静止,不可能做匀速直线运动,A错误;B.列车与小球相对静止做匀变速直线运动,列车的运动方向未知可能做匀加速运动也可能做匀减速运动,B 错误;C 、D.小球所受合力方向向右具有向右的加速度,由牛顿第二定律得θ=mg matan得=tana gθC正确,D错误;故选C。

2.如图所示,一足够长的斜面固定在地面上,其倾角为37°。

一质量为1kg的物体(可视为质点)放在斜面上,恰好能保持静止。

现对物体施加一沿斜面向上的外力F,大小为14N,重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8,则下列说法中正确的是( )A .物体仍静止在斜面上B .物体将向上做匀加速直线运动,加速度大小为4m/s 2C .外力F 作用3s 末时,物体的速度为6m/sD .物体与斜面间的动摩擦因数为0.5【答案】C 【解析】D .物体放在斜面上,恰好能保持静止,则o osin 37cos37mg mg μ=解得0.75μ=故D 错误;AB .施加拉力F 后,由牛顿第二定律得o o sin 37cos37F mg mg maμ--=解得22m/s a =施加一沿斜面向上的外力F 时,物体以22m/s 的加速度做匀加速直线运动,故AB 错误;C .外力F 作用3s 末时,物体的速度为6m/sv at ==故C 正确。

牛顿运动定律的综合应用(一)(练习)(解析版)—2025年高考物理一轮复习讲练测(新教材新高考)

牛顿运动定律的综合应用(一)(练习)(解析版)—2025年高考物理一轮复习讲练测(新教材新高考)

第10讲牛顿运动定律的综合应用(一)A.B球处于平衡状态B.轻弹簧的弹力大小为C.B球的加速度大小为D.A球的加速度大小为A.A的加速度大小的最大值为B.B的加速度大小的最大值为C.A的位移大小一定大于D.A的速度大小均不大于同一时刻【答案】C【详解】A B.设小球则B球的加速度为零,两小球从静止开始下落,至弹簧第一次恢复原长过程中,设弹簧的伸长量为A.如果恒力增大为2F,则两物体的加速度增大为2a B.如果恒力增大为2F,则弹簧伸长量仍为xC.若水平面光滑,则弹簧伸长量仍为xD.若水平面光滑,则加速度大小仍为1aA ....【答案】C【详解】BD .00~t 时间内,物块与托盘处于静止状态,根据受力平衡可得:可得初始状态弹簧的压缩量,即初始坐标为:12()m m gk+=以物块为对象,根据受力平衡可得物块与托盘之间的作用力为F ,小物块由静止开始做匀加速直线运动,加速度大小为A.木块A受到两个力的作用B.木块B受到四个力的作用C.木块A所受合力大小为A .A 1.0kg m =,0.2m =B .A 0.4kg m =,m =C .A 0.8kg m =,0.125m =D .A 0.8kg m =,m =【答案】C【详解】由图像可知,滑块A 在P 点左边运动时的加速度为:1a =在P 点右边运动时的加速度为:22232m/s 1m/s 21a -==-A.小球一定都带负电B.圆周上C点电势一定最高C.电场强度方向一定由D.小球受到的电场力大小可能等于重力大小【答案】DA.12=v v【答案】BD【详解】连接NQ、MPA....【答案】BC【详解】A.设杆与水平方向夹角为,圆形半径为d,根据牛顿第二定律:sing q1A.23m B.33m【答案】C°=tan37mg maA .弹簧的劲度系数为300N /mB .物块B 在0=t 时的加速度大小为4mC .0=t 到0.2s t =的过程中力F 做的功为D .0=t 到AB 分开的过程中,A 克服摩擦力的功为【答案】C牛顿A.释放B后的瞬间,绳子张力大小为C.在最高点P,绳子张力大小为【答案】BA .左侧细线对小球的拉力大小为3mgB .右侧小球的质量为mC .剪断左侧细线的瞬间,P 球的加速度大小为D .剪断右侧细线的瞬间,Q 球的加速度大小为AB .对P 球分析有sin cos p p T mg T Fa a ==对Q 球分析有A .2cos lg qC .2cos2lg q以P 处为圆的最高点作圆O 与传送带相切于竖直方向的夹角为a ,原料下滑的加速度为:管道长度为:2cos L R a =由运动学公式可得:212L at =A.12t t>【答案】C【详解】设AB为解得:14Rtg=设BAC qÐ=,根据几何关系可知则有:1 2cos2 R q=A.1t时刻弹簧刚好恢复原长B.2t时刻物块A、C.弹簧的最大压缩量为12mgkmD.2bmv gkm=【答案】B【详解】AB.由题意结合题图2可知,t时刻弹簧弹力与B所受的摩擦力大小相等,A.滑块M的加速度始终大于滑块B.滑块N的加速度大小最大值为2A.A、C运动的加速度大小之比为B.A、C运动的加速度大小之比为C.1t时刻,C下落的速度为3 5A .12t t >B .34=t t C .【答案】BC【详解】1号小球的加速度为:13sin 602a g =°=位移为:12sin 603x r r =×°=2x rA .若斜面体以加速度a g =向右加速运动时,小球对滑块压力为零B .若斜面体以加速度a g =向右加速运动时,线中拉力为C .当斜面体以加速度2a g =向右加速运动时,线中拉力为D .当斜面体以加速度2a g =向左加速运动时,线中拉力为零【答案】BCD水平和竖直方向分别满足如下关系T N cos sin F F mg q q -=T N sin cos F F mgq q +=代入数据解得细线的拉力大小为:故B 正确;C .当斜面体以加速度2a g =向右加速运动时,超过临界加速度,小球离开斜面,由牛顿第二定律有水平方向绳子的分力大小为:2F ma mg¢==满足:5tan F mgq =A .货车匀速行驶时,桶c 受到桶B .为防止紧急刹车时桶c 脱离桶由几何关系可知:30q =°由共点力平衡条件得cos30cos30a b F F mg °+°=sin 30sin 30a b F F °°=解得:33a F mg =由牛顿第二定律得:m tan30mg ma °=解得:m 33a g =故B 正确;C .货车刹车时,由平衡条件和牛顿第二定律得cos30cos30a b F F mg °+°=【答案】(1)216m k t =;(2)2138P mg t =;(3)116ax gt =【详解】(1)由图乙得10t ~的时间内,两物体的加速度:位移211111111248x g t t gt =´=´t =0时,弹簧的压缩量为x ,有13cos535F mg mg ¢=°=,24cos375F mg ¢=°=根据牛顿第三定律可知:1135F mg F ==¢,F (2)以工件为研究对象,匀减速行驶时,在水平方向上根据牛顿第二定律有:34sin53sin375g F F ma m æö°-°==-ç÷èø在竖直方向上根据平衡条件有 :cos53F °+【答案】(1)33;(2)60°,532m 【详解】(1)当30q =°时,对木块受力分析,根据平衡条件有:(1)经多长时间物块甲离开挡板?(2)从开始到物块甲恰好离开挡板的过程中,作用在乙物块上的力的最大值和最小值分别是多大?【答案】(1)()122sinm m gtka+=【答案】(1)20.8m/s ;(2)0.96N ;(3)5.6J【详解】(1)第1个滑块刚进入粗糙区域时,对10个滑块整体,根据牛顿第二定律得110mg mg ma m -=210.8m/s 10mg mga mm -==(2)当第3个滑块刚离开AB 区域时,4、5、6三个物块在AB 区域内,以全部物块为研究对象,根据牛顿第二定律得【答案】(1)N 23F mg =;(2)m 3mg v k=【详解】(1)乙释放前丙受到的绳的拉力:【答案】(1)22UI I REq-;(2)()2168UI I R tq-【详解】(1)当B的加速度0a=时速度最大,此时轻绳上的拉力为:电动机的输出功率为:2P UI I R=-P Fv=。

