广州省实初三数学一模试题及答案
广东省实验中学2020年中考数学一模试题有答案精析
广东省实验中学2020 年中考数学一模试卷(分析版 )一、选择题(本大题共10 小题,每题 3 分,共 30 分,在每题给出的 4 个选项中只有一项释切合题目要求的)1. 2 的倒数是()A.2B.﹣ 2 C. D .﹣2.以下图形中,不是中心对称图形有()A. B. C. D.3.数据 5, 7, 8, 8, 9 的众数是()A.5B.7C.8D.9、4.以下四个几何体中,主视图是三角形的是()A. B. C. D.5.以下计算正确的选项是()A . 3a﹣a=3B .a 2+a2=a4C.( 3a)﹣( 2a)=6a D.( a2)3=a66.函数 y=中自变量x 的取值范围是()A . x≥﹣ 3B .x≥﹣ 3 且 x≠ 1C. x≠ 1 D . x≠﹣ 3 且 x≠17.如图,⊙O 的半径为1,A 、B 、C 是圆周上的三点,∠ BAC=36 °,则劣弧 BC 的长是()A. B. C. D.8.如图, A 、 B、 C 三点在正方形网格线的交点处,若将△ABC 绕着点 A 逆时针旋转获得△AC ′B′,则 tanB′的值为()A. B. C. D.2bx c的图象以下图,反比率函数与正比率函数y=bx在同一坐标系内9.二次函数 y=ax+ +的大概图象是()A. B. C. D.10.如 ,第 ① 个 形中一共有1 个平行四 形,第 ② 个 形中一共有 5 个平行四 形,第③ 个 形中一共有11 个平行四 形, ⋯ 第 ⑩ 个 形中平行四 形的个数是()A . 54B . 110C . 19D . 109二、填空 (本大 共 6 小 ,每小 3 分,共 18 分)11.分解因式: 2a 2+4a=.12.正 n 形的一个外角的度数60°, n 的 .13.已知一次函数 y=( m+2) x+3,若 y 随 x 增大而增大, m 的取 范 是.14.对于 x 的一元二次方程 x 2+( m 2)x+m+1=0 有两个相等的 数根,m 的 是.15.如 ,将矩形 片ABCD 沿 EF 折叠,使点 B 与 CD 的中点 B'重合.若 AB=2 ,BC=3 ,△ FCB'与△ B'DG 的面 比.16.如 ,四 形ABCD中,∠ BAD=130 °,∠ B= ∠ D=90 °,在BC 、CD上分 找一点M 、N ,使△AMN周 最小 , ∠AMN +∠ANM的度数.三、解答17.( 9 分)解方程:18.( 9 分)先化 ,再求 :(a+1)2 ( a+1)( a1),此中,a= 1.19.( 10 分)以AB 、AC向△ABC外作等 △ABD和等 △ACE , 接BE , CD ,你达成 形,并 明:BE=CD .(尺 作 ,不写作法,保存作 印迹)20.( 10 分)我市某养殖 划 甲、乙两种 苗700 尾,甲种 苗每尾3 元,乙种苗每尾5 元.(1)若 两种 苗共用去 2500 元, 甲、乙两种 苗各 多少尾?(2) 甲种 苗不超280 尾, 怎样 苗,使 苗的 用最低?并求出最低用.21.( 12 分)王老师为了认识所教班级学生自主学习、合作沟通的详细状况,对本班部分学生进行了为期半个月的追踪检查,并将检查结果分红四类, A :优异; B:优异; C:合格; D:一般;并将检查结果绘制成以下两幅不完好的统计图,请你依据统计图解答以下问题:(1)本次检查中,王老师一共检查了名同学,此中 C 类女生有名, D 类男生有名;(2)将上边的条形统计图增补完好;(3)从被检查的 A 类和 D 类学生中分别选用一位同学进行“一对一”互帮学习,恳求出所选两位同学恰巧是一位男同学和一位女同学的概率.2212分)如图,已知一次函数y=kx+b的图象交反比率函数y= x0)图象于点A、B,.((>交 x 轴于点 C.(1)求 m 得取值范围;(2)若点 A 的坐标是( 2,﹣ 4),且 =,求 m 的值和一次函数的分析式.23.( 12 分)已知如图,△ ABC 中 AB=AC ,AE 是角均分线, BM 均分∠ ABC 交 AE 于点 M ,经过 B、 M 两点的⊙ O 交 BC 于 G,交 AB 于点 F, FB 恰为⊙ O 的直径.(1)求证: AE 与⊙ O 相切;(2)当 BC=6, cosC=,求⊙ O 的直径.24.( 14 分)如图①,在 Rt△ ABC 中,∠ C=90 °, AC=6 , BC=8 ,动点 P 从点 A 开始沿边AC 向点 C 以每秒 1 个单位长度的速度运动,动点Q 从点 C 开始沿边CB 向点 B 以每秒 2个单位长度的速度运动,点P ,Q分别从点A 、C同时出发,当此中一点抵达端点时,另一点也随之停止运动,设运动时间为t 妙( t ≥ 0).( 1)若三角形 CPQ 是等腰三角形,求 t 的值.( 2)如图 ② ,过点 P 作 PD ∥ BC ,交 AB 于点 D ,连结 PQ ;① 能否存在t 的值,使四边形PDBQ为菱形?若存在,求出t 的值;若不存在,说明原因,并研究怎样改变点Q 的速度(匀速运动),使四边形PDBQ在某一时辰为菱形,求点 Q 的速度.② 当 t 取何值时,△ CPQ 的外接圆面积的最小?而且说明此时△CPQ 的外接圆与直线 AB的地点关系?25.( 14 分)已知抛物线 y=﹣ x 2+3x +4 交 y 轴于点A ,交 x 轴于点B ,C (点 B 在点 C 的 右边).过点 A 作垂直于 y 轴的直线 l .在位于直线 l 下方的抛物线上任取一点P ,过点 P作直线 PQ 平行于 y 轴交直线 l 于点 Q .连结 AP . (1)写出 A , B , C 三点的坐标;(2)若点 P 位于抛物线的对称轴的右边:① 假如以 A , P ,Q 三点组成的三角形与△ AOC 相像,求出点 P 的坐标;② 若将△ APQ 沿 AP 对折,点 Q 的对应点为点 M .能否存在点P ,使得点 M 落在 x 轴上?若存在,求出点 P 的坐标;若不存在,请说明原因;③ 设 AP 的中点是 R ,其坐标是( m ,n ),请直接写出 m 和 n 的关系式,并写出 m 的取值范围.2020 年广东省实验中学中考数学一模试卷参照答案与试题分析一、选择题(本大题共10 小题,每题 3 分,共 30 分,在每题给出的 4 个选项中只有一项释切合题目要求的)1. 2 的倒数是()A.2B.﹣ 2 C. D .﹣【考点】倒数.【剖析】直接依据倒数的定义进行解答即可.【解答】解:∵ 2×=1,∴2的倒数是.应选 C.【评论】本题考察的是倒数的定义,即乘积是 1 的两数互为倒数.2.以下图形中,不是中心对称图形有()A. B. C. D.【考点】中心对称图形.【剖析】依据中心对称图形的观点求解.【解答】解: A 、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项正确.应选 D.【评论】本题考察了中心对称图形的知识,把一个图形绕某一点旋转180°,假如旋转后的图形能够与本来的图形重合,那么这个图形就叫做中心对称图形.3.数据 5, 7, 8, 8, 9 的众数是()A.5B.7C.8D.9、【考点】众数.【剖析】依据众数是一组数据中出现次数最多的数据解答即可.【解答】解:数据5、 7、 8、8、 9 中 8 出现了 2 次,且次数最多,因此众数是8.应选 C.【评论】本题考察了众数的定义,熟记定义是解题的重点,需要注意,众数有时能够不只一个.4.以下四个几何体中,主视图是三角形的是(A. B. C. D.)【考点】简单几何体的三视图.【剖析】主视图是从几何体的正面看,主视图是三角形的必定是一个锥体,是长方形的必定是柱体,由此剖析可得答案.【解答】解:主视图是三角形的必定是一个锥体,只有 B 是锥体.应选: B.【评论】本题主要考察了几何体的三视图,主要考察同学们的空间想象能力.5.以下计算正确的选项是()A . 3a﹣a=3B .a2+a2=a4C.( 3a)﹣(2a)=6a D.( a2)3=a6【考点】幂的乘方与积的乘方;归并同类项.【剖析】 A :归并同类项的法例:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.B:归并同类项的法例:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.C:归并同类项的法例:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.D:幂的乘方,底数不变,指数相乘.【解答】解:∵ 3a﹣ a=2a,∴选项 A 不正确;∵a 2+a2=2a2,∴选项 B 不正确;∵( 3a)﹣( 2a) =a,∴选项 C 不正确;∵( a 2)3=a6,∴选项 D 正确.应选: D.【评论】本题主要考察了幂的乘方与积的乘方、归并同类项的方法,娴熟掌握运算性质和法例是解题的重点.6.函数 y=中自变量 x 的取值范围是( A . x≥﹣ 3 B .x≥﹣ 3 且 x≠ 1)C. x≠ 1 D . x≠﹣ 3 且x≠1【考点】函数自变量的取值范围.【剖析】依据被开方数为非负数和分母不分0 列不等式计算.【解答】解:依据题意得:,解得:x≥﹣ 3 且x≠1.应选 B .【评论】本题考察了函数自变量的取值范围,要注意几点:① 被开方数为非负数;② 分母不分 0;③ a 0中 a≠ 0.7.如图,⊙O 的半径为1,A 、B 、C 是圆周上的三点,∠ BAC=36 °,则劣弧 BC 的长是()A. B. C. D.【考点】弧长的计算;圆周角定理.【剖析】连结 OB ,OC,依照同弧所对的圆周角等于圆心角的一半,即可求得劣弧BC 的圆心角的度数,而后利用弧长计算公式求解即可.【解答】解:连结 OB, OC.∠B OC=2 ∠BAC=2 ×36°=72 °,则劣弧 BC 的长是:=π.应选 B.【评论】 本题考察了弧长的计算公式以及圆周角定理,正确理解圆周角定理是重点.8.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC绕着点A 逆时针旋转获得△AC ′B ′,则tanB ′的值为()A .B .C .D .【考点】 锐角三角函数的定义;旋转的性质.【剖析】 过 C 点作 CD ⊥ AB ,垂足为 D ,依据旋转性质可知, ∠ B ′=∠B ,把求 tanB ′的问题,转变为在 Rt △ BCD 中求 tanB .【解答】 解:过 C 点作 CD ⊥AB ,垂足为 D .依据旋转性质可知,∠B ′=∠ B .在 Rt △ BCD 中, tanB== , ∴tanB ′=tanB= .应选 B .【评论】本题考察了旋转的性质, 旋转后对应角相等; 三角函数的定义及三角函数值的求法.9.二次函数 y=ax 2+bx+c 的图象以下图,反比率函数与正比率函数y=bx 在同一坐标系内的大概图象是()A .B .C .D .【考点】 二次函数的图象;正比率函数的图象;反比率函数的图象.【剖析】 由已知二次函数y=ax 2bx ca的取值范围,对称轴能够 + + 的图象张口方向能够知道确立 b 的取值范围,而后就能够确立反比率函数与正比率函数y=bx 在同一坐标系内的大概图象.【解答】 解:∵二次函数 y=ax 2+bx +c 的图象张口方向向下,∴a < 0,对称轴在 y 轴的左侧,∴x= ﹣< 0,∴b< 0,∴反比率函数的象在第二四象限,正比率函数y=bx的象在第二四象限.故:B.【点】此主要考了从象上掌握实用的条件,正确数目关系解得 a 的,的象最少能反应出 2 个条件:张口向下a< 0;称的地点即可确立 b 的.10.如,第①个形中一共有 1 个平行四形,第② 个形中一共有 5 个平行四形,第③ 个形中一共有11 个平行四形,⋯第⑩ 个形中平行四形的个数是()A . 54 B. 110 C. 19D. 109【考点】律型:形的化.【剖析】获得第 n 个形在 1 的基上怎样增添 2 的倍数个平行四形即可.【解答】解:第①个形中有 1 个平行四形;第②个形中有1+4=5 个平行四形;第③个形中有1+4+6=11 个平行四形;第④ 个形中有1+4+6+8=19 个平行四形;⋯第 n 个形中有1+2( 2+3+4+⋯+n)个平行四形;第⑩ 个形中有 1+2( 2+3+4+5+6+7+8+9+10) =109 个平行四形;故 D.【点】考形的化律;获得第n 个形中平行四形的个数在第① 个形中平行四形的个数 1 的基上增添多少个 2 是解决本的关.二、填空(本大共 6 小,每小 3 分,共 18 分)11.分解因式:2a 2+4a= 2a( a+2).【考点】因式分解 -提公因式法.【剖析】 直接提取公因式 2a ,从而分解因式得出即可.【解答】 解: 2a 2+4a=2a (a+2).故答案为: 2a ( a+2).【评论】 本题主要考察了提取公因式法分解因式,正确找出公因式是解题重点.12.正 n 边形的一个外角的度数为60°,则 n 的值为 6 .【考点】 多边形内角与外角.【剖析】 先依据正 n 边形的一个外角的度数为60°求出其内角的度数,再依据多边形的内角和公式解答即可.【解答】 解:∵正 n 边形的一个外角的度数为60°,∴其内角的度数为: 180°﹣ 60°=120 °,∴ =120 °,解得 n=6 .故答案为: 6.【评论】 本题考察的是多边形的内角与外角,熟知多边形的内角和公式是解答本题的重点.13 y= m 2 x 3 y 随 x 值增大而增大, 则 m的取值范围是m >﹣ 2..已知一次函数 ( +)+,若 【考点】 一次函数图象与系数的关系.【剖析】 依据一次函数的图象与系数的关系列出对于m 的不等式, 求出 m 的取值范围即可.【解答】 解:∵一次函数 y=( m+2) x+3 中, y 随 x 值增大而增大,∴m+2> 0,解得 m >﹣ 2.故答案为: m >﹣ 2.【评论】 本题考察的是一次函数的图象与系数的关系,熟知一次函数y=kx +b ( k ≠ 0)中,当 k > 0 时,函数图象经过一三象限是解答本题的重点.14.对于 x 的一元二次方程 2+( m2 x m 1=0有两个相等的实数根,则m的值是x﹣ ) + +或 8 .【考点】 根的鉴别式.【剖析】 先依据方程有两个相等的实数根列出对于m 的方程,求出 m 的值即可.【解答】 解:∵对于 x 的一元二次方程x 2+( m ﹣ 2) x+m+1=0 有两个相等的实数根,∴△ =( m ﹣ 2)2﹣ 4( m+1)=0,即 m 2﹣ 8m=0 ,解得 m=0 或 m=8.故答案为: 0 或 8.【评论】 本题考察的是根的鉴别式,一元二次方程 ax 2 bx c=0 a 0 )的根与△=b 2 4ac+ + ( ≠ ﹣ 有以下关系:当△ =0 时,方程有两个相等的两个实数根.15.如图,将矩形纸片ABCD沿 EF折叠,使点B 与CD的中点B'重合.若AB=2 ,BC=3 ,则△ FCB'与△ B'DG的面积比为16:9.【考点】 翻折变换(折叠问题);矩形的性质.【剖析】 设 BF=x ,则 CF=3 ﹣x , B'F=x ,在 Rt △ B ′CF 中,利用勾股定理求出 x 的值,既而判断△ DB ′G ∽△ CFB ′,依据面积比等于相像比的平方即可得出答案.【解答】 解:设 BF=x ,则 CF=3﹣ x , B'F=x ,∵点 B ′为 CD 的中点,∴B ′C=1 ,在 Rt △ B ′CF 中, B'F 2=B ′C 2+CF 2,即 x 2=1+( 3﹣ x )2,解得: x= ,即可得 CF=3﹣ =.∵∠ DB ′G+∠ DGB'=90 °,∠DB ′G+∠CB ′F=90°, ∴∠ DGB ′=∠CB ′F ,∴Rt △ DB ′G ∽ Rt △ CFB ′,依据面积比等于相像比的平方可得: =() 2=() 2=.故答案为: 16: 9.【评论】 本题考察的是翻折变换,解答本题的重点是求出 FC 的长度,而后利用面积比等于相像比的平方进行求解.16.如图,四边形 ABCD 中,∠ BAD=130 °,∠ B= ∠ D=90 °,在 BC 、 CD 上分别找一点 M 、N ,使△ AMN 周长最小时,则∠ AMN +∠ ANM的度数为 100° .【考点】 轴对称 -最短路线问题.【剖析】 作点 A 对于 BC 的对称点 A ′,对于 CD 的对称点 A ″,依据轴对称确立最短路线问题,连结 A ′A ″与 BC 、 CD 的交点即为所求的点 M 、 N ,利用三角形的内角和定理列式求出∠A ′+∠ A ″,再依据轴对称的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠AMN +∠ ANM=2 (∠ A ′+∠A ″),而后计算即可得解.【解答】解:如图,作点 A 对于 BC 的对称点 A ′,对于 CD 的对称点 A ″,连结 A ′A″与 BC、 CD 的交点即为所求的点M、N,∵∠ BAD=130 °,∠ B=∠ D=90 °,∴∠A ′ A ″=180°130°=50°+∠﹣∠,由轴对称的性质得:∠ A ′=∠ A′AM ,∠ A ″=∠ A ″AN ,∴∠ AMN +∠ ANM=2 (∠ A ′+∠ A ″) =2× 50°=100 °.故答案为: 100°.【评论】本题考察了轴对称确立最短路线问题,轴对称的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,确立出点 M 、N 的地点是解题的重点,要注意整体思想的利用.三、解答题17.解方程:【考点】解分式方程.【剖析】察看可得方程最简公分母为x﹣2,方程两边乘最简公分母,能够把分式方程转变为整式方程求解.【解答】解:原方程即.方程两边都乘以(x﹣ 2),得 x﹣ 1﹣ 1=3( x﹣ 2).解得 x=2 .经查验 x=2 是原方程的增根,∴原方程无解.【评论】(1)解分式方程的基本思想是“转变思想”,把分式方程转变为整式方程求解.(2)解分式方程必定注意要验根.18.先化简,再求值:(a+1)2﹣( a+1)( a﹣ 1),此中, a=﹣ 1.【考点】整式的混淆运算—化简求值.【剖析】先依据完好平方公式和平方差公式算乘法,再归并同类项,最后辈入求出即可.【解答】解:( a+1)2﹣( a+1)( a﹣ 1)=a 2+2a+1﹣ a2+1=2a+2,当a=﹣1时,原式=2×(﹣12=2.) +【评论】本题考察了整式的混淆运算和求值的应用,能正确运用运算法例进行化简是解本题的重点.1910分)(2020?广东校级一模)以AB、AC为边向△ABC外作等边△ABD和等边△.(ACE ,连结 BE , CD ,请你达成图形,并证明:BE=CD .(尺规作图,不写作法,保存作图印迹)【考点】全等三角形的判断与性质;等边三角形的性质;作图—复杂作图.【剖析】分别以 A、 B 为圆心, AB 长为半径画弧,两弧交于点D,连结 AD , BD ,同理连接 AE , CE,以下图,由三角形ABD 与三角形 ACE 都是等边三角形,获得三对边相等,两个角相等,都为60 度,利用等式的性质获得夹角相等,利用SAS 获得三角形 CAD 与三角形 EAB 全等,利用全等三角形的对应边相等即可得证.【解答】解:以下图:证明:∵△ ABD 和△ ACE 都是等边三角形,∴A D=AB , AC=AE ,∠ BAD= ∠ CAE=60 °,∴∠ BAD +∠ BAC= ∠ CAE +∠ BAC ,即∠ CAD= ∠ EAB ,∵在△ CAD 和△ EAB 中,,∴△ CAD ≌△ EAB ( SAS),∴BE=CD .【评论】本题考察了全等三角形的判断与性质,等边三角形的性质以及基本作图,娴熟掌握全等三角形的判断与性质是解本题的重点.20.( 10 分)( 2020?广东校级一模)我市某养殖场计划购置甲、乙两种鱼苗700 尾,甲种鱼苗每尾 3 元,乙种鱼苗每尾 5 元.(1)若购置这两种鱼苗共用去2500元,则甲、乙两种鱼苗各购置多少尾?(2)购置甲种鱼苗不超出 280 尾,应怎样选购鱼苗,使购置鱼苗的花费最低?并求出最低花费.【考点】一元一次不等式的应用;二元一次方程组的应用.【剖析】( 1)设购置甲种鱼苗 x 尾,乙种鱼苗 y 尾,依据题意列一元一次方程组求解即可;(2)设甲种鱼苗购置m 尾,购置鱼苗的花费为w 元,列出w 与x 之间的函数关系式,运用一次函数的性质解决问题.y 尾,依据题意可得:【解答】解:( 1):( 1)设购置甲种鱼苗x 尾,乙种鱼苗,解得:.答:购置甲种鱼苗500 尾,乙种鱼苗200 尾.(2)设甲种鱼苗购置m 尾,购置鱼苗的花费为w 元,则w=3m +5( 700﹣ m) =﹣ 2m+3500 ,∵﹣ 2< 0,∴w 随 m 的增大而减小,∵0< m≤ 280,∴当 m=280 时, w 有最小值, w 的最小值 =3500﹣ 2× 280=2940 (元),∴700﹣ m=420 .答:入选购甲种鱼苗280 尾,乙种鱼苗420 尾时,总花费最低,最低花费为2940元.【评论】本题主要考察了二元一次方程组、一元一次不等式以及一次函数应用问题,审清题意,找到等量或不等关系是解决问题的重点.21.( 12 分)( 2020?禅城区一模)王老师为了认识所教班级学生自主学习、合作沟通的具体状况,对本班部分学生进行了为期半个月的追踪检查,并将检查结果分红四类, A :优异;B:优异; C:合格; D:一般;并将检查结果绘制成以下两幅不完好的统计图,请你依据统计图解答以下问题:(1)本次检查中,王老师一共检查了20名同学,此中 C 类女生有2名,D类男生有1名;(2)将上边的条形统计图增补完好;(3)从被检查的 A 类和 D 类学生中分别选用一位同学进行“一对一”互帮学习,恳求出所选两位同学恰巧是一位男同学和一位女同学的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【剖析】( 1)由条形统计图与扇形统计图,即可求得检查的总人数,既而分别求得 C 类女生与 D 类男生数;(2)由( 1)可补全条形统计图;(3)第一依据题意画出树状图,而后由树状图求得全部等可能的结果与所选两位同学恰巧是一位男同学和一位女同学的状况,再利用概率公式即可求得答案.【解答】解:(1)本次检查中,王老师一共检查了:(4 650%=20(名);+ )÷此中 C 类女生有: 20×25%﹣ 3=2(名),D 类男生有: 20﹣ 1﹣ 2﹣ 4﹣ 6﹣ 3﹣ 2﹣ 1=1(名);故答案为: 20, 2, 1;(2)如图:(3)画树状图得:∵共有 6 种等可能的结果,所选两位同学恰巧是一位男同学和一位女同学的有 3 种状况,∴所选两位同学恰巧是一位男同学和一位女同学的概率为:=.【评论】本题考察了列表法或树状图法求概率以及条形统计图与扇形统计图的知识.用到的知识点为:概率=所讨状况数与总状况数之比.2212分)(2020?y=kx+b的图象交反比率函数y=.(广东校级一模)如图,已知一次函数(x> 0)图象于点 A 、 B,交 x 轴于点 C.(1)求 m 得取值范围;(2)若点 A 的坐标是( 2,﹣ 4),且 =,求 m 的值和一次函数的分析式.【考点】反比率函数与一次函数的交点问题.【剖析】(1)依据双曲线位于第四象限,比率系数(2)先把点 A 的坐标代入反比率函数表达式求出k< 0,列式求解即可;m 的值,从而的反比率函数分析式,设点B 的坐标为B(x,y),利用相像三角形对应边成比率求出y 的值,而后辈入反比率函数解析式求出点 B 的坐标,再利用待定系数法求解即可.【解答】解:( 1)依据题意,反比率函数图象位于第四象限,∴4﹣ 3m< 0,解得: m>;(2)∵点 A ( 2,﹣ 4)在反比率函数图象上,∴4﹣ 3m=2 ×(﹣ 4) =﹣8,∴解得: m=4,∴反比率函数分析式为y= ﹣,∵=,∴=,设点 B 的坐标为( x, y),则点 B 到 x 轴的距离为﹣y,点 A 到 x 轴的距离为4,∴== ,解得: y= ﹣1,∴﹣ =﹣ 1,解得:x=8 ,∴点 B 的坐标是 B ( 8,﹣ 1),设这个一次函数的分析式为y=kx +b,∵点 A 、B 是一次函数与反比率函数图象的交点,∴,解得:,∴一次函数的分析式是y=x ﹣ 5.【评论】本题主要考察了反比率函数图象与一次函数图象的交点问题,待定系数法求函数解析式,求出点 B 的坐标是解题的重点,也是本题的难点.2312分)(2020?广东校级一模)已知如图,△ABC中AB=AC,AE是角均分线,BM.(均分∠ ABC 交 AE 于点 M ,经过 B、M 两点的⊙ O 交 BC 于 G,交 AB 于点 F,FB 恰为⊙ O 的直径.(1)求证: AE 与⊙ O 相切;(2)当 BC=6, cosC=,求⊙ O 的直径.【考点】切线的判断与性质;等腰三角形的性质;圆周角定理;解直角三角形.【剖析】(1)连结OM .依据OB=OM,得∠ 1= ∠ 3,联合BM均分∠ABC交AE于点M ,得∠ 1=∠ 2,则OM ∥ BE ;依据等腰三角形三线合一的性质,得AE ⊥BC ,则OM ⊥AE,从而证明结论;(2)设圆的半径是 r.依据等腰三角形三线合一的性质,得 BE=CE=3 ,再依据解直角三角形的知识求得 AB=12 ,则 OA=12 ﹣ r,从而依据平行线分线段成比率定理求解.【解答】(1)证明:连结 OM .∵OB=OM ,∴∠ 1=∠ 3,又 BM 均分∠ ABC 交 AE 于点 M,∴∠ 1=∠ 2,∴∠ 2=∠ 3,∴OM ∥BE .∵AB=AC , AE 是角均分线,∴AE ⊥BC,∴OM ⊥AE ,∴AE 与⊙ O 相切;(2)解:设圆的半径是r.∵AB=AC ,AE 是角均分线,∴BE=CE=3 ,∠ABC=∠ C,又 cosC=,∴AB=BE ÷ cosB=12,则 OA=12 ﹣ r.∵OM ∥BE ,∴,即,解得 r=2.4.则圆的直径是 4.8.平行线分【评论】本题综合运用了等腰三角形的性质、平行线的判断及性质、切线的判断、线段成比率定理以及解直角三角形的知识.连结过切点的半径是圆中常有的协助线之一.24.( 14 分)(2020?广东校级一模)如图① ,在Rt△ ABC中,∠C=90 °, AC=6 ,BC=8 ,动点P 从点A开始沿边AC向点 C 以每秒 1 个单位长度的速度运动,动点Q 从点 C 开始沿边CB向点 B 以每秒 2 个单位长度的速度运动,点P, Q 分别从点 A 、C同时出发,当此中一点抵达端点时,另一点也随之停止运动,设运动时间为t 妙( t≥ 0).(1)若三角形 CPQ 是等腰三角形,求 t 的值.(2)如图②,过点 P 作 PD∥ BC,交 AB 于点 D,连结 PQ;① 能否存在t 的值,使四边形PDBQ为菱形?若存在,求出t 的值;若不存在,说明原因,并研究怎样改变点Q 的速度(匀速运动),使四边形PDBQ在某一时辰为菱形,求点Q 的速度.②当 t 取何值时,△CPQ 的外接圆面积的最小?而且说明此时△CPQ 的外接圆与直线AB 的地点关系?【考点】圆的综合题.【剖析】(1)依据 CQ=CP ,列出方程即可解决.(2))①不存在.不如设四边形PDBQ 是菱形,推出矛盾即可.②如图,⊙ O 是△ PQC 的外接圆的圆心,作 OM ⊥ AB 于 M ,OE⊥ AC 于 E,OF⊥ BC 于 F,连结 OB、 OC、OA ,由 ?AC ?OF+?AC ?OE+?AB ?OM= ?BC?AC 求出 OM 以及圆的半径即可解决问题.【解答】解:( 1)∵△ CBP 是等腰三角形,∠C=90 °,∴CQ=CP ,∴6﹣ t=2t ,∴t=2 ,∴t=2 秒时,△ CBP 是等腰三角形.(2)①不存在.原因:不如设四边形 PDBQ 是菱形,则PD=BQ ,∴t=8 ﹣ 2t,∴t= ,∴CQ= ,PC=6﹣=,BQ=PD= ,∴OQ==6 ,∴PQ≠BQ ,∴假定不可立,∴不存在.设点 Q 的速度为每秒 a 个单位长度.∵四边形 PDBQ 是菱形,∴PD=BD ,∴t=10 ﹣ t,∴t= ,∴BQ=PD= ,∴6﹣ a=,∴a=.∴点 Q 的速度为每秒个长度单位时,使四边形PDBQ 在某一时辰为菱形.②如图,⊙ O 是△ PQC 的外接圆的圆心,作 OM ⊥ AB 于 M ,OE⊥ AC 于 E,OF⊥ BC 于 F,连结 OB、 OC、OA .∵P Q=== ,∴t= 时, PQ 最小值为.此时 PC=, CQ= ,PQ= ,∵?AC ?OF+?AC ?OE+?AB ?OM= ?BC?AC ,∴× 8× +×6× +× 10× OM=24 ,∴O M= ,∴O M <OP,∴△ CPQ 的外接圆与直线 AB 订交.【评论】本题考察圆综合题、等腰直角三角形的性质、二次函数最小值问题、勾股定理、三角形面积等知识,解题的重点是灵巧应用这些知识解决问题,学会解题常用协助线,学会利用面积法解决问题,属于中考压轴题.23x4y轴于点A,交x轴于点2514分)(2020y=﹣x++ 交.(?广东校级一模)已知抛物线B, C(点 B 在点 C 的右边).过点 A 作垂直于 y 轴的直线 l .在位于直线l 下方的抛物线上任取一点 P,过点 P 作直线 PQ 平行于 y 轴交直线 l 于点 Q.连结 AP .(1)写出 A , B, C 三点的坐标;(2)若点 P 位于抛物线的对称轴的右边:①假如以 A, P,Q 三点组成的三角形与△AOC 相像,求出点P 的坐标;② 若将△ APQ 沿 AP 对折,点 Q 的对应点为点 M .能否存在点 P ,使得点 M 落在 x 轴上?若存在,求出点 P 的坐标;若不存在,请说明原因;③ 设 AP 的中点是 R ,其坐标是( m ,n ),请直接写出 m 和 n 的关系式,并写出 m 的取值范围.【考点】 二次函数综合题.【剖析】 (1)先令 x=0 求出 y 的值即可得出 A 点坐标,再令 y=0 求出 x 的值即可得出 BC 两点的坐标;(2) ① 分△ AQP ∽△ AOC 与△ AQP ∽△ COA 两种状况进行议论;② 过点 M 作 y 轴的平行线交直线AQ 于点 E ,过点 P 作 PF ⊥直线 ME 于点 F ,设 Q ( x ,4), 则 P x ,﹣ x 2 3x 4 PQ=x 2 ﹣ 3x=PM ,再由△ AEM ∽△ MFP 求出 PF 的表达式,在 Rt( + + ), △ AOM 中依据勾股定理求出 x 的值,从而可得出 P 点坐标③ 依据在位于直线l 下方的抛物线上任取一点 P ,则有 a < 0 或 a > 3,由点 P 在抛物线上即可成立 m 与 n 的关系.【解答】 解:( 1)∵令 x=0,则 y=4 ,∴A ( 0, 4);∵令 y=0 ,则﹣ x 2+3x+4=0 ,解得 x 1=4, x 2=﹣ 1,∴B ( 4,0), C (﹣ 1,0);(2) ① ∵以 A ,P , Q 三点组成的三角形与△AOC 相像,∴△ AQP ∽△ AOC 与△ AQP ∽△ COA ,∴或,即或,解得 x= 或 x=7,均在对称轴的右边,∴P (,)或( 7, 24);② 以下图,过点M 作 y 轴的平行线交直线 AQ 于点 E ,过点 P 作 PF ⊥直线 ME 于点 F ,设 Q ( x , 4),则 P ( x ,﹣ x 2+3x+4), PQ=x 2﹣ 3x=PM ,∵∠ EAM +∠ EMA=90 °,∠ EMA +∠ FMP=90 °,∴∠ FMP= ∠EAM . ∵∠ MFP= ∠AEM=90 °,∴△ AEM ∽△ MFP ,∴.∵ M P=x 2﹣ 3x ,∴,∴PF=4x ﹣ 12,∴OM= (4x ﹣ 12)﹣ x=3x ﹣ 12,在 Rt △ AOM 中,∵OM 2+OA 2=AM 2,即( 3x ﹣12) 2+42=x 2,解得 x 1 =4, x 2=5 均在抛物线对称轴的右边,∴P ( 4, 0)或( 5,﹣ 6).③ ∵抛物线 y=﹣ x 2+3x+4 和 A ( 0, 4),∴抛物线和直线 l的交点坐标为 A ( 0,4),( 3, 4),设 P ( a ,﹣ a 2+3a+4);( a < 0 或 a > 3)∵AP 的中点是 R , A ( 0,4),∴=m , =n ,∴ n = ﹣ 2m 2+3m+4,∵a < 0 或 a >3,∴ 2m < 0,或 2m >3,∴ m < 0,或 m .【评论】本题是二次函数综合题,主要波及到相像三角形的判断与性质、二次函数图象上点的坐标特色及用待定系数法求二次函数的分析式等知识,在解答(2)时要分△AQP∽△ AOC 与△ AQP ∽△ COA两种状况进行议论.。
2024年广东省广州市九强校中考数学一模试卷(含解析)
2024年广东省广州市九强校中考数学一模试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.−7的倒数是( )A. 7B. 17C. −7 D. −172.下列计算正确的是( )A. 3mn−2mn=1B. (m2n3)2=m4n6C. (−m)3⋅m=m4D. (m+n)2=m2+n23.2021年5月15日,“天问一号”着陆巡视器成功着陆于火星乌托邦平原,此时距离地球约320000000千米.数320000000用科学记数法表示为( )A. 32×107B. 3.2×108C. 3.2×109D. 0.32×1094.在平面直角坐标系xOy中,点M(−4,2)关于x轴对称的点的坐标是( )A. (−4,2)B. (4,2)C. (−4,−2)D. (4,−2)5.若某三角形的三边长分别为3,4,m,则m的值可以是( )A. 1B. 5C. 7D. 96.甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数−x(单位:环)及方差S2(单位:环 2)如表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )甲乙丙丁−x9889S2 1.60.830.8A. 甲B. 乙C. 丙D. 丁7.如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是( )A. BE=DFB. ∠BAE=∠DAFC. AE=AFD. ∠AEB=∠AFD8.如图,正方形四个顶点分别位于两个反比例函数y =3x和y =nx 的图象的四个分支上,则实数n 的值为( )A. −3B. −13C. 13D. 39.如图,在平面直角坐标系中,AB //DC ,AC ⊥BC ,CD =AD =5,AC =6,将四边形ABCD 向左平移m 个单位后,点B 恰好和原点O 重合,则m 的值是( )A. 11.4B. 11.6C. 12.4D. 12.610.已知抛物线y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)经过点(−1,−1),(0,1),当x =−2时,与其对应的函数值y >1.有下列结论:①abc >0;②关于x 的方程ax 2+bx +c−3=0有两个不等的实数根;③a +b +c >7.其中,正确结论的个数是( )A. 0B. 1C. 2D. 3二、填空题:本题共6小题,每小题3分,共18分。
2024广东省广州市天河区中考一模数学试题含答案解析
