工程常用几何体面积体积计算公式
几何体的表面积和体积公式大全

几何体的表面积和体积公式大全几何体的表面积,体积计算公式1、圆柱体:表面积:2πRr+2πRh 体积:πR²h (R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR²+πR[(h²+R²)的平方根] 体积:πR²h/3 (r为圆锥体低圆半径,h为其高, 3、正方体a-边长,S=6a²,V=a³4、长方体a-长,b-宽,c-高S=2(ab+ac+bc) V=abc5、棱柱S-底面积h-高V=Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/38、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr²,S侧=Ch ,S表=Ch+2S底,V=S底h=πr²h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、直圆锥r-底半径h-高V=πr^2h/312、圆台r-上底半径,R-下底半径,h-高V=πh(R²+Rr+r²)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a²+h²)/6 =πh²(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r1²+r2²)+h²]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr²=π2Dd²/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D²+d²)/12 ,(母线是圆弧形,圆心是桶的中心)V=πh(2D²+Dd+3d²/4)/15 (母线是抛物线形)。
各种形体面积体积计算公式

各种形体面积体积计算公式
一、立体
1.椎体
椎体的表面积公式为:S=2πrh;椎体的体积公式为:V=1/3πr^2h,其中r为椎体半径,h为椎体的高。
2.圆柱体
圆柱体的表面积公式为:S=2πrh+2πr2;圆柱体的体积公式为:
V=πr²h,其中r为圆柱体底面的半径,h为圆柱体的高。
3.球体
球体的表面积公式为:S=4πr²;球体的体积公式为:V=4/3πr³,其中r为球体的半径。
4.圆锥体
圆锥体的表面积公式为:S=πrl+πrs;圆锥体的体积公式为:
V=1/3πr²h,其中r为圆锥体的底面半径,l为圆锥体的底面周长,h为圆锥体的高。
5.正方体
正方体的表面积公式为:S=6a²;正方体的体积公式为:V=a³,其中a为正方体的边长。
6.平行四边体
平行四边体的表面积公式为:S=2a²+2b²;平行四边体的体积公式为:V=a²b,其中a为平行四边体的底面的长度,b为平行四边体的底面的宽度。
二、平面
1.三角形
三角形的面积公式为:S=1/2absinC,其中a、b为三角形的两边,C
为三角形的夹角(以弧度为单位)。
2.矩形
矩形的面积公式为:S=ab,其中a为矩形的长,b为矩形的宽。
3.正方形
正方形的面积公式为:S=a²,其中a为正方形的边长。
4.圆
圆的面积公式为:S=πr²,其中r为圆的半径。
常见几何体的表面积体积公式

常见几何体的表面积体积公式1、长方体V:体积s:面积a:长b:宽h:高(1)表面积(长×宽+长×高+宽×高)×2 {S=2(ab+ah+bh)(2)体积=长×宽×高(V=abh)2、圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径3、圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷34、正方体V:体积s:面积a:边长体积:边长×边长×边长扩展资料周长:1、正方形C周长S面积a边长周长=边长×4(C=4a)面积=边长×边长(S=a×a)2、长方形C周长S面积a边长周长=(长+宽)×2(C=2(a+b))面积=长×宽(S=ab)3、三角形s面积a底h高面积=底×高÷2(s=ah÷2)三角形高=面积×2÷底三角形底=面积×2÷高4、平行四边形s面积a底h高面积=底×高(s=ah)5、梯形s面积a上底b下底h高面积=(上底+下底)×高÷2(s=(a+b)×h÷2)6、圆形S面积C周长πd=直径r=半径(1)周长=直径×π=2×π×半径(C=πd=2πr)(2)面积=半径×半径×π。
工程常用面积体积计算公式