高考物理牛顿运动定律的应用题20套(带答案)

高考物理牛顿运动定律的应用题20套(带答案)

高考物理牛顿运动定律的应用题20套(带答案)一、高中物理精讲专题测试牛顿运动定律的应用1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.如图所示,水平面与倾角θ=37°的斜面在B 处平滑相连,水平面上A 、B 两点间距离s 0=8 m .质量m =1 kg 的物体(可视为质点)在F =6.5 N 的水平拉力作用下由A 点从静止开始运动,到达B 点时立即撤去F ,物体将沿粗糙斜面继续上滑(物体经过B 处时速率保持不变).已知物体与水平面及斜面间的动摩擦因数μ均为0.25.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)物体在水平面上运动的加速度大小a 1; (2)物体运动到B 处的速度大小v B ; (3)物体在斜面上运动的时间t .【答案】(1)4m/s 2 (2)8m/s (3)2.4s 【解析】 【分析】(1)在水平面上,根据牛顿第二定律求出加速度;(2)根据速度位移公式求出B 点的速度;(3)物体在斜面上先向上减速,再反向加速度,求出这两段的时间,即为物体在斜面上的总时间. 【详解】(1)在水平面上,根据牛顿第二定律得:1F mg ma μ-=代及数据解得:214/a m s =(2)根据运动学公式:2102B v a s =代入数据解得:8/B v m s =(3)物体在斜面上向上做匀减速直线运动过程中,根据牛顿第二定律得:23737mgsin mgcos ma μ︒+︒=①物体沿斜面向上运动的时间:22Bv t a =② 物体沿斜面向上运动的最大位移为:222212s a t = ③因3737mgsin mgcos μ︒>︒,物体运动到斜面最高点后将沿斜面向下做初速度为0的匀加速直线运动根据牛顿第二定律得:33737mgsin mgcos ma μ︒-︒=④ 物体沿斜面下滑的时间为:223312s a t =⑤ 物体在斜面上运动的时间:23t t t =+⑥联立方程①-⑥代入数据解得:()2312 2.4t t t s s =+=+≈ 【点睛】本题主要考查了牛顿第二定律及运动学基本公式的直接应用,注意第二问求的是在斜面上的总时间,不是上滑时间.3.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。

高一物理牛顿运动定律练习及答案.

高一物理牛顿运动定律练习及答案.

相关习题:(牛顿运动定律)一、牛顿第一定律练习题一、选择题1.下面几个说法中正确的是[ ]A.静止或作匀速直线运动的物体,一定不受外力的作用B.当物体的速度等于零时,物体一定处于平衡状态C.当物体的运动状态发生变化时,物体一定受到外力作用D.物体的运动方向一定是物体所受合外力的方向2.关于惯性的下列说法中正确的是[ ]A.物体能够保持原有运动状态的性质叫惯性B.物体不受外力作用时才有惯性C.物体静止时有惯性,一开始运动,不再保持原有的运动状态,也就失去了惯性D.物体静止时没有惯性,只有始终保持运动状态才有惯性3.关于惯性的大小,下列说法中哪个是正确的?[ ]A.高速运动的物体不容易让它停下来,所以物体运动速度越大,惯性越大B.用相同的水平力分别推放在地面上的两个材料不同的物体,则难以推动的物体惯性大C.两个物体只要质量相同,那么惯性就一定相同D.在月球上举重比在地球上容易,所以同一个物体在月球上比在地球上惯性小4.火车在长直的轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回到原处,这是因为[ ]A.人跳起后,车厢内空气给他以向前的力,带着他随火车一起向前运动B.人跳起的瞬间,车厢的地板给人一个向前的力,推动他随火车一起运动C.人跳起后,车继续前进,所以人落下必然偏后一些,只是由于时间很短,偏后的距离不易观察出来D.人跳起后直到落地,在水平方向上人和车具有相同的速度5.下面的实例属于惯性表现的是[ ]A.滑冰运动员停止用力后,仍能在冰上滑行一段距离B.人在水平路面上骑自行车,为维持匀速直线运动,必须用力蹬自行车的脚踏板C.奔跑的人脚被障碍物绊住就会摔倒D.从枪口射出的子弹在空中运动6.关于物体的惯性定律的关系,下列说法中正确的是[ ]A.惯性就是惯性定律B.惯性和惯性定律不同,惯性是物体本身的固有属性,是无条件的,而惯性定律是在一定条件下物体运动所遵循的规律C.物体运动遵循牛顿第一定律,是因为物体有惯性D.惯性定律不但指明了物体有惯性,还指明了力是改变物体运动状态的原因,而不是维持物体运动状态的原因7.如图所示,劈形物体M的各表面光滑,上表面水平,放在固定的斜面上.在M的水平上表面放一光滑小球m,后释放M,则小球在碰到斜面前的运动轨迹是[ ] A.沿斜面向下的直线B.竖直向下的直线C.无规则的曲线D.抛物线二、填空题8.行驶中的汽车关闭发动机后不会立即停止运动,是因为____,汽车的速度越来越小,最后会停下来是因为____。