2024届初三毕业班综合测试数学本试卷共三大越25小题,共4页,满分120分.考试时间120分钟注意事项:1.答卷前,考生必须用黑色字迹的钢笔或签字笔将自己的学校、姓名、班级、座位号和考生号填写在答题卡相应的位置上,再用2B 铅笔把考号的对应数字涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔或涂改液.不按以上要求作答的答案无效.4.考生必须保证答题卡的整洁,考试结束后,将试卷和答题卡一并交回.一、选择题(本题有10个小题,每小题3分,满分30分,每小题给出的四个选项中.只有一个是正确的)1. 如图,数轴上点A 所表示的数的相反数为( )A. 3−B. 3C. 13−D. 13【答案】A【解析】【分析】通过识图可得点A 所表示的数为3,然后结合相反数的概念求解.【详解】解:由图可得,点A 所表示的数为3,∴数轴上点A 所表示的数的相反数为-3,故选:A .【点睛】本题考查了数轴上的点击相反数的概念,准确识图,理解相反数的定义是解题关键. 2. 据国家统计局公布,2023年第一季度,全国居民人均可支配收入10870元.数据10870用科学记数法表示为( )A. 41.08710×B. 410.8710×C. 310.8710×D. 31.08710× 【答案】A【解析】【分析】用科学记数法表示较大的数的一般形式为10n a ×,其中110a ≤<,n 等于原数的整数位数减1,即可得到答案.【详解】解:用科学记数法表示较大的数的一般形式为10n a ×,其中110a ≤<,n 等于原数的整数位数减1,∴410870 1.08710=×,故答案选:A .【点睛】本题考查了科学记数法,掌握科学记数法的表示方法是解题的关键.3. 下列几何体中,各自的三视图完全一样的是( ).A. B. C. D.【答案】D【解析】【分析】本题主要考查了常见的几何体的三视图,熟知常见几何体的三视图是解题的关键.【详解】解:A 、俯视图是三角形,主视图是长方形,左视图是长方形,中间有一条竖直实线,不符合题意;B 、俯视图是一个圆,左视图和主视图都是等腰三角形,不符合题意;C 、俯视图是一个圆,左视图和主视图都是长方形,不符合题意;D 、主视图,俯视图,左视图都是圆,符合题意;故选:D .4. 下列运算正确的是( )A. ()2211m m −=−B. ()3326m m =C. 734m m m ÷=D. 257m m m +=【答案】C【解析】【分析】根据幂的运算法则,完全平方公式处理.【详解】解:A. ()22121m m m −=−+,原运算错误,本选项不合题意;B. ()3328m m =,原运算错误,本选项不合题意;C. 734m m m ÷=,符合运算法则,本选项符合题意;D. 25m m +,不能进一步运算化简,原运算错误,本选项不合题意;故选:C .【点睛】本题考查乘法公式在整式乘法中的运用,幂的运算法则,掌握相关法则和公式是解题的关键. 5. 一组数据:3,4,4,4,5,若去掉一个数据4,则下列统计量中发生变化的是( )A. 众数B. 中位数C. 平均数D. 方差【答案】D【解析】【分析】根据众数、中位数、平均数及方差可直接进行排除选项.【详解】解:由题意得: 原中位数为4,原众数为4,原平均数为3444545x ++++==,原方差为()()()()()2222223444444454255S −+−+−+−+− =; 去掉一个数据4后的中位数为4442+=,众数为4,平均数为344544x +++==,方差为()()()()2222234444454142S −+−+−+− =;∴统计量发生变化的是方差;故选D .【点睛】本题主要考查平均数、众数、众数及方差,熟练掌握求一组数据的平均数、众数、众数及方差是解题的关键.6. 某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设有大货车每辆运输x 吨,则所列方程正确的是( ) A 75505x x =− B. 75505x x =− C. 75505x x =+ D. 75505x x =+ 【答案】B【解析】【分析】根据“大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同”即可列出方程.【详解】解:设有大货车每辆运输x 吨,则小货车每辆运输()5x −吨,则75505x x =−. 故选B【点睛】本题考查分式方程应用,理解题意准确找到等量关系是解题的关键..的7. 下列四个函数图象中,当x <0时,函数值y 随自变量x 的增大而减小的是( )A. B. C. D.A. 55.5mB. 【答案】D【解析】【详解】A 、根据函数的图象可知y 随x 的增大而增大,故本选项不符合题意;B 、根据函数的图象可知在第二象限内y 随x 的增大而减增大,故本选项不符合题意;C 、根据函数的图象可知,当x <0时,在对称轴的右侧y 随x 的增大而减小,在对称轴的左侧y 随x 的增大而增大,故本选项不符合题意;D 、根据函数的图象可知,当x <0时,y 随x 的增大而减小;故本选项符合题意.故选 D .【点睛】本题考查了函数的图象,函数的增减性,熟练掌握各函数的性质是解题的关键.8. 如图,小亮为了测量校园里教学楼AB 的高度,将测角仪CD 竖直放置在与教学楼水平距离为的地面上,若测角仪的高度为1.5m ,测得教学楼的顶部A 处的仰角为30 ,则教学楼的高度是( )54m C. 19.5m D. 18m【答案】C【解析】 【分析】过D 作DE AB ⊥交AB 于E ,得到DE ,在Rt ADE △中,tan 30AE DE=o ,求出AE ,从而求出AB 【详解】过D 作DE AB ⊥交AB 于E ,DE BC ==Rt ADE △中,tan 30AE DE =o18m AE ∴= 18 1.519.5m AB ∴=+=在故选C【点睛】本题主要考查解直角三角形,能够构造出直角三角形是本题解题关键9. 如图,O 是ABC 的外接圆,且AB AC =,30BAC ∠=°,在 AB 上取点D (不与点A ,B 重合),连接BD ,AD ,则BAD ABD ∠+∠的度数是( )A. 60°B. 105°C. 75°D. 72°【答案】C【解析】 【分析】连接CD ,根据题意,得,BAD BCD ABD ACD ∠=∠∠=∠,结合AB AC =,30BAC ∠=°,得到180752−=°∠∠=°BAC ACB ,计算BAD ABD ∠+∠即可,本题考查了圆周角定理,等腰三角形的性质,熟练掌握圆周角定理,等腰三角形的性质是解题的关键.【详解】连接CD ,根据题意,得,BAD BCD ABD ACD ∠=∠∠=∠, ∵AB AC =,30BAC ∠=°, ∴180752−=°∠∠=°BAC ACB , ∴75BAD ABD BCD ACD ACB ∠+∠=∠+∠=∠=°,故选C ..10. 如图,M 是ABC 三条角平分线的交点,过M 作DE AM ⊥,分别交AB 、AC 于点D 、E 两点,设BD a =,DE b =,CE c =,关于x 的方程()210ax b x c +++=的根的情况是( )A. 一定有两个相等的实数根B. 一定有两个不相等的实数根C. 有两个实数根,但无法确定是否相等D. 没有实数根【答案】B【解析】 【分析】M 是ABC 三条角平分线的交点,过M 作DE AM ⊥,则得出BDM MEC BMC ∠=∠=∠,即可得出DBM MBC ∽,再求出BMC MEC ∽,DBM EMC ∽,即可得出:214ac b =,即可求解. 【详解】AM 平分BAC ∠,DE AM ⊥, ADM AEM ∴∠=∠,1122MDME DE b ===, 1902BDM MEC BAC ∴∠=∠=°+∠, 1902BMC BAC ∴∠=°+∠, BDM MEC BMC ∴∠=∠=∠,M 是ABC 的内角平分线的交点,∴DBM MBC ∽,同理可得出:BMC MEC ∽,∴DBM EMC ∽, ∴BD MD ME CE=, BD EC MD ME ∴⋅=⋅,即:214ac b =, ∴222(1)421210b ac b b b b ∆=+−=++−=+>,∴关于x 的方程2(1)0ax b x c +++=的根的情况是:一定有两个不相等的实数根.故选:B .【点睛】此题主要考查了根的判别式,相似三角形的判定与性质,根据已知得出BDM MEC BMC ∠=∠=∠是解题关键.二、填空题(本题有6个小题,每小题3分,共18分)11. 方程420x +=的解为______.【答案】2x =−【解析】【分析】根据解方程的基本步骤解答即可,本题考查了解方程的基本步骤,熟练掌握步骤是解题的关键.【详解】420x +=,24x =−,解得2x =−,故答案为:2x =−.12. 因式分解:x 2﹣3x=_____.【答案】x (x ﹣3)【解析】【详解】试题分析:提取公因式x 即可,即x 2﹣3x=x (x ﹣3). 考点:因式分解.13. 现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为____.【答案】15【解析】【详解】因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为15.14. 已知()1,1P x ,()2,1Q x 两点都在抛物线231y x x =−+上,那么12x x +=________.【答案】3【解析】【分析】根据题意可得点P 和点Q 关于抛物线的对称轴对称,求出函数的对称轴即可进行解答. 【详解】解:根据题意可得:抛物线的对称轴为直线:33222b x a −=−=−=, ∵()1,1P x ,()2,1Q x , ∴12322x x +=, ∴123x x +=. 故答案为:3.【点睛】此题考查了二次函数的性质,解题的关键是根据题意,找到P 、Q 两点关于对称轴对称求解. 15. 如图,平面直角坐标系中,A 与x 轴相切于点B ,作直径BC ,函数()200yx x=>的图象经过点C ,D 为y 轴上任意一点,则ACD 的面积为_______.【答案】5【解析】【分析】本题考查了反比例函数系数k 的几何意义,切线的性质;根据反比例函数系数k 的几何意义可得20OB BC ⋅=,由切线的性质可得BC x ⊥轴,再根据三角形的面积公式列式求解即可.【详解】解:∵点C 在函数()200y x x=>的图象上, ∴20OB BC ⋅=,∵A 与x 轴相切于点B ,∴BC x ⊥轴,∴BC y ∥轴, ∴111205244ACD S AC OB BC OB =???, 故答案为:5.16. 如图,在矩形ABCD 中,6AB =,8AD =,点E ,F 分别是边CD ,BC 上的动点,且90AFE ∠=°.(1)当5BF =时,tan FEC ∠=______; (2)当AED ∠最大时,DE 的长为_______.【答案】 ①.65 ②. 103##133 【解析】【分析】(1)证明90AFB EFC FEC ∠=°−∠=∠,利用tan tan AFB FEC ∠=∠计算即可; (2)当BC 与O 相切时,AFD ∠的值最大,此时, AED ∠也最大,利用三角形相似计算即可.【详解】(1)∵矩形ABCD 中,6AB =,8AD =,∴90,90ABF FCE °°∠=∠=∵90AFE ∠=°,∴90AFB EFC FEC ∠=°−∠=∠,∴6tan tan 5AB AFB FEC BF ∠=∠==, 故答案为:65. (2)如图,取AE 的中点O ,连接,,OD OF DF .∵矩形ABCD 中,6AB =,8AD =,∴90ADE ∠=°,∵90AFE ∠=°,∴A 、D 、E 、F 四点共圆,∴AED AFD ∠=,∴当BC 与O 相切时,AFD ∠的值最大,此时, AED ∠也最大,∴OF BC ⊥,∵矩形ABCD 中,6AB =,8AD =,∴90ADE ABF ∠=∠=°,∴OF AB EC , ∴EO CF OA BF =, ∴142BF CF BC ===, ∵90AFE ∠=°,∵矩形ABCD 中,6AB =,8AD =,∴90,90ABF FCE °°∠=∠=∵90AFE ∠=°,∴90AFB EFC FEC ∠=°−∠=∠,∴AFB FEC ∽△△, ∴BF AB EC FC =, ∴464EC =, ∴83EC =, ∴810633DE CD EC =−=−=, 故答案为:103. 【点睛】本题考查了矩形的性质,正切函数,三角形相似的判定和性质,切线的性质,四点共圆,圆周角定理,熟练掌握正切函数,切线性质,四点共圆是解题的关键.三、解答题(本大题有9小题,共7分,解答要求写出文字说明,证明过程或计算步骤)17. 解不等式:6327x x −>−.【答案】1x −>【解析】【分析】按照解不等式的基本步骤解答即可.本题考查了解不等式,熟练掌握解题的基本步骤是解题的关键.【详解】6327x x −−>,移项,得6237x x −−>合并同类项,得44x −>,系数化为1,得1x −>.18. 如图,四边形ABCD 中,AB DC =,AB DC ,E ,F 是对角线AC 上两点,且AE CF =.求证:ABE CDF △≌△.【答案】见解析【解析】【分析】本题考查了平行线的性质,三角形全等的判定,熟练掌握判定定理是解题的关键.根据AB DC 得BAE DCF ∠=∠,证明即可.【详解】∵AB DC ,∴BAE DCF ∠=∠,在ABE 和CDF 中AB DC BAE DCF AE CF = ∠=∠ =∴ABE CDF △≌△.19. 为打造书香文化,培养阅读习惯,某中学计划在各班建设图书角,并开展主题为“我最喜欢阅读的书篇”的调查活动,学生根据自己的爱好选择一类书籍(A :科技类,B :文学类,C :政史类,D :艺术类,E :其他类).张老师组织数学兴趣小组对学校部分同学进行了问卷调查.根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题:(1)填空:参与本次问卷调查活动的学生人数是______;(2)甲同学从A ,B ,C 三类书籍中随机选择一种,乙同学从B ,C ,D 三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.【答案】(1)50 (2)29【解析】【分析】(1)根据样本容量=频数÷所占百分数,求得样本容量后,计算解答.(2)利用画树状图计算即可.本题考查了条形统计图、扇形统计图,画树状图求概率,熟练掌握统计图的意义,准确画树状图是解题的关键.【小问1详解】∵4?8%50÷=(人),故答案为:50.【小问2详解】画树状图如下:共有9种等可能的结果,其中抽到相同类有2种可能的结果,∴相同的概率为:29. 20. 已知关于x 的函数()31111m m y x m m m +=+≠−++图象经过点()1,A m n −. (1)用含m 的代数式表示n ;(2)当m =k y x=的图象也经过点A ,求k 的值. 【答案】(1)1nm =+ (2)4【解析】【分析】(1)把点的坐标代入解析式,化简计算即可;(2)当m =)1A +,代入解析式,计算即可. 本题本题考查了反比例函数与点的关系,熟练掌握这些知识是解题的关键.【小问1详解】 解:根据题意,得()()213111111m m m n m m m m m ++=×−+==++++. 【小问2详解】解:当m =时,此时点)1A −+,故)11514k =+=−=. 21. 如图,在ABC 中,90ABC ∠=°,60A ∠=°,3AB =.(1)尺规作图:在BC 上找一点P ,作P 与AC ,AB 都相切,与AC 的切点为Q ;(保留作图痕迹) (2)在(1)所作的图中,连接BQ ,求sin CBQ ∠的值.【答案】(1)见解析 (2)1sin 2CBQ ∠= 【解析】【分析】(1)结合切线的判定与性质,作BAC ∠的平分线,交BC 于点P ,以点P 为圆心,PB 的长为半径画圆即可.(2)由题意可得Rt Rt ABP AQP △≌△,则AB AQ =,可得ABQ 为等边三角形,即60ABQ ∠=°,则30CBQ ∠=°,进而可得答案.【小问1详解】解:如图,作BAC ∠的平分线,交BC 于点P ,以点P 为圆心,PB 的长为半径画圆,交AC 于点Q , 则P 即为所求.;【小问2详解】解:由(1)可得,BP PQ =,PQ AC ⊥,90AQP ∴∠=°,AP AP = ,()Rt Rt HL ABP AQP ∴ ≌,AB AQ ∴=,60BAC ∠=° ,ABQ ∴ 为等边三角形,60ABQ ∴∠=°,30CBQ ∴∠=°,1sin sin 302CBQ ∴∠=°=. 【点睛】本题考查作图—复杂作图、切线的判定与性质、等边三角形的性质、特殊角的三角函数值等知识点,熟练掌握相关知识点是解答本题的关键.22. 如图是气象台某天发布的某地区气象信息,预报了次日0时至8时气温随着时间变化情况,其中0时至5时的图象满足一次函数关系式y kx b =+,5时至8时的图象满足函数关系式21660y x x =−+−.请根据图中信息,解答下列问题:(1)填空:次日0时到8时的最低气温是______;(2)求一次函数y kx b =+解析式; (3)某种植物在气温0℃以下持续时间超过4小时,即遭到霜冻灾害,需采取预防措施.请判断次日是否的需要采取防霜措施,并说明理由.【答案】(1)5−℃(2)835y x =−+ (3)需要采取防霜措施,见解析【解析】【分析】(1)根据题意,当5x =时,函数最小值,代入解析式21660y x x =−+−计算即可.(2)把()()0,3,5,5−分别代入y kx b =+中,计算即可; (3)令0y kx b =+=,216600y x x =−+−=,计算交点坐标的横坐标的差,对照标准判断即可. 本题考查了待定系数法,图象信息识读,图象与x 轴交点坐标的计算,熟练掌握待定系数法,交点坐标的计算是解题的关键.【小问1详解】根据题意,当5x =时,函数有最小值,代入解析式21660y x x =−+−得,2580605y =−+−=−,故答案为:5−℃.【小问2详解】把()()0,3,5,5−分别代入y kx b =+中, 得553k b b +=− = , 解得853k b =− = , ∴835y x =−+. 【小问3详解】 令0835y x =−+=, 解得158x =; 令216600y x x =−+−=,解得126,10x x ==(舍去), 故()156 4.125h 8−=, ∵4.1254>∴遭到霜冻灾害,故需要采取防霜措施.23. 在初中物理中我们学过凸透镜的成像规律.如图MN 为一凸透镜,F 是凸透镜的焦点.在焦点以外的主光轴上垂直放置一小蜡烛AB ,透过透镜后呈的像为CD .光路图如图所示:经过焦点的光线AE ,通过透镜折射后平行于主光轴,并与经过凸透镜光心的光线AO 汇聚于C 点.(1)若焦距4OF =,物距6OB =.小蜡烛高度1AB =,求蜡烛的像CD 的长度;(2)设OB x OF =,AB y CD=,求y 关于x 的函数关系式,并通过计算说明当物距大于2倍焦距时,呈缩小的像.【答案】(1)2米 (2)1y x =−,说明见解析【解析】【分析】本题主要考查了相似三角形的实际应用,平行四边形的性质与判定;(1)先证明ABF EOF ∽,利用相似三角形的性质得到2OE =,再证明四边形OECD 是平行四边形,可得2CD OE ==米;(2)由(1)得ABF EOF ∽,2CD OE ==,则AB OB OF CD OF −=,据此可得1y x =−,当2OB OF>,即2x >时,11y x =−>,据此可得结论. 【小问1详解】解:由题意得,AB OE ∥,∴ABF EOF ∽, ∴AB BF OE OF =,即1644OE −=, ∴2OE =,∵OE CD CE OD ∥,∥,的∴四边形OECD 是平行四边形,∴2CD OE ==米,∴蜡烛的像CD 的长度为2米;【小问2详解】解:由(1)得ABF EOF ∽,2CD OE == ∴AB BF OE OF =,即AB OB OF CD OF−=, ∴1y x =−, 当2OB OF >,即2x >时,11y x =−>, ∴1AB CD>,即AB CD >, ∴物高大于像高,即呈缩小的像.24. 矩形ABCD 中,4AB =,8BC =.(1)如图1,矩形的对角线AC ,BD 相交于点O .①求证:A ,B ,C ,D 四个点在以O 为圆心的同一个圆上;②在O 的劣弧AD 上取一点E ,使得AE AB =,连接DE ,求AED △的面积.(2)如图2,点P 是该矩形的边AD 上一动点,若四边形ABCP 与四边形GHCP 关于直线PC 对称,连接GD ,HD ,求GDH 面积的最小值.【答案】(1)①见解析;②485(2)8【解析】【分析】(1)①根据矩形的性质,得到90ABC ∠=°,得到点A ,B ,C 在以O 为圆心,OA 为半径的圆上,根据矩形的性质,得OA OB OC OD ===,判定点D 在以O 为圆心的同一个圆上,继而得到四点共圆;②过点E 作在EG AD ⊥于点D ,根据AE AB =,得到ADE ADB ∠=∠,结合4AE AB ==,8BC =,得到1tan tan 2AB EG ADE ADB BC GD ∠=∠===,设2EG x GD x ==,,则82AG AD GD x =−=−,利用勾股定理计算x ,利用面积公式解答即可.(2)根据折叠的性质,得到8,4,90CB CH BA HG CHG ====∠=°,根据CH CD DH ≤+,得到4DH CH CD −=≥,当点C ,D ,H 三点共线时,4DH =最小,此时GDH 面积的为1144822GH DH ×=××=,最小. 【小问1详解】①∵矩形ABCD ,∴90ABC ∠=°,OA OB OC OD ===,∴点A ,B ,C 在以O 为圆心,OA 为半径的圆上,∵OA OB OC OD ===,∴点D 在以O 为圆心的同一个圆上,故A ,B ,C ,D 四个点在以O 为圆心的同一个圆上;②如图,过点E 作在EG AD ⊥于点D ,∵AE AB =,∴ADE ADB ∠=∠,∵4AE AB ==,8BC =, ∴1tan tan 2AB EG ADE ADB BC GD ∠=∠===, 设2EG x GD x ==,,则82AG AD GD x =−=−, ∴()228216x x −+=, 解得12,45x x ==(舍去), ∴AED △的面积112488255××=. 【小问2详解】根据折叠的性质,得到8,4,90CB CH BA HG CHG ====∠=°, ∵CH CD DH ≤+,∴4DH CH CD −=≥,∴当点C ,D ,H 三点共线时,4DH =最小,此时GDH 面积的为1144822GH DH ×=××=,最小.【点睛】本题考查了矩形的性质,构造辅助圆,正切函数,勾股定理,三角形不等式,熟练掌握正切函数,辅助圆,勾股定理,三角形不等式是解题的关键.25. 已知抛物线()21:1C y a x h =−−,直线()2:1l y k x h =−−,其中02a ≤<,0k >. (1)求证:直线l 与抛物线C 至少有一个交点;(2)若抛物线C 与x 轴交于()1,0A x ,()2,0B x 两点,其中12x x <,且121033x x <+<,求当1a =时,抛物线C 存在两个横坐标为整数的顶点;(3)若在直线l 下方的抛物线C 上至少存在两个横坐标为整数的点,求k 的取值范围.【答案】(1)见解析 (2)()()1,1,2,1−−(3)4k >【解析】【分析】(1)联立()()211y a x h y k x h =−− =−− ,解方程,判断方程的解得个数即可解答;(2)根据1a =时,()21:1C y x h =−−,结合抛物线C 与x 轴交于()1,0A x ,()2,0B x 两点,结合12x x <,则12,11x h x h ==+−,且121033x x <+<,求得11124h <<,确定h 的整数解有1,2两个,得证.(3)根据题意,得当2x h =+时,21y y >恒成立.建立不等式解答即可.本题考查了抛物线与一次函数的综合,不等式组的解集与整数解,熟练掌握抛物线的性质是解题的关键.【小问1详解】联立()()211y a x h y k x h =−− =−−, 解方程,得,ah k x h x a+==, 当x h =时,1y =−,即直线与抛物线恒过点(),1h −,故直线l 与抛物线C 至少有一个交点.【小问2详解】当1a =时,()21:1C y x h =−−,∵抛物线C 与x 轴交于()1,0A x ,()2,0B x 两点, ∴1x h −=±,∵12x x <, ∴12,11x hx h ==+−, ∵121033x x <+<, ∴420333h <−< 解得11124h <<, ∵h 时整数,∴1,2h h ==, 故抛物线C 存在两个横坐标为整数的顶点,且顶点坐标为()()1,1,2,1−−.【小问3详解】.∵如图所示:由(1)可知:抛物线C 与直线l 都过点(),1A h −.当02a ≤<,0k >,在直线l 下方的抛物线C 上至少存在两个横坐标为整数点, 即当2x h =+时,21y y >恒成立.故()()22121k h h a h h +−−+−−>,整理得:2k a >.又∵2k a >,∴024a <<,∴4k >.。
广东省实验中学中考一模数学考试卷(解析版)(初三)中考模拟.doc
广东省实验中学中考一模数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】2的倒数是()A.2 B.﹣2 C. D.【答案】C【解析】试题分析:直接根据倒数的定义:乘积是1的两数互为倒数,解得2的倒数是.故选C.考点:倒数【题文】下列图形中,不是中心对称图形有()A. B. C. D.【答案】D【解析】试题分析:根据中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.可得:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项正确.故选D.考点:中心对称图形【题文】数据5,7,8,8,9的众数是()A.5 B.7 C.8 D.9、【答案】C【解析】试题分析:根据众数是一组数据中出现次数最多的数,数据5、7、8、8、9中8出现了2次,且次数最多,所以众数是8.故选C.考点:众数【题文】下列四个几何体中,主视图是三角形的是(    )A. B. C. D.【答案】B【解析】试题分析:主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得:主视图是三角形的一定是一个锥体,只有B是锥体.故选:B.考点:简单几何体的三视图【题文】下列计算正确的是()A.3a﹣a=3 B.a2+a2=a4 C.(3a)﹣(2a)=6a D.(a2)3=a6【答案】D【解析】试题分析:A:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.由3a﹣a=2a,可得选项A不正确;B:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.由a2+a2=2a2,可得选项B不正确;C:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.由(3a)﹣(2a)=a,可得选项C不正确;D:幂的乘方,底数不变,指数相乘.由(a2)3=a6,可得选项D正确.故选:D.考点:1、幂的乘方与积的乘方;2、合并同类项【题文】函数中自变量x的取值范围是()A. x≥-3B. x≥-3且x≠1C. x≠1D. x≠-3且x≠1【答案】B【解析】试题分析:根据被开方数为非负数和分母不分0列不等式:,解得:x≥﹣3且x≠1.故选B.考点:函数自变量的取值范围【题文】如图,⊙O的半径为1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧BC的长是()A. B. C. D.【答案】B【解析】试题分析:连接OB,OC,依据同弧所对的圆周角等于圆心角的一半,即可求得劣弧BC的圆心角的度数∠BOC=2∠BAC=2×36°=72°,然后利用弧长计算公式求解,则劣弧BC的长是:=.故选B.考点:1、弧长的计算;2、圆周角定理【题文】如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A. B. C. D.【答案】B【解析】试题分析:过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB=,tanB′=tanB=.故选B.考点:1、锐角三角函数的定义;2、旋转的性质【题文】二次函数y=ax2+bx+c的图象如图所示,反比例函数与正比例函数y=bx在同一坐标系内的大致图象是()A. B. C. D.【答案】B【解析】试题分析:由已知二次函数y=ax2+bx+c的图象开口方向可以知道a的取值范围a<0,对称轴在y轴的左边,可由,可以确定b的取值范围b<0,然后就可以确定反比例函数与正比例函数y=bx 在同一坐标系内的大致图象:反比例函数的图象在第二四象限,正比例函数y=bx的图象在第二四象限.故选:B.考点:1、二次函数的图象;2、正比例函数的图象;3、反比例函数的图象【题文】如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是()A.54 B.110 C.19 D.109【答案】D【解析】试题分析:第①个图形中有1个平行四边形;第②个图形中有1+4=5个平行四边形;第③个图形中有1+4+6=11个平行四边形;第④个图形中有1+4+6+8=19个平行四边形;…第n个图形中有1+2(2+3+4+…+n)个平行四边形;第⑩个图形中有1+2(2+3+4+5+6+7+8+9+10)=109个平行四边形;故选D.考点:规律型:图形的变化类【题文】分解因式:2a2+4a=.【答案】2a(a+2)【解析】试题分析:直接提取公因式2a,进而分解因式得出2a2+4a=2a(a+2).考点:因式分解-提公因式法【题文】正n边形的一个外角的度数为60°,则n的值为.【答案】6【解析】试题分析:先根据正n边形的一个外角的度数为60°求出其内角的度数120°,再根据多边形的内角和公式=120°,解得n=6.考点:多边形内角与外角【题文】已知一次函数y=(m+2)x+3,若y随x值增大而增大,则m的取值范围是.【答案】m>﹣2【解析】试题分析:根据一次函数的图象与系数的关系列出关于m的不等式m+2>0,求出m的取值范围m>﹣2.考点:一次函数图象与系数的关系【题文】关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是.【答案】0或8【解析】试题分析:先根据关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,可得△=(m﹣2)2﹣4(m+1)=0,即m2﹣8m=0,解得m=0或m=8.考点:根的判别式【题文】如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点B’重合.若AB=2,BC=3,则△FCB’与△B’DG的面积比为.【答案l【答案】100°【解析】试题分析:作点A关于BC的对称点A′,关于CD的对称点A″,根据轴对称确定最短路线问题,连接A′A″与BC、CD的交点即为所求的点M、N,利用三角形的内角和定理列式求出∠A′+∠A″=180°﹣∠130°=50°,再根据轴对称的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠AMN+∠ANM=2(∠A′+∠A″)=2×50°=100°.考点:轴对称-最短路线问题【题文】解方程:【答案】x=2【解析】试题分析:观察可得方程最简公分母为x﹣2,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.试题解析:原方程即.方程两边都乘以(x﹣2),得x﹣1﹣1=3(x﹣2).解得x=2.经检验x=2是原方程的增根,∴原方程无解.考点:解分式方程【题文】先化简,再求值:(a+1)2﹣(a+1)(a﹣1),其中,a=﹣1.【答案】2a+2,【解析】试题分析:先根据完全平方公式和平方差公式算乘法,再合并同类项,最后代入求出即可.试题解析:(a+1)2﹣(a+1)(a﹣1)=a2+2a+1﹣a2+1=2a+2,当a=﹣1时,原式=2×(﹣1)+2=2.考点:整式的混合运算—化简求值【题文】以AB、AC为边向△ABC外作等边△A BD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD .(尺规作图,不写作法,保留作图痕迹)【答案】作图与证明见解析【解析】试题分析:分别以A、B为圆心,AB长为半径画弧,两弧交于点D,连接AD,BD,同理连接AE,CE,如图所示,由三角形ABD与三角形ACE都是等边三角形,得到三对边相等,两个角相等,都为60度,利用等式的性质得到夹角相等,利用SAS得到三角形CAD与三角形EAB全等,利用全等三角形的对应边相等即可得证.试题解析:如图所示:∵△ABD和△ACE都是等边三角形,∴A D=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD.考点:1、全等三角形的判定与性质;2、等边三角形的性质;3、作图—复杂作图【题文】我市某养殖场计划购买甲、乙两种鱼苗700尾,甲种鱼苗每尾3元,乙种鱼苗每尾5元.(1)若购买这两种鱼苗共用去2500元,则甲、乙两种鱼苗各购买多少尾?(2)购买甲种鱼苗不超过280尾,应如何选购鱼苗,使购买鱼苗的费用最低?并求出最低费用.【答案】(1)500,200(2)当选购甲种鱼苗280尾,乙种鱼苗420尾时,总费用最低,最低费用为2940元【解析】试题分析:(1)设购买甲种鱼苗x尾,乙种鱼苗y尾,根据题意列一元一次方程组求解即可;(2)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,列出w与x之间的函数关系式,运用一次函数的性质解决问题.试题解析:(1)设购买甲种鱼苗x尾,乙种鱼苗y尾,根据题意可得:,解得:.答:购买甲种鱼苗500尾,乙种鱼苗200尾.(2)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,则w=3m+5(700﹣m)=﹣2m+3500,∵﹣2<0,∴w随m的增大而减小,∵0<m≤280,∴当m=280时,w有最小值,w的最小值=3500﹣2×280=2940(元),∴700﹣m=420.答:当选购甲种鱼苗280尾,乙种鱼苗420尾时,总费用最低,最低费用为2940元.考点:1、一元一次不等式的应用;2、二元一次方程组的应用【题文】王老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:优秀;B:良好;C:合格;D:一般;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)从被调查的A类和D类学生中分别选取一位同学进行“一对一”互助学习,请求出所选两位同学恰好是一位男同学和一位女同学的概率.【答案】(1)20,2,1;(2)图形见解析(3)【解析】试题分析:(1)由条形统计图与扇形统计图,即可求得调查的总人数,继而分别求得C类女生与D类男生数;(2)由(1)可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两位同学恰好是一位男同学和一位女同学的情况,再利用概率公式即可求得答案.