工程常用面积体积计算公式工程中常用的面积和体积计算公式非常多,涉及到各种建筑、土木、机械、电力等不同领域的工程。
以下是一些常见的面积和体积计算公式的示例:1.平面图形的面积计算公式:-长方形的面积公式:面积=长×宽-正方形的面积公式:面积=边长×边长-圆的面积公式:面积=π×半径×半径-椭圆的面积公式:面积=π×长轴半径×短轴半径-三角形的面积公式:面积=底边长×高/22.三维几何体的体积计算公式:-立方体的体积公式:体积=边长×边长×边长-直方体的体积公式:体积=长×宽×高-圆柱体的体积公式:体积=圆的面积×高-圆锥体的体积公式:体积=圆锥的底面积×高/3-球体的体积公式:体积=4/3×π×半径×半径×半径3.土木工程中的体积计算公式:-坝体体积计算公式:体积=坝顶长度×每个梯段高度之和-挡土墙体积计算公式:体积=墙底长度×每个梯段高度之和-坡道体积计算公式:体积=坡度×坡道宽度×坡道长度-水库库容计算公式:体积=水库底面积×水位高度4.电力工程中的体积计算公式:-电容器体积计算公式:体积=电容量/电容器电压-变压器体积计算公式:体积=功率/变压器容量密度5.机械工程中的体积计算公式:-内燃机汽缸体积计算公式:体积=π×活塞直径×活塞行程×气缸数量这只是一些常见的面积和体积计算公式示例,实际应用中还有许多其他的公式,根据具体工程的需求会有所不同。
在工程实践中,我们还需要考虑到各种误差和修正因素,以及特殊形状和复杂结构的计算方法。
因此,在实际应用中,需要根据具体情况进行计算并选择合适的公式。
空间几何体表面积和体积公式

空间几何体表面积和体积公式
空间几何体表面积和体积公式如下:
表面积公式:
S = 2 × (a + b + c)
其中,a、b、c分别表示几何体的长、宽、高。
体积公式:
V = a × b × c
其中,a、b、c分别表示几何体的长、宽、高。
还有一些常用的表面积和体积公式:
1. 如果一个几何体只有一个面是正方形或正多边形,那么它的
表面积和体积都可以用一个简单的公式计算:S = 4a,V = a × b。
2. 如果一个几何体的边长为c,那么它的表面积可以表示为:S = 2 × (c + d),其中d表示几何体的长宽比。
体积可以表示为:V = c ×d。
3. 如果一个几何体是正多边形,且每个内角都相等,那么它的表
面积和体积都可以用一个复杂的公式计算:S = (n-2) × 4a,V = (n-2) × a × b。
其中n表示正多边形的边数。
4. 如果一个几何体只有一个面是矩形或圆形,那么它的表面积
和体积都可以用一个简单的公式计算:S = a + b + c,V = π× r ×(a + b + c)。
其中π是圆周率,r表示几何体的半径。
这些公式只是一些基本的几何公式,实际上还有很多更复杂的公
式可以用于计算几何体的性质。
了解这些基本的公式有助于我们更方
便地计算几何体的面积和体积。
体积公式大全-互联网类

体积公式大全-互联网类一、关键信息1、常见几何体体积公式11 长方体体积公式:长×宽×高12 正方体体积公式:棱长×棱长×棱长13 圆柱体体积公式:底面积×高(π×半径²×高)14 圆锥体体积公式:1/3×底面积×高(1/3×π×半径²×高)15 球体体积公式:4/3×π×半径³2、体积单位换算公式21 1 立方米= 1000 立方分米22 1 立方分米= 1000 立方厘米23 1 立方厘米= 1000 立方毫米3、体积计算的应用领域31 建筑工程32 制造业33 物理学34 数学教育二、体积公式详细说明1、长方体体积公式长方体体积的计算基于其长度、宽度和高度。
公式为 V = l × w × h,其中 V 表示体积,l 表示长度,w 表示宽度,h 表示高度。
例如,一个长方体的长为 5 厘米,宽为 3 厘米,高为 2 厘米,其体积为 5 × 3 × 2= 30 立方厘米。
11 长方体体积公式的推导长方体可以看作是由无数个相同的小立方体堆积而成。
每个小立方体的体积为 1 立方单位,长方体所含小立方体的数量即为其体积。
通过计算长、宽、高方向上小立方体的个数,相乘即可得到总体积。
12 长方体体积公式的应用场景长方体在日常生活中非常常见,如房屋的房间、冰箱的内部空间、书本的形状等。
在建筑设计、物流包装等领域,准确计算长方体的体积对于空间规划和材料用量的估算至关重要。
2、正方体体积公式正方体是一种特殊的长方体,其所有棱长相等。
体积公式为 V = a³,其中 a 表示棱长。
例如,一个正方体的棱长为 4 厘米,其体积为 4³=64 立方厘米。
21 正方体体积公式的推导与长方体类似,正方体也可以看作是由小立方体堆积而成,由于其棱长相等,所以体积为棱长的立方。
数学几何表面积体积公式