物理牛顿运动定律的应用练习题20篇及解析

物理牛顿运动定律的应用练习题20篇及解析
由几何关系及速度分解有: 解得:
(2)滑块在 B 点时的速度大小为 滑块从 B 点运动到 C 点过程中,由牛顿第二定律有: 可得加速度 设滑块到达 C 点时的速度大小为 vC,有: 解得:
此过程所经历的时间为: 故滑块通过传送带的过程中,以地面为参考系,滑块的位移 x1=L=6m, 传送带的位移 x2=vt=4m; 传送带和滑块克服摩擦力所做的总功为: 代入数据解得: 【点睛】 此题需注意两点,(1)要利用滑块沿 BC 射入来求解滑块到 B 点的速度;(2)计算摩擦力对物 体做的功时要以地面为参考系来计算位移。
4.如图所示,长 L=10m 的水平传送带以速度 v=8m/s 匀速运动。质量分别为 2m、m 的小 物块 P、Q,用不可伸长的轻质细绳,通过固定光滑小环 C 相连。小物块 P 放在传送带的最 左端,恰好处于静止状态,C、P 间的细绳水平。现在 P 上固定一质量为 2m 的小物块(图中 未画出),整体将沿传送带运动,已知 Q、C 间距大于 10 m,重力加速度 g 取 10m/s2.求:
由牛顿第二定律得:F=m vB2 r
解得:F=5 2 N
由牛顿第三定律知小球对细管作用力大小为 5 2 N,
6.如图所示,在竖直平面内有一倾角 θ=37°的传送带 BC.已知传送带沿顺时针方向运行的 速度 v=4 m/s,B、C 两点的距离 L=6 m。一质量 m=0.2kg 的滑块(可视为质点)从传送带上 端 B 点的右上方比 B 点高 h=0. 45 m 处的 A 点水平抛出,恰好从 B 点沿 BC 方向滑人传送 带,滑块与传送带间的动摩擦因数 μ=0.5,取重力加速度 g=10m/s2 ,sin37°= 0.6,cos 37°=0.8。求:
(1)经历多长时间 A 相对地面速度减为零;

高中物理牛顿运动定律的应用综合题专题训练含答案

高中物理牛顿运动定律的应用综合题专题训练含答案

高中物理牛顿运动定律的应用综合题专题训练含答案姓名:__________ 班级:__________考号:__________一、综合题(共20题)1、(10分)物体以12m/s的初速度从斜面底端冲上倾角为37°的斜坡,已知物体与斜面间的动摩擦因数为0.25,g取10m/s2,求:sin37°=0.6,cos37°=0.8(1)物体沿斜面上滑的最大位移;(2)物体再滑到斜面底端时的速度大小;(3)物体在斜面上运动的时间。

2、(10分)某航空公司的一架客机,在正常航线上做水平飞行时,突然受到强大的垂直气流的作用,使飞机在10 s内下降高度为1800 m,造成众多乘客和机组人员的伤害事故,如果只研究在竖直方向上的运动,且假设这一运动是匀变速直线运动.(1)求飞机在竖直方向上产生的加速度多大?(2)试估算质量为65 kg的乘客所系安全带必须提供多大拉力才能使乘客不脱离座椅.3、(10分)在水平地面上有一质量为2kg的物体,物体在水平拉力F的作用下由静止开始运动,10s后拉力大小减为F/3,该物体的运动速度随时间t的变化规律如图所示.求:(1)物体受到的拉力F的大小.(2)物体与地面之间的动摩擦因素.(g取10m/s2)4、(8分)楼梯口一倾斜的天花板与水平地面成,一装潢工人手持木杆绑着刷子粉刷天花板,工人所持木杆对刷子的作用力始终保持竖直向上,大小为F=10N,刷子的质量为,刷子可视为质点,刷子与板间的动摩擦因数为0.5,天花板长为,取,试求:(1)刷子沿天花板向上的加速度(2)工人把刷子从天花板底端推到顶端所用的时间5、(8分)如图所示,用水平力F将一个木块压在竖直墙壁上,已知木块重G=6N,木块与墙壁的动摩擦因数=0.25。

则:(1)当F=25N时,木块静止不动,木块受到的摩擦力是多大?(2)当F=35N时,木块静止仍不动,木块受到的摩擦力是多大?(3)当F=10N时,木块沿竖直墙壁滑动,木块受到的摩擦力是多大?6、(10分)如图 10 所示,质量m= 2kg 的物体静止在水平地面上,物体与地面间的动摩擦因数μ = 0.75。

牛顿运动定律的综合应用(二)(练习)(解析版)—2025年高考物理一轮复习讲练测(新教材新高考)

牛顿运动定律的综合应用(二)(练习)(解析版)—2025年高考物理一轮复习讲练测(新教材新高考)

A.1.0m B.1.5m 【答案】BA.木板的长度为2mB.木板的质量为1kgC.木板运动的最大距离为2m由图可知,木板的长度为:132m 3m 2L ´=´=木板运动的最大距离为:31m 1.5m 2x ´==分析滑块B ,减速时间设为B t ,则有:B B 0v a t =-解得:B 0.75st =()(0.75330.75´--A .1m =2mB .1m <2mC .1m >22mD .1m =22m 【答案】C【详解】由v t -图像分析可知,木板相对地面滑动,滑块与木板共速后一起减速到停止,对木板:122mg mgm m >则有:1m >22m 故选C 。