试题解析:(1)本次调查中,王老师一共调查了:(4+6)÷50%=20(名);其中C类女生有:20×25%﹣3=2(名),D类男生有:20﹣1﹣2﹣4﹣6﹣3﹣2﹣1=1(名);(2)如图:(3)画树状图得:∵共有6种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有3种情况,∴所选两位同学恰好是一位男同学和一位女同学的概率为:.考点:1、列表法与树状图法;2、扇形统计图;3、条形统计图【题文】如图,已知一次函数y=kx+b的图象交反比例函数(x>0)图象于点A、B,交x轴于点C.(1)求m得取值范围;(2)若点A的坐标是(2,﹣4),且,求m的值和一次函数的解析式.【答案】(1)m>,(2)4,y=x﹣5【解析】试题分析:(1)根据双曲线位于第四象限,比例系数k<0,列式求解即可;(2)先把点A的坐标代入反比例函数表达式求出m的值,从而的反比例函数解析式,设点B的坐标为B(x ,y),利用相似三角形对应边成比例求出y的值,然后代入反比例函数解析式求出点B的坐标,再利用待定系数法求解即可.试题解析:(1)根据题意,反比例函数图象位于第四象限,∴4﹣3m<0,解得:m>;(2)∵点A(2,﹣4)在反比例函数图象上,∴4﹣3m=2×(﹣4)=﹣8,∴解得:m=4,∴反比例函数解析式为y=﹣,∵,∴,设点B的坐标为(x,y),则点B到x轴的距离为﹣y,点A到x轴的距离为4,∴,解得:y=﹣1,∴﹣=﹣1,解得:x=8,∴点B的坐标是B(8,﹣1),设这个一次函数的解析式为y=kx+b,∵点A、B是一次函数与反比例函数图象的交点,∴,解得:,∴一次函数的解析式是y=x﹣5.考点:反比例函数与一次函数的交点问题【题文】已知如图,△ABC中AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=6,cosC=,求⊙O的直径.【答案】(1)证明见解析(2)4.8【解析】试题分析:(1)连接OM.根据OB=OM,得∠1=∠3,结合BMl∴AE⊥BC,∴OM⊥AE,∴AE与⊙O相切;(2)设圆的半径是r.∵AB=AC,AE是角平分线,∴BE=CE=3,∠ABC=∠C,又cosC=,∴AB=BE÷cosB=12,则OA=12﹣r.∵OM∥BE,∴,即,解得r=2.4.则圆的直径是4.8.考点:1、切线的判定与性质;2、等腰三角形的性质;3、圆周角定理;4、解直角三角形【题文】如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,点P,Q分别从点A 、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t妙(t≥0).(1)若三角形CPQ是等腰三角形,求t的值.(2)如图②,过点P作PD∥BC,交AB于点D,连接PQ;①是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度.②当t取何值时,△CPQ的外接圆面积的最小?并且说明此时△CPQ的外接圆与直线AB的位置关系?【答案】(1)2(2)①不存在,②t=时,PQ最小值为,△CPQ的外接圆与直线AB相交【解析】试题分析:(1)根据CQ=CP,列出方程即可解决.(2))①不存在.不妨设四边形PDBQ是菱形,推出矛盾即可.②如图,⊙O是△PQC的外接圆的圆心,作OM⊥AB于M,OE⊥AC于E,OF⊥BC于F,连接OB、OC、OA,由•AC•OF+•AC•OE+•AB•OM=•BC•AC求出OM以及圆的半径即可解决问题.试题解析:(1)∵△CBP是等腰三角形,∠C=90°,∴CQ=CP,∴6﹣t=2t,∴t=2,∴t=2秒时,△CBP是等腰三角形.(2)①不存在.理由:不妨设四边形PDBQ是菱形,则PD=BQ,∴t=8﹣2t,∴t=,∴CQ=,PC=6﹣=,BQ=PD=,∴OQ==6,∴PQ≠BQ,∴假设不成立,∴不存在.设点Q的速度为每秒a个单位长度.∵四边形PDBQ是菱形,∴PD=BD,∴t=10﹣t,∴t=,∴BQ=PD=,∴6﹣a=,∴a=.∴点Q的速度为每秒个长度单位时,使四边形PDBQ在某一时刻为菱形.②如图,⊙O是△PQC的外接圆的圆心,作OM⊥AB于M,OE⊥AC于E,OF⊥BC于F,连接OB、OC、OA.∵PQ===,∴t=时,PQ最小值为.此时PC=,CQ=,PQ=,∵•AC•OF+•AC•OE+•AB•OM=•BC•AC,∴×8×+×6×+×10×OM=24,∴OM=,∴OM<OP,∴△CPQ的外接圆与直线AB相交.考点:圆的综合题【题文】已知抛物线y=﹣x2+3x+4交y轴于点A,交x轴于点B,C(点B在点C的右侧).过点A作垂直于y轴的直线l.在位于直线l下方的抛物线上任取一点P,过点P作直线PQ平行于y轴交直线l于点Q .连接AP.(1)写出A,B,C三点的坐标;(2)若点P位于抛物线的对称轴的右侧:①如果以A,P,Q三点构成的三角形与△AOC相似,求出点P的坐标;②若将△APQ沿AP对折,点Q的对应点为点M.是否存在点P,使得点M落在x轴上?若存在,求出点P的坐标;若不存在,请说明理由;③设AP的中点是R,其坐标是(m,n),请直接写出m和n的关系式,并写出m的取值范围.【答案】(1)B(4,0),C(﹣1,0)(2)①P(,)或(7,24)②P(4,0)或(5,﹣6)③m<0,或m>【解析】试题分析:(1)先令x=0求出y的值即可得出A点坐标,再令y=0求出x的值即可得出BC两点的坐标;(2)①分△AQP∽△AOC与△AQP∽△COA两种情况进行讨论;②过点M作y轴的平行线交直线AQ于点E,过点P作PF⊥直线ME于点F,设Q(x,4),则P(x,﹣x2+3x+4),PQ=x2﹣3x=PM,再由△AEM∽△MFP求出PF的表达式,在Rt△AOM中根据勾股定理求出x的值,进而可得出P点坐标③根据在位于直线l下方的抛物线上任取一点P,则有a<0或a>3,由点P在抛物线上即可建立m与n的关系.试题解析:(1)∵令x=0,则y=4,∴A(0,4);∵令y=0,则﹣x2+3x+4=0,解得x1=4,x2=﹣1,∴B(4,0),C(﹣1,0);(2)①∵以A,P,Q三点构成的三角形与△AOC相似,∴△AQP∽△AOC与△AQP∽△COA,∴或,即或,解得x=或x=7,均在对称轴的右侧,∴P(,)或(7,24);②如图所示,过点M作y轴的平行线交直线AQ于点E,过点P作PF⊥直线ME于点F,设Q(x,4),则P(x,﹣x2+3x+4),PQ=x2﹣3x=PM,∵∠EAM+∠EMA=90°,∠EMA+∠FMP=90°,∴∠FMP=∠EAM.∵∠MFP=∠AEM=90°,∴△AEM∽△MFP,∴.∵MP=x2﹣3x,∴,∴PF=4x﹣12,∴OM=(4x﹣12)﹣x=3x﹣12,在Rt△AOM中,∵OM2+OA2=AM2,即(3x﹣12)2+42=x2,解得x1=4,x2=5均在抛物线对称轴的右侧,∴P(4,0)或(5,﹣6).③∵抛物线y=﹣x2+3x+4和A(0,4),∴抛物线和直线l的交点坐标为A(0,4),(3,4),设P(a,﹣a2+3a+4);(a<0或a>3)∵AP的中点是R,A(0,4),∴=m,=n,∴n=﹣2m2+3m+4,∵a<0或a>3,∴2m<0,或2m>3,∴m<0,或m>.考点:二次函数综合题。
2024年广东省广州市越秀区初三一模数学试题含答案解析
2024年广东省广州市越秀区中考一模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.2-的相反数是( )A .12B .2C .12-D .2-【答案】B【分析】本题考查相反数的定义.根据相反数的定义“只有符号不同的两个数互为相反数”判断即可.【详解】解:2-的相反数是2.故选B .2.下列图形中,既是轴对称图形又是中心对称图形的是( ).A .B .C .D .【答案】A【分析】本题主要考查了中心对称图形与轴对称图形,根据轴对称图形和中心对称图形的定义,即可求解.【详解】解:A 、是轴对称图形,是中心对称图形,故本选项符合题意;B 、是轴对称图形,不是中心对称图形,故本选项不符合题意;C 、不是轴对称图形,是中心对称图形,故本选项不符合题意; D 、是轴对称图形,不是中心对称图形,故本选项不符合题意;故选:A .3.如图,将ABC 沿BA 方向平移到A B C ''' ,若4AB =,1AB '=,则平移距离为( ).A .2B .3C .4D .5【答案】B【分析】本题考查的是平移的性质,根据图形平移的性质可知AB A B ''=,再由4AB =,1AB '=可得出AA '的长,进而可得出结论,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等是解题的关键.【详解】解: 将ABC 沿BA 方向平移到A B C ''' ,4AB =,1AB '=,4AB A B ''∴==,413AA A B AB ''''∴=-=-=,∴平移距离为3.故选:B .4.石墨烯堪称目前世界上最薄的材料,约为0.3纳米(1纳米0.000000001=米).与此同时,石墨烯比金刚石更硬,是世界上最坚硬又最薄的纳米材料.0.3纳米用科学记数法可以表示为( )米.A .8310-⨯B .90.310-⨯C .9310-⨯D .10310-⨯【答案】D【分析】本题考查用科学记数法表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,一般形式为10n a -⨯,其中1||10a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.3纳米0.30.000000001=⨯米10310-=⨯米.故选:D .5.下列运算正确的是( )A =B .()a b a b -+=-+C .()325a a =D .222()2a b a ab b -=-+【答案】D【分析】此题主要考查了幂的乘方运算、完全平方公式、二次根式的加减运算,直接利用幂的乘方运算法则、完全平方公式、二次根式的加减运算法则分别化简,进而得出答案,正确掌握相关运算法则是解题关键.6.关于函数21y x =-+,下列结论成立的是( ).A .函数图象经过点(1,1)B .y 随x 的增大而增大C .当0x <时,0y >D .函数图象不经过第一象限7.如图是一个正方体的平面展开图,若将其按虚线折叠成正方体后,相对面上的两个数字之和均为6,则2x y z -+的值为( )A .0B .2C .12-D .20-【答案】A【分析】本题考查了正方体的展开图形,代数式求值,根据正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【详解】解:“y ”所在面与“3”所在面相对,“z ”所在面与“1-”所在面相对,“x ”所在面与“8”所在面相对,则()361686y z x +=+-=+=,,,解得:3y =,7z =,2x =-,()222370x y z ∴-+=⨯--+=,故选:A .8.某班35位同学课外阅读物的数量统计如下表所示,其中有两个数据被遮盖,下列关于课外阅读物的统计量中,与被遮盖的数据无关的是( ).课外阅读物的数量2345678人数■■97932A .平均数,方差B .中位数,方差C .平均数,众数D .中位数,众数【答案】D【分析】本题考查了统计量的选择,熟练掌握众数和中位数的定义是解题的关键;根据众数和中位数的定义求解即可.【详解】这组数据中本数为2、3的人数和为:35979325-----=,则这组数据中出现次数最多的数9,即众数9,与遮盖的数据无关;5972118++=>,第18个数据为7,则中位数为7,与被遮盖的数据无关;故选:D .9.如图,点E 为矩形ABCD 边CD 的中点,点F 为边BC 上一点,且FAE EAD ∠=∠,若8BF =,2FC =,则AF 的长为( ).A .10B .C .12D .【答案】C【分析】本题考查了矩形的性质,全等三角形的判定和性质,作辅助线构造全等三角形是解题关键.根据矩形的性质,先证明()AAS ADE AGE ≌,得到ED EG =,10AD AG ==,再证明()Rt Rt HL ECF EGF ≌,得到2FG CF ==,即可求出AF 的长.【详解】解:如图,过点E 作EG AF ^于点G ,连接EF ,四边形ABCD 是矩形,8BF =,2FC =,90D C ∴∠=∠=︒,10AD BC BF CF ==+=,在ADE V 和AGE 中,90EAD FAE D AGE AE AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()AAS ADE AGE ∴ ≌,ED EG ∴=,10AD AG ==,点E 为CD 的中点,CE DE EG ∴==,在Rt ECF 和Rt EGF △中,CE EGEF EF =⎧⎨=⎩,()Rt Rt HL ECF EGF ∴ ≌,2FG CF ∴==,10212AF AG FG ∴=+=+=,故选:C10.已知二次函数2(0)y ax bx c a =++≠的函数值y 和自变量x 的部分对应取值如下表所示:x…1-0123…y…1m n 1p…若0m p ⋅<,则下列结论:①0a >;②若方程20ax bx c ++=的两个实数根为1x 、2x ,则121x x =+;③30a b c +-<;④n p ⋅的最大值为98.其中正确的结论是( ).A .①②B .②③C .③④D .②④根据抛物线的对称性可得,当0x =和1x =时的函数值相等,m n =∴,0m p ⋅< ,0n p ∴⋅<,④结论错误;即正确的结论是②③故选:B二、填空题11x 的取值范围是 .【答案】3x ≥【分析】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】解:根据题意知30x -≥,解得:3x ≥,故答案为:3x ≥.12.在一个不透明的布袋中装有红球、白球共40个,这些球除颜色外都相同.小明从中随机摸出一个球记下颜色并放回,通过大量重复试验,发现摸到红球的频率稳定在0.4,则布袋中红球的个数大约是 .【答案】16【分析】本题考查了利用频率估计概率,用总球的个数乘以摸到红球的频率即可得出答案,解答本题的关键要明确:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【详解】解: 一个不透明的布袋中装有红球、白球共40个,其中摸到红球的频率稳定在0.4,∴布袋中红球的个数大约是400.416⨯=(个);故答案为:16.13.分式方程121x x =-的解是 .【答案】x =-1【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:x -1=2x ,解得:x =-1,经检验x =-1是分式方程的解,故答案为:x =-1.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.14.如图所示的衣架可以近似看成一个等腰ABC ,其中AB AC =,27ABC ∠=︒,40cm BC =,则高AD 为cm .(参考数据:sin 270.45︒≈,cos 270.89︒≈,tan 270.51︒≈)15.如图,点E 为菱形ABCD 的边AD 上一点,且3AE =,2DE =,点F 为对角线AC 上一动点,若DEF 的周长最小值为6,则sin BCD ∠= .16.如图,在ABC 中,2AC =,1BC =,90ACB ∠=︒,点D 为边AB 上一动点(点D 与点A 、B 不重合),过点D 作DE AC ⊥,连接CD .外接圆的直径的最小值是;(1)CDE内切圆的半径的最大值是.(2)CDE(2)令DE a =,CE b =,CD DE AC ⊥ ,90ACB ∠=︒,DE BC ∴∥,ADE ABC ∴∠=∠,AED ∠=∠∵C E AC ¢^,C C AB '⊥,C DB '∠=∴A C '∠=∠,∴2cos cos 5AC C A AB '===,∵425AC BC CC AB ⋅'=⋅=,三、解答题17.解方程:3112x x --=.18.如图,线段AC 与BD 相交于点O ,AB CD ,CD AB =,求证:OC OA =.【答案】见解析【分析】本题主要考查了全等三角形的判定与性质、平行线的性质等知识点,掌握全等三角形的判定与性质成为解题的关键.根据平行线的性质可得D B ∠=∠,再根据对顶角相等并结合已知条件可证()AAS OCD OAB ≌,最后根据全等三角形的性质即可证明结论.【详解】证明:∵AB CD ,∴D B ∠=∠,在OCD 和OAB 中,DOC AOB D BDC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS OCD OAB ≌,∴OC OA =.19.已知:2211(1)21a A a a a a -=÷+--+.(1)化简A ;(2)若关于x 的一元二次方程2220x ax a +++=有两个相等的实数根,求A 的值.20.如图,在平面直角坐标系xOy 中,点A 在x 轴上,四边形OABC 是平行四边形,反比例函数(0)m y x x=>过点(1,3)C ,且与边AB 交于点D .(1)求反比例函数的解析式;(2)若点D 为边AB 的中点,求直线CD 的解析式.21.“英雄花开英雄城”2024广州传承弘扬红色文化系列活动正如火如荼地开展.某社区组织了形式多样的学雷锋志愿服务活动,活动现场设置义诊、科普宣传、普法宣传、消防宣传、交通宣传等多个便民服务摊位,吸引了众多市民前来参与活动.其中,前来参与义诊活动的100位市民的年龄整理可得如下的频数分布表:年龄分组/岁频数020x ≤<152040x ≤<254060x ≤<406080x ≤<20(1)参与义诊活动的市民平均年龄为______岁;(2)某医院安排了4名医生前来为市民提供义诊,现要从这4名医生(其中3名女医生,1名男医生)中随机抽调2人到附近养老院为老人义诊,用树状图或列表的方法求抽取的两名医生恰好都是女医生的概率.由树状图可知,共有12种情况,其中两名医生恰好都是女医生的情况有即抽取的两名医生恰好都是女医生的概率为61122=.22.人工智能与实体经济融合能够引领产业转型,提升人们生活品质.某科创公司计划投入一笔资金购进A 、B 两种型号的芯片.已知购进2片A 型芯片和1片B 型芯片共需900元,购进1片A 型芯片和3片B 型芯片共需950元.(1)求购进1片A 型芯片和1片B 型芯片各需多少元?(2)若该科创公司计划购进A 、B 两种型号的芯片共10万片,根据生产的需要,购进A 型芯片的数量不低于B 型芯片数量的4倍,问该公司如何购买芯片所需资金最少?最少资金是多少万元?【答案】(1)购进1片A 型芯片需350元,购进1片B 型芯片需200元;(2)该公司购买A 型芯片8万片,B 型芯片2万片所需资金最少,最少资金是3200万元【分析】本题考查了二元一次方程的应用,一元一次不等式的应用,一次函数的实际应用,正确理解题意,找出数量关系是解题关键.(1)设购进1片A 型芯片需x 元,购进1片B 型芯片需y 元,根据“购进2片A 型芯片和1片B 型芯片共需900元,购进1片A 型芯片和3片B 型芯片共需950元”列二元一次方程组求解即可;(2)设购进A 型芯片的数量为a 万片,则购进B 型芯片数量为()10a -万片,根据“购进A 型芯片的数量不低于B 型芯片数量的4倍”列不等式,求出a 的取值范围,令购买芯片所需资金为w ,根据题意得到w 关于a 的一次函数,利用一次函数的增减性求解即可.【详解】(1)解:设购进1片A 型芯片需x 元,购进1片B 型芯片需y 元,由题意得:29003950x y x y +=⎧⎨+=⎩,解得:350200x y =⎧⎨=⎩,答:购进1片A 型芯片需350元,购进1片B 型芯片需200元;(2)解:设购进A 型芯片的数量为a 万片,则购进B 型芯片数量为()10a -万片,由题意得:()410a a ≥-,解得;8a ≥,令购买芯片所需资金为w ,则()350200101502000w a a a =+-=+,1500> ,w ∴随a 的增大而增大,∴当8a =时,w 最小,最小值为150820003200⨯+=万元,102a -=万片,答:该公司购买A 型芯片8万片,B 型芯片2万片所需资金最少,最少资金是3200万元23.如图,ABCD 为O 内接四边形,AC 为O 的直径, AB BD =,点E 为 AD 上一点,且 EAEC =.(1)求作点E ,连接ED ,延长ED ,BC 交于点F (尺规作图,保留作图痕迹,不写作法);(2)在(1)所作的图中,连接CE .①求证:CEF △为等腰三角形;②若5FC =,15BC =,求弦DE 的长.(2)①如图,连BD ,AE∵ EAEC = ,AC 为直径,∴18090452ACE ︒-︒∠==︒,∴45ACE ADE ∠=∠=︒,∴135EDC F DCF ∠=︒=∠+∠∴135F DCF ∠=︒-∠,【点睛】本题主要考查了圆的综合性质,勾股定理,等腰三角形的判定和性质,相似三角形的判定和性质等知识点,熟练掌握其性质,合理作出辅助线是解决此题的关键.24.已知抛物线22y x mx n =-++经过点(2,23)m -.(1)用含m 的式子表示n ;(2)当0m <时,设该抛物线与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,ABC 的外接圆与y 轴交于另一点D (点D 与点C 不重合),求点D 的坐标;(3)若点()13,E y -,()2,F t y ,()31,G m y -在该抛物线上,且当34t <≤时,总有123y y y <<,求3y 的取值范围.【答案】(1)21n m =-+(2)()0,1D -(3)315y >或310y -≤≤【分析】本题考查了二次函数的图象的性质,三角形的外接圆,同弧所对的圆周角相等;(1)把点(2,23)m -代入抛物线22y x mx n =-++,即可求解;(2)先求得,,A B C 的坐标,进而得出AOC 是等腰直角三角形,根据同弧所对的圆周角相等得出45ABD ACD ∠=∠=︒得出OBD 是等腰直角三角形,即可求解;(3)根据()31,G m y -在该抛物线上,则()223211y m m m =-=--,由当34t <≤时,总有123y y y <<,分点F 在,E G 之间,和对称轴右侧两种情况,分类讨论,即可求解.【详解】(1)解:把点(2,23)m -代入抛物线22y x mx n =-++,得,4423m n m -++=-,解得:21n m =-+;(2)解:∵21n m =-+,∴2221y x mx m =-+-+,当0y =时,则22210x mx m -+-+=,解得:1x =或21x m =-;又∵点A 在点B 的左侧,∴()21,0A m -,()1,0B ,当0x =时,则12y m =-,即()0,12C m -,∴当0m <时,OA OC =12m =-,∴AOC 是等腰直角三角形,∴45ACD ∠=︒,∵ABC 的外接圆与y 轴交于另一点D ,∴45ABD ACD ∠=∠=︒,即OBD 是等腰直角三角形,∵1OB =,则1OD =,根据圆的对称性可得:()0,1D -;(3)解:()31,G m y -在该抛物线上,则()223211y m m m =-=--,∵()22222121y x mx m x m m m =-+-+=--+-+,∴抛物线对称轴为直线x m =,∴点G 的横坐标1m m -<,即点G 在对称轴的左侧,∵当34t <≤时,总有123y y y <<,∴图①不成立,当F 的位置满足图②时,41m <-,解得:5m >,∴()223211y m m m =-=--,则315y >,当F 的位置满足图③时,则13234m m +≤⎧⎨+>⎩,解得:12m <≤,此时310y -≤≤,25.如图,矩形ABCD 中,4AB =,B C =,点E ,F 分别为边AB ,BC 上的点,将线段EF 绕点F 顺时针旋转60︒,得到线段FG .射线FG 与对角线AC 交于点M ,连接EM ,EG .(1)求FGE ∠的度数;(2)若2FC BF =,求AM ME EB +-的值;(3)连接CG ,DG ,若=BF ,设CDG 和EFG 的面积分别为1S ,2S ,当点E 在边AB 上运动时,求12S S 的最大值.∵4AB =,43B C =,90ABC ∠=︒∴228AC AB BC =+=,∴1sin 2ACB ∠=,∴30ACB ∠=︒,∴FB FQ =,∵BN MQ =,90FBN FQM ∠==︒,∴(SAS)FQM FBN ≌,∴FM FN BFN QFM ==∠∠,,FMQ FNB =∠∠,又∵120BFQ FCQ FQC ∠=∠+∠=︒,60EFM ∠=︒,60QFM EFB BFQ EFM ︒∴∠+∠=∠-∠=,60EFN NFB EFB QFM EFB ︒∴∠=∠+∠=∠+∠=,又EF EF =,∴(SAS)EFN EFM ≌,∴NEF MEF =∠∠,ENF EMF EM EN ∠∠==,,∴PMF FMQ =∠∠,又90,FPM FQM PF PF ∠=∠=︒=,∴FPM FQM ≌,∴MP MQ BN ==,AM ME BE AM EN BE AM BN AM MQ AQ∴+-=+-=+=+=连接AF ,∵,AF AF FB FQ ==,∴()Rt Rt HL ABF AQF ≌,∴4AQ AB ==,∴4AM ME BE AM EN BE AQ +-=+-==;(3)如图,作FO EG ⊥,连接FO , BO ,过点O 作OR AE ⊥于R ,过点G 作PQ AD ∥分别交AB 、CD 于P 、Q ,由(1)可得EFG 是等边三角形,∴点O 为EG 的中点,90EOF ∴∠=︒,30EFO ∠=︒,。
2024年广东省广州市花都区初三一模数学试题含答案解析
2024年广东省广州市花都区中考一模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.-2的倒数是()A.-2B.12-C.12D.22.下列图形中,是中心对称图形的是()A.B.C.D.【答案】D【分析】本题主要考查了中心对称图形,解答本题的关键是掌握中心对称的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.根据中心对称图形的定义逐项判断即可.【详解】解:选项A、B、C均不能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以不是中心对称图形;选项D能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以是中心对称图形.故选:D .3.数学上一般把n a a a a a ⋅⋅⋅⋅ 个记为( )A .na B .n a +C .na D .a n 【答案】A【分析】根据乘方的意义解答即可.【详解】解:数学上一般把n a a a a a ⋅⋅⋅⋅ 个记为n a .故选A .【点睛】本题考查了乘方的意义,一般地,n 个相同的因数a 相乘,即...a a a a ⋅⋅⋅计作n a ,这种求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在n a 中,a 叫做底数,n 叫做指数.4.下列计算正确的是( )A .()232639ab a b =B .236a a a ⋅=C .523a a -=D .()222ab a b +=+【答案】A【分析】本题考查实数的运算,利用积的乘方法则,同底数幂乘法法则,合并同类项法则及完全平方公式逐项判断即可.熟练掌握相关运算法则是解题的关键.【详解】解:A 、()232639ab a b =,则A 符合题意;B 、235a a a ⋅=,则B 不符合题意;C 、523a a a -=,则C 不符合题意;D 、()2222a b a b ab +=++,则D 不符合题意;故选:A .5.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A .a b>B .0a b ->C .0a b -<D .0ab <6.如图,已知:四个边长为1的小正方形拼成一个大正方形,A、B、O是小正方形顶点, 的半径为1,P是O上的点,且位于右上方的小正方形内,则APBO∠等于()A.30︒B.45︒C.60︒D.90︒7.一次函数y=kx+b中,y随x的增大而减小,b<0,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【分析】先根据一次函数的增减性判断出k的符号,再由一次函数的图象与系数的关系即可得出结论.【详解】解:∵一次函数y=kx+b中,y随x的增大而减小,∴k<0.∵b<0,∴此函数的图象经过第二、三、四象限,不经过第一象限.故选:A.【点睛】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.8.如图,在平行四边形ABCD中,AC、BD相交于点O,下列结论:①OA=OC;②∠BAD =∠BCD;③AC⊥BD;④∠BAD+∠ABC=180°中,正确的个数有()A.1个B.2个C.3个D.4个【答案】C【详解】试题分析:根据平行四边形的性质依次分析各选项即可作出判断.∵平行四边形ABCD∴OA=OC,∠BAD=∠BCD,∠BAD+∠ABC=180°,但无法得到AC⊥BD故选C.考点:平行四边形的性质点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.AC=米,则坡面AB的长度是9.如图,河堤横断面迎水坡AB的坡度i=30()A.B.30米C.米D.10米10.已知关于x 的一元二次方程()22110k k x x -++=有两个实数根1x ,2x ,且满足()()12112x x ++=,则k 的值是( )A .1k =-B .1k =C .2k =-D .1k =或2k =-二、填空题11有意义,则a 的值可以是 .(写出一个即可)【答案】3(答案不唯一)【分析】本题考查二次根式有意义的条件,根据被开方数不小于零的条件进行解题即可.掌握被开方数不小于零的条件是解题的关键.【详解】解:由题意可知-≥a30a≤解得3故答案为:3(答案不唯一)12.因式分解:2218x-= .【答案】2(x+3)(x﹣3)【分析】先提公因式2后,再利用平方差公式分解即可.【详解】2218x-=2(x2-9)=2(x+3)(x-3).故答案为:2(x+3)(x﹣3)【点睛】考点:因式分解.13.某校九年级(1)班对全班50名学生进行了“一周(按7天计算)做家务劳动时间(单位:小时)”的统计,并整理成频率分布表如下:一周做家务劳动时间(单位:小时)012345频率0.10.10.20.30.20.1①该班学生一周做家务劳动时间为3小时的有名同学;②该班学生一周做家务劳动时间的中位数为小时.【答案】15 3【分析】本题考查了频数分布表的知识,解题的关键是能够读懂统计表并从中整理出进一步解题的有关信息.(1)根据频率=频数÷总数,可求出一周做家务劳动时间为3小时的学生数量;(2)根据中位数的定义把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,即可求出答案.【详解】解:(1)0.35015÷=(名),故答案为:15.(2)根据题意可知共50人,其中第25和第26人的平均数是中位数,将数据从小到大排列,第25个和第26个为3、3,+÷=,所以这组数据的中位数为:(33)23故答案为:3.14.如图,带有刻度的直尺结合数轴作图,已知图中的虚线相互平行,若点A 在数轴上表示的数是2-,则点B 在数轴上表示的数是 .15.某盏路灯照射的空间可以看成如图所示的圆锥,它的高A O =8米,母线AB 与底面半径O B 的夹角为α,tanα=43,则圆锥的底面积是 平方米.(结果保留π)16.如图,在Rt ABC △中,AC BC =,90ACB ∠=︒,O 为斜边AB 的中点,P 为ABC 形外一点,60BPC ∠=︒,①若2AC =,则OC = ;②若PB =PO =PC 的值为 .∵AC BC =,ACB ∠∴222AB AC ==∵O 为斜边AB 的中点,∴OC AB ⊥,12OC =故答案为:2;(2)∵OC AB ⊥,OC则:63,BP CP OP OP '===∴2214PP OP OP ''=+=,∵90,60COB CPB ∠=︒∠=︒,∴36090OCP OBP ∠+∠=︒-︒∴36090OCP OCP '∠+∠=︒-︒三、解答题17.解不等式组:()31512x x x x ⎧-+≤⎪⎨>-⎪⎩【答案】23x -<≤【分析】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.如图,在正方形ABCD 中,CE ⊥DF .若CE=10cm ,求DF 的长.【答案】10cm【分析】先根据条件判定两三角形全等,再对应三角形全等条件求解.【详解】解:∵CE ⊥DF ,∴∠CDF+∠DCE=90°,又∵∠DCB=∠DCE+∠BCE=90°,∴∠CDF=∠BCE ,在正方形ABCD 中又∵BC=CD ,∠EBC=∠FCD=90°,∴△BCE ≌△CDF (ASA ),∴CE=DF ,∵CE=10cm ,∴DF=10cm .【点睛】本题考查了三角形全等的判定和性质,正方形对的性质,一般以考查三角形全等的方法为主,判定两个三角形全等,再对应三角形全等条件求解.19.为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员,某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是_______事件:(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.共有12种等可能的结果,其中选中的两名同学恰好是甲,丁的结果数为所以选中的两名同学恰好是甲,丁的概率2 12 ==【点睛】本题考查的是事件的含义,利用画树状图求解随机事件的概率,20.《九章算术》是我国古代重要的数学专著之一,全书共收集了246个数学问题,分为九章,内容涵盖了算术、代数、几何等多个领域.其中记录的一道题译为现代文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天:如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马速度的2倍,求规定时间是多少天.经检验:7x =是原方程的解,且符合题意,答:规定时间是7天.21.已知224442a a T a a ⎛⎫+-=-÷ ⎪+⎝⎭(1)化简T .(2)若a 为二次函数2245y x x =-+的最小值,求此时的T 值.22.数学中的轴对称就像镜子一样,可以展现出图形对称的美,初中常见的轴对称图形有:等腰三角形、菱形、圆等.如图,在等腰ABC 中,AB BC =.(1)尺规作图:作ABC 关于直线AC 对称的ADC △(保留作图痕迹,不写作法);(2)连接BD ,交AC 于点O ,若2BD =,四边形ABCD 周长为ABCD 的面积.由作图可知:AD CD ==∵AB BC=∴AD CD AB BC===∴四边形ABCD 为菱形,∵ABC 与ADC △关于直线∴AC BD ⊥,OB OD =,∴112122OB BD ==⨯=,由(1)知四边形ABCD 为菱形,23.如图,Rt ABO △中,90∠=︒ABO ,2AB =,反比例函数8y x=-的图象经过点A .(1)求点A 的坐标.(2)直线CD 垂直平分AO ,交AO 于点C ,交y 轴于点D ,交x 轴于点E ,求线段OE 的长.24.已知抛物线:()230y x bx a =+-≠的对称轴是直线1x =,与x 轴交于A 、B 两点(A 在B 左侧),与y 轴交于C 点.(1)求抛物线的解析式;(2)若点D 在线段BC 上,且CD =,求sin CAD ∠的值;(3)抛物线向右平移m 个单位(1m >),平移后A 、B 的对应点分别是1A 、1B ,点E 在y 轴的负半轴上,且以点O 、1A 、E 为顶点的三角形与OAC 相似.点F 是平移后的抛物线上的一点,若四边形11A EFB 是平行四边形,求m 的值.∴212DG CG CD ===, ∴()1,2D -,∴()231422BD =-+=,AD ∴222BD AD AB +=,∴90ADB ADC ∠=∠=︒,25.【读一读】一般地,学习几何要从作图开始,再观察图形,根据图形的某一类共同特征对图形进行分类(即给一类图形下定义——定义概念便于归类、交流与表达),然后继续研究图形的其它特征、判定方法以及图形的组合、图形之间的关系、图形的计算等问题.课本里对三角形、四边形的研究即遵循着上面的思路.【算一算】当然,在学习几何的不同阶段,可能研究的是几何的部分问题.比如有下面的问题,请你研究.如图,在ABC 中,AB AC =,点M 、N 分别为边AB 、BC 的中点,连接MN .(1)如图1,若90BAC ∠=︒,BC =BMN 绕点B 顺时针旋转α(α为锐角),得到BEF △,当点A 、E 、F 在同一直线上时,AE 与BC 相交于点D ,连接CF 、ME .①填空:BMN ∠=______(填度数),BME 是______三角形(填类别);②求CD 的长.(2)如图2,若90BAC ∠<︒,将BMN 绕点B 顺时针旋转α,得到BEF △,连接AE 、CF .当旋转角α满足0360α︒<<︒,点C 、E 、F 在同一直线上时,利用所提供的图2和备用图探究BAE ∠与ABF ∠的数量关系,并说明理由.∴∠=∠,设∠ABC ACB的中位线,是ABCMN∴ ,MN AC∴∠=∠=,MNB MBNθ将BMN绕点B顺时针旋转∠∴△≌△,MBEEBF MBN∴∠=∠=,EBF EFBθ1802BEF θ∴∠=︒-,点C ,E ,F 在同一直线上,2BEC θ∴∠=,180BEC BAC ∴∠+∠=︒,A ∴,B ,E ,C 在同一个圆上,EAC EBC αθ∴∠=∠=-,(1802)()180BAE BAC EAC θαθαθ∴∠=∠-∠=︒---=︒--,ABF αθ∠=+ ,180BAE ABF ∴∠+∠=︒,如图所示,当F 在EC 上时,BEF BAC ∠=∠ ,BC BC =,A ∴,B ,E ,C 在同一个圆上,设ABC ACB θ∠=∠=,则1802BAC BEF θ∠=∠=︒-,将BMN 绕点B 顺时针旋转α,得到BEF △,设NBF β∠=,则EBM β∠=,则360αβ+=︒,ABF θβ∴∠=-,BFE EBF θ∠=∠= ,EFB FBC FCB ∠=∠+∠,ECB FCB EFB FBC θβ∴∠=∠=∠-∠=-,EBEB =,EAB ECB θβ∴∠=∠=-,BAE ABF ∴∠=∠,综上所述,BAE ABF ∠=∠或180BAE ABF ∠∠=+︒.【点睛】本题属于几何变换综合题,考查了圆周角定理,圆内接四边形对角互补,相似三角形的性质与判定,旋转的性质,中位线的性质与判定,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,勾股定理,熟练掌握以上知识是解题的关键.。