数学几何表面积体积公式一、正方体。
1. 表面积公式。
- 设正方体的棱长为a,正方体的表面积S = 6a^2。
因为正方体有6个面,且每个面的面积都是a^2。
2. 体积公式。
- 体积V=a^3,即棱长的立方。
二、长方体。
1. 表面积公式。
- 设长方体的长、宽、高分别为a、b、c,表面积S = 2(ab+bc + ac)。
长方体有6个面,相对的面面积相等,ab、bc、ac分别是三组相对面的面积。
2. 体积公式。
- 体积V=abc。
三、圆柱。
1. 表面积公式。
- 设圆柱底面半径为r,高为h。
圆柱的表面积S = 2π r^2+2π rh。
其中2π r^2是两个底面圆的面积,2π rh是侧面展开矩形的面积(矩形的长为底面圆的周长2π r,宽为圆柱的高h)。
2. 体积公式。
- 体积V=π r^2h,底面积π r^2乘以高h。
四、圆锥。
1. 表面积公式。
- 设圆锥底面半径为r,母线长为l。
圆锥的表面积S=π r^2+π rl。
其中π r^2是底面圆的面积,π rl是侧面展开扇形的面积(扇形的弧长为底面圆的周长2π r,半径为母线长l)。
2. 体积公式。
- 体积V=(1)/(3)π r^2h,这里h是圆锥的高,根据勾股定理l^2=h^2+r^2可求出h(已知r和l时),再代入体积公式。
五、球。
1. 表面积公式。
- 设球的半径为R,球的表面积S = 4π R^2。
2. 体积公式。
- 体积V=(4)/(3)π R^3。
几何体积和表面积公式

几何体积和表面积公式一、正方体。
1. 体积公式。
- 设正方体的棱长为a,正方体的体积V = a^3。
2. 表面积公式。
- 正方体有6个面,且每个面的面积都为a^2,所以正方体的表面积S=6a^2。
二、长方体。
1. 体积公式。
- 设长方体的长、宽、高分别为a、b、c,则长方体的体积V = abc。
2. 表面积公式。
- 长方体的表面积S = 2(ab + bc+ac),因为长方体有6个面,相对的面面积相等,其中ab、bc、ac分别为三组相对面的面积。
三、圆柱。
1. 体积公式。
- 设圆柱底面半径为r,高为h,圆柱的体积V=π r^2h。
2. 表面积公式。
- 圆柱的表面积由两个底面圆的面积和侧面矩形的面积组成。
底面圆的面积为π r^2,两个底面圆面积就是2π r^2。
侧面矩形的长为底面圆的周长2π r,宽为圆柱的高h,侧面面积为2π rh。
所以圆柱的表面积S = 2π r^2+2π rh。
四、圆锥。
1. 体积公式。
- 设圆锥底面半径为r,高为h,圆锥的体积V=(1)/(3)π r^2h。
2. 表面积公式。
- 圆锥的表面积由底面圆的面积和侧面扇形的面积组成。
底面圆面积为πr^2。
设圆锥母线长为l(圆锥顶点到底面圆周上任意一点的距离),侧面扇形的弧长为底面圆的周长2π r,根据扇形面积公式S=(1)/(2)lr(这里l为扇形弧长,r为母线长),侧面扇形面积为π rl。
所以圆锥的表面积S=π r^2+π rl。
五、球。
1. 体积公式。
- 设球的半径为R,球的体积V = (4)/(3)π R^3。
2. 表面积公式。
- 球的表面积S = 4π R^2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程常用几何体面积体
积计算公式
LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】
工程常用几何体面积体积计算公式
放坡公式
若A B为二边; H为深度
1、一边放坡 V=A*B*H+1/2*K*H2〔A或B〕
2、相邻二边坡 V=A*B*H+1/2*K* H2*[A+B]+1/3*K2H3
3、相对二边放坡 V=A*B*H+K* H2*[A或B]
4、三边放坡 V=A*B*H+1/2*K*H2*[(2A+B)或 (2B+A)]+2/3* K2H3
5.四边放坡 V=(A+KH)*(B+KH)*H+1/3* K2H3
6.不放坡 V=ABH
其中三边放坡的体积比同样尺寸的四边放坡的体积要大要大很多,请问上面的公式正确吗?
从表面上看你的公式没有什么错误的,我也用数字导进去了,四边放坡的面积就是比三边放坡的面积大的,你是
不规则图形算土方量的公式:1/3*h*[S1+S2+(S1*S2)^1/2]
H——为高度
S1——为底面面积
S2——为上口面积
(S1*S2)^1/2——为面积乘积开根号。