F=时,小滑块和木板一起匀速运动A.当拉力18N运动F=时,小滑块和木板一起加速运动C.当拉力30NA.木板的长度为3m由图像可知2.5s时两者共速,则木板在物块在0~2.0s内的加速度大小为:物块在2.0s~2.5s内的加速度大小为:m=A.动摩擦因数0.5B.铁块A和长木板B共速后的速度大小为C.长木板的长度为2.25mD.从铁块放上到铁块和长木板共速的过程中,A.小孩在滑板上下滑的加速度大小为2m/sB.小孩和滑板脱离前滑板的加速度大小为C.经过1s的时间,小孩离开滑板D.小孩离开滑板时的速度大小为0.8m/s【答案】BC【详解】AB.对小孩,由牛顿第二定律得,加速度大小为:同理对滑板,加速度大小为:2sin37 mga°=A .10N 15N F <<时物块B 和木板C 相对滑动B .木板和物块两者间的动摩擦因数不可求出C .由题目条件可求木板C 的质量D .15N F >时物块B 和木板C 相对滑动【答案】DA .小滑块的加速度向右,大小为A.小物块从传送带左端滑离传送带B.小物块滑离传送带时的速度大小为6m/sC.小物块从滑上传送带到滑离传送带经历的时间为A .2t 时刻,小物块离A 处的距离最大B .20t :时间内,小物块的加速度方向先向右后向左C .20t :时间内,因摩擦产生的热量为12121()22vv t mg t t m éù++êúëûD .20t :时间内,物块在传送带上留下的划痕为()21122v v t t ++A.物块最终从传送带N点离开B.物块将在4.8s时回到原处C.物块与传送带之间的摩擦因数为3 2D.传送带的速度1m/sv=,方向沿斜面向下【答案】C【详解】AD.从v t-图像可知,物体速度减为零后反向向上运动,最终的速度大小为A.5N·s B.20N·s【答案】D【详解】邮件轻放在传送带上时,受力分析如图所示支持力:NN cos53F mg q==A....【答案】D>),且小于传送带的速度时,对小物块受力分析,由【详解】AB.当小物块的初速度沿斜面向下(tan qA.弹出纸板后瞬间,纸板的加速度大小为2m/s²B.橡皮擦与纸板达到相同速度后,一直与纸板相对静止C.最终橡皮擦不会脱离纸板. .. .【答案】C【详解】箱子以一定的水平初速度0v 从左端滑上平板车,在摩擦力作用下,箱子做匀减速直线运动,平板A .当F 足够小时,A 仍保持静止状态B .当拉力F mg m =时,物块A.货物与平台一起做匀加速直线运动v=时,货物加速度为B.当平台速度0.6m/sv=时,货物加速度为C.当平台速度0.6m/sF<,平台将保持静止D.若施加的恒力10N【答案】C可知平台受到两个圆柱表面对平台沿平行于轴线的方向的摩擦力大小均为:F-根据牛顿第二定律可得:2可知随着平台速度v的逐渐增大,匀加速直线运动,故A错误;v=时,则有:BC.当平台速度0.6m/sA.传送带的速度越快,饺子的加速度越大B.饺子相对与传送带的位移为C.饺子由静止开始加速到与传送带速度相等的过程中,增加的动能等于因摩擦产生的热量D.传送带因传送饺子多消耗的电能等于饺子增加的动能A.图线I 反映的是包裹的运动B.包裹和传送带间的动摩擦因数为C.传送带的长度为20 mD.包裹相对传送带滑动的距离为【答案】D【详解】A.传送带启动后做匀加速运动,包裹在摩擦力作用下也做加速运动,则包裹的加速度一定小于传送到的加速度,则由图像可知图线A.t=2.5s时,货物所受摩擦力方向改变B.货物与传送带间的动摩擦因数为0.4C.传送带运行的速度大小为0.5m/sD.货物向下运动过程中所具有的机械能先减小后不变【答案】C【详解】A.由图乙可知,在0~2.5s内,货物的速度大于传动带的速度,A.包裹在最高点c时,对圆弧轨道的压力为零B.第一个包裹在传送带上运动的时间为C.圆弧轨道半径为() 223m5-A.货物与输送带间的动摩擦因数为0.825B.输送带A、B两端点间的距离为8mC.货物从下端A点运动到上端B点的时间为9s D.皮带输送机因运送该货物而多消耗的能量为【答案】CA.滑雪板与滑雪毯间的动摩擦因数为B.滑雪者从坡道顶端由静止滑到底端所需时间为C.整个下滑过程滑雪板与雪毯之间由于摩擦而产生热量为D.整个过程中摩擦力对滑雪板一直做正功【答案】CA.游客在“雪地魔毯”上一直做匀加速运动B.游客在“雪地魔毯”上匀加速运动的时间为C.游客在“雪地魔毯”受到的摩擦力的方向可能改变D.游客与“雪地魔毯”间的动摩擦因数约为【答案】D【详解】A.若游客在“雪地魔毯”上一直做匀加速运动,则游客的位移:13.如图,物块A 、B 静置叠放在光滑水平面上,A 、B 上下表面水平。