2024年广东省广州市黄埔区初三一模数学试题含答案解析
2024年广东省广州市黄埔区中考一模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各数为无理数的是()A.3B.3.14C.D.23 72.如图表示互为相反数的两个点是()A.点A与点B B.点A与点D C.点C与点B D.点C与点D【答案】B【分析】根据一个数的相反数定义求解即可.【详解】解:在-3,-1,2,3中,3和-3互为相反数,则点A与点D表示互为相反数的两个点.故选:B.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.12位参加歌唱比赛的同学的成绩各不相同,按成绩取前6位进入决赛.如果小尹知道了自己的成绩后,要判断自己能否进入决赛,他还要知道这12位同学成绩的()A.平均数B.众数C.方差D.中位数【答案】D【分析】参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.【详解】由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较.故应知道中位数的多少.故选D.【点睛】此题考查统计量的选择,解题关键在于掌握中位数的意义.4.下列运算正确的是( )A =B .=C .5=D =5.分式方程213x x =-的解是( )A .3x =B .3x =-C .1x =D .0x =∴分式方程的解为3x =-,故选:B .6.在ABCD Y 中,对角线AC 、BD 交于点O ,若5AD =,10AC =,6BD =,BOC 的周长为( )A .13B .16C .18D .21【答案】A 【分析】此题主要考查了平行四边形的性质,利用平行四边形的性质对角线互相平分,进而得出BO ,CO 的长,即可得出BOC 的周长.【详解】解:∵ABCD Y 的两条对角线交于点O ,10AC =,6BD =,5AD =,∴3BO DO ==,5AO CO ==,5BC AD ==,∴BOC 的周长为:35313BO CO BC ++=++=.故选:A .7.如图,Rt ABC △中,90C ∠=︒,10AB =,8AC =,E 是AC 上的一点,ED AB ⊥,垂足为D ,若4=AD ,则BE 的长为( )A .B .C .185D .38.如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数()0k y x x=>的图象上,点D 的坐标为()4,3,将菱形ABCD 向右平移m 个单位,使点D 刚好落在反比例函数()0k y x x =>的图象上,则m 的值为( )A .5B .6C .203D .323【答案】C 【分析】本题考查了反比例函数的图象性质,勾股定理,菱形的性质,熟练掌握反比例函数图象上点的坐标特征是解题的关键.过D 作DF x ⊥轴于点F ,利用勾股定理求出菱形的边长,再求出A 的坐标后,代入反比例函数解析式求出k 的值,利用平移的性质得到点D 的坐标后,代入反比例函数解析式中运算求解即可.【详解】解:过D 作DF x ⊥轴于点F ,如图所示:∴90DFO ∠=︒,∵D 点的坐标为()4,3,∴3DF =,4OF =,∴222234OD DF OF =+=+9.如图,在塔前的平地上选择一点,由A 点看塔顶的仰角是α,在A 点和塔之间选择一点B ,由B 点看塔顶的仰角是β.若测量者的眼睛距离地面的高度为1.5m ,9m AB =,45α=︒,50β=︒,则塔的高度大约为( )m .(参考数据:sin 500.8︒≈,tan50 1.2︒≈)A .55.5B .54C .46.5D .45∴9CD AB ==,EF AC =∵45GCE α∠==︒,∴设GE EC x ==,则ED ∴tan tan GE GDE ED β∠=∠=解得:54x =,10.已知抛物线2y ax bx c =++(a ,b ,c 是常数,0a ≠,1c >),经过点()2,0,其对称轴是直线12x =.则下列结论:①0abc <;②关于x 的方程2ax bx c a ++=无实数根;③当0x >时,y 随x 增大而减小;④0a b +=.其中正确的结论有( )个.A .1B .2C .3D .4二、填空题112x 应满足的条件是 .【答案】4x ≥-【分析】本题考查了二次根式有意义的条件,熟悉掌握二次根式的概念是解题的关键.根据二次根式有意义的概念运算求解即可.【详解】解:∵40x +≥,∴4x ≥-,故答案为:4x ≥-.12.因式分解34a a -=.【答案】()()2121a a a +-【分析】先提公因式,然后再用平方差公式分解因式.【详解】解:()()()324412121a a a a a a a -=-=+-.故答案为:()()2121a a a +-.【点睛】本题主要考查了因式分解,解题的关键是熟练掌握因式分解的方法,准确计算.13.如图,在△ABC 中,∠C =90°,∠ADC =60°,∠B =30°,若CD =3cm ,则BD = cm .【答案】6【分析】根据30°直角三角形的比例关系求出AD,再根据外角定理证明∠DAB=∠B,即可得出BD=AD .【详解】∵∠B =30°,∠ADC =60°,∴∠BAD =∠ADC ﹣∠B =30°,∴AD =BD ,∵∠C =90°,∴∠CAD =30°,∴BD =AC =2CD =6cm ,故答案为:6.【点睛】本题考查30°直角三角形的性质、三角形的外角性质,关键在于熟练掌握基础知识并灵活运用.14.关于x 的一元二次方程()21230k x x --+=有实数根,则k 的取值范围是 .15.如图,ABCD Y 绕点A 逆时针旋转30︒,得到AB C D ''' (点B '与点B 是对应点,点C '与点C 是对应点,点D ¢与点D 是对应点),点B '恰好落在BC 边上,则C ∠的度数为 ︒.【答案】105【分析】由旋转的性质可知,30BAB '∠=︒,AB AB '=,再根据等腰三角形点性质及三角形内角和定理,得到75B ∠=︒,然后根据平行四边形和平行线的性质,即可求出C ∠的度数.【详解】解:由旋转的性质可知,30BAB '∠=︒,AB AB '=,B AB B '∴∠=∠,180BAB B AB B ''∠+∠+∠=︒ ,75B ∴∠=︒,ABCD ,AB CD ∴∥,180B C ∠+∠=︒∴,105C ∴∠=︒,故答案为:105.【点睛】本题考查了旋转的性质,等腰三角形点性质,三角形内角和定理,平行四边形的性质等知识,熟练掌握旋转的性质是解题关键.16.如图,已知正方形ABCD 的边长为2,E 为AB 的中点,F 是AD 边上的一个动点,连接EF ,将AEF △沿EF 折叠得HEF ,若延长FH 交边BC 于点M ,则DH 的取值范围 .三、解答题17.解方程:x 2+6x+5=0.【答案】x 1=-1,x 2=-5【分析】方程利用因式分解法求出解即可.【详解】x 2+6x+5=0 (x+1)(x+5)=0∴x+1=0或x+5=0∴x 1=-1.x 2=-5【点睛】此题考查了解一元二次方程−−因式分解法,熟练掌握因式分解的方法是解本题的关键.18.如图,在四边形ABCD 中,BD 平分ADC ∠和ABC ∠.求证:AD CD =,AB CB =.【答案】证明见解析【分析】本题主要考查了全等三角形的性质与判定,角平分线的定义,由角平分线的定义得到ADB CDB ABD CBD ==∠∠,∠∠,进而利用ASA 证明ABD CBD ≌△△,据此可证明AD CD =,AB CB =.【详解】证明:∵BD 平分ADC ∠和ABC ∠,∴ADB CDB ABD CBD ==∠∠,∠∠,又∵BD BD =,∴()ASA ABD CBD △△≌,∴AD CD =,AB CB =.19.已知2111a T a a =--+.(1)化简T ;(2)已知反比例函数y =的图象经过点()1,1A a a -+,求T 的值.20.“2023广州黄埔马拉松”比赛当天,某校玩转数学小组针对其中一个项目“半程马拉松”(21.0975公里)进行调查.(1)为估算本次参加“半程马拉松”的人数,调查如下:调查总人数2050100200500参加“半程马拉松”人数7173158150参加“半程马拉松”频率0.350.340.310.290.30已知共有20000人参与“2023广州黄埔马拉松”比赛,请估算本次赛事中,参加“半程马拉松”项目的人数约为______人;(2)本赛事某岗位还需要2名志愿者参与服务工作,共有4人参加了志愿者遴选,其中初中生2名,高中生1名,大学生1名,请利用画树状图或列表的方法,求恰好录取2名初中生志愿者的概率.21.某文具店准备购进甲、乙两种圆规,若购进甲种圆规10个,乙种圆规30个,需要340元;若购进甲种圆规30个,乙种圆规50个,需要700元.(1)求购进甲、乙两种圆规的单价各是多少元;(2)文具店购进甲、乙两种圆规共100个,每个甲种圆规的售价为15元,每个乙种圆规的售价为12元,销售这两种圆规的总利润不低于480元,那么这个文具店至少购进甲种圆规多少个?【答案】(1)购进甲圆规每个需要10元,乙圆规每个需要8元(2)这个文具店至少购进甲种圆规80个【分析】本题考查了二元一次方程组的应用,不等式的应用,解题的关键是:(1)设购进甲圆规每个需要x 元,乙圆规每个需要y 元,根据“若购进甲种圆规10个,乙种圆规30个,需要340元;若购进甲种圆规30个,乙种圆规50个,需要700元”,可列关于x 、y 的二元一次方程组,求解即可;(2)设购进甲圆规m 个,则购进乙圆规()100m -个,根据“销售这两种圆规的总利润不低于480元”列出关于m 的不等式,求解即可.【详解】(1)解:设购进甲圆规每个需要x 元,乙圆规每个需要y 元,根据题意,得10303403050700x y x y +=⎧⎨+=⎩,解得108x y =⎧⎨=⎩,答:购进甲圆规每个需要10元,乙圆规每个需要8元;(2)解:设购进甲圆规m 个,则购进乙圆规()100m -个,根据题意,得()()()1510128100480m m -+--≥,解得80m ≥,答:这个文具店至少购进甲种圆规80个.22.如图,二次函数()()()1304y x a x a a =-+->的图象与x 轴交于A ,B 两点(点A 在点B 的右侧),与y 轴交于点E .(1)尺规作图:作抛物线的对称轴,交x 轴于点D ,并标记抛物线的顶点C ,连接AE ,且AE 与对称轴相交于点F ;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,若2AO OE =,求CAD ∠的大小及AF 的值.(2)解:把0x =代入∴234OE a =,把0y =代入(14y x =-+23.如图,ABC 内接于O ,AB AC =,CO 的延长线交AB 于点D .(1)求证:AO 平分BAC ∠;(2)若12BC =,3sin 5BAC ∠=,求AC 和CD 的长.∵AB AC =,OB OC =∴A ,O 在线段BC 的垂直平分线上,∴AH BC ⊥,又∵AB AC =,∴AO 平分BAC ∠;∴CE 是O 的直径,∴90EBC ∠=︒,BC ⊥∵ BCBC =∴E BAC ∠=∠,【点睛】本题考查了等腰三角形的性质及判定,圆周角定理,勾股定理,相似三角形的性质及判定,三角函数等知识点,合理作出辅助线是解题的关键.24.如图,在矩形ABCD 和矩形AGFE 中,4=AD ,2AE =,AB =,AG .矩形AGFE 绕着点A 旋转,连接BG ,CF ,AC ,AF .(1)求证:ABG ACF ∽;(2)当CE 的长度最大时,①求BG 的长度;②在ACF △内是否存在一点P ,使得CP AP ++的值最小?若存在,求CP AP +的最小值;若不存在,请说明理由.此时AC AE CE +=,90CEF ∠=︒①∵4=AD ,343AB AD ==,∴228AC AB BC =+=,BAC ∠=由旋转可得:30PAF KAL FAK ∠=∠=︒-∠,∴AKL APF ∽,∴3KL AK PF AP==,∴3KL PF =,过P 作PS AK ⊥于S ,则 12PS AP =,32AS AP =3PS25.已知二次函数22y ax ax c =++图象与x 轴交于点A 和点()3,0B -,与y 轴交于点()0,3C .(1)求点A 的坐标;(2)若点D 是直线BC 上方的抛物线上的一点,过点D 作DE y ∥轴交射线AC 于点E ,过点D作DF BC ⊥于点F ,求DE -的最大值及此时点D 坐标;(3)在(2)的条件下,若点P ,Q 为x 轴下方的抛物线上的两个动点,并且这两个点满足90PBQ ∠=︒,试求点D 到直线PQ 的最大距离.(3)解:设()223P s s s Q --+,,设直线PB 解析式为y k x b ''=+,∴22330sk b s s k b ⎧+=--+⎨-+=''''⎩,∴()()2312333s s s s k s s -+---+==++'∴直线PB 解析式为()1y s x =-++【点睛】本题主要考查了二次函数综合,相似三角形的性质与判定,一次函数与几何综合,等腰直角三角形的性质与判定,勾股定理等等,解(三角形得到2=,解(3)的关键是推出直线DH DF。
广东省实验中学中考数学一模试卷 解析版
广东省实验中学中考数学一模试卷含解析一、选择题(共10小题;共30分)1.(3分)4的平方根是()A.2B.﹣2C.±D.±22.(3分)数轴上有A、B、C、D四个点,其中绝对值等于2的点是()A.点A B.点B C.点C D.点D3.(3分)下面四个几何体中,其主视图不是中心对称图形的是()A.B.C.D.4.(3分)下列运算正确的是()A.a2•a3=a6B.a3+a3=a6C.|﹣a2|=a2D.(﹣a2)3=a65.(3分)一组数据2、3、6、8、x的众数是x,其中x又是不等式组的整数解,则这组数据的中位数可能是()A.3B.4C.6D.3或66.(3分)如图,已知a∥b,直角三角板的直角顶点在直线a上,若∠1=30°,则∠2等于()A.30°B.40°C.50°D.60°7.(3分)如图,在⊙O中,=,点D在⊙O上,∠CDB=25°,则∠AOB=()A.45°B.50°C.55°D.60°8.(3分)已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断9.(3分)如图,在平面直角坐标系中,⊙M与y轴相切于原点O,平行于x轴的直线交⊙M于P、Q两点,点P在点Q的右边,若P点的坐标为(﹣1,2),则Q点的坐标是()A.(﹣4,2)B.(﹣4.5,2)C.(﹣5,2)D.(﹣5.5,2 )10.(3分)若二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y0的解;③x1<x0<x2④a(x0﹣x1)(x0﹣x2)<0;⑤x0<x1或x0>x2,其中正确的有()A.①②B.①②④C.①②⑤D.①②④⑤二、填空题(共6小题:共18分)11.(3分)若分式的值为0,则x=.12.(3分)分解因式:9x﹣x3=.13.(3分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为5,AC=8.则cos B的值是.14.(3分)在Rt△ABC中,∠ACB=90°,AC=,cos A=,如果将△ABC绕着点C旋转至△A′B′C的位置,使点B落在A′B′上,AB与A′C相交于点D,那么线段CD的长等于.15.(3分)如图所示,在平行四边形ABCD中,CE是∠DCB的平分线,且交AB于E,DB与CE相交于O,已知AB=6,BC=4,则等于.16.(3分)如图,边长为2的正方形ABCD内接于⊙O,点E是上一点(不与A、B重合),点F是上一点,连接OE,OF,分别与AB,BC交于点G,B,且∠EOF=90°.有下列结论:①=;②四边形OGBH的面积随着点E位置的变化而变化;③△GBH周长的最小值为2+;④若BG=1﹣,则BG,GE,围成的面积是,其中正确的是(把所有正确结论的序号都填上)。
2024年广东省广州市白云区初三一模数学试题含答案解析
2024年广东省广州市白云区中考一模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.2024-的相反数是( )A .2024-B .2024C .12024-D .12024【答案】B【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:2024-的相反数是2024,故选:B .2.一个几何体的三视图如图所示,则这个几何体是( )A .B .C .D .【答案】D【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行解答即可.【详解】解:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是两个矩形可判断出该几何体为.故选:D .【点睛】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.3.下列运算正确的是( )A .()326m m =B .236m m m ⋅=C .22m m -=-D .222m m m ÷=4.某校举行“喜迎中国共产党建党105周年”党史知识竞赛,如图是10名决赛选手的成绩.对于这10名选手的成绩,下列说法中正确的是( )A .方差是0B .中位数是95C .众数是5D .平均数是905.不等式组23322322x x x -≥⎧⎪⎨+->⎪⎩的解集在数轴上表示为()A .B .C .D .3232x x ->--5x >-,∴不等式的解集为:51x -<≤-,故选:A .6.已知一次函数y ax b =+经过点()2,3--,正比例函数1y ax =不经过第三象限,则反比例函数2b y x=的图象位于( )A .第一、第二象限B .第一、第三象限C .第二、第三象限D .第二、第四象限7.端午节,赛龙舟,小亮在点P 处观看400米直道竞速赛,如图所示,赛道AB 为东西方向,赛道起点A 位于点P 的北偏西30︒方向上,终点B 位于点P 的北偏东60︒方向上,400AB =米,则点P 到赛道AB 的距离为( )米.A .B .C .87D .173 3ta n303AC PC x ∴=⋅︒=60CPB ∠=︒ta n603BC PC x∴=⋅︒=AB 8.某校组织540名学生去外地参观,现有A ,B 两种不同型号的客车可供选择.在每辆车刚好满座的前提下,每辆B 型客车比每辆A 型客车多坐15人,单独选择B 型客车比单独选择A 型客车少租6辆.设A 型客车每辆坐x 人,根据题意可列方程( )A .54015x -﹣540x =6B .540x ﹣54015x +=6C .54015x +﹣540x =6D .540x ﹣54015x -=6列出相应的方程.9.如图,ABC 的内切圆I 与BC ,CA ,AB 分别相切于点D ,E ,F ,若I 的半径为r ,FDE α∠=,则()AF CD AC +-的值和A ∠的大小分别为( )A .0,1802α︒-B .r ,180α︒-C ,90α︒-D ,902α︒-【答案】A 【分析】本题考查三角形的内切圆,圆周角定理,切线长定理等知识.连接,IF IE .利用切线长定理,可得,,,AF AE CD CE IF AB IE AC =⊥⊥=,从而得到AF CD AC +-,再由圆周角定理,可得22EIF EDF α∠=∠=,即可.【详解】解:如图,连接,IF IE .∵ABC 的内切圆I 与BC ,CA ,AB 分别相切于点D ,E ,F ,∴,,,AF AE CD CE IF AB IE AC =⊥⊥=,∴090,C A C F CD A AE CE AC A A AFI AEI C =+︒+--=-=∠=∠=,∴22EIF EDF α∠=∠=,∴3601802A AFI AEI EIF α∠=︒-∠-∠-∠=︒-.故选:A1021-=-,则关于x 的方程()222210x k x k --+-=根的情况是( )A .无实数根B .有两个相等的实数根C .有两个实数根D .有两个不相等的实数根【答案】C 【分析】本题考查了算术平方根的非负性,一元二次方程根的判别式.熟练掌握算术平方根的非二、填空题11.2023年10月26日上午,神州十七号载人飞船载着杨洪波、唐胜杰、江新林3名航天员奔赴“天宫”,从2003年的神舟五号到2023年的神州十七号,20年中国载人航天工程共有20位航天员问鼎苍穹,截止到目前为止,我国航天员在太空的时间已累计达到近21200个小时,其中,数字21200用科学记数法表为.12.若点()11A y -,,212B y ⎛⎫ ⎪⎝⎭,,()32C y ,在抛物线()22y x k =-+上,则1y ,2y ,3y 的大小关系为 (用“>”连接)13.2023年5月30日是第7个全国科技工作者日,某中学举行了科普知识手抄报评比活动,共有100件作品获得一、二、三等奖和优胜奖,根据获奖结果绘制如图所示的折线图,若将获奖作品按四个等级所占比例绘制成扇形统计图,则“二等奖”对应扇形的圆心角度数为 .14.如图,正方形ABCD 的边长为4,点E 在边BC 上,F 为对角线BD 上一动点,连接CF ,EF ,若CF EF +的最小值CE = .∵正方形ABCD ,∴4AB BC ==∠,又∵BF BF =,15.如图,已知AD 是ABC 的角平分线,DE ,DF 分别是ABD △和ACD 的高,四边形AEDF 的面积为60,5DF =,则ADE V 中AD 边上的高为 .16.如图,矩形ABCD 中,9AB =,12AD =,点P 从A 出发以每秒3个单位长度的速度沿A D C B A →→→→运动一周到点A 停止.当点P 不与矩形ABCD 的顶点重合时,过点P 作直线PQ BC ⊥,与矩形的边的另一交点为Q .若点P 的运动时间为t ,当810t <<时,CQ 长度的范围是.PC=-∴12421由勾股定理得t=时,点当10三、解答题17.解方程:x 2+4x ﹣12=0.【答案】x 1=﹣6,x 2=2【分析】利用因式分解法解一元二次方程即可.【详解】解:原方程变形为:(x +6)(x ,﹣2)=0,∴x +6=0或x ﹣2=0,∴x 1=﹣6,x 2=2.【点睛】本题考查解一元二次方程,熟练掌握一元二次方程的解法并能灵活运用是解答的关键.18.已知:如图,在Rt ABC △中,90ACB ∠=︒,过点C 作CD AB ⊥,垂足为D .在射线CD 上截取CE CA =,过点E 作EF CE ⊥,交CB 的延长线于点F .求证:BC FE =.【答案】见详解【分析】本题考查全等三角形的判定.根据题意,先得出E ACB ∠=∠,再用两角夹边判定即可.【详解】证明: CD AB⊥90A ACD ∴∠+∠=︒90ACB ∠=︒90ACD ECF ∴∠+∠=︒A ECF∴∠=∠ EF CE⊥90E ∴∠=︒E ACB∴∠=∠在ACB △和CEF △中A ECF CE CAE ACB ∠=∠⎧⎪=⎨⎪∠=∠⎩(AS A)ACB CEF ∴ ≌BC FE ∴=.19.如图,在平面直角坐标系xOy 中,点()2,0A -, AB 所在圆的圆心为O ,60AOB ∠=︒,将 AB向右平移5个单位,得到 CD (点A 平移后的对应点为C ).(1)点B 的坐标是___________, AB 所在圆的圆心坐标是___________.(2)在图中画出 CD,求 CD 的长.2OA OB ∴==1cos60212OE OB ∴=⋅︒=⨯=,BE由平移的性质知60CGD ∠=︒且GC OA =∴ CD 的长为602223603ππ⨯⨯=.20.给出6个整式:2x +,2x -,21x +,2,21x x +-,211--x x .(1)从上面的6个整式中选择2个合适的整式,组成一个分式;(2)从上面的6个整式中选择2个合适的整式进行乘法运算,使运算结果为一个不含有一次项的多项式,请你列出算式,并写出运算过程.21.甲、乙、丙三人各自随机选择到A,B两个献血站进行爱心献血.求这三人在同一个献血站献血的概率.22.某车间甲、乙两台机器共生产9200个零件,两台机器同时加工一段时间后,甲机器出现故障,维修一段时间后仍按原来的效率加工,已知甲机器每天加工150个零件,如图是表示未生产零件的个数y(个)与乙机器工作时间x(天)之间的函数图象.(1)乙机器每天加工__________个零件,甲机器维修了__________天;(2)求甲机器出现故障以后,未生产零件的个数y(个)乙机器工作时间x(天)之间的函数关系式.【答案】(1)250;8(2)()()25077001018400104001826x x y x x ⎧-+<≤⎪=⎨-+<≤⎪⎩【分析】本题主要考查了一次函数的实际应用:(1)设乙机器每天加工a 个零件,甲机器每天加工150个零件,根据前10天是两个机器一起工作,结合数量关系列方程求解即可;再由AB 段是乙单独工作,求出乙单独工作的时间即可求出甲维修的时间;(2)根据函数图像函数关系式为()0y kx b k =+≠,当1018x <≤时,图像过点()10,5200,()18,3200;当1826x <≤时,图像过点()18,3200,()26,0,运用待定系数法即可求解.【详解】(1)解:设乙机器每天加工a 个零件,由题意得,()1015092005200a +=-,解得,250a =,根据题意,从点A 到点B 是乙单独完成的量,∴520032002000-=(个),∴20002508÷=(天),∴甲维修了8天,故答案为:250;8.(2)解:设未生产零件的个数y (个)与乙机器工作时间x (天)之间的函数关系式为()0y kx b k =+≠,由(1)可知,甲维修了8天,则点B 的坐标为()18,3200,∴当1018x <≤时,图像过点()10,5200,()18,3200,∴105200183200k b k b +=⎧⎨+=⎩,解得2507700k b =-⎧⎨=⎩,∴2507700y x =-+;③当1826x <≤时,图像过点()18,3200,()26,0,∴183200260k b k b +=⎧⎨+=⎩,解得40010400k b =-⎧⎨=⎩,∴40010400y x =-+;综上所述,未生产零件的个数y (个)与乙机器工作时间x (天)之间的函数关系式为()()25077001018400104001826x x y x x ⎧-+<≤⎪=⎨-+<≤⎪⎩.23.【问题探究】(1)如图①,在四边形ABCD 中,90A B ∠=∠=︒,在AB 边上作点E 为一点,连接CE ,DE ,使得CE DE ⊥(画出一个点E 即可,要求用尺规作图,保留作图痕迹,不要求写作图的证明);(2)如图②,在四边形ABCD 中,AD BC ∥,BC CD =,60C ∠=︒,点E 为CD 上一点,连接AE ,BE ,60ABE ∠=︒,试判断AD 与CE 之间的数量关系,并说明理由;【问题解决】(3)如图③,四边形ABCD 是赵叔叔家的果园平面示意图,点E 为果园的一个出入口(点E 在边CD 上),AE ,BE 为果园内的两条运输通道(通道宽度忽略不计),经测量,AD BC ∥,AB AE =,45C ABE ∠=∠=︒,150AD =米,赵叔叔计划在BCE 区域内种植某种果树,并沿CE 修建一条安全栅栏,为提前做好修建安全栅栏的预算,请你帮赵叔叔计算出CE 的长度.理由:由作法得:OC OD OE ==,∴,ODE OED OCE OEC ∠=∠∠=∠,∴ODE OCE OED OEC DEC ∠+∠=∠+∠=∠,∵180ODE OCE DEC ∠+∠+∠=︒,∴90DEC ∠=︒,∴DE CE ⊥;(2)AD CE =,理由如下:如图,连接BD ,∵BC CD =,60C ∠=︒,∴BCD △是等边三角形,∴BC BD =,60CBD ∠=︒,∵60ABE ∠=︒,∴60ABE CBD ∠=∠=︒,∴ABD CBE ∠=∠,∵AD BC ∥,∴60ADB CBD C ∠=∠=︒=∠,在ABD △和EBC 中,∵ABD CBE ∠=∠,BC BD =,ADB C ∠=∠,∴()ASA ABD EBC ≌,∵AD BC ∥,45C ∠=︒,∴45ADF C ∠=∠=︒,∴ADF △是等腰直角三角形,∴150AF AD ==米,∵AB AE =,∴45AEB ABE ∠=∠=︒,24.已知直线():0l y kx b k =+>经过点()1,2P -.(1)用含有k 的式子表示b ;(2)若直线l 与x ,y 轴分别交于A ,B 两点,AOB 面积为S ,求S 的取值范围;(3)过点P 的抛物线()2y x k n =-+与y 轴交点为E ,记抛物线的顶点为C ,该抛物线是否存在点F 使四边形BPEF 为平行四边形?若存在,求此时顶点C 的坐标;若不存在,请说明理由.【答案】(1)2b k =+25.如图,在四边形ABCD 中,点N ,M 分别在边BC ,CD 上.连接AM ,AN ,MN ,45MAN ∠=︒.(1)【实践探究】如图①,四边形ABCD 是正方形.(ⅰ)若6CN =,10MN =,求CMN ∠的余弦值;(ⅱ)若1an 3t BAN =∠,求证:M 是CD 的中点;(2)【拓展】如图②,四边形ABCD 是直角梯形,AD BC ∥,90C ∠=︒,12CD =,16AD =,12CN =,求DM 的长.∵四边形ABCD是正方形,AB CD AD BAD,∴==∠=∠由旋转的性质得:ABE≌BE DM ABE D,90∴=∠=∠=∵90C ∠=︒,12CD =,16AD =,CN ∴16,12====AD CE AE CD ,∴4==-=EP EN CE CN ,∴16=+==AP AE EP AD ,∴四边形APGD 是正方形,。
广东省实验中学2020年中考数学一模试题有答案精析