(物理)物理牛顿运动定律的应用练习题20篇

(物理)物理牛顿运动定律的应用练习题20篇

(物理)物理牛顿运动定律的应用练习题20篇一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为m=2kg的物块放在倾角为θ=37°的斜面体上,斜面质量为M=4kg,地面光滑,现对斜面体施一水平推力F,要使物块m相对斜面静止,求:(取sin37°=0.6,cos37°=0.8,g=10m/s2)(1)若斜面与物块间无摩擦力,求m加速度的大小及m受到支持力的大小;(2)若斜面与物块间的动摩擦因数为μ=0.2,已知物体所受滑动摩擦力与最大静摩擦力相等,求推力F的取值.(此问结果小数点后保留一位)【答案】(1)7.5m/s2;25N (2)28.8N≤F≤67.2N【解析】【分析】(1)斜面M、物块m在水平推力作用下一起向左匀加速运动,物块m的加速度水平向左,合力水平向左,分析物块m的受力情况,由牛顿第二定律可求出加速度a和支持力.(2)用极限法把F推向两个极端来分析:当F较小(趋近于0)时,由于μ<tanθ,因此物块将沿斜面加速下滑;若F较大(足够大)时,物块将相对斜面向上滑,因此F不能太小,也不能太大,根据牛顿第二定律,运用整体隔离法求出F的取值范围.【详解】(1)由受力分析得:物块受重力,斜面对物块的支持力,合外力水平向左.根据牛顿第二定律得:mgtanθ=ma得a=gtanθ=10×tan37°=7.5m/s2m受到支持力20N=25N cos cos37NmgFθ==︒(2)设物块处于相对斜面向下滑动的临界状态时的推力为F1,此时物块的受力如下图所示:对物块分析,在水平方向有 Nsinθ﹣μNcosθ=ma 1竖直方向有 Ncosθ+μNsinθ﹣mg=0对整体有 F 1=(M+m )a 1代入数值得a 1=4.8m/s 2 ,F 1=28.8N设物块处于相对斜面向上滑动的临界状态时的推力为F 2,对物块分析,在水平方向有 N ′sin θ﹣μN′cos θ=ma 2竖直方向有 N ′cos θ﹣μN ′sin θ﹣mg =0对整体有 F 2=(M +m )a 2代入数值得a 2=11.2m/s 2 ,F 2=67.2N综上所述可以知道推力F 的取值范围为:28.8N≤F ≤67.2N .【点睛】解决本题的关键能够正确地受力分析,抓住临界状态,运用牛顿第二定律进行求解,注意整体法和隔离法的运用.2.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:,(1)A 、B 两球开始运动时的加速度.(2)A 、B 两球落地时的动能.(3)A 、B 两球损失的机械能总量.【答案】(1)25m/s A a =27.5m/s B a = (2)850J kB E = (3)250J【解析】【详解】(1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得:对A :A A A A m g f m a -=对B :B B B B m g f m a -=A B f f =0.5A A f m g =联立以上方程得:25m/s A a = 27.5m/s B a =(2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动 则有:212A A h a t = 212B B h a t = A B H h h =+ A A V a t = B B V a t = 联立得:2s t =,10m A h =,15m B h =,10m/s A V =,15m/s B V =A 、B 落地时的动能分别为kA E 、kB E ,由机械能守恒,则有:21()2kA A A A A E m v m g H h =+- 400J kA E = 21()2kB B B B B E m v m g H h =+- 850J kB E = (3)两球损失的机械能总量为E ∆,()A B kA kB E m m gH E E ∆=+--代入以上数据得:250J E ∆=【点睛】(1)轻质物体两端的力相同,判断A 、B 摩擦力的性质,再结合受力分析得到.(2)根据运动性质和动能定理可得到.(3)由能量守恒定律可求出.3.如图,一块长度为9L m =、质量为1M kg =的长木板静止放置在粗糙水平地面上.另有质量为1m kg =的小铅块(可看做质点),以012/v m s =的水平初速度向右冲上木板.已知铅块与木板间的动摩擦因数为10.4μ=,木板与地面间的动摩擦因数为20.1μ=,重力加速度取210/g m s =,求:()1铅块刚冲上木板时,铅块与木板的加速度1a 、2a 的大小;()2铅块从木板上滑落所需时间;()3为了使铅块不从木板上滑落,在铅块冲上木板的瞬间,对长木板施加一水平向右的恒定拉力F ,求恒力F 的范围.【答案】(1)4m/s 2;2m/s 2(2)1s (3)2N≤F≤10N【解析】【分析】(1)对铅块、木板根据牛顿第二定律求解加速度大小;(2)从开始到滑落过程,铅块和木板的位移之差等于L ,求解时间;(3)根据两种临界态:到右端恰好共速以及共速后不能从左侧滑下求解力F 的范围;【详解】(1)铅块:11mg ma μ=解得a 1=4m/s 2;对木板:122()mg M m g Ma μμ-+=解得a 2=2m/s 2(2)从开始到滑落过程:2201112111()22v t a t a t L +-= 解得t 1=1s 10118/v v a t m s =-=2212/v a t m s ==(3)到右端恰好共速:2202122211()22v t a t a t L '+-= '01222v a t a t -= 解得a ′2=4m/s 2木板:'122()F mg M m g Ma μμ+-+= 解得F ≥2N ;共速后不能从左侧滑下:2-()()F M m g M m a μ+=+共,1a g μ≤共 解得F ≤10N , 则F 的范围:2N ≤F ≤10N【点睛】本题主要是考查牛顿第二定律的综合应用,对于牛顿第二定律的综合应用问题,关键是弄清楚物体的运动过程和受力情况,利用牛顿第二定律或运动学的计算公式求解加速度,再根据题目要求进行解答;知道加速度是联系静力学和运动学的桥梁.4.如图所示,质量均为3kg m =的物体A 、B 紧挨着放置在粗糙的水平面上,物体A 的右侧连接劲度系数为100N/m k =的轻质弹簧,弹簧另一端固定在竖直墙壁上,开始时两物体压紧弹簧并恰好处于静止状态。

高考物理 专题3-3 牛顿运动定律的综合应用(题型专练)

高考物理 专题3-3 牛顿运动定律的综合应用(题型专练)

1.如右图,将手电筒竖直向上放置,接通电源开关,旋松后盖使小电珠恰能点亮.手持电筒并保持它在竖直方向运动,要使得小电珠熄灭,可以()A.缓慢向上匀速运动B.缓慢向下匀速运动C.突然向上加速运动D.突然向下加速运动【答案】C2.用细线将篮球拴在升降机光滑的侧壁上,当升降机加速下降时,出现如图所示的情形.四位同学对此现象做出了分析与判断,其中可能正确的是()A.升降机的加速度大于g,侧壁对球无挤压B.升降机的加速度小于g,侧壁对球有挤压C.升降机的加速度等于g,侧壁对球无挤压D.升降机的加速度等于g,侧壁对球有挤压【解析】若细线有拉力,则T cosθ+mg=ma,可知a>g,此时侧壁对球有支持力;选项A错误;若细线无拉力,则mg=ma,可知a=g,此时侧壁对球无支持力;升降机的加速度不可能小于g;故选项C正确.【答案】C3.如图所示,兴趣小组的同学为了研究竖直运动的电梯中物体的受力情况,在电梯地板上放置了一个压力传感器,将质量为4kg的物体放在传感器上.在电梯运动的某段过程中,传感器的示数为44N.g取10m/s2.对此过程的分析正确的是()A.物体受到的重力变大B.物体的加速度大小为1m/s2C.电梯正在减速上升D.电梯的加速度大小为4m/s2【答案】B4.为了让乘客乘车更为舒适,某探究小组设计了一种新的交通工具,乘客的座椅能随着坡度的变化而自动调整,使座椅始终保持水平,如图所示.当此车加速上坡时,盘腿坐在座椅上的一位乘客()A.处于失重状态B.不受摩擦力的作用C.受到向前(水平向右)的摩擦力作用D.所受力的合力竖直向上【解析】当此车加速上坡时,车里的乘客具有相同的加速度,方向沿斜面向上,人应受到竖直向下的重力,垂直水平面竖直向上的弹力和水平向右的摩擦力,三力合力沿斜面向上,C正确,B、D错误;由于有沿斜面向上的加速度,所以在竖直方向上有向上的加速度,物体处于超重状态,A错误.【答案】C5.如图,固定斜面,CD段光滑,DE段粗糙,A、B两物体叠放在一起从C点由静止下滑,下滑过程中A、B保持相对静止,则()A.在CD段时,A受三个力作用B.在DE段时,A可能受二个力作用C.在DE段时,A受摩擦力方向一定沿斜面向上D.整个下滑过程中,A、B均处于失重状态【答案】C6.(多选)如图甲,某人正通过定滑轮将质量为m的货物提升到高处,滑轮的质量和摩擦均不计,货物获得的加速度a与绳子对货物竖直向上的拉力T之间的函数关系如图乙所示.由图可以判断()A.图线与纵轴的交点M的值a M=-gB.图线与横轴的交点N的值T N=mgC.图线的斜率等于物体的质量mD.图线的斜率等于物体质量的倒数1m【解析】货物受重力和绳子的拉力作用,根据牛顿第二定律可得T-mg=ma,图线与纵轴的交点,即当T=0时,a=-g,图线与横轴的交点即a=0时,T=mg,A、B正确;根据牛顿第二定律可得a=Tm-g,根据关系式可得图象的斜率k=1m,C错误D正确.7.球拍托球沿水平面匀加速跑,设球拍和球的质量分别为M、m,球拍平面和水平面之间的夹角为θ,球拍与球保持相对静止,它们之间的摩擦及空气阻力不计,则()A.运动员的加速度为g tanθB.球拍对球的作用力为mgsinθC .运动员对球拍的作用力为Mg cos θD .若加速度大于g sin θ,球一定沿球拍向上运动【解析】对网球进行受力分析,受到重力mg 和球拍的支持力F N ,受力如图所示:根据牛顿第二定律,F N sin θ=ma ,F N cos θ=mg ,整理可以得到:F N =mg cos θ,a =g tan θ,故选项A 正确,选项B 错误;以网球与球拍整体为研究对象,其加速度与网球的加速度相同,受力如图所示:根据牛顿第二定律得,运动员对球拍的作用力为F =M +mg cos θ,故选项C 错误;当加速度a >g tan θ时,网球将向上运动,由于g sin θ与g tan θ的大小关系未知,故球不一定沿球拍向上运动,故D 错误.所以本题正确选项为A.【答案】A8.(多选)如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间动摩擦因数为μ3,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g .现对物块施加一水平向右的拉力F ,则木板加速度a 大小可能是()A .a =μgB .a =23μgC .a =13μgD .a =F 2m -13μg【答案】CD9.(多选)如图甲所示,静止在水平面C 上足够长的木板B 左端放着小物块A .某时刻,A 受到水平向右的外力F 作用,F 随时间t 的变化规律如图乙所示.A 、B 间最大静摩擦力大于B 、C 之间的最大静摩擦力,假设最大静摩擦力等于滑动摩擦力.则在拉力逐渐增大的过程中,下列反映A 、B 运动过程中的加速度及A 与B 间摩擦力f 1、B 与C 间摩擦力f 2随时间变化的图线中正确的是()【答案】ACD10.雨滴从空中由静止落下,若雨滴受到的空气阻力随雨滴下落速度的增大而增大,图中能大致反映雨滴运动情况的是()答案C 解析对雨滴进行受力分析可得mg -kv =ma ,随雨滴速度的增大可知雨滴做加速度减小的加速运动。

2024高考物理牛顿运动定理综合练习题及答案

2024高考物理牛顿运动定理综合练习题及答案

2024高考物理牛顿运动定理综合练习题及答案一、选择题1. 牛顿第一定律适用的是()A. 运动状态改变B. 速度改变C. 方向改变D. 惯性运动2. 牛顿第二定律的数学表达式是()A. F = maB. W = mgC. P = mvD. F = mv3. 牛顿第二定律表明,物体的加速度与()成正比,与质量成反比。

A. 力B. 速度C. 位移D. 能量4. 一个质量为2 kg的物体受到的力是10 N,则它的加速度为()A. 2 m/s^2B. 5 m/s^2C. 10 m/s^2D. 20 m/s^25. 一个质量为5 kg的物体受到的力是20 N,则它的加速度为()A. 2 m/s^2B. 4 m/s^2C. 5 m/s^2D. 10 m/s^2二、填空题1. 牛顿第三定律指出,任何两个相互作用的物体之间都有相等大小、方向相反的()。