广东省实验中学2020年中考数学一模试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的4个选项中只有一项释符合题目要求的)1.2的倒数是()A.2 B.﹣2 C. D.﹣2.下列图形中,不是中心对称图形有()A. B. C. D.3.数据5,7,8,8,9的众数是()A.5 B.7 C.8 D.9、4.下列四个几何体中,主视图是三角形的是()A. B. C. D.5.下列计算正确的是()A.3a﹣a=3 B.a2+a2=a4C.(3a)﹣(2a)=6a D.(a2)3=a66.函数y=中自变量x的取值范围是()A.x≥﹣3 B.x≥﹣3且x≠1 C.x≠1 D.x≠﹣3且x≠17.如图,⊙O的半径为1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧BC的长是()A. B. C. D.8.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A. B. C. D.9.二次函数y=ax2+bx+c的图象如图所示,反比例函数与正比例函数y=bx在同一坐标系内的大致图象是()A. B. C. D.10.如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是()A.54 B.110 C.19 D.109二、填空题(本大题共6小题,每小题3分,共18分)11.分解因式:2a2+4a=.12.正n边形的一个外角的度数为60°,则n的值为.13.已知一次函数y=(m+2)x+3,若y随x值增大而增大,则m的取值范围是.14.关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是.15.如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点B'重合.若AB=2,BC=3,则△FCB'与△B'DG的面积比为.16.如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为.三、解答题17.(9分)解方程:18.(9分)先化简,再求值:(a+1)2﹣(a+1)(a﹣1),其中,a=﹣1.19.(10分)以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD.(尺规作图,不写作法,保留作图痕迹)20.(10分)我市某养殖场计划购买甲、乙两种鱼苗700尾,甲种鱼苗每尾3元,乙种鱼苗每尾5元.(1)若购买这两种鱼苗共用去2500元,则甲、乙两种鱼苗各购买多少尾?(2)购买甲种鱼苗不超过280尾,应如何选购鱼苗,使购买鱼苗的费用最低?并求出最低费用.21.(12分)王老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:优秀;B:良好;C:合格;D:一般;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)从被调查的A类和D类学生中分别选取一位同学进行“一对一”互助学习,请求出所选两位同学恰好是一位男同学和一位女同学的概率.22.(12分)如图,已知一次函数y=kx+b的图象交反比例函数y=(x>0)图象于点A、B,交x轴于点C.(1)求m得取值范围;(2)若点A的坐标是(2,﹣4),且=,求m的值和一次函数的解析式.23.(12分)已知如图,△ABC中AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=6,cosC=,求⊙O的直径.24.(14分)如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,点P,Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t妙(t≥0).(1)若三角形CPQ是等腰三角形,求t的值.(2)如图②,过点P作PD∥BC,交AB于点D,连接PQ;①是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度.②当t取何值时,△CPQ的外接圆面积的最小?并且说明此时△CPQ的外接圆与直线AB 的位置关系?25.(14分)已知抛物线y=﹣x2+3x+4交y轴于点A,交x轴于点B,C(点B在点C的右侧).过点A作垂直于y轴的直线l.在位于直线l下方的抛物线上任取一点P,过点P 作直线PQ平行于y轴交直线l于点Q.连接AP.(1)写出A,B,C三点的坐标;(2)若点P位于抛物线的对称轴的右侧:①如果以A,P,Q三点构成的三角形与△AOC相似,求出点P的坐标;②若将△APQ沿AP对折,点Q的对应点为点M.是否存在点P,使得点M落在x轴上?若存在,求出点P的坐标;若不存在,请说明理由;③设AP的中点是R,其坐标是(m,n),请直接写出m和n的关系式,并写出m的取值范围.2020年广东省实验中学中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的4个选项中只有一项释符合题目要求的)1.2的倒数是()A.2 B.﹣2 C. D.﹣【考点】倒数.【分析】直接根据倒数的定义进行解答即可.【解答】解:∵2×=1,∴2的倒数是.故选C.【点评】本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.下列图形中,不是中心对称图形有()A. B. C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3.数据5,7,8,8,9的众数是()A.5 B.7 C.8 D.9、【考点】众数.【分析】根据众数是一组数据中出现次数最多的数据解答即可.【解答】解:数据5、7、8、8、9中8出现了2次,且次数最多,所以众数是8.故选C.【点评】本题考查了众数的定义,熟记定义是解题的关键,需要注意,众数有时候可以不止一个.4.下列四个几何体中,主视图是三角形的是()A. B. C. D.【考点】简单几何体的三视图.【分析】主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.【解答】解:主视图是三角形的一定是一个锥体,只有B是锥体.故选:B.【点评】此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.5.下列计算正确的是()A.3a﹣a=3 B.a2+a2=a4C.(3a)﹣(2a)=6a D.(a2)3=a6【考点】幂的乘方与积的乘方;合并同类项.【分析】A:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.B:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.C:合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.D:幂的乘方,底数不变,指数相乘.【解答】解:∵3a﹣a=2a,∴选项A不正确;∵a2+a2=2a2,∴选项B不正确;∵(3a)﹣(2a)=a,∴选项C不正确;∵(a2)3=a6,∴选项D正确.故选:D.【点评】此题主要考查了幂的乘方与积的乘方、合并同类项的方法,熟练掌握运算性质和法则是解题的关键.6.函数y=中自变量x的取值范围是()A.x≥﹣3 B.x≥﹣3且x≠1 C.x≠1 D.x≠﹣3且x≠1【考点】函数自变量的取值范围.【分析】根据被开方数为非负数和分母不分0列不等式计算.【解答】解:根据题意得:,解得:x≥﹣3且x≠1.故选B.【点评】本题考查了函数自变量的取值范围,要注意几点:①被开方数为非负数;②分母不分0;③a0中a≠0.7.如图,⊙O的半径为1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧BC的长是()A. B. C. D.【考点】弧长的计算;圆周角定理.【分析】连接OB,OC,依据同弧所对的圆周角等于圆心角的一半,即可求得劣弧BC的圆心角的度数,然后利用弧长计算公式求解即可.【解答】解:连接OB,OC.∠BOC=2∠BAC=2×36°=72°,则劣弧BC的长是:=π.故选B.【点评】本题考查了弧长的计算公式以及圆周角定理,正确理解圆周角定理是关键.8.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A. B. C. D.【考点】锐角三角函数的定义;旋转的性质.【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【解答】解:过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB==,∴tanB′=tanB=.故选B.【点评】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.9.二次函数y=ax2+bx+c的图象如图所示,反比例函数与正比例函数y=bx在同一坐标系内的大致图象是()A. B. C. D.【考点】二次函数的图象;正比例函数的图象;反比例函数的图象.【分析】由已知二次函数y=ax2+bx+c的图象开口方向可以知道a的取值范围,对称轴可以确定b的取值范围,然后就可以确定反比例函数与正比例函数y=bx在同一坐标系内的大致图象.【解答】解:∵二次函数y=ax2+bx+c的图象开口方向向下,∴a<0,对称轴在y轴的左边,∴x=﹣<0,∴b<0,∴反比例函数的图象在第二四象限,正比例函数y=bx的图象在第二四象限.故选:B.【点评】此题主要考查了从图象上把握有用的条件,准确选择数量关系解得a的值,简单的图象最少能反映出2个条件:开口向下a<0;对称轴的位置即可确定b的值.10.如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是()A.54 B.110 C.19 D.109【考点】规律型:图形的变化类.【分析】得到第n个图形在1的基础上如何增加2的倍数个平行四边形即可.【解答】解:第①个图形中有1个平行四边形;第②个图形中有1+4=5个平行四边形;第③个图形中有1+4+6=11个平行四边形;第④个图形中有1+4+6+8=19个平行四边形;…第n个图形中有1+2(2+3+4+…+n)个平行四边形;第⑩个图形中有1+2(2+3+4+5+6+7+8+9+10)=109个平行四边形;故选D.【点评】考查图形的变化规律;得到第n个图形中平行四边形的个数在第①个图形中平行四边形的个数1的基础上增加多少个2是解决本题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.分解因式:2a2+4a=2a(a+2).【考点】因式分解-提公因式法.【分析】直接提取公因式2a,进而分解因式得出即可.【解答】解:2a2+4a=2a(a+2).故答案为:2a(a+2).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.正n边形的一个外角的度数为60°,则n的值为6.【考点】多边形内角与外角.【分析】先根据正n边形的一个外角的度数为60°求出其内角的度数,再根据多边形的内角和公式解答即可.【解答】解:∵正n边形的一个外角的度数为60°,∴其内角的度数为:180°﹣60°=120°,∴=120°,解得n=6.故答案为:6.【点评】本题考查的是多边形的内角与外角,熟知多边形的内角和公式是解答此题的关键.13.已知一次函数y=(m+2)x+3,若y随x值增大而增大,则m的取值范围是m>﹣2.【考点】一次函数图象与系数的关系.【分析】根据一次函数的图象与系数的关系列出关于m的不等式,求出m的取值范围即可.【解答】解:∵一次函数y=(m+2)x+3中,y随x值增大而增大,∴m+2>0,解得m>﹣2.故答案为:m>﹣2.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k>0时,函数图象经过一三象限是解答此题的关键.14.关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是0或8.【考点】根的判别式.【分析】先根据方程有两个相等的实数根列出关于m的方程,求出m的值即可.【解答】解:∵关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,∴△=(m﹣2)2﹣4(m+1)=0,即m2﹣8m=0,解得m=0或m=8.故答案为:0或8.【点评】本题考查的是根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△=0时,方程有两个相等的两个实数根.15.如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点B'重合.若AB=2,BC=3,则△FCB'与△B'DG的面积比为16:9.【考点】翻折变换(折叠问题);矩形的性质.【分析】设BF=x,则CF=3﹣x,B'F=x,在Rt△B′CF中,利用勾股定理求出x的值,继而判断△DB′G∽△CFB′,根据面积比等于相似比的平方即可得出答案.【解答】解:设BF=x,则CF=3﹣x,B'F=x,∵点B′为CD的中点,∴B′C=1,在Rt△B′CF中,B'F2=B′C2+CF2,即x2=1+(3﹣x)2,解得:x=,即可得CF=3﹣=.∵∠DB′G+∠DGB'=90°,∠DB′G+∠CB′F=90°,∴∠DGB′=∠CB′F,∴Rt△DB′G∽Rt△CFB′,根据面积比等于相似比的平方可得:=()2=()2=.故答案为:16:9.【点评】此题考查的是翻折变换,解答本题的关键是求出FC的长度,然后利用面积比等于相似比的平方进行求解.16.如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为100°.【考点】轴对称-最短路线问题.【分析】作点A关于BC的对称点A′,关于CD的对称点A″,根据轴对称确定最短路线问题,连接A′A″与BC、CD的交点即为所求的点M、N,利用三角形的内角和定理列式求出∠A′+∠A″,再根据轴对称的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠AMN+∠ANM=2(∠A′+∠A″),然后计算即可得解.【解答】解:如图,作点A关于BC的对称点A′,关于CD的对称点A″,连接A′A″与BC、CD的交点即为所求的点M、N,∵∠BAD=130°,∠B=∠D=90°,∴∠A′+∠A″=180°﹣∠130°=50°,由轴对称的性质得:∠A′=∠A′AM,∠A″=∠A″AN,∴∠AMN+∠ANM=2(∠A′+∠A″)=2×50°=100°.故答案为:100°.【点评】本题考查了轴对称确定最短路线问题,轴对称的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,确定出点M、N的位置是解题的关键,要注意整体思想的利用.三、解答题17.解方程:【考点】解分式方程.【分析】观察可得方程最简公分母为x﹣2,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:原方程即.方程两边都乘以(x﹣2),得x﹣1﹣1=3(x﹣2).解得x=2.经检验x=2是原方程的增根,∴原方程无解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.18.先化简,再求值:(a+1)2﹣(a+1)(a﹣1),其中,a=﹣1.【考点】整式的混合运算—化简求值.【分析】先根据完全平方公式和平方差公式算乘法,再合并同类项,最后代入求出即可.【解答】解:(a+1)2﹣(a+1)(a﹣1)=a2+2a+1﹣a2+1=2a+2,当a=﹣1时,原式=2×(﹣1)+2=2.【点评】本题考查了整式的混合运算和求值的应用,能正确运用运算法则进行化简是解此题的关键.19.(10分)(2020•广东校级一模)以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD.(尺规作图,不写作法,保留作图痕迹)【考点】全等三角形的判定与性质;等边三角形的性质;作图—复杂作图.【分析】分别以A、B为圆心,AB长为半径画弧,两弧交于点D,连接AD,BD,同理连接AE,CE,如图所示,由三角形ABD与三角形ACE都是等边三角形,得到三对边相等,两个角相等,都为60度,利用等式的性质得到夹角相等,利用SAS得到三角形CAD与三角形EAB全等,利用全等三角形的对应边相等即可得证.【解答】解:如图所示:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD.【点评】此题考查了全等三角形的判定与性质,等边三角形的性质以及基本作图,熟练掌握全等三角形的判定与性质是解本题的关键.20.(10分)(2020•广东校级一模)我市某养殖场计划购买甲、乙两种鱼苗700尾,甲种鱼苗每尾3元,乙种鱼苗每尾5元.(1)若购买这两种鱼苗共用去2500元,则甲、乙两种鱼苗各购买多少尾?(2)购买甲种鱼苗不超过280尾,应如何选购鱼苗,使购买鱼苗的费用最低?并求出最低费用.【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设购买甲种鱼苗x尾,乙种鱼苗y尾,根据题意列一元一次方程组求解即可;(2)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,列出w与x之间的函数关系式,运用一次函数的性质解决问题.【解答】解:(1):(1)设购买甲种鱼苗x尾,乙种鱼苗y尾,根据题意可得:,解得:.答:购买甲种鱼苗500尾,乙种鱼苗200尾.(2)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,则w=3m+5(700﹣m)=﹣2m+3500,∵﹣2<0,∴w随m的增大而减小,∵0<m≤280,∴当m=280时,w有最小值,w的最小值=3500﹣2×280=2940(元),∴700﹣m=420.答:当选购甲种鱼苗280尾,乙种鱼苗420尾时,总费用最低,最低费用为2940元.【点评】本题主要考查了二元一次方程组、一元一次不等式以及一次函数应用问题,审清题意,找到等量或不等关系是解决问题的关键.21.(12分)(2020•禅城区一模)王老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:优秀;B:良好;C:合格;D:一般;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,王老师一共调查了20名同学,其中C类女生有2名,D类男生有1名;(2)将上面的条形统计图补充完整;(3)从被调查的A类和D类学生中分别选取一位同学进行“一对一”互助学习,请求出所选两位同学恰好是一位男同学和一位女同学的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)由条形统计图与扇形统计图,即可求得调查的总人数,继而分别求得C类女生与D类男生数;(2)由(1)可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两位同学恰好是一位男同学和一位女同学的情况,再利用概率公式即可求得答案.【解答】解:(1)本次调查中,王老师一共调查了:(4+6)÷50%=20(名);其中C类女生有:20×25%﹣3=2(名),D类男生有:20﹣1﹣2﹣4﹣6﹣3﹣2﹣1=1(名);故答案为:20,2,1;(2)如图:(3)画树状图得:∵共有6种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有3种情况,∴所选两位同学恰好是一位男同学和一位女同学的概率为:=.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.22.(12分)(2020•广东校级一模)如图,已知一次函数y=kx+b的图象交反比例函数y=(x>0)图象于点A、B,交x轴于点C.(1)求m得取值范围;(2)若点A的坐标是(2,﹣4),且=,求m的值和一次函数的解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据双曲线位于第四象限,比例系数k<0,列式求解即可;(2)先把点A的坐标代入反比例函数表达式求出m的值,从而的反比例函数解析式,设点B的坐标为B(x,y),利用相似三角形对应边成比例求出y的值,然后代入反比例函数解析式求出点B的坐标,再利用待定系数法求解即可.【解答】解:(1)根据题意,反比例函数图象位于第四象限,∴4﹣3m<0,解得:m>;(2)∵点A(2,﹣4)在反比例函数图象上,∴4﹣3m=2×(﹣4)=﹣8,∴解得:m=4,∴反比例函数解析式为y=﹣,∵=,∴=,设点B的坐标为(x,y),则点B到x轴的距离为﹣y,点A到x轴的距离为4,∴==,解得:y=﹣1,∴﹣=﹣1,解得:x=8,∴点B的坐标是B(8,﹣1),设这个一次函数的解析式为y=kx+b,∵点A、B是一次函数与反比例函数图象的交点,∴,解得:,∴一次函数的解析式是y=x﹣5.【点评】本题主要考查了反比例函数图象与一次函数图象的交点问题,待定系数法求函数解析式,求出点B的坐标是解题的关键,也是本题的难点.23.(12分)(2020•广东校级一模)已知如图,△ABC中AB=AC,AE是角平分线,BM 平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于G,交AB于点F,FB恰为⊙O 的直径.(1)求证:AE与⊙O相切;(2)当BC=6,cosC=,求⊙O的直径.【考点】切线的判定与性质;等腰三角形的性质;圆周角定理;解直角三角形.【分析】(1)连接OM.根据OB=OM,得∠1=∠3,结合BM平分∠ABC交AE于点M,得∠1=∠2,则OM∥BE;根据等腰三角形三线合一的性质,得AE⊥BC,则OM⊥AE,从而证明结论;(2)设圆的半径是r.根据等腰三角形三线合一的性质,得BE=CE=3,再根据解直角三角形的知识求得AB=12,则OA=12﹣r,从而根据平行线分线段成比例定理求解.【解答】(1)证明:连接OM.∵OB=OM,∴∠1=∠3,又BM平分∠ABC交AE于点M,∴∠1=∠2,∴∠2=∠3,∴OM∥BE.∵AB=AC,AE是角平分线,∴AE⊥BC,∴OM⊥AE,∴AE与⊙O相切;(2)解:设圆的半径是r.∵AB=AC,AE是角平分线,∴BE=CE=3,∠ABC=∠C,又cosC=,∴AB=BE÷cosB=12,则OA=12﹣r.∵OM∥BE,∴,即,解得r=2.4.则圆的直径是4.8.【点评】此题综合运用了等腰三角形的性质、平行线的判定及性质、切线的判定、平行线分线段成比例定理以及解直角三角形的知识.连接过切点的半径是圆中常见的辅助线之一.24.(14分)(2020•广东校级一模)如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,点P,Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t妙(t≥0).(1)若三角形CPQ是等腰三角形,求t的值.(2)如图②,过点P作PD∥BC,交AB于点D,连接PQ;①是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度.②当t取何值时,△CPQ的外接圆面积的最小?并且说明此时△CPQ的外接圆与直线AB 的位置关系?【考点】圆的综合题.【分析】(1)根据CQ=CP,列出方程即可解决.(2))①不存在.不妨设四边形PDBQ是菱形,推出矛盾即可.②如图,⊙O是△PQC的外接圆的圆心,作OM⊥AB于M,OE⊥AC于E,OF⊥BC于F,连接OB、OC、OA,由•AC•OF+•AC•OE+•AB•OM=•BC•AC求出OM以及圆的半径即可解决问题.【解答】解:(1)∵△CBP是等腰三角形,∠C=90°,∴CQ=CP,∴6﹣t=2t,∴t=2,∴t=2秒时,△CBP是等腰三角形.(2)①不存在.理由:不妨设四边形PDBQ是菱形,则PD=BQ,∴t=8﹣2t,∴t=,∴CQ=,PC=6﹣=,BQ=PD=,∴OQ==6,∴PQ≠BQ,∴假设不成立,∴不存在.设点Q的速度为每秒a个单位长度.∵四边形PDBQ是菱形,∴PD=BD,∴t=10﹣t,∴t=,∴BQ=PD=,∴6﹣a=,∴a=.∴点Q的速度为每秒个长度单位时,使四边形PDBQ在某一时刻为菱形.②如图,⊙O是△PQC的外接圆的圆心,作OM⊥AB于M,OE⊥AC于E,OF⊥BC于F,连接OB、OC、OA.∵PQ===,∴t=时,PQ最小值为.此时PC=,CQ=,PQ=,∵•AC•OF+•AC•OE+•AB•OM=•BC•AC,∴×8×+×6×+×10×OM=24,∴OM=,∴OM<OP,∴△CPQ的外接圆与直线AB相交.【点评】本题考查圆综合题、等腰直角三角形的性质、二次函数最小值问题、勾股定理、三角形面积等知识,解题的关键是灵活应用这些知识解决问题,学会解题常用辅助线,学会利用面积法解决问题,属于中考压轴题.25.(14分)(2020•广东校级一模)已知抛物线y=﹣x2+3x+4交y轴于点A,交x轴于点B,C(点B在点C的右侧).过点A作垂直于y轴的直线l.在位于直线l下方的抛物线上任取一点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.(1)写出A,B,C三点的坐标;(2)若点P位于抛物线的对称轴的右侧:①如果以A,P,Q三点构成的三角形与△AOC相似,求出点P的坐标;②若将△APQ沿AP对折,点Q的对应点为点M.是否存在点P,使得点M落在x轴上?若存在,求出点P的坐标;若不存在,请说明理由;③设AP的中点是R,其坐标是(m,n),请直接写出m和n的关系式,并写出m的取值范围.【考点】二次函数综合题.【分析】(1)先令x=0求出y的值即可得出A点坐标,再令y=0求出x的值即可得出BC 两点的坐标;(2)①分△AQP∽△AOC与△AQP∽△COA两种情况进行讨论;②过点M作y轴的平行线交直线AQ于点E,过点P作PF⊥直线ME于点F,设Q(x,4),则P(x,﹣x2+3x+4),PQ=x2﹣3x=PM,再由△AEM∽△MFP求出PF的表达式,在Rt△AOM中根据勾股定理求出x的值,进而可得出P点坐标③根据在位于直线l下方的抛物线上任取一点P,则有a<0或a>3,由点P在抛物线上即可建立m与n的关系.【解答】解:(1)∵令x=0,则y=4,∴A(0,4);∵令y=0,则﹣x2+3x+4=0,解得x1=4,x2=﹣1,∴B(4,0),C(﹣1,0);(2)①∵以A,P,Q三点构成的三角形与△AOC相似,∴△AQP∽△AOC与△AQP∽△COA,∴或,即或,解得x=或x=7,均在对称轴的右侧,∴P(,)或(7,24);②如图所示,过点M作y轴的平行线交直线AQ于点E,过点P作PF⊥直线ME于点F,设Q(x,4),则P(x,﹣x2+3x+4),PQ=x2﹣3x=PM,∵∠EAM+∠EMA=90°,∠EMA+∠FMP=90°,∴∠FMP=∠EAM.∵∠MFP=∠AEM=90°,∴△AEM∽△MFP,∴.∵MP=x2﹣3x,∴,∴PF=4x﹣12,∴OM=(4x﹣12)﹣x=3x﹣12,在Rt△AOM中,∵OM2+OA2=AM2,即(3x﹣12)2+42=x2,解得x1=4,x2=5均在抛物线对称轴的右侧,∴P(4,0)或(5,﹣6).③∵抛物线y=﹣x2+3x+4和A(0,4),∴抛物线和直线l的交点坐标为A(0,4),(3,4),设P(a,﹣a2+3a+4);(a<0或a>3)∵AP的中点是R,A(0,4),∴=m,=n,∴n=﹣2m2+3m+4,∵a<0或a>3,∴2m<0,或2m>3,∴m<0,或m.【点评】此题是二次函数综合题,主要涉及到相似三角形的判定与性质、二次函数图象上点的坐标特点及用待定系数法求二次函数的解析式等知识,在解答(2)时要分△AQP∽△AOC 与△AQP∽△COA两种情况进行讨论.。
2024年广东省广州市九强校初三一模数学试题含答案解析
2024年广东省广州市九强校九年级中考一模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.7-的倒数是( )A .17-B .17C .7-D .72.下列计算正确的是( )A .321mn mn -=B .()22346m n m n =C .()34m m m -⋅=D .()222m n m n +=+【答案】B【分析】利用合并同类项法则可判定A ,利用积的乘方法则与幂的乘方法则可判定B ,利用同底数幂乘法法则可判定C ,利用完全平方公式可判定D .【详解】解:A . 321mn mn mn -=≠,故选项A 计算不正确; B. ()()()222232346m n m n m n =⋅=,故选项B 计算正确;C . ()3344m m m m m m -⋅=-⋅=-≠,故选项C 计算不正确; D . ()222222m n m mn n m n +=++≠+,故选项D 计算不正确.故选择B .【点睛】本题考查同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式,掌握同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式是解题关键.3.2021年5月15日,“天问一号”着陆巡视器成功着陆于火星乌托邦平原,此时距离地球约320000000千米.数320000000科学记数法表示为( )A .73210⨯B .83.210⨯C .93.210⨯D .90.3210⨯4.在平面直角坐标系xOy 中,点()4,2M -关于x 轴对称的点的坐标是( )A .()4,2-B .()4,2C .()4,2--D .()4,2-【答案】C【分析】关于x 轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数,根据规律解答即可.【详解】解:点()4,2M -关于x 轴对称的点的坐标是:()4,2.-- 故选:.C 【点睛】本题考查的是关于x 轴对称的两个点的坐标关系,掌握“关于x 轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数.”是解题的关键.5.若某三角形的三边长分别为3,4,m ,则m 的值可以是( )A .1B .5C .7D .9加比赛,应选择( )甲乙丙丁x 98992s 1.60.830.8A .甲B .乙C .丙D .丁【答案】D【分析】根据平均环数比较成绩的好坏,根据方差比较成绩的稳定程度.【详解】解:甲、丙、丁射击成绩的平均环数较大,∵丁的方差<甲的方差<丙的方差,∴丁的成绩比较稳定,∴成绩好且发挥稳定的运动员是丁,故选:D .【点睛】本题考查的是平均数和方差的意义,掌握方差反映了一组数据的波动大小,方差越大,波动越大,方差越小,数据越稳定是解题的关键.7.如图,四边形ABCD 是菱形,点E ,F 分别在BC ,DC 边上,添加以下条件不能判定ABE ADF ≌的是( )A .BE DF =B .BAE DAF ∠=∠C .AE AF =D .AEB AFD∠=∠【答案】C【分析】本题考查菱形性质及全等三角形的判定,解题的关键是掌握三角形全等的判定定理.由四边形ABCD 是菱形可得:AB AD =,B D ∠=∠,再根据每个选项添加的条件逐一判断.【详解】解:由四边形ABCD 是菱形可得:AB AD =,B D ∠=∠,A 、添加BE DF =,可用SAS 证明ABE ADF ≌,故不符合题意;B 、添加BAE DAF ∠=∠,可用ASA 证明ABE ADF ≌,故不符合题意;C 、添加AE AF =,不能证明ABE ADF ≌,故符合题意;D 、添加AEB AFD ∠=∠,可用AAS 证明ABE ADF ≌,故不符合题意;故选:C .8.如图,正方形四个顶点分别位于两个反比例函数3y x=和ny x=的图象的四个分支上,则实数n 的值为( )A .3-B .13-C .13D .3∵OB OA =,AOB BDO ∠=∠∴90CAO AOC BOD ∠=︒-∠=∠∴AOC OBD ≌.∴32AOC OBD S S ==2n =.∵A 点在第二象限,故选:A .【点睛】本题考查了正方形的性质,反比例函数的k 的几何意义,熟练掌握以上知识是解题的关键.9.如图,在平面直角坐标系中,//AB DC ,AC BC ⊥,5CD AD ==,6AC =,将四边形ABCD 向左平移m 个单位后,点B 恰好和原点O 重合,则m 的值是( )A .11.4B .11.6C .12.4D .12.6∵5CD AD ==,DE AC ⊥10.已知抛物线2y ax bx c =++(,,a b c 是常数,0a ≠)经过点(1,1),(0,1)--,当2x =-时,与其对应的函数值1y >.有下列结论:①0abc >;②关于x 的方程230ax bx c ++-=有两个不等的实数根;③7a b c ++>.其中,正确结论的个数是( )A .0B .1C .2D .3【答案】D【分析】根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算判断即可【详解】∵抛物线2y ax bx c =++(,,a b c 是常数,0a ≠)经过点(1,1),(0,1)--,当2x =-时,与其对应的函数值1y >.∴c =1>0,a -b +c = -1,4a -2b +c >1,∴a -b = -2,2a -b >0,∴2a -a -2>0,∴a >2>0,∴b =a +2>0,∴abc >0,∵230ax bx c ++-=,∴△=24(3)b a c --=28b a +>0,∴230ax bx c ++-=有两个不等的实数根;∵b =a +2,a >2,c =1,∴a +b +c =a +a +2+1=2a +3,∵a >2,∴2a >4,∴2a +3>4+3>7,故选D .【点睛】本题考查了二次函数的性质,一元二次方程根的判别式,不等式的基本性质,熟练掌握二次函数的性质,灵活使用根的判别式,准确掌握不等式的基本性质是解题的关键.二、填空题11= .12.分解因式:23x y y -= .【答案】()()y x y x y +-【详解】试题分析:原式提公因式得:y (x 2-y 2)=()()y x y x y +-考点:分解因式点评:本题难度中等,主要考查学生对多项式提公因式分解因式等知识点的掌握.需要运用平方差公式.13.如图,点O 在直线AB 上,OC OD ⊥,若120AOC ∠=︒,则BOD ∠的大小为 .【答案】30°【分析】根据图示,利用平角求出∠BOC 的度数,然后利用垂直,即可求出∠BOD 的度数.【详解】∵120AOC ∠=︒,∴18060BOC AOC ∠=︒-∠=︒.∵OC OD ⊥,即90COD ∠=︒,∴30BOD COD BOC ∠=∠-∠=︒.故答案为:30°.【点睛】此题考查角的运算,运用平角和垂直的定义是解题的关键.14.如图,二次函数()()1y x x a =--(a 为常数)的图象的对称轴为直线2x =.则a 的值为 .【答案】3【分析】根据解析式,得到该抛物线与x 轴的交点坐标是()1,0和(),0a ,利用抛物线的对称性,进行求解即可.【详解】解:由二次函数()()1y x x a =--(a 为常数),该抛物线与x 轴的交点坐标是()1,0和(),0a ,∵()1,0和(),0a 关于对称轴对称,对称轴为直线2x =,15.若m ,n 是一元二次方程2210x x +-=的两个实数根,则242m m n ++的值是 .在x 轴上,则弦AB 的长为.三、解答题17()01π2cos451+-︒+【答案】218.如图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C ,求证:BD =CE【答案】证明见详解.【分析】根据“ASA ”证明△ABE ≌△ACD ,然后根据全等三角形的对应边相等即可得到结论.【详解】证明:在△ABE 和△ACD 中,∵A A AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩,△ABE ≌△ACD (ASA),∴AE =AD ,∴BD =AB –AD=AC -AE =CE .【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.19.先化简,再求值:2269111a a a a ++⎛⎫+÷ ⎪++,其中3=a .20.某年级随机选出一个班的初赛成绩进行统计,得到如下统计图表,已知在扇形统计图中D段对应扇形圆心角为72︒.分段成绩范围频数频率~a mA90100~20bB8089~c0.3C7079D70分以下10na______,b=______,c=______;(1)在统计表中,=(2)若统计表A段的男生比女生少1人,从A段中任选2人参加复赛,用列举法求恰好选到1名男生和1名女生的概率.21.如图,在平面直角坐标系xOy中,一次函数33y x42=+的图象与反比例函数()0ky xx=>的图象相交于点(),3A a,与x轴相交于点B.(1)求反比例函数的表达式;△是以(2)过点A的直线交反比例函数的图象于另一点C,交x轴正半轴于点D,当ABDBD为底的等腰三角形时,求直线AD的函数表达式及点C的坐标.22.某工艺厂为商城制作甲、乙两种木制工艺品,甲种工艺品不少于400 件,乙种工艺品不少于680件.该厂家现准备购买A 、B 两类原木共150根用于工艺品制作,其中,1根A 类原木可制作甲种工艺品4件和乙种工艺品2件,1根B 类原木可制作甲种工艺品2件和乙种工艺品6件.(1)该工艺厂购买A 类原木根数可以有哪些?(2)若每件甲种工艺品可获得利润50元,每件乙种工艺品可获得利润80元,那么该工艺厂购买A 、B 两类原木各多少根时获得利润最大,最大利润是多少?【答案】(1)50、51、52、53、54、55;(2)50根,100根,最大利润为76000【分析】(1)设工艺厂购买A 类原木x 根, B 类原木(150-x ),x 根A 类原木可制作甲种工艺品4x 件+(150-x )根B 类原木可制作甲种工艺品2(150-x ))件不少于400,x 根A 类原木可制作乙种工艺品2x 件+(150-x )根B 类原木可制作乙种工艺品6(150-x )件不少于680列不等式组,求出x 范围即可;(2)设获得利润为y 元,根据每件甲利润乘以甲件数+每件乙利润乘以乙件数列出函数,根据函数性质即可求解.【详解】解:(1)设工艺厂购买A 类原木x 根, B 类原木(150-x )根由题意可得42(150)40026(150)680x x x x +-≥⎧⎨+-≥⎩,可解得5055x ≤≤,∵x 为整数,∴50x =,51,52,53,54,55.答:该工艺厂购买A 类原木根数可以是:50、51、52、53、54、55.(2)设获得利润为y 元,由题意,()()50421508026150y x x x x =+-++-⎡⎤⎡⎤⎣⎦⎣⎦,即22087000y x =-+.∵2200-<,∴y 随x 的增大而减小,∴50x =时,y 取得最大值76000.∴购买A 类原木根数50根,购买B 类原木根数100根,取得最大值76000元.【点睛】本题考查列不等式组解应用题,一次函数的增减性质求最值,掌握列不等式组解应用题方法与步骤,利用一次函数的增减性质求最值方法是解题关键.23.如图,ABD △中,ABD ADB ∠=∠.(1)作点A 关于BD 的对称点C ;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC ,连接AC ,交BD 于点O .①求证:四边形ABCD 是菱形;②取BC 的中点E ,连接OE ,若13,102E BD O ==,求点E 到AD 的距离.(2)解:①证明:∵ABD ADB ∠=∠,∴AB AD =,∵C 是点A 关于BD 的对称点,∴CB AB CD AD ==,,∴AB BC CD AD ===,∵四边形ABCD 是菱形,∴152AC BD OB BD ⊥=,=,∵E 是BC 的中点,OA OC =,∴213BC OE ==,24.如图,AB 为O 的直径,C 为O 上一点,连接,AC BC ,D 为AB 延长线上一点,连接CD ,且BCD A ∠=∠.(1)求证:CD 是O 的切线;(2)若O ABC 的面积为CD 的长;(3)在(2)的条件下,E 为O 上一点,连接CE 交线段OA 于点F ,若12EF CF =,求BF 的长.25.已知抛物线22y ax ax c =-+(a ,c 为常数,0a ≠)经过点()0,1C -,顶点为D .(Ⅰ)当1a =时,求该抛物线的顶点坐标;(Ⅱ)当0a >时,点()0,1E a +,若DE =,求该抛物线的解析式;(Ⅲ)当1a <-时,点()0,1F a -,过点C 作直线l 平行于x 轴,(),0M m 是x 轴上的动点,()3,1N m +-是直线l 上的动点.当a 为何值时,FM DN +的最小值为M ,N 的坐标.在Rt DEG 中,1DG =,1(1)22EG a a a =+---=+,∴22221(22)DE DG EG a =+=++在Rt DCG 中,1DG =,1(1)CG a a =----=,∴22221DC DG CG a =+=+.在Rt FD H ' 中,2D H '=,(1)12F H a a a '=---=-∴()2222124F D F H D H a ''''=+=-+.又240F D ''=,即2(12)440a -+=.解得:152=-a ,272a =(舍)。
【3套试卷】广州市中考一模数学精选及答案
中考第一次模拟考试数学试题含答案一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,BC=4,AC=3,则cos A的值是()A .B .C .D .2.下列运算正确的是()A.2a3+5a2=7a5B.3﹣=3C.(﹣x2)•(﹣x3)=﹣x5D.(m﹣n)(﹣m﹣n)=n2﹣m23.如图所示的工件,其俯视图是()A .B .C .D .4.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件45678数人数36542每天加工零件数的中位数和众数为()A.6,5B.6,6C.5,5D.5,65.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D .=6.关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,则k的范围是()A.k<1B.k>1C.k≤1D.k≥17.反比例函数y=和一次函数y=kx﹣k在同一直角坐标系中的图象大致是()A.B.C.D.8.如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD 的面积是()A.30B.36C.54D.729.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450B.300(1+2x)=450C.300(1+x)2=450D.450(1﹣x)2=30010.反比例函数y=与y=在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A.B.2C.3D.1二.填空题(共6小题)11.计算:2cos60°+tan45°=.12.点D是线段AB的黄金分割点(AD>BD),若AB=2,则BD=.13.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离为9m,则AB与CD间的距离是m.14.若关于x的一元二次方程x2+mx+m2﹣19=0的一个根是﹣3,则m的值是.15.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.16.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点P是直线BC上一点,将△BDP沿DP所在的直线翻折后,点B落在B1处,若B1D⊥BC,则点P 与点B之间的距离为.三.解答题(共9小题)17.计算:4cos30°﹣3tan60°+2sin45°•cos45°.18.解方程:x(x﹣2)+x﹣2=0.19.有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字﹣1和3;乙袋中有三个完全相同的小球,分别标有数字1、0和﹣3.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点A的坐标为(x,y).(1)请用表格或树状图列出点A所有可能的坐标;(2)求点A在反比例函数y=图象上的概率.20.如图所示,点O是矩形ABCD对角线AC的中点,过点O作EF⊥AC,交BC交于点E,交AD于点F,连接AE、CF,求证:四边形AECF是菱形.21.小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.22.由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛B位于它的北偏东30°方向,且与航母相距80海里再航行一段时间后到达C处,测得小岛B位于它的西北方向,求此时航母与小岛的距离BC的长.23.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆.(1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价.24.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)根据图象,直接写出满足k1x+b>的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.25.如图,在平面直角坐标系中,A、B两点的坐标分别为(20,0)和(0,15),动点P 从点A出发在线段AO上以每秒2cm的速度向原点O运动,动直线EF从x轴开始以每秒lcm的速度向上平行移动(即EF∥x轴),分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)求t=9时,△PEF的面积;(2)直线EF、点P在运动过程中,是否存在这样的t使得△PEF的面积等于40cm2?若存在,请求出此时t的值;若不存在,请说明理由;(3)当t为何值时,△EOP与△BOA相似.参考答案与试题解析一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,BC=4,AC=3,则cos A的值是()A.B.C.D.【分析】首先利用勾股定理计算出斜边长,再根据锐角A的邻边b与斜边c的比叫做∠A 的余弦,记作cos A进行计算即可,【解答】解:∵∠C=90°,BC=4,AC=3,∴AB==5,∴cos A=,故选:B.2.下列运算正确的是()A.2a3+5a2=7a5B.3﹣=3C.(﹣x2)•(﹣x3)=﹣x5D.(m﹣n)(﹣m﹣n)=n2﹣m2【分析】根据合并同类项,以及同类二次根式,平方差公式,逐一判断.【解答】解:A、2a3和5a2不是同类项不能合并,故选项错误;B、3﹣=2,故选项错误;C、(﹣x2)•(﹣x3)=x5,故选项错误;D、(m﹣n)(﹣m﹣n)=n2﹣m2,故选项正确.故选:D.3.如图所示的工件,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选:C.4.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:45678每天加工零件数人数36542每天加工零件数的中位数和众数为()A.6,5B.6,6C.5,5D.5,6【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:A.5.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D .=【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC ,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D 、=不能判定△ADB∽△ABC,故此选项符合题意.故选:D.6.关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,则k的范围是()A.k<1B.k>1C.k≤1D.k≥1【分析】根据判别式的意义得到△=(﹣6)2﹣4×9k>0,然后解不等式即可.【解答】解:∵关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,∴△=(﹣6)2﹣4×9k>0,解得k<1.故选:A.7.反比例函数y=和一次函数y=kx﹣k在同一直角坐标系中的图象大致是()A.B.C.D.【分析】因为k的符号不确定,所以应根据k的符号及一次函数与反比例函数图象的性质解答.【解答】解:当k<0时,﹣k>0,反比例函数y=的图象在二,四象限,一次函数y =kx﹣k的图象过一、二、四象限,选项C符合;当k>0时,﹣k<0,反比例函数y=的图象在一、三象限,一次函数y=kx﹣k的图象过一、三、四象限,无符合选项.故选:C.8.如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD 的面积是()A.30B.36C.54D.72【分析】求▱ABCD的面积,就需求出BC边上的高,可过D作DE∥AM,交BC的延长线于E,那么四边形ADEM也是平行四边形,则AM=DE;在△BDE中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE是直角三角形;可过D作DF⊥BC于F,根据三角形面积的不同表示方法,可求出DF的长,也就求出了BC边上的高,由此可求出四边形ABCD的面积.【解答】解:作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=BC=AD=5,则BE=15,在△BDE中,∵BD2+DE2=144+81=225=BE2,∴△BDE是直角三角形,且∠BDE=90°,过D作DF⊥BE于F,则DF==,∴S▱ABCD=BC•FD=10×=72.故选:D.9.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450B.300(1+2x)=450C.300(1+x)2=450D.450(1﹣x)2=300【分析】设快递量平均每年增长率为x,根据我国2016年及2018年的快递业务量,即可得出关于x的一元二次方程,此题得解.【解答】解:设快递量平均每年增长率为x,依题意,得:300(1+x)2=450.故选:C.10.反比例函数y=与y=在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A.B.2C.3D.1【分析】分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y轴,点C为垂足,再根据反比例函数系数k的几何意义分别求出四边形OEAC、△AOE、△BOC的面积,进而可得出结论.【解答】解:分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y轴,点C 为垂足,∵由反比例函数系数k的几何意义可知,S四边形OEAC=6,S△AOE=3,S△BOC=,∴S△AOB=S四边形OEAC﹣S△AOE﹣S△BOC=6﹣3﹣=.故选:A.二.填空题(共6小题)11.计算:2cos60°+tan45°=2.【分析】直接利用特殊角的三角函数值代入求出即可.【解答】解:2cos60°+tan45°=2×+1=2.故答案为:2.12.点D是线段AB的黄金分割点(AD>BD),若AB=2,则BD=3﹣.【分析】根据黄金分割点的定义和AD>BD得出AD=AB,代入数据即可得出BP 的长度.【解答】解:由于D为线段AB=2的黄金分割点,且AD>BD,则AD=×2=﹣1,∴BD=AB﹣AD=2﹣(﹣1)=3﹣.故答案为:3﹣.13.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离为9m,则AB与CD间的距离是6m.【分析】作PE⊥CD于E,交AB于F,如图,则PF=9,利用AB∥CD可判断△P AB∽△PCD,利用相似比计算出PF,然后计算出EF即可.【解答】解:作PE⊥CD于E,交AB于F,如图,则PF=9,∵AB∥CD,∴PF⊥CD,△P AB∽△PCD,∴=,即=,∴PF=3,∴EF=PE﹣PF=9﹣3=6.∴AB与CD间的距离是6m.故答案为6.14.若关于x的一元二次方程x2+mx+m2﹣19=0的一个根是﹣3,则m的值是﹣2或5.【分析】将x=﹣3代入方程可得m2﹣3m﹣10=0,解之即可.【解答】解:将x=﹣3代入方程可得:9﹣3m+m2﹣19=0,即m2﹣3m﹣10=0,解得:m=﹣2或m=5,故答案为:﹣2或5.15.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是8.【分析】连接BD交AC于点O,则可证得OE=OF,OD=OB,可证四边形BEDF为平行四边形,且BD⊥EF,可证得四边形BEDF为菱形;根据勾股定理计算DE的长,可得结论.【解答】解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,由勾股定理得:DE==2,∴四边形BEDF的周长=4DE=4×2=8,故答案为:8.16.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点P是直线BC上一点,将△BDP沿DP所在的直线翻折后,点B落在B1处,若B1D⊥BC,则点P 与点B之间的距离为或5.【分析】分点B1在BC左侧,点B1在BC右侧两种情况讨论,由勾股定理可AB=5,由平行线分线段成比例可得,可求BE,DE的长,由勾股定理可求PB的长.【解答】解:如图,若点B1在BC左侧,∵∠C=90°,AC=3,BC=4,∴AB==5∵点D是AB的中点,∴BD=BA=∵B1D⊥BC,∠C=90°∴B1D∥AC∴∴BE=EC=BC=2,DE=AC=∵折叠∴B1D=BD=,B1P=BP∴B1E=B1D﹣DE=1∴在Rt△B1PE中,B1P2=B1E2+PE2,∴BP2=1+(2﹣BP)2,∴BP=如图,若点B1在BC右侧,∵B1E=DE+B1D=+,∴B1E=4在Rt△EB1P中,B1P2=B1E2+EP2,∴BP2=16+(BP﹣2)2,∴BP=5故答案为:或5三.解答题(共9小题)17.计算:4cos30°﹣3tan60°+2sin45°•cos45°.【分析】原式利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=4×﹣3×+2××=1﹣.18.解方程:x(x﹣2)+x﹣2=0.【分析】把方程的左边分解因式得到(x﹣2)(x+1)=0,推出方程x﹣2=0,x+1=0,求出方程的解即可【解答】解:x(x﹣2)+x﹣2=0,(x﹣2)(x+1)=0,x﹣2=0,x+1=0,∴x1=2,x2=﹣1.19.有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字﹣1和3;乙袋中有三个完全相同的小球,分别标有数字1、0和﹣3.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点A的坐标为(x,y).(1)请用表格或树状图列出点A所有可能的坐标;(2)求点A在反比例函数y=图象上的概率.【分析】(1)画出树状图,根据图形求出点A所有可能的坐标即可;(2)只有(﹣1,﹣3),(3,1)这两点在反比例函数y=图象上,于是得到其概率.【解答】解:(1)画树状图得:则点A可能出现的所有坐标:(﹣1,1),(﹣1,0),(﹣1,﹣3),(3,1),(3,0),(3,﹣3);(2)∵点A(x,y)在反比例函数y=图象上的有(﹣1,﹣3),(3,1),∴点A(x,y)在反比例函数y=图象上的概率为:=.20.如图所示,点O是矩形ABCD对角线AC的中点,过点O作EF⊥AC,交BC交于点E,交AD于点F,连接AE、CF,求证:四边形AECF是菱形.【分析】由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE =CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论.【解答】证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形21.小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.【分析】(1)根据图中的信息可以求得这5期的集训共有多少天和小聪5次测试的平均成绩;(2)根据图中的信心和题意,说明自己的观点即可,本题答案不唯一,只要合理即可.【解答】解:(1)这5期的集训共有:5+7+10+14+20=56(天),小聪5次测试的平均成绩是:(11.88+11.76+11.61+11.53+11.62)÷5=11.68(秒),答:这5期的集训共有56天,小聪5次测试的平均成绩是11.68秒;(2)从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑,如图中第4期与前面两期相比;从测试成绩看,两人的最好的平均成绩是在第4期出现,建议集训时间定为14天.22.由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛B位于它的北偏东30°方向,且与航母相距80海里再航行一段时间后到达C处,测得小岛B位于它的西北方向,求此时航母与小岛的距离BC的长.【分析】过点B作BD⊥AC于点D,根据题意得到∠BAD=60°,∠BCD=45°,AB=80,解直角三角形即可得到结论.【解答】解:过点B作BD⊥AC于点D,由题意,得:∠BAD=60°,∠BCD=45°,AB=80,在Rt△ADB中,∠BAD=60°,∴BD=AB=40,在Rt△BCD中,∠BCD=45°,∴BD=CD=40,∴BC=BD=40,答:BC的距离是40海里.23.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆.(1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价.【分析】(1)根据当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆,即可求出当售价为22万元/辆时,平均每周的销售量,再根据销售利润=一辆汽车的利润×销售数量列式计算;(2)设每辆汽车降价x万元,根据每辆的盈利×销售的辆数=90万元,列方程求出x的值,进而得到每辆汽车的售价.【解答】解:(1)由题意,可得当售价为22万元/辆时,平均每周的销售量是:×1+8=14,则此时,平均每周的销售利润是:(22﹣15)×14=98(万元);(2)设每辆汽车降价x万元,根据题意得:(25﹣x﹣15)(8+2x)=90,解得x1=1,x2=5,当x=1时,销售数量为8+2×1=10(辆);当x=5时,销售数量为8+2×5=18(辆),为了尽快减少库存,则x=5,此时每辆汽车的售价为25﹣5=20(万元),答:每辆汽车的售价为20万元.24.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)根据图象,直接写出满足k1x+b>的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.【分析】(1)根据一次函数图象在反比例图象的上方,可求x的取值范围;(2)将点A,点B坐标代入两个解析式可求k2,n,k1,b的值,从而求得解析式;(3)根据三角形面积相等,可得答案.【解答】解:(1)∵点A的坐标为(﹣1,4),点B的坐标为(4,n).由图象可得:k1x+b>的x的取值范围是x<﹣1或0<x<4;(2)∵反比例函数y=的图象过点A(﹣1,4),B(4,n)∴k2=﹣1×4=﹣4,k2=4n∴n=﹣1∴B(4,﹣1)∵一次函数y=k1x+b的图象过点A,点B∴,解得:k1=﹣1,b=3∴直线解析式y=﹣x+3,反比例函数的解析式为y=﹣;(3)设直线AB与y轴的交点为C,∴C(0,3),∵S△AOC=×3×1=,∴S△AOB=S△AOC+S△BOC=×3×1+×4=,∵S△AOP:S△BOP=1:2,∴S△AOP=×=,∴S△COP=﹣=1,∴×3•x P=1,∴x P=,∵点P在线段AB上,∴y=﹣+3=,∴P(,).25.如图,在平面直角坐标系中,A、B两点的坐标分别为(20,0)和(0,15),动点P 从点A出发在线段AO上以每秒2cm的速度向原点O运动,动直线EF从x轴开始以每秒lcm的速度向上平行移动(即EF∥x轴),分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)求t=9时,△PEF的面积;(2)直线EF、点P在运动过程中,是否存在这样的t使得△PEF的面积等于40cm2?若存在,请求出此时t的值;若不存在,请说明理由;(3)当t为何值时,△EOP与△BOA相似.【分析】(1)由于EF∥x轴,则S△PEF=•EF•OE.t=9时,OE=9,关键是求EF.易证△BEF∽△BOA,则=,从而求出EF的长度,得出△PEF的面积;(2)假设存在这样的t,使得△PEF的面积等于40cm2,则根据面积公式列出方程,由根的判别式进行判断,得出结论;(3)如果△EOP与△BOA相似,由于∠EOP=∠BOA=90°,则只能点O与点O对应,然后分两种情况分别讨论:①点P与点A对应;②点P与点B对应.【解答】解:(1)∵EF∥OA,∴∠BEF=∠BOA又∵∠B=∠B,∴△BEF∽△BOA,∴=,当t=9时,OE=9,OA=20,OB=15,∴EF==8,∴S△PEF=EF•OE=×8×9=36(cm2);(2)∵△BEF∽△BOA,∴EF===(15﹣t),∴×(15﹣t)×t=40,整理,得t2﹣15t+60=0,∵△=152﹣4×1×60<0,∴方程没有实数根.∴不存在使得△PEF的面积等于40cm2的t值;(3)当∠EPO=∠BAO时,△EOP∽△BOA,∴=,即=,解得t=6;当∠EPO=∠ABO时,△EOP∽△AOB,∴=,即=,解得t=.∴当t=6或t=时,△EOP与△BOA相似.中考第一次模拟考试数学试卷数学试题时间:120分钟 总分:150分考生注意:1.本试卷含三个大题,共25题,答题时,考生务必按答题要求在答题纸规定位置上作答,在草稿纸、本试卷上答题一律无效2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置写出证明或计算的主要步骤.3.可以使用函数型计算器.一、选择题:(本大题共6题,每题4分,满分24分)1.在Rt ABC △中,90C ∠=︒,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,下列等式中不成立的是( )A .tan bB a =B .cos a B c =C .sin a A c =D .cot a A b= 2.如果从甲船看乙船,乙船在甲船的南偏东30°方向,那么从乙船看甲船,甲船在乙船的( )A .北偏东30°B .北偏西30°C .北偏东60°D .北偏西60°3.将二次函数()222y x =-的图像向左平移1个单位,再向下平移3个单位后所得图像的函数解析式为( )A .()2224y x =--B .()2213y x =-+C .()2213y x =--D .223y x =-4.已知二次函数2y ax bx c =++的图像如图所示,那么根据图像,下列判断中不正确的是( )A .0a <B .0b >C .0c >D .0abc >5.已知:点C 在线段AB 上,且2AC BC =,那么下列等式一定正确的是( )A .423AC BC AB +=u u u r u u u r u u u r B .20AC BC -=u u u r u u u r C .AC BC BC +=u u u r u u u r u u u rD .AC BC BC -=u u u r u u u r u u u r 6.已知在ABC △中,点D 、E 、F 分别在边AB 、AC 和BC 上,且DE BC P ,DF AC P ,那么下列比例式中,正确的是( )A .AE CF EC FB = B .AE DE EC BC = C .DF DE AC BC= D .EC FC AC BC = 二、填空题:(本大题共12题,每题4分,满分48分)7.已知::2:5x y =,那么():x y y +=__________.8.化简:313=222a b a b ⎛⎫-++- ⎪⎝⎭r r r r __________. 9.抛物线232y x x =++与y 轴的公共点的坐标是__________.10.已知二次函数2132y x =--,如果0x >,那么函数值y 随着自变量x 的增大而__________.(填“增大”或“减小”).11.已知线段4AB =厘米,点P 是线段AB 的黄金分割点()AP BP >,那么线段AP =__________厘米.(结果保留根号) 12.在ABC △中,点D 、E 分别在边AB 、AC 上,且DE BC P .如果35AD AB =,6DE =,那么__________.13.已知两个相似三角形的相似比为2:3,那么这两个相似三角形的面积比为__________.14.在Rt ABC △中,90C ∠=︒,210AB =,1tan 3A =,那么BC =__________. 15.某超市自动扶梯的坡比为1:24..一位顾客从地面沿扶梯上行了5.2米,那么这位顾客此时离地面的高度为__________米.16.在ABC △和DEF △中,AB BC DE EF=.要使ABC DEF △∽△,还需要添加一个条件,那么这个条件可以是__________(只需填写一个正确的答案).17.如图,在Rt ABC △中,90ACB ∠=︒,42AC BC ==,点D 、E 分别在边AB 上,且2AD =,45DCE ∠=︒,那么DE =__________.18.如图,在Rt ABC △中,90ACB ∠=︒,3BC =,4AC =,点D 为边AB 上一点.将BCD △沿直线CD 翻折,点B 落在点E 处,联结AE .如果AE CD P ,那么BE =__________.三、解答题:(本大题共7题,满分78分)19.已知在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像经过点()1,0A 、()0,5B -、()23C ,.求这个二次函数的解析式,并求出其图像的顶点坐标和对称轴.20.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O .E 为边AB 上一点,且2BE AE =.设AB a =u u u r r ,AD b =u u u r r .(1)填空:向量DE =u u u r __________; (2)如果点F 是线段OC 的中点,那么向量EF =u u u r __________,并在图中画出向量EF u u u r 在向量AB u u u r 和AD u u u r 方向上的分向量.注:本题结果用向量a r 、b r 的式子表示.画图不要求写作法,但要指出所作图中表示结论的向量).21.如图,在Rt ABC △中,90ACB ∠=︒,6BC =,8AC =.点D 是AB 边上一点,过点D 作DE BC P ,交边AC 于E .过点C 作CF AB P ,交DE 的延长线于点F .(1)如果13AD AB =,求线段EF 的长; (2)求CFE ∠的正弦值.22.如图,某公园内有一座古塔AB ,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD .中午12时太阳光线与地面的夹角为45°,此时塔尖A 在地面上的影子E 与墙角C 的距离为15米(B 、E 、C 在一条直线上),求塔AB 的高度.(结果精确到0.01米)参考数据:sin320.5299︒≈,cos320.8480︒≈,tan320.6249︒≈214142≈..23.如图,在ABC △中,点D 为边BC 上一点,且AD AB =,AE BC ⊥,垂足为点E .过点D 作DF AB P ,交边AC 于点F ,联结EF ,212EF BD EC =⋅. (1)求证:EDF EFC △∽△;(2)如果14VEDF VADC S S =,求证:AB BD =.24.已知:在平面直角坐标系xOy 中,抛物线2y ax bx =+经过点()5,0A 、()3,4B -,抛物线的对称轴与x 轴相交于点D .(1)求抛物线的表达式;(2)联结OB 、BD .求BDO ∠的余切值;(3)如果点P 在线段BO 的延长线上,且PAO BAO ∠=∠,求点P 的坐标.25.如图,在梯形ABCD 中,AD BC P ,AB CD =,5AD =,15BC =,5cos 13ABC ∠=.E 为射线CD 上任意一点,过点A 作AF BE P ,与射线CD 相交于点F .联结BF ,与直线AD 相交于点G .设CE x =,AG y DG=. (1)求AB 的长;(2)当点G 在线段AD 上时,求y 关于x 的函数解析式,并写出函数的定义域;(3)如果23ABEFABCD S S =四边形四边形,求线段CE 的长.2019—2020学年谯城九年级第一次调研模拟试卷数学试题参考答案一、选择题:1.D ;2.B ;3.C ;4.B ;5.C ;6.A .二、填空题:7.7:5(或75);8.14a b -+r r ;9.()0,2;10.减小;11.252-;12.10; 13.4:9(或49);14.2;15.2;16.B E ∠=∠(或AB AC DE DF =或BC AC EF DF=); 17.103;18.245(或4.8). 三、解答题:19.解:由这个函数的图像经过点()1,0A 、()0,5B -、()23C ,,得0,5,42 3.a b c c a b c ++=⎧⎪=-⎨⎪++=⎩解得1,6,5.a b c =-⎧⎪=⎨⎪=-⎩所以,所求函数的解析式为265y x x =-+-. ()226534y x x x =-+-=--+.所以,这个函数图像的顶点坐标为()3,4,对称轴为直线3x =.20.解:(1)13a b -r r (2)53124a b +r r .画图及结论正确. 21.解:(1)DE BC Q P ,13AD AB ∴=. 又6BC =Q ,2DE ∴=.DF BC Q P ,CF AB P ,∴四边形BCFD 是平行四边形.6DF BC ∴==.