2. 抛体运动是一种()的运动。

3. 一个物体沿着直线运动,它的速度大小不变,但方向改变,这是一种()运动。

4. 力是引起物体发生()运动或改变运动状态的原因。

5. 物体的质量是物体所具有的性质,不随()而改变。

三、计算题1. 一个质量为3 kg的物体受到的力是12 N,求它的加速度。

答: 加速度 a = F / m = 12 N / 3 kg = 4 m/s^22. 一个质量为5 kg的物体受到的力是20 N,求它的加速度。

答: 加速度 a = F / m = 20 N / 5 kg = 4 m/s^23. 一个物体质量为10 kg,在受到100 N的力作用下,求它的加速度。

答: 加速度 a = F / m = 100 N / 10 kg = 10 m/s^24. 一个物体在10 N的力下产生2 m/s^2的加速度,求物体的质量。

答: 质量 m = F / a = 10 N / 2 m/s^2 = 5 kg5. 一个物体在15 N的力下产生3 m/s^2的加速度,求物体的质量。

【物理】物理牛顿运动定律的应用练习题20篇含解析

【物理】物理牛顿运动定律的应用练习题20篇含解析

(1)求经过多长时间煤块与小车保持相对静止 (2) 求 3s 内煤块前进的位移 (3)煤块最终在小车上留下的痕迹长度 【答案】(1) 2s (2) 8.4m (3) 2.8m 【解析】
【分析】
分别对滑块和平板车进行受力分析,根据牛顿第二定律求出各自加速度,物块在小车上停
止相对滑动时,速度相同,根据运动学基本公式即可以求出时间.通过运动学公式求出位
k(X x) mg ma Fmax Mg Ma
以上各式代如数据联立解得
Fmax 168N
该开始向上拉时有最小拉力则
Fmin kX (M m)g (M m)a
解得
Fmin 72N
考点:牛顿第二定律的应用 点评:难题.本题难点在于确定最大拉力和最小拉力的位置以及在最大拉力位置时如何列 出牛顿第二定律的方程,此时的弹簧的压缩量也是一个难点.
(1)分别求出滑块在平板车上滑行时,滑块与平板车的加速度大小;
(2)计算说明滑块能否从平板车的右端滑出.
【答案】(1)

(2)恰好不会从平板车的右端滑出.
【解析】
根据牛顿第二定律得
对滑块,有

解得
对平板车,有

解得

设经过 t 时间滑块从平板车上滑出 滑块的位移为:

平板车的位移为:

而且有 解得: 此时, 所以,滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.
移.
【详解】
(1)根据牛顿第二定律,刚开始运动时对小黑煤块有:
代入数据解得:a1=2m/s2 刚开始运动时对小车有:
FN ma1
FN-mg=0
F FN Ma2
解得:a2=0.6m/s2 经过时间 t,小黑煤块和车的速度相等,小黑煤块的速度为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一物理牛顿运动定律综合应用训练
Ⅰ知识网络:
Ⅱ方法汇总
Ⅲ精选训练:
一、选择题:
1.(2012年高考新课标全国卷)伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础.早期物理学家关于惯性有下列说法,其中正确的是( )
A.物体抵抗运动状态变化的性质是惯性
B.没有力的作用,物体只能处于静止状态
C.行星在圆周轨道上保持匀速率运动的性质是惯性
D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动
2.(2011年高考上海卷)如图,在水平面上的箱子内,带异种电荷的小球a、b用绝缘细线分别系于上、下两边,处于静止状态.地面受到的压力为N,球b所受细线的拉力为F.剪断连接球b的细线后,在球b上升过程中地面受到的压力( )
A.小于N B.等于N
C.等于N+F D.大于N+F
3.(2012年高考海南卷)根据牛顿第二定律,下列叙述正确的是( )
A.物体加速度的大小跟它的质量和速度大小的乘积成反比
B.物体所受合力必须达到一定值时,才能使物体产生加速度
C.物体加速度的大小跟它所受作用力中的任一个的大小成正比
D.当物体质量改变但其所受合力的水平分力不变时,物体水平加速度大小与其质量成反比
4.(2013年山西省调研)电子台秤放置于水平桌面上,一质量为M的框架放在台秤上,框架内有一轻弹簧,上端固定在框架顶部,下端系一个质量为m的物体,物体下方用竖直细线与框架下部固定,各物体都处于静止状态.今剪断细线,物体开始振动,且框架始终没有离开台秤,弹簧不超出弹性限度,空气阻力忽略不计,重力加速度为g.则下列说法正确的是( )
A.当台秤示数最小时弹簧一定处于原长位置
B.当台秤示数最小时物体一定处在平衡位置
C.振动过程中台秤的最大示数一定大于(M+m)g
D.细线剪断前,其张力不可能大于(M+m)g
5. (2013全国新课标理综II第14题)一物块静止在粗糙的水平桌面上。

从某时刻开始,物块受到一方向不变的水平拉力作用。

假设物块与桌面间的最大静摩擦力等于滑动摩擦力,以a表示物块的加速度大小,F表示水平拉力的大小。

能正确描述F与a之间关系的图象是
6.(2013高考浙江理综第19题)如图所示,总质量为460kg的热气球,从地面刚开始竖直上升时的加速度为0.5m/s2,当热气球上升到180m时,以5m/s的速度向上匀速运动。

若离开地面后热气球所受浮力保持不变,上升过程中热气球总质量不变,重力加速度g=10m/s2 。

关于热气球,下列说法正确的是
A.所受浮力大小为4830N
B.加速上升过程中所受空气阻力保持不变
C.从地面开始上升10s后的速度大小为5m/s
D.以5m/s匀速上升时所受空气阻力大小为230N
7
.(2013高考安徽理综第14题)如图所示,细线的一端系一质量为m的小球,另一端固定在倾角为θ的光滑斜面体顶端,细线与斜面平行。