–4EF DF DE ∴==.(2)Q 四边形BCFD 是平行四边形,B F ∴∠=∠.在Rt ABC △中,90ACB ∠=︒,6BC =,8AC =,利用勾股定理,得10AB ===.84sin 105AC B AB ∴===.45CFE ∴∠=. 22.解:过点D 作DH AB ⊥,垂足为点H .由题意,得3HB CD ==,15EC =,HD BC =,90ABC AHD ∠=∠=︒,32ADH ∠=︒. 设AB x =,则–3AH x =.在Rt ABE △中,由45AEB ∠=︒,得tan tan 451AB AEB EB∠=︒==. EB AB x ∴==.15HD BC BE EC x ∴==+=+.在Rt AHD △中,由90AHD ∠=︒,得tan AH ADH HD∠=. 即得3tan 3215x x -︒=+. 解得15tan 32332.99331tan 32x ⋅︒+=≈≈-︒. ∴塔高AB 约为33米.23.证明:(1)AB AD =Q ,AE BC ⊥,∴12ED BE BD ==. 212EF BD EC =⋅Q ,2EF ED EC ∴=⋅.即得EF ED EC EF =. 又FED CEF ∠=∠Q ,EDF EFC ∴△∽△.(2)AB AD =Q ,B ADB ∴∠=∠.又DF AB Q P ,FDC B ∴∠=∠.ADB FDC ∴∠=∠.ADB ADF FDC ADF ∴∠+∠=∠+∠,即得EDF ADC ∠=∠.EDF EFC Q △∽△,EFD C ∴∠=∠.EDF ADC ∴△∽△.2214VEDF VADC S ED S AD ∴==. 12ED AD ∴=,即12ED AD =. 又12ED BE BD ==Q ,BD AD ∴=. AB BD ∴=.24.解:(1)Q 抛物线2y ax bx =+经过点()5,0A 、()3,4B -, 2550,93 4.a b a b +=⎧∴⎨-=⎩解得1,65.6a b ⎧=⎪⎪⎨⎪=-⎪⎩∴所求抛物线的表达式为21566y x x =-. (2)由21566y x x =-,得抛物线的对称轴为直线52x =. ∴点5,02D ⎛⎫ ⎪⎝⎭. 过点B 作BC x ⊥轴,垂足为点C .由()5,0A 、()3,4B -,得4BC =,3OC =,511322CD =+=. 11cot 8CD BDO CB ∴∠==. (3)设点(),P m n .过点P 作PQ x ⊥轴,垂足为点Q .则PQ n =-,OQ m =,5AQ m =-. 在Rt ABC △中,90ACB ∠=︒,824AC BAC BC ∴∠===. PAO BAO ∠=∠Q ,52AQ m PAO PQ n-∴∠===-. 即得25m n -=.① 由BC x ⊥轴,PQ x ⊥轴,得90BCO PQA ∠=∠=︒.BC PQ ∴P .BC OC PQ OQ ∴=,即得43n m=-.43m n ∴=-.② 由①、②解得1511m =,2011n =-. ∴点P 的坐标为1520,1111⎛⎫- ⎪⎝⎭.25.解:(1)分别过点A 、D 作AM BC ⊥、DN BC ⊥,垂足为点M 、N .AD BC Q P ,AB CD =,5AD =,15BC =,()()11155522BM BC AD ∴=-=-=. 在Rt ABM △中,90AMB ∠=︒,55cos 13BM ABM AB AB ∴∠===. 13AB ∴=.(2)AG y DG =Q,1AG DGy DG+∴=+.即得51DG y =+. AFD BEC ∠=∠Q ,ADF C ∠=∠.ADF BCE ∴△∽△.51153FD AD EC BC ∴===. 又CE x =Q ,13FD x =,13AB CD ==.即得1133FC x =+.AD BC Q P ,FD DG FC BC ∴=.5113115133xy x +∴=+. 3923xy x-∴=. ∴所求函数的解析式为3923x y x -=,函数定义域为3902x <<.(3)在Rt ABM △中,利用勾股定理,得12AM ==.S ∴梯形()()115151212022ABCD AD BC AM =+⋅=+⨯=. 23ABEF ABCDS S =Q 四边形四边形,S ∴四边形80ABEF =.设V ADF S S -=.由ADF BCE △∽△,13FD EC =,得9V BEC S S -=. 过点E 作EH BC ⊥,垂足为点H . 由题意,本题有两种情况:(ⅰ)如果点G 在边AD 上,则S 四边形ABCD S -四边形840ABEF S ==.5S ∴=.945BEC V S S -∴==.11154522V BEC S BC EH EH -∴=⋅=⨯⋅=. 6EH ∴=.由DN BC ⊥,EH BC ⊥,易得EH DN P .61122CE EH CD DN ==∴=. 又13CD AB ==,132CE ∴=. (ⅱ)如果点G 在边DA 的延长线上,则S 四边形ABCD S+四边形9ABEFV ADF S S -+=.8200S ∴=.解得25S =.9225V BEC S S -∴==.111522522V BEC S BC EH EH -∴=⋅=⨯⋅=.解得30EH =. 305122CE EH CD DN ∴===.652CE ∴=. 132CE ∴=或652.中考第一次模拟考试数学试卷一.选择题(共6小题)1.已知线段a、b,如果a:b=5:2,那么下列各式中一定正确的是()A.a+b=7B.5a=2b C.=D.=12.关于二次函数y=(x+1)2的图象,下列说法正确的是()A.开口向下B.经过原点C.对称轴右侧的部分是下降的D.顶点坐标是(﹣1,0)3.如图,在直角坐标平面内,射线OA与x轴正半轴的夹角为α,如果OA=,tanα=3,那么点A的坐标是()A.(1,3)B.(3,1)C.(1,)D.(3,)4.对于非零向量、,如果2||=3||,且它们的方向相同,那么用向量表示向量正确的是()A.B.C.D.5.某同学在利用描点法画二次函数y=ax2+bx+c(a=0)的图象时,先取自变量x的一些值,计算出相应的函数值y,如下表所示:x…01234…y…﹣30﹣103…接着,他在描点时发现,表格中有一组数据计算错误,他计算错误的一组数据是()A.B.C.D.6.已知⊙A的半径AB长是5,点C在AB上,且AC=3,如果⊙C与⊙A有公共点,那么⊙C的半径长r的取值范围是()A.r≥2B.r≤8C.2<r<8D.2≤r≤8二.填空题(共12小题)7.计算:=.8.计算:sin30°tan60°=.9.如果函数y=(m﹣1)x2+x(m是常数)是二次函数,那么m的取值范围是.10.如果一个二次函数的图象在其对称轴左侧部分是上升的,那么这个二次函数的解析式可以是.(只需写一个即可)11.如果将抛物线y=﹣2x2向右平移3个单位,那么所得到的新抛物线的对称轴是直线.12.如图,AD与BC相交于点O,如果,那么当的值是时,AB∥CD.13.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB的度数是.14.联结三角形各边中点,所得的三角形的周长与原三角形周长的比是.15.如果正n边形的内角是它中心角的两倍,那么边数n的值是.16.如图,某水库大坝的横假面是梯形ABCD,坝顶宽DC是10米,坝底宽AB是90米,背水坡AD和迎水坡BC的坡度都为1:2.5,那么这个水库大坝的坝高是米.17.我们把边长是两条对角线长度的比例中项的菱形叫做“钻石菱形”.如果一个“钻石菱形”的面积为6,那么它的边长是.18.如图,在△ABC中,AB=AC=5,sin C=,将△ABC绕点A逆时针旋转得到△ADE,点B、C分别与点D、E对应,AD与边BC交于点F.如果AE∥BC,那么BF的长是.三.解答题(共7小题)19.已知抛物线y=x(x﹣2)+2.(1)用配方法把这个抛物线的表达式化成y=a(x+m)2+k的形式,并写出它的顶点坐标;(2)将抛物线y=x(x﹣2)+2上下平移,使顶点移到x轴上,求新抛物线的表达式.20.如图,已知AD是△ABC的中线,G是重心.(1)设=,=,用向量、表示;(2)如果AB=3,AC=2,∠GAC=∠GCA,求BG的长.21.如图,已知Rt△ABC,∠BAC=90°,BC=5,AC=2,以A为圆心、AB为半径画圆,与边BC交于另一点D.(1)求BD的长;(2)连接AD,求∠DAC的正弦值.22.“滑块铰链”是一种用于连接窗扇和窗框,使窗户能够开启和关闭的连杆式活动链接装置(如图1).图2是“滑块铰链”的平面示意图,滑轨MN安装在窗框上,悬臂DE安装在窗扇上,支点B、C、D始终在一条直线上,已知托臂AC=20厘米,托臂BD=40厘米,支点C,D之间的距离是10厘米,张角∠CAB=60°.。
广东省专版 广州市中考数学一模试卷 (附答案)
广东省广州市中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.-2的绝对值是()A. B. 2 C. D.2.已知∠α=35°,则∠α的余角的度数是()A. B. C. D.3.16的算术平方根是()A. B. C. 4 D.4.不等式组的解集为()A. B. C. D. 无解5.菱形ABCD的周长为16,∠A=60°,则BD的长为()A. 8B. 4C.D.6.下列式子中是完全平方式的是()A. B. C. D.7.如图,△OAB绕点O顺时针旋转85°到△OCD,已知∠A=110°,若∠D=40°,则∠α的度数是()A.B.C.D.8.已知一次函数y=kx+b的函数值y随x的增大而增大,且其图象与y轴的负半轴相交,则对k和b的符号判断正确的是()A. ,B. ,C. ,D. ,9.如图,AB为⊙O的直径,弦CD垂直平分半径OB,垂足为E,CD=6cm,则直径AB的长是()A. 10cmB.C.D.10.把函数y=-2x+3的图象向左平移2个单位长度,再向下平移2个单位长度,可得到的图象的函数解析式是()A. B. C. D.二、填空题(本大题共6小题,共18.0分)11.已知点A(-2,4),则点A关于y轴对称的点的坐标为______ .12.等腰三角形的腰长是6,则底边长a的取值范围是______ .13.若反比例函数的图象经过点A(3,-2),则它的表达式是______ .14.已知△ABC∽△DEF,顶点D、E、F分别对应顶点A、B、C,且S△ABC:S△DEF=9:49,则AB:DE= ______ .15.已知函数y=x2-4x+3,则函数值y随x的增大而减小的x的取值范围是______ .16.如图,矩形ABCD中,DE⊥AC于点E,∠EDC:∠EDA=1:3,且AC=12,则DE的长度是______ (结果用根号表示).三、解答题(本大题共9小题,共102.0分)17.解方程组:.18.已知,如图,▱ABCD中,AE平分∠BAD,交BC于点E,CF平分∠DCB,交AD于点F.求证:△ABE≌△CDF.19.已知a=3-,b=3+,试求-的值.20.(1)这个队队员年龄的众数是______ ,中位数是______ ;(2)求这个队队员的平均年龄;(3)若把这个队队员年龄绘成扇形统计图,请求出年龄为15岁对应的圆心角的度数.21.在一个不透明的袋子中,放有四张质地完全相同的卡片,分别标有数字1,2,3,4.第一次从袋中随机地抽出一张卡片,把其上的数字记为横坐标x,然后把卡片放回袋中,搅匀后第二次再随机地从中抽出一张,把其上的数字记为纵坐标y.(1)用树状图或列表法把所有可能的点表示出来;(2)求所得的点在直线y=-x+5的点的概率.22.如图,抛物线y=ax2-bx-4a交x轴于点A、B,交y轴于点C,其中点B、C的坐标分别为B(1,0)、C(0,4).(1)求抛物线的解析式,并用配方法把其化为y=a(x-h)2+k的形式,写出顶点坐标;(2)已知点D(m,1-m)在第二象限的抛物线上,求出m的值,并直接写出点D 关于直线AC的对称点E的坐标.23.已知,如图,△ABC中,∠C=90°,E为BC边中点.(1)尺规作图:以AC边为直径,作⊙O,交AB于点D(保留作图痕迹,标上相应的字母,可不写作法);(2)连结DE,求证:DE为⊙O的切线;(3)若AD=4,BD=,求DE的长.24.如图,点A、B分别位于x轴负、正半轴上,OA、OB﹙OA<OB﹚的长分别是关于x的一元二次方程x2-4mx+m2+2=0的两根,C(0,3),且S△ABC=6.(1)求线段AB的长;(2)求∠ABC的度数;(3)过点C作CD⊥AC交x轴于点D,求点D的坐标;(4)y轴上是否存在点P,使∠PBA=∠ACB?若存在,请求出点P的坐标;若不存在,请说明理由.25.如图,在△ABC中,BD平分∠ABC,∠A=2∠C.(1)若∠C=38°,则∠ABD= ______ ;(2)求证:BC=AB+AD;(3)求证:BC2=AB2+AB•AC.答案和解析1.【答案】B【解析】解:|-2|=2,故选:B.根据绝对值的定义,可直接得出-2的绝对值.本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是本题的关键.2.【答案】A【解析】解:∵∠α=35°,∴∠α的余角的度数=90°-35°=55°.故选A.若两个角的和为90°,则这两个角互余,根据已知条件直接求出答案即可.本题考查了余角的定义,如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.牢记定义是关键.3.【答案】C【解析】解:∵42=16,∴16的算术平方根是4.故选C.根据算术平方根的定义求解即可求得答案.此题考查了算术平方根的定义.题目很简单,解题要细心.4.【答案】C【解析】解:∵解不等式①得:x<2,解不等式②得:x≥-1,∴不等式组的解集为-1≤x<2,故选C.先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集求出不等式组的解集.5.【答案】B【解析】解:∵四边形ABCD为菱形,∴AB=AD=DC=BC,∵菱形ABCD的周长为16,∴AB=4,∵∠A=60°,∴△ABD为等边三角形,∴AB=BD=4,故选B.根据菱形的性质可得:AB=AD,然后根据∠A=60°,可得三角形ABD为等边三角形,继而可得出BD的长.本题考查了菱形的性质,解答本题的关键是掌握菱形的四条边都相等的性质,比较简单.6.【答案】A【解析】解:A、原式=(a+1)2,是完全平方式,故本选项正确;B、原式=(a+1)2+3,不是完全平方式,故本选项错误;C、原式=a2-(b-1)2+1,不是完全平方式,故本选项错误;D、原式=(a+b)2-ab,不是完全平方式,故本选项错误;故选:A.完全平方公式:(a±b)2=a2±2ab+b2.看哪个式子整理后符合即可.本题主要考的是完全平方公式结构特点,有两项是两个数的平方,另一项是加或减去这两个数的积的2倍.解:∵△OAB绕点O顺时针旋转85°到△OCD,∴∠C=∠A=110°,∠BOD=85°,∵∠COD+∠C+∠D=180°,∴∠COD=180°-110°-40°=30°,∴∠BOC=∠BOD-∠COD=85°-30°=55°,即∠α的度数是55°.故选C.先根据旋转的性质得∠C=∠A=110°,∠BOD=85°,则利用三角形内角和计算出∠COD=30°,然后利用∠BOC=∠BOD-∠COD进行计算即可.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.8.【答案】B【解析】解:∵一次函数y=kx+b中y随x的增大而增大,∴k>0,∵一次函数y=kx+b与y轴负半轴相交,∴b<0.故选:B.一次函数y=kx+b中y随x的增大而增大,且与y轴负半轴相交,即可确定k,b的符号.此题主要考查了一次函数图象与系数的关系,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.解:连接OD,∵弦CD垂直平分半径OB,垂足为E,CD=6cm,∴DE=CD=3cm.设AB=4x,则OE=x,OD=2x,∴OE2+DE2=OD2,即x2+32=(2x)2,解得x=,∴AB=4(cm).故选D.连接OD,先根据垂径定理求出DE的长,再设AB=4x,则OE=x,OD=2x,根据勾股定理求出x的值即可.本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.10.【答案】C【解析】解:把函数y=-2x+3的图象向左平移2个单位长度,再向下平移2个单位长度,可得到的图象的函数解析式是:y=-2(x+2)+3-2=-2x-3,故选C.直接根据“上加下减,左加右减”的原则进行解答.本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.11.【答案】(2,4)【解析】解:根据平面内关于y轴对称的点,纵坐标相同,横坐标互为相反数,已知点A(-2,4),则点A关于y轴对称的点的横坐标为-(-2)=2,纵坐标为4,故点(-2,4)关于y轴对称的点的坐标是(2,4),故答案为(2,4).根据平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,易得答案.本题考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.12.【答案】0<a<12【解析】解:根据三边关系可知:6-6<a<6+6,即0<a<12.故答案为:0<a<12.由已知条件腰长是6,底边长为x,根据三角形三边关系列出不等式,通过解不等式即可得到答案.本题考查等腰三角形的性质和三角形的三边关系的运用.列出不等式,通过解不等式求解是正确解答本题的关键.13.【答案】y=-【解析】解:设反比例函数解析式为y=,∵图象经过点A(3,-2),∴k=-6,∴反比例函数解析式为:y=-.故答案为:y=-.首先设反比例函数解析式为y=,再把(3,-2)点代入可得k的值,进而可得解析式.此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.14.【答案】3:7【解析】解:∵△ABC∽△DEF,S△ABC:S△DEF=9:49,∴AB:DE=3:7,故答案为:3:7.根据相似三角形面积的比等于相似比的平方解答.本题考查了相似三角形的性质,是基础题,熟记性质是解题的关键.15.【答案】x<2【解析】解:a=1,x<-,即x<2时函数值y随x的增大而减小.故答案为:x<2.根据a>0,对称轴的左侧,y随x的增大而减小,对称轴的右侧,y随x的增大而增大,可得答案.本题考查了二次函数的性质,利用了a>0,对称轴的左侧,y随x的增大而减小,对称轴的右侧,y随x的增大而增大,确定对称轴是解题关键.16.【答案】3【解析】解:连接BD交AC于O,∵四边形ABCD是矩形,∴∠ADC=90°,AC=BD=12,OA=OC=AC=6,OB=OD=BD=6,∴OC=OD,∴∠ODC=∠OCD,∵∠EDC:∠EDA=1:3,∠EDC+∠EDA=90°,∴∠EDC=22.5°,∠EDA=67.5°,∵DE⊥AC,∴∠DEC=90°,∴∠DCE=90°-∠EDC=67.5°,∴∠ODC=∠OCD=67.5°,∴∠ODC+∠OCD+∠DOC=180°,∴∠COD=45°,∴OE=DE,∵OE2+DE2=OD2,∴2(DE)2=OD2=36,∴DE=3,故答案为:3.根据∠EDC:∠EDA=1:3,可得△CDE∽△ADE,再由AC=10,求得DE.此题主要考查了相似三角形的判定和矩形的性质,根据已知得出OE2+DE2=OD2是解题关键.17.【答案】解:,①+②×2得:x=2,把x=2代入②得:y=1,所以方程组的解是:.【解析】①+②×2消去y,再解答即可.本题主要考查对解一元一次方程,解二元一次方程组等知识点的理解和掌握,能把二元一次方程组转化成一元一次方程是解此题的关键.18.【答案】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∠BAD=∠DCB,∵AE平分∠A,CF平分∠C,∴∠BAE=∠BAD,∠DCF=∠DCB,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA).【解析】首先根据平行四边形的性质可得到AB=CD,∠B=∠D,∠BAD=∠DCB,再利用角平分线的性质证明∠BAE=∠DCF,即可得到△ABE≌△CDF的条件,利用ASA即可证明其全等.此题主要考查了平行四边形的性质,以及全等三角形的判定,解题的关键是证明∠BAE=∠DCF.19.【答案】解:∵a=3-,b=3+,∴-==-=.【解析】将a,b的值代入化简即可.本题主要考查了二次根式的化简,将二次根式分母有理化是解答此题的关键.20.【答案】15;16【解析】解:(1)15岁出现了4次,次数最多,因而众数是:15;12个数,处于中间位置的都是16,因而中位数是:16.故答案为15、16;(2)这个队队员的平均年龄==16(岁);(3)年龄为15岁对应的圆心角的度=×360°=120°.(1)众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解;(2)利用求平均数公式计算即可;(3)年龄为15岁所占的百分比,乘以360即可得到结果.本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.21.【答案】解:(1)树形图如下:列表如下:(2)按题意,在直线y=-x+5的点有:(1,4),(4,1),(2,3)(3,2)共4个,故P(所得的点在直线y=-x+5上)==.【解析】(1)此题需要两步完成,属于放回实验,所以采用树状图法或者采用列表法都比较简单,注意做到不重不漏;(2)根据(1)求得所有的可情况,再求出符合条件的情况,即可求得答案.此题考查了树状图与列表法求概率.列表法适合两步完成的事件,树状图法适合两步或两步以上完成的事件.解题时要注意此题是放回实验还是不放回实验.22.【答案】解:(1)抛物线y=ax2+bx-4a经过A(1,0)、C(0,4)两点,∴ ,解得.∴此抛物线的解析式为y=-x2-3x+4.(2)∵点D(m,1-m)在抛物线y=-x2-3x+4上,∴-m2-3m+4=1-m,解得m1=-3,m2=1.∵点D在第二象限,∴D(-3,4).令y=-x2-3x+4=0,解得x1=1,x2=-4.∴B(-4,0).∴∠CBO=45°.连接DC,易知DC∥BA,DC⊥CO,DC=3.∴∠DCA=∠CAO=45°.∴∠ACD=45°.过点D作DF⊥BC于F,延长DE交y轴于E,∴∠D=45°.∴∠CFE=45°.∴DF=CF=EF.∴点E即为点D关于直线BC的对称点.∴CD=CE=3,∴OE=1∴E(0,1).【解析】(1)由抛物线y=ax2+bx-4a经过A(1,0)、C(0,4)两点,利用待定系数法即可求得抛物线的解析式;(2)由点D(m,1-m)在抛物线y=-x2-3x+4上,即可求得点D的坐标,则可求得∠CBO的度数,然后过点D作DF⊥BC于F,延长DE交y轴于E,又由点E即为点D关于直线BC的对称点,即可求得点E的坐标.本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、抛物线解析式的求法、等腰直角三角形的判定与性质、轴对称的性质;熟练掌握二次函数图象上点的坐标特征和解析式的求法是解决问题的关键.23.【答案】(1)解:如图1,(2)证明:如图2,连结OD,CD,∵AC边为直径,∴∠ADC=90°,而E为BC边中点,∴DE为Rt△BDC斜边BC上的中线,∴DE=EC=BE,∴∠1=∠2,∵OC=OD,∴∠3=∠4,∴∠1+∠3=∠2+∠4=∠ACB=90°,∴OD⊥DE,∴DE为⊙O的切线;(3)解:∵∠DBC=∠CBA,∴Rt△BDC∽Rt△BCA,∴BC:AB=BD:BC,即BC:(4+)=:BC,∴BC=,∴DE=BC=.【解析】(1)作AC的垂直平分线,垂足为O,然后以O点为圆心,OA为半径作圆即可;(2)如图2,连结OD,CD,根据圆周角定理得到∠ADC=90°,再根据斜边上的中线等于斜边的一半得到DE=EC=BE,则利用等腰三角形的性质得∠1=∠2,加上∠3=∠4,则∠1+∠3=∠2+∠4=90°,于是可根据切线的判定定理可判断DE为⊙O的切线;(3)证明Rt△BDC∽Rt△BCA,利用相似比计算出BC=,然后利用斜边上的中线等于斜边的一半即可得到DE的长.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的判定.24.【答案】解:(1)∵点C(0,3),∴OC=3,∵S△ABC=6,∴×AB×OC=6,∴AB=4;(2)∵OA、OB﹙OA<OB﹚的长分别是关于x的一元二次方程x2-4mx+m2+2=0的两根,∵OA+OB=4m,∴4m=4,即m=1,∴方程可化为:x2-4x+3=0,解得:x1=1,x2=3,∴A(-1,0),B(3,0),∴△OBC是等腰直角三角形,∴∠ABC=45°;(3)如图1所示,作CD⊥AC,交x轴于点D,∵∠AOC=∠ACD=90°,∴∠CAO+∠ACO=90°,∠ACO+∠DCO=90°,∴∠CAO=∠DCO,∴△AOC∽△COD,∴=,∴OD==9,∴D(9,0);(4)y轴上存在点P,使∠PBA=∠CAB,如图2所示,过点B作PB∥AC,设直线AC解析式为y=kx+b,把A(-1,0),C(0,3)代入得:,解得:,∴直线AC的解析式为:y=3x+3,设直线PB解析式为y=3x+b,把B(3,0)代入得:0=9+b,即b=-9,∴直线PB的解析式为:y=3x-9,∴P点的坐标为(0,-9),根据对称性得P′(0,9),则y轴上存在点P,使∠PBA=∠ACB,此时P坐标为(0,-9)或(0,9).【解析】(1)由点C的坐标确定出OC的长,根据三角形ABC面积求出AB的长即可;(2)根据OA、OB﹙OA<OB﹚的长分别是关于x的一元二次方程x2-4mx+m2+2=0的两根,表示出OA+OB,即为AB的长,进而求出m的值,确定出方程,求出解得到A与B坐标,得到三角形OBC为等腰直角三角形,即可求出∠ABC的度数;(3)如图1所示,作CD⊥AC,交x轴于点D,根据同角的余角相等及一对公共角,得到三角形AOC与三角形COD相似,由相似得比例求出OD的长,即可确定出点D的坐标;(4)y轴上存在点P,使∠PBA=∠ACB,理由为:y轴上存在点P,使∠PBA=∠CAB,如图2所示,过点B作PB∥AC,设直线AC解析式为y=kx+b,把点A和点C坐标代入求出k与b的值,确定出直线AC解析式,进而求出直线PB解析式,求出点P坐标,再利用对称性求出点P′坐标即可.此题属于一次函数综合题,涉及的知识有:坐标与图形性质,解一元二次方程-因式分解法,相似三角形的判定与性质,待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.25.【答案】33°【解析】解:(1)在BC上截取BE=BA,如图1,在△ABD和△BED中,,∴△ABD≌△BED,∴∠BED=∠A,∵∠C=38°,∠A=2∠C,∴∠A=76°,∴∠ABC=180°-∠C-∠A=66°,BD平分∠ABC,∴∠ABD=33°;(2)由(1)知:△ABD≌△BED,∴BE=AB,DE=AD,∠BED=∠A,又∵∠A=2∠C,∴∠BED=∠C+∠EDC=2∠C,∴∠EDC=∠C,∴ED=EC,∴EC=AD∴BC=BE+EC=AB+AD;t(3)如图2,过B作BG⊥AC于G,以B为圆心,BA长为半径画弧,交AC于F,则BF=BA,在Rt△ABG和Rt△GBG中,,∴Rt△ABG≌Rt△GBG,∴AG=FG,∴∠BFA=∠A,∵∠A=2∠C,∴∠BFA=∠FBC+∠C=2∠C,∴∠FBC=∠C,∴FB=FC,FC=AB,在Rt△ABG和Rt△BCG中,BC2=BG2+CG2,AB2=BG2+AG2∴BC2-AB2=CG2-AG2=(CG+AG)(CG-AG)=AC(CG-GF)=AC•FC=AC•AB.(1)在BC上截取BE=AB,利用“边角边”证明△ABD和△BED全等,根据全等三角形对应边相等可得DE=AD,全等三角形对应角相等可得∠AED=∠A,然后求出∠C=∠CDE,根据等角对等边可得CE=DE,然后结合图形整理即可得证;(2)由(1)知:△ABD≌△BED,根据全等三角形对应边相等可得DE=AD,全等三角形对应角相等可得∠AED=∠A,然后求出∠C=∠CDE,根据等角对等边可得CE=DE,等量代换得到EC=AD,即得答案BC=BE+EC=AB+AD;(3)为了把∠A=2∠C转化成两个角相等的条件,可以构造辅助线:在AC上取BF=BA,连接AE,根据线段的垂直平分线的性质以及三角形的内角和定理的推论能够证明AB=F.再根据勾股定理表示出BC2,AB2.再运用代数中的公式进行计算就可证明.本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,等角对等边的性质,作辅助线构造出全等三角形和等腰三角形是解题的关键.。
广东省专版 广州市中考数学一模试卷(附答案)
广东省广州市中考数学一模试卷一、选择题(本大题共9小题,共27.0分)1.|-3|的值等于()A. 3B.C.D.2.分式有意义,则x的取值范围是()A. B. C. D.3.在下列运算中,计算正确的是()A. B. C.D.4.菱形具有而矩形不一定具有的性质是()A. 对角线相等B. 对角线相互垂直C. 对角线相互平分D. 对角互补5.将抛物线y=-x2向左平移2个单位后,得到的抛物线的解析式是()A. B. C. D.6.不等式组的解集在数轴上表示如图所示,则该不等式组可能为()A. B. C. D.7.一个碗如图所示摆放,则它的俯视图是()A. B. C. D.8.一次函数y=kx+k(k≠0)函数值y随x的增大而增大,它的图象大致是()A. B. C. D.9.正方形网格中,△ABC如图放置,其中点A、B、C均在格点上,则()A.B.C.D.二、填空题(本大题共6小题,共18.0分)10.在初三基础测试中,从化某中学的小明的6科成绩分别为语文120分,英语127分,数学123分,物理83分,化学80分,政治83分,则他的成绩的众数为______ 分.11.已知圆柱的底面半径为2cm,高为5cm,则圆柱的侧面积是______ cm2.(结果保留π)12.点(1,2)在反比例函数的图象上,则k的值是______ .13.大量事实证明,治理垃圾污染刻不容缓.据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排污量用科学记数法表示是______ 吨.14.如图,△ABC中,DE∥BC,DE分别交边AB、AB于D、E两点,若AD:AB=1:3,则△ADE与△ABC的面积比为______.15.如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,则EE′的长等于______.三、计算题(本大题共1小题,共14.0分)16.为了更好治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a,b的值.(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理流溪河两岸的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.四、解答题(本大题共8小题,共88.0分)17.解方程:.18.先化简,再求值:(a+b)2-a(a+b)-b2,其中a=2-,b=2+.19.如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.20.如图,在平面直角坐标系xoy中,直角梯形OABC,BC∥AO,A(-2,0),B(-1,1),将直角梯.形OABC绕点O顺时针旋转90°后,点A、B、C分别落在点A′、B′、C′处.请你解答下列问题:(1)在如图直角坐标系xOy中画出旋转后的梯形O′A′B′C′;(2)求点A旋转到A′所经过的弧形路线长.21.在不透明的袋中有大小、形状和质地等完全相同的4个小球,它们分别标有数字1、2、3、4.从袋中任意摸出一小球(不放回)作为十位数,将袋中的小球搅匀后,再从袋中摸出另一小球作为个位数.(1)请你用列表或画树状图的方法表示摸出两位数可能出现的所有结果;(2)规定:如果摸出的两位数是奇数,则小明赢;如果摸出的两位数是偶数则小亮赢.你认为这个游戏规则对小明、小亮双方公平吗?请说明理由.22.甲、乙两船同时从港口A出发,甲船以60海里/时的速度沿北偏东30°方向航行,乙船沿北偏西45°方向航行,1小时后甲船到达B点,乙船正好到达甲船正西方向的C点,问甲、乙船之间的距离是多少海里?(结果精确到0.1米)23.如图,在矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部,再延长BG交DC于点F.(1)判断GF与DF之长是否相等,并说明理由.(2)若,求的值.(3)若,求的值.24.已知:如图一次函数y=x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0).(1)求二次函数的解析式;(2)求四边形BDEC的面积S;(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.答案和解析1.【答案】A【解析】解:|-3|=3,故选:A.根据绝对值的性质一个负数的绝对值等于这个数的相反数,直接就得出答案.此题主要考查了绝对值的性质,熟练应用绝对值的性质是解决问题的关键.2.【答案】A【解析】解:根据题意得:x-2≠0,解得:x≠2.故选A.根据分式有意义的条件:分母不等于0,即可求解.本题主要考查了分式有意义的条件,正确理解条件是解题的关键.3.【答案】C【解析】解:A、(x5)2=x10,故选项错误;B、(x-y)2=x2-2xy+y2,故选项错误;C、正确;D、x3+x3=2x3,故选项错误.故选:C.利用积的乘方,完全平方公式,同底数的幂的除法,以及合并同类项求出结果即可确定答案.本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.4.【答案】B【解析】解:A、对角线相等,菱形不具有而矩形具有,故本选项错误;B、对角线互相垂直,菱形具有而矩形不一定具有,故本选项正确;C、对角线互相平分,菱形具有矩形也具有,故本选项错误;D、对角互补,菱形具有矩形也具有,故本选项错误;故选B.根据菱形的性质及矩形的性质,结合各选项进行判断即可得出答案.此题主要考查了菱形及矩形的性质,关键是需要同学们熟记菱形以及矩形的性质.5.【答案】A【解析】解:∵原抛物线的顶点为(0,0),∴新抛物线的顶点为(-2,0),设新抛物线的解析式为y=-(x-h)2+k,∴新抛物线解析式为y=-(x+2)2,故选:A.易得原抛物线的顶点和平移后新抛物线的顶点,根据平移不改变二次项的系数用顶点式可得所求抛物线.考查二次函数的几何变换;用到的知识点为:二次函数的平移不改变二次项的系数;左右平移只改变顶点的横坐标,左加右减.6.