在斜面体以加速度a 水平向右做匀加速直线运动的过程中,小球始终静止在斜面上,小球受到细线的拉力T和斜面的支持力为FN分别为(重力加速度为g)
A.T=m (gsinθ+ acosθ),FN= m(gcosθ- asinθ)
B.T=m(gsinθ+ acosθ) ,FN= m(gsinθ- acosθ)
C.T=m(acosθ- gsinθ) ,FN= m(gcosθ+ asinθ)
D.T=m(asinθ- gcosθ) ,FN= m(gsinθ+ acosθ)
8.(2012年高考山东卷)将地面上静止的货物竖直向上吊起,货物由地面运动至最高点的过程中,v t图象如图所示.以下判断正确的是( )
A.前3 s内货物处于超重状态
B.最后2 s内货物只受重力作用
C.前3 s内与最后2 s内货物的平均速度相同
D.第3 s末至第5 s末的过程中,货物的机械能守恒
9.如图,足够长的传送带与水平方向成θ角放置,传送带以速度v0匀速传动,当一质量为m的物体轻轻地放在传送带的顶端后(物体与传送带之间动摩擦因数为μ,且μ<tan θ),关于物体的a t图像及v t图像可能正确的是( )
10、物块从光滑曲面上的P点自由滑下,通过粗糙的静止水平传送带以后落到地面上的Q点,若传送带的皮带轮沿逆时针方向转动起来,如图所示,再把物块放到P 点自由滑下则()
A.物块将仍落在Q点
B.物块将会落在Q点的左边
C.物块将会落在Q点的右边
D.物块有可能落不到地面上
二、实验题
11.在“验证牛顿第二定律”的实验中,以下做法正确的是( )
A.平衡摩擦力时,应将小盘用细绳通过定滑轮系在小车上
B.每次改变小车的质量时,不需要重新平衡摩擦力
C.实验时,先放开小车,再接通打点计时器的电源
D.求小车运动的加速度时,可用天平测出小盘和砝码的质量(M′和m′)以及小车质量M,直接用公式a=
g求出.
12.如图所示为“用DIS(位移传感器、数据采集器、计算机)研究加速度和力的关系”的实验装置.
(1)在该实验中必须采用控制变量法,应保持________不变,用钩码所受的重力作为________,用DIS测小车的加速度.
(2)改变所挂钩码的数量,多次重复测量.在某次实验中根据测得的多组数据可画出a F关系图线(如图所示).
①分析此图线的OA段可得出的实验结论是
________________________________________________________________________ ___________________________________________.
②此图线的AB段明显偏离直线,造成此误差的主要原因是( )
A.小车与轨道之间存在摩擦
B.导轨保持了水平状态
C.所挂钩码的总质量太大
D.所用小车的质量太大
三、计算题
13.(2013年黄冈期末考试)如图(甲)所示,质量m=2 kg的物体在水平面上向右做直线运动.过a点时给物体作用一个水平向左的恒力F并开始计时,选水平向右为速度的正方向,通过速度传感器测出物体的瞬时速度,所得v t图象如图(乙)所示.
取重力加速度g=10 m/s2.求:
(1)力F的大小和物体与水平面间的动摩擦因数μ;
(2)10 s末物体离a点的距离.
14、(2013年江西盟校联考)如图所示,一水平传送装置有轮半径均为R=
m的主动轮O1和从动轮O2及传送带等构成.两轮轴心相距8.0 m,轮与传送带不打滑.现用此装置运送一袋面粉,已知这袋面粉与传送带之间的动摩擦因数为μ=0.4,这袋面粉中的面粉可不断地从袋中渗出.(g取10 m/s2)
(1)当传送带以4.0 m/s的速度匀速运动时,将这袋面粉由左端O2正上方的
A点轻放在传送带上后,这袋面粉由A端运送到O1正上方的B端所用的时间为多少?
(2)要想尽快将这袋面粉由A端送到B端(设初速度仍为零),主动轮O1的转速至少应为多大?
15.(15分)(2013高考山东理综第22题)如图所示,一质量m=0.4kg的小物块,以v0=2m/s的初速度,在与斜面成某一夹角的拉力F作用下,沿斜面向上做匀加速运动,经t=2s的时间物块由A点运动到B点,A、B之间的距离L=10m。

已知斜面倾角θ=30o,物块与斜面之间的动摩擦因数。

重力加速度g取10 m/s2.
(1)求物块加速度的大小及到达B点时速度的大小。

(2)拉力F与斜面的夹角多大时,拉力F最小?拉力F的最小值是多少?
16、如图,质量为M,倾角为α的楔形物A放在水平地面上。

质量为m的B物体从楔形物的光滑斜面上由静止释放,在B物体加速下滑过程中,A物体保持静止。

地面受到的压力多大?
17. (2013高考天津理综物理第10题)(16分)质量为m=4kg的小物块静止于水平地面上的A点,现用F=10N的水平恒力拉动物块一段时间后撤去,物块继续滑动一段位移停在B点,A、B两点相距x=20m,物块与地面间的动摩擦因数
μ=0.2,g取10m/s2,,求:
(l)物块在力F作用过程发生位移xl的大小:
(2)撤去力F后物块继续滑动的时间t。

18.如图所示,光滑的圆球恰好放存木块的圆弧槽内,它们的左边接触点为A,槽半径为R,且OA与水平面成α角.球的质量为m,木块的质量为M,M所处的平面是水平的,各种摩擦及绳、滑轮的质量都不计.则释放悬挂物P后,要使球和木块保持相对静止,P物的质量的最大值是多少?
19.如图所示,一条轻绳两端各系着质量为m1和m2的两个物体,通过定滑轮悬挂在车厢顶上,m1>m2,绳与滑轮的摩擦忽略不计.若车以加速度a向右运动,m1仍然与车厢地板相对静止,试问:(1)此时绳上的张力T.(2)m1与地板之间的摩擦因数μ至少要多大?
20.如图所示,一密度为ρ0、重力为W1的铁块悬挂于弹簧秤S1上,并全部浸入密度为ρ的液体中,若液体及杯共重W2,全部置于磅秤S2上.(1)铁块平衡时,两秤示数各为多少?(2)若撤去弹簧秤,铁块在该液体中“自由下落”时,磅秤的示数是多少?。

相关文档
最新文档