【答案】A【解析】解:由数轴上表示不等式解集的方法可知,该不等式组的解集为:-1<x≤2,A、的解集是:-1<x≤2,故本选项正确;B、的解集是:-1≤x≤2,故本选项错误;C、的解集是:1≤x≤2,故本选项错误;D、的解集是空集,故本选项错误.故选A.先根据在数轴上表示不等式解集的方法得出该不等式组的解集,再找出符合条件的不等式组即可.本题考查的是在数轴上表示不等式的解集,解答此类题目时一定要注意实心与空心圆点的区别,即一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点.7.【答案】C【解析】解:从上面可看到一个圆,它的底还有一个看不见的圆,用虚线表示.故选C.找到从上面看所得到的图形即可.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,看不见的棱画成了虚线,看得见的棱画成了实线.8.【答案】A【解析】解:∵一次函数y=kx+b,y随x增大而增大,∴k>0,∴此函数的图象经过一、二、三象限.故选A.根据题意判断出函数的图象所经过的象限即可得出结论.本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,k>0,b>0时,函数图象经过一、二、三象限是解答此题的关键.9.【答案】D【解析】解:由图可知,AC=2;BC=3;AB==;根据三角函数的定义,A、tanB==,故本选项错误;B、cosB===,故本选项错误;C、sinB===,故本选项错误;D、sinB===,故本选项正确.故选D.根据锐角三角函数的定义解答.此题考查了锐角三角函数的定义,根据勾股定理求出斜边的长是解关键,同时要明确知道三角函数的定义.10.【答案】83【解析】解:∵83出现了两次,出现的次数最多,∴其众数为83分.故答案为83.小明的6科成绩中,83分出现了两次,即为众数.本题考查了众数,知道众数的定义是解题的关键.11.【答案】20π【解析】【分析】本题主要考查了圆柱的侧面积的计算方法.牢记圆柱的侧面积的计算方法是解题的关键.根据圆柱侧面积=底面周长×高计算即可求得其侧面积.【解答】解:根据侧面积公式可得π×2×2×5=20πcm2.故答案为20π.12.【答案】-1【解析】解:∵点(1,2)在反比例函数y=的图象上,∴1-k=1×2,∴k=-1.故答案为:-1.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.【答案】8.5×106【解析】解:8500000=8.5×106,故答案为:8.5×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【答案】1:9【解析】解:∵△ABC中,DE∥BC,∴△ADE∽△ABC,相似比为AD:AB=1:3,∴△ADE与△ABC的面积比为:1:9.故答案为:1:9.根据相似三角形的面积比等于相似比的平方直接得出答案.此题主要考查了相似三角形的性质,根据相似比性质得出面积比是解决问题的关键.15.【答案】【解析】解:根据旋转的性质得到:BE′=DE=1,在直角△EE′C中:EC=DC-DE=2,CE′=BC+BE′=4.根据勾股定理得到:EE′===2.根据旋转的性质得到:BE′=DE=1,在直角△EE′C中,利用勾股定理即可求解.本题主要运用了勾股定理,能根据旋转的性质得到BE′的长度,是解决本题的关键.16.【答案】解:(1)根据题意得:,∴ ;(2)设购买污水处理设备A型设备x台,B型设备(10-x)台,则:12x+10(10-x)≤105,∴x≤2.5,∵x取非负整数,∴x=0,1,2,∴有三种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.(3)由题意:240x+200(10-x)≥2040,∴x≥1,又∵x≤2.5,x取非负整数,∴x为1,2.当x=1时,购买资金为:12×1+10×9=102(万元),当x=2时,购买资金为:12×2+10×8=104(万元),∴为了节约资金,应选购A型设备1台,B型设备9台.【解析】(1)根据“购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元”即可列出方程组,继而进行求解;(2)可设购买污水处理设备A型设备x台,B型设备(10-x)台,则有12x+10(10-x)≤105,解之确定x的值,即可确定方案;(3)因为每月要求处理流溪河两岸的污水量不低于2040吨,所以有240x+200(10-x)≥2040,解之即可由x的值确定方案,然后进行比较,作出选择.本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系,同时要注意分类讨论思想的运用.17.【答案】解:方程的两边同乘x(x+4),得x+4=5x,解得:x=1,检验:把x=1代入x(x+4)=5≠0,所以,原方程的解为:x=1.【解析】先去分母得出整式方程,求出整式方程的解,再代入x(x+4)进行检验即可.本题主要考查了解分式方程,运用了转化思想.18.【答案】解:(a+b)2-a(a+b)-b2=a2+2ab+b2-a2-ab-b2=ab当a=2-,b=2+时,原式=(2-)×(2+)=4-3=1.【解析】先算乘法,再合并同类项,最后代入求出即可.本题考查了整式的混合运算和求值的应用,主要考查学生的计算和化简能力,题目比较典型,难度适中.19.【答案】(1)证明:在△AOB和△DOC中∵∴△AOB≌△DOC(AAS)(2)解:∵△AOB≌△DOC,∴AO=DO∵E是AD的中点∴OE⊥AD∴∠AEO=90°【解析】(1)由已知可以利用AAS来判定其全等;(2)再根据等腰三角形三线合一的性质即可求得其为直角.此题考查了学生对全等三角形的判定及等腰三角形的性质的掌握,要熟练掌握这些性质并能灵活运用.20.【答案】解:(1)A(-2,0),旋转后即是(0,2),B(-1,1),旋转后就是(1,1)C(1,0)如图:(4分)(2)点A旋转到A'所经过的弧形路线长==π.(8分)【解析】(1)分别找到旋转后的坐标,依坐标画图即可.A(-2,0),旋转后即是(0,2),B(-1,1),旋转后就是(1,1)C(1,0);(2)求点A旋转到A′所经过的弧形路线长就是以点O为圆心,半径为2,圆心角为90度的弧长,利用弧长公式即可求出.本题主要考查了旋转的性质及弧长的计算公式.21.【答案】解:(1)利用树状图表示为:;两位数可能出现的所有结果是:12,13,14,21,23,24,31,32,34,41,42,43;(2)∵小明赢的情况有:13,21,23,31,41,43,共6种,∴小明赢的概率是:=,∴小亮赢的概率是:1-=,∴两人赢的机会相同,因而双方公平.【解析】(1)可以利用树状图表示出所有的可能出现的结果;(2)分别求得两人赢的概率,判断是否相等即可求解.本题考查的是游戏公平性的判断,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.22.【答案】解:过A作AD⊥BC交BC于D,则∠BAD=30°,∠CAD=45°.∵AD⊥BC,∴∠ADB=90°,∠ADC=90°.∵∠BAD=30°,∠ADB=90°,AB=60×1=60,∴BD=AB=×60=30,AD=AB cos∠DAB=60×cos30°=.∵∠ADC=90°,∠CAD=45°,AD=30,∴CD=AD=30.∵BC=CD+BD,∴BC=30+30≈81.9.答:甲乙两船之间的距离大约是81.9海里.【解析】过A作AD⊥BC交BC于D,则所求BC=CD+BD.先解直角△ABD,求出BD、AD的长,再解直角△ACD,求出CD的长.本题主要考查的是解直角三角形的应用-方向角问题及解直角三角形,理解方向角的定义是解决本题的关键.23.【答案】解:(1)连接EF,∵△BGE由△BAE翻折而成,∴∠A=∠EGB=90°,AE=EG,∵E是AD的中点,∴AE=EG=DE,∴ ,∴Rt△EGF≌Rt△EDF,∴GF=DF;(2)∵AD=AB,四边形ABCD是矩形,∴AD=BC=CD,在Rt△BCF中,∵BC2+CF2=BF2,即BC2+(CD-DF)2=(BC+DF)2,整理得CD=(2+)DF,∴=;(3)∵GF=DF,设DF=x,BC=y,则有GF=x,AD=y∵DC=n•DF,∴BF=BG+GF=(n+1)x在Rt△BCF中,BC2+CF2=BF2,即y2+[(n-1)x]2=[(n+1)x]2∴y=2x,∴==【解析】(1)连接EF,由图形翻折变换的性质可知,∠A=∠EGB=90°,AE=EG,由HL定理可得出Rt△EGF≌Rt△EDF,故可得出结论;(2)由AD=AB,四边形ABCD是矩形,可知AD=BC=CD,在Rt△BCF 中利用勾股定理即可得出的值;(3)GF=DF,设DF=x,BC=y,则有GF=x,AD=y,由DC=n•DF,可知BF=BG+GF=(n+1)x,在Rt△BCF中,由BC2+CF2=BF2即可得出结论.本题考查的是图形的翻折变换及勾股定理,熟知图形翻折不变性的性质是解答此题的关键.24.【答案】解:(1)将B(0,1),D(1,0)的坐标代入y=x2+bx+c,得:,得解析式y=x2-x+1.(2)设C(x0,y0)(x0≠0,y0≠0),则有解得,∴C(4,3)由图可知:S四边形BDEC=S△ACE-S△ABD,又由对称轴为x=可知E(2,0),∴S=AE•y0-AD×OB=×4×3-×3×1=.(3)设符合条件的点P存在,令P(a,0):当P为直角顶点时,如图:过C作CF⊥x轴于F;∵∠BPO+∠OBP=90°,∠BPO+∠CPF=90°,∴∠OBP=∠FPC,∴Rt△BOP∽Rt△PFC,∴,即,整理得a2-4a+3=0,解得a=1或a=3;∴所求的点P的坐标为(1,0)或(3,0),综上所述:满足条件的点P共有2个.【解析】(1)根据直线BC的解析式,可求得点B的坐标,由于B、D都在抛物线的图象上,那么它们都满足该抛物线的解析式,通过联立方程组即可求得待定系数的值.(2)根据抛物线的解析式,可求得E点的坐标,联立直线BC的解析式,可求得C点坐标;那么四边形BDEC的面积即可由△AEC、△ABD的面积差求得.(3)假设存在符合条件的P点,连接BP、CP,过C作CF⊥x轴于F,若∠BPC=90°,则△BPO∽△CPF,可设出点P的坐标,分别表示出OP、PF的长,根据相似三角形所得比例线段即可求得点P的坐标.此题考查了二次函数解析式的确定、函数图象交点坐标及图形面积的求法、直角三角形的判定以及相似三角形的性质等,难度适中.。
2024年广东省广州市增城区初三一模数学试题含答案解析
2024年广东省广州市增城区中考一模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在实数1-12,3.14中,无理数是( )A .1-BC .12D .3.142.下列图形中,不是轴对称图形的是( ).A .B .C .D .【答案】D【分析】本题考查了轴对称图形的概念,根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解: A ,B ,C 选项中的图形都能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.D 选项中的图形不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;故选:D .3.已知水星的半径约为24400000米,用科学记数法表示为( )A .80.24410⨯米B .62.4410⨯米C .72.4410⨯米D .624.410⨯米同.【详解】解:将数24400000米用科学记数法表示是72.4410⨯米.故选:C .4.某校即将举行田径运动会,小明从“跳高”“跳远”“100米”“400米”四个项目中,随机选择一项参赛,则他选择“100米”项目的概率是( ).A .12B .14C .16D .1125.下列运算正确的是( ).A .246x x x ⋅=B .358x x x +=C .()325x x =D .3=6.如图,在ABCD Y 中,E 为AD 的中点,连接BE ,交AC 于点F ,则:AF CF 等于( )A .1︰3B .2︰3C .2︰5D .1︰2【答案】D【分析】根据四边形ABCD 是平行四边形,证出△AEF ∽△CBF ,然后利用其对应边成比例即可求得答案.7.已知关于x 的方程()22210x m x m --+=有实数根,则m 的取值范围是( ).A .14m ≥B .14m ≤C .14m ≥-D .14m ≤-8.如图,在ABC 中,70CAB ∠=︒.在同一平面内,将ABC 绕点A 旋转到AB C ''△的位置,使得CC AB '∥,则BAB ∠'等于( )A .30B .35°C .40°D .50°【答案】C【分析】旋转中心为点A ,B 与B ',C 与C '分别是对应点,根据旋转的性质可知,旋转角BAB CAC ''∠=∠,AC AC '=,再利用平行线的性质得70C CA CAB '∠=∠=︒,把问题转化到等腰ACC '△中,根据内角和定理求CAC '∠.【详解】解:∵CC AB '∥,70CAB ∠=︒,∴70C CA CAB '∠=∠=︒,又∵C 、C '为对应点,点A 为旋转中心,∴AC AC '=,即ACC '△为等腰三角形,∴180240BAB CAC C CA '''∠=∠=︒-∠=︒.故选:C .【点睛】本题考查了旋转的基本性质,对应点到旋转中心的距离相等,对应点与旋转中心的连线的夹角为旋转角.同时考查了等边对等角,平行线的性质.9.如图,AB 是O 的直径,CD 是O 的弦,AB CD ⊥,垂足为E ,连接BD 并延长,与过点A 的切线AM 相交于点P ,连接AC .若O 的半径为5,8AC =,则AP 的长是( ).A .323B .13C .403D .14∵AB 是O 的直径,∴90ACB ∠=︒∵O 的半径为5,8AC =,则10AB =∴22221086BC AB AC =-=-=10.已知二次函数()210()y a x a a =--≠,当14x -≤≤时,y 的最小值为4-,则a 的值为( ).A .12或4B .12-或43-C .43-或4D .12-或4【答案】D【分析】本题主要考查二次函数的性质,分两种情况讨论,并且利用二次函数的性质即可解答.【详解】解:二次函数()()210y a x a a =--≠的对称轴为:直线1x =,(1)当0a >时,当11x -≤≤时,y 随x 的增大而减小,当14x ≤≤,y 随x 的增大而增大,∴ 当1x =时,y 取得最小值,∴ ()2114y a a =--=-,二、填空题11.分解因式:22a a -= .【答案】()2a a -【分析】本题考查了因式分解,直接提公因式a 即可求解.【详解】解:22a a -=()2a a -,故答案为:()2a a -.12.已知点11()A x y ,,22()B x y ,在直线35y x =-+上,且12x x >,则1y 2y ·(填“<”“>”或“=”)【答案】<【分析】本题考查了一次函数的性质,根据当0k <时,y 随x 的增大而减小,即可求解.【详解】解:∵30-<,∴y 随x 的增大而减小,∵12x x >,∴12y y <.故答案为:<.13.某公司在2024年1月份的营业额为25万,3月份的营业额为36万,设该公司营业额的月平均增长率为x ,则可列方程为 .【答案】()225136x +=【分析】本题考查了一元二次方程的应用,设该公司营业额的月平均增长率为x ,根据题意列出一元二次方程,即可求解.【详解】解:设该公司营业额的月平均增长率为x ,根据题意得,()225136x +=,故答案为:()225136x +=.14.抛物线()20y ax bx c a =++≠的部分图象如图所示,它与x 轴的一个交点坐标为()3,0-,对称轴为=1x -,则抛物线与x 轴的另一个交点坐标为是 .【答案】()1,0【分析】利用抛物线的对称性求解即可得到答案.【详解】解:抛物线()20y ax bx c a =++≠其与x 轴的一个交点坐标为()3,0-,对称轴为=1x -,∴抛物线与x 轴的另一个交点坐标为 ()1,0,故答案为:()1,0.【点睛】本题主要考查了抛物线的对称性,解题的关键在于能够熟练掌握抛物线与x 轴的两个交点关于抛物线对称轴对称.15.如图,数轴上点A 、B 表示的数分别为m 、n ,化简:m n --=.16.如图,在平行四边形ABCD 中,4cm AB =,8cm AD =,60ABC ∠=︒,点P 为线段AD的中点.动点E 从点A 开始沿边AD 以1cm/s 的速度运动至点P ,动点F 从点C 开始沿边CB 以2cm/s 的速度运动至点B .点E 、F 同时出发,当其中一个动点到达终点时,另一个动点也随之停止运动.作点C 关于直线EF 的对称点C ',在点E 从点A 运动到点P 的过程中,点C '的运动路径长为cm .∵在平行四边形ABCD 中,4cm AB =∴4AB AP ==,4DP DC ==,∠∴4PC PA PD ===∴=90ACD ∠︒,∵AB CD ∥,∴AC AB ⊥,三、解答题17.解方程组:5 24x yx y+=⎧⎨-=⎩.【答案】32xy=⎧⎨=⎩.【分析】利用加减消元将方程组化简成一元一次方程,即可得解其一,再将其代入任意一个方程即可得解.【详解】解:524x y x y +=⎧⎨-=⎩上下两方程相加,得39x =,解得3x =.把3x =代入5x y +=中,得2y =.32x y =⎧⎨=⎩.【点睛】本题考查了解二元一次方程组;关键在于能利用加减消元或者代入消元的方法将其转化成一元一次方程的形式.18.如图,已知B C ∠=∠,AD 平分BAC ∠,求证:ABD ACD △≌△.【答案】见解析【分析】本题主要考查对全等三角形的判定,三角形的角平分线定义;根据角平分线的定义得出BAD CAD ∠=∠,根据AAS 即可证出答案.【详解】证明:AD 平分BAC ∠,BAD CAD ∴∠=∠,在ABD △和ACD 中B C BAD CAD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABD ACD ∴ ≌.19.春节放假期间,兴趣小组到某景点随机调查了10位游客一天使用共享电动车的次数,统计得到该10位游客一天使用共享电动车的次数如下:使用次数02346人数24121(1)在这次调查中,该10位游客一天使用共享电动车次数的中位数为 ,众数为 ,平均数为 .(2)若春节放假期间,每天约有1200位游客到此景点,试估计这些游客在春节放假期间每天使用共享电动车的总次数.20.已知()()22=--+-T a b a a b b .(1)化简T ;(2)若a ,b 是方程260x x +-=的两个根,求T 的值.【答案】(1)3ab-(2)18【分析】此题考查了整式的化简求值,一元二次方程根与系数的关系;(1)原式根据完全平方公式,单项式乘以单项式进行计算,然后合并同类项,即可得到结果;(2)利用根与系数的关系求出ab 的值,代入计算即可求出值.【详解】(1)解:()()22=--+-T a b a a b b 22222a ab b a ab b =-+---3ab =-;(2)解:∵a ,b 是方程260x x +-=的两个根,∴6ab =-∴()3618T =-⨯-=21.在学校开展的“劳动创造美好生活”主题活动中,八(1)班负责校园某绿化角的设计、种植与养护,同学们计划购买绿萝和吊兰两种绿植,已知吊兰的单价比绿萝的单价多5元,且用200元购买绿萝的盆数与用300元购买吊兰的盆数相同.(1)求购买绿萝和吊兰的单价各是多少元?(2)若购买绿萝的数量是吊兰数量的两倍,且资金不超过600元,则购买吊兰的数量最多是多少盆?等式的应用是解题的关键.22.如图,四边形ABCD 为正方形,点A 在y 轴上,点B 在x 轴上,且4OA =,2OB =,反比例函数()0k y k x=≠,在第一象限的图象经过正方形的顶点C .(1)求点C 的坐标和反比例函数的解析式:(2)若点N 为直线OD 上的一动点(不与点O 重合),在y 轴上是否存在点M ,使以点A 、M 、C 、N 为顶点的四边形是平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.则90BEC ∠=︒,四边形ABCD 为正方形,同(1)可得ADF BAO ≌,∴4,2DF OA AF OB ====∴()4,6D 设直线OD 的解析式为y kx =,则解得:3k =,23.如图,在ABC 中,C ∠是钝角.(1)尺规作图:在AB 上取一点O ,以O 为圆心,作出O ,使其过A 、C 两点,交AB 于点D ,连接CD ;(不写作法,保留作图痕迹)(2)在(1)所作的图中,若BCD A ∠=∠,1tan 3A =,9BC =.①求证:BC 是O 的切线;②求弦AC 的长.【答案】(1)见解析(2)①证明:如图所示,连接∵AD 是直径,∴=90ACD ∠︒,∴90ACO OCD ∠+∠=︒,∵OA OC =,∴OAC OCA ∠=∠,∵BCD A ∠=∠,B B ∠=∠,∴BCD BAC ∽△△,∴BC BD CD BA BC AC==,∵AD 是直径,∴=90ACD ∠︒24.在平面直角坐标系中,已知抛物线2221y x mx m =+-+ (m 是常数),顶点为M .(1)用含m 的式子表示抛物线的对称轴;(2)已知点()222--,A m ,当点A 不在y 轴上时,点A 关于x 轴的对称点为点B ,分别过点A 、B 作y 轴的垂线,垂足分别为D 、C ,连接AB ,得到矩形ABCD .①当1m >-时,点M 到边AB 所在直线的距离等于点M 到x 轴的距离,求m 的值;m<-时,抛物线的一部分经过矩形ABCD的内部,这部分抛物线上的点的纵坐标y ②当1随着x的增大而减小,求m的取值范围.此时需要满足的条件为:⎧-⎨⎩当点A分别在对称轴的右侧时,如下图:此时需要满足的条件为:⎧-⎨⎩综上:72m≤-或2m-≤<-25.如图,在等腰直角三角形ABC中,6AC=,点D在边BC的延长线上,将线段CD绕点D逆时针旋转90︒得到线段DE,连接BE,P为BE的中点.(1)求BC的长;(2)连接AP,PD,请猜想AP与PD的数量和位置关系,并证明你的结论;(3)在(2)的条件下,若点M为AC中点,连接MP,PC,求+MP PC的最小值.∵将线段CD 绕点D 逆时针旋转∴,90CD DE CDE =∠=︒,∴CDE 是等腰直角三角形,∴45DCE ∠=︒又∵45ACB ∠=︒试题21∴90ATD APD ∠=∠=︒∴,,,A T P D 四点共圆,∴ PDPD =∴45DTP DAP ∠=∠=︒,。
2024年广东省广州市部分学校中考数学一模试卷及答案解析
2024年广东省广州市部分学校中考数学一模试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)=()A.﹣2024B.2024C.D.2.(3分)如图所示的几何体由6个小正方体组合而成,其三视图中为轴对称图形的是()A.主视图B.左视图C.俯视图D.均不是3.(3分)学校举行投篮比赛,某班有7名同学参加了比赛,比赛结束后,老师统计了他们各自的投篮数,分别为3,5,5,6,6,4,6.下列关于这组数据描述不正确的是()A.众数为6B.平均数为5C.中位数为5D.方差为1 4.(3分)下列运算不正确的是()A.B.C.(a2b)3=a6b3D.5.(3分)等式=成立的x的取值范围在数轴上可表示为()A.B.C.D.6.(3分)关于x的方程x2﹣2cx+a2+b2=0有两个相等的实数根,若a,b,c是△ABC的三边长,则这个三角形一定是()A.等边三角形B.直角三角形C.钝角三角形D.等腰直角三角形7.(3分)如图,为了测量河两岸A,B两点间的距离,在河的一岸与AB垂直的方向上取一点C,测得AC=200米,∠ACB=α,则AB=()A.200•tanα米B.200•sinα米C.200•cosα米D.米8.(3分)九年级同学去距离学校10千米的博物馆参观,一部分同学骑自行车先走,过了20分钟后,剩余同学坐汽车出发,结果他们同时到达.已知汽车的速度是自行车的2倍,设骑车的同学速度为x千米/小时,则下列方程正确的是()A.B.C.D.9.(3分)如图,在△ABC中,AC=BC,∠ACB=100°,⊙O与AB,BC分别切于点D,C,连接CD.则∠ACD的度数为()A.50B.40C.30D.2010.(3分)在平面直角坐标系中,P是双曲线上的一点,点P绕着原点O顺时针旋转90°的对应点P1(m,n)落在直线y=﹣2x+1上,则代数式的值是()A.B.C.﹣8D.二、填空题(本大题共6小题,每小题3分,共18分.)11.(3分)龙行龘龘,前程朤朤,生活䲜䲜,截止至2024年2月10日晚上8时,中央广播电视总台2024年春节联欢晚会“竖屏看春晚”直播播放量达到4.23亿次,将4.23亿用科学记数法表示为.12.(3分)已知A(﹣2,y1),B(3,y2)在抛物线y=x2+x+m上,则y1y2.(填“<”或“>”或“=”)13.(3分)某中学对九年级共450名学生进行“综合素质”评价,评价的结果分A,B,C,D共4个等级.现随机抽取30名学生的评价结果作为样本进行分析,绘制了如图所示的条形图,据此估算全级学生中“综合素质”评价等级为“B”学生约有人.若将评价等级按所占比例绘制成扇形统计图,则评价等级为“D”对应扇形的圆心角度数为__________°.14.(3分)如图,在菱形ABCD中,E,F分别是边CD,BC上的动点,连接AE,EF,G,H分别为AE,EF的中点,连接GH.若∠B=45°,BC=,则GH的最小值为.15.(3分)如图,正方形ABCD的边AB=2,点E、F为正方形边的中点,以EF为半径的扇形交正方形的边于点G、H,则长为.16.(3分)如图,在△AOB中,,点O到线段AB的距离为.以点O为圆心,以2为半径作优弧DE,交AO于点D,交BO于点E,点M在优弧DE上从点D开始移动,到达点E时停止,连接AM,BM,则△ABM面积S 的取值范围是.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.(4分)解不等式:3(2x+7)>23.18.(4分)如图,AB⊥CF,DF⊥CF,AC∥DF,AB=DE,求证:BF=CE.19.(6分)如图所示,在平面直角坐标系中xOy中,点A(﹣4,1),△ABC的三个顶点都在格点上.将△ABC在坐标系中平移,使得点A平移至图中点D(1,﹣1)的位置,点B对应点E,点C对应点F.(1)点B的坐标为,点F的坐标为;(2)在图中作出△DEF,并连接AD;(3)求在线段AB平移到线段DE的过程中扫过的面积.20.(6分)已知:.(1)化简A;(2)从条件①、条件②这两个条件中选择一个作为已知,求A的值.条件①:若点P(a,a+2)是反比例函数图象上的点;条件②:若a是方程x2+x=8﹣x的一个根.21.(8分)甲、乙两位同学相约玩纸牌游戏.(1)有4张背面相同的纸牌A,B,C,D,其正面分别有四个不同的数字,将这四张纸牌洗匀后,背面朝上放在桌面上.若甲从中随机选择一张牌翻开,求他选中的牌面数字是整数的概率;(2)双方约定:两人各摸出一张牌,放回洗匀后再摸一张,若摸出的两张牌面数字之积为正数,那么甲赢,否则乙赢.这个规定是否公平?为什么?22.(10分)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体实验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x(h)之间的函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象求出血液中药物浓度下降阶段y关于x的函数表达式;(2)问:血液中药物浓度不低于5微克/毫升的持续时间为多少小时?23.(10分)如图,AB为⊙O的直径,C是圆上一点,D是BC的中点.(1)尺规作图:过点D作AB的垂线,交半圆AB于点E,交线段直径AB于点F(保留作图痕迹,不写作法);(2)点P是弧AE上一点,连接BP,CP,AC=6,BF=2.①求tan∠BPC的值;②若CP为∠ACB的角平分线,求CP的长.24.(12分)已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.(Ⅰ)当a=1,m=﹣3时,求该抛物线的顶点坐标;(Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线l 平行于x轴,E是直线l上的动点,F是y轴上的动点,EF=2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;②取EF的中点N,当m为何值时,MN的最小值是?25.(12分)如图,等边三角形ABC边长为2,点D是直线BC上一点,连接AD,将AD 绕点A逆时针旋转120°后得到AE.连接DE,AC与DE交于点F.(1)若AD⊥BC,求线段EF的长;(2)连接CE.①记点E的运动路径为l.试判断l与AC的位置关系;②在点D在运动的过程中,CE是否有最小值?如果有,请求出,并求此时的值;如果没有,请说明理由.2024年广东省广州市部分学校中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【分析】根据二次根式的性质:化简即可.【解答】解:,故选:A.【点评】本题考查了二次根式的性质,熟练掌握二次根式的性质是关键.2.【分析】先得到该几何体的三视图,再根据轴对称图形的定义即可求解.【解答】解:如图所示:是轴对称图形的是左视图.故选:B.【点评】本题考查了简单组合体的三视图,轴对称图形,关键是得到该几何体的三视图.3.【分析】根据相关定义求出对应数值分别判断,即可得到答案.【解答】解:A、6出现3次,出现次数最多,故众数是6,该项描述正确,不符合题意;B、,故该项描述正确,不符合题意;C、这组数据按由小到大排列是:3,4,5,5,6,6,6.最中间的是第四个数5,中位数为5,故该项描述正确,不符合题意;D、方差为,故该项描述错误;符合题意,故选:D.【点评】此题考查了求众数,中位数,方差及平均数,熟练掌握众数,中位数,方差及平均数的求法是关键.4.【分析】根据立方根、二次根式的加减、积的乘方、分式的加减运算法则计算判断即可.【解答】解:A、,故此选项符合题意;B、,故此选项不符合题意;C、(a2b)3=a6b3,故此选项不符合题意;D、,故此选项不符合题意;故选:A.【点评】本题考查了分式的加减,整式的运算,立方根,熟练掌握它们的运算法则是解题的关键.5.【分析】根据二次根式有意义的条件即可求出x的范围.【解答】解:由题意可知:解得:x≥3故选:B.【点评】本题考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.6.【分析】由关于x的方程x2﹣2cx+a2+b2=0有两个相等的实数根,可得Δ=(﹣2c)2﹣4(a2+b2)=0,整理得c2=a2+b2,根据勾股定理逆定理判断△ABC的形状即可.【解答】解:∵关于x的方程x2﹣2cx+a2+b2=0有两个相等的实数根,∴Δ=(﹣2c)2﹣4(a2+b2)=0,整理得c2=a2+b2,∴△ABC是直角三角形,故选:B.【点评】本题考查了一元二次方程根的判别式,勾股定理逆定理.解题的关键在于对知识的熟练掌握与灵活运用.7.【分析】已知AC=200米,∠ACB=α,根据正切定义可得AB.【解答】解:tan∠ACB=tanα=,AB=200•tanα(米),故选:A.【点评】本题考查了解直角三角形的应用,关键是掌握正切定义.8.【分析】设骑车学生的速度为x千米/小时,则汽车的速度为2x,先分别表示出骑自行车学生和乘汽车学生所用时间,然后根据题中所给的等量关系,即可列出方程.【解答】解:设骑车学生的速度为x千米/小时,则汽车的速度为2x,∵20分钟=小时,∴,故选:C.【点评】本题考查了分式方程,理解题意建立等量关系是解答本题的关键.9.【分析】由AC=BC,∠ACB=100°,求得∠B=∠A=40°,由⊙O与AB,BC分别切于点D,C,根据切线长定理得BD=BC,则∠BCD=∠BDC,所以2∠BCD+40°=180°,求得∠BCD=70°,则∠ACD=∠ACB﹣∠BCD=30°,于是得到问题的答案.【解答】解:∵AC=BC,∠ACB=100°,∴∠B=∠A=×(180°﹣100°)=40°,∵⊙O与AB,BC分别切于点D,C,∴BD=BC,∴∠BCD=∠BDC,∵∠BCD+∠BDC+∠B=180°,∴2∠BCD+40°=180°,∴∠BCD=70°,∴∠ACD=∠ACB﹣∠BCD=100°﹣70°=30°,故选:C.【点评】此题重点考查等腰三角形的性质、三角形内角和定理、切线长定理等知识,求得∠B=40°并且证明BD=BC是解题的关键.10.【分析】过点P作PQ⊥y轴于点Q,过点P1作P1Q1⊥y轴于点Q1,由题意可得出OQ1=n,P1Q1=﹣m,2m+n=1.易证△PQO≌△P1Q1O(AAS),即得出PQ=OQ1=n,PQ =P1Q1=﹣m,即可求出P(﹣n,m),进而得出,最后将所求式子通分变形为,再整体代入求值即可.【解答】解:如图,过点P作PQ⊥y轴于点Q,过点P1作P1Q1⊥y轴于点Q1,∵P1(m,n),且在直线y=﹣2x+1上,∴OQ1=n,P1Q1=﹣m,n=﹣2m+1,∴2m+n=1.由旋转的性质可知∠POP1=90°,PO=P1O,∴∠POQ+∠P1OQ1=90°.又∵∠POQ+∠OPQ=90°,∴∠OPQ=∠P1OQ1.∵∠PQO=∠P1Q1O=90°,∴△PQO≌△P1Q1O(AAS),∴PQ=OQ1=n,PQ=P1Q1=﹣m,∴P(﹣n,m).∵P是双曲线上的一点,∴,即.∴.故选:A.【点评】本题为一次函数与反比例函数的综合题,考查函数图象上的点的坐标特征,三角形全等的判定和性质,旋转的性质,坐标与图形,代数式求值.画出大致图象并正确作出辅助线构造全等三角形是解题关键.二、填空题(本大题共6小题,每小题3分,共18分.)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,据此解答即可.【解答】解:4.23亿=423000000=4.23×108,故答案为:4.23×108.【点评】本题考查科学记数法的表示方法.熟练掌握科学记数法书写格式是关键.12.【分析】根据a=1>0,且,进而可求解.【解答】解:∵a=1>0,对称轴为,∴当x=﹣2与x=1时,函数值都都等于y2,∴当时函数值随自变量的增大而增大;∵,∴y1<y2,故答案为:<.【点评】本题考查了二次函数的性质,熟练掌握其性质是解题的关键.13.【分析】先根据抽取学生30名列方程求出a,再根据360°乘以等级为“D”占比求出对应的圆心角度数.【解答】解:由图得:13+3a+5+a=30,解得a=4,所以等级为“B”学生约有3a=12人,等级为“D”对应扇形的圆心角度数为,故答案为:30,36.【点评】本题考查了条形统计图和扇形统计图,解题的关键是掌握相关知识的灵活运用.14.【分析】连接AF,利用三角形中位线定理,可知GH=AF,求出AF的最小值即可解决问题.【解答】解:连接AF,如图所示:∵四边形ABCD是菱形,∴AB=BC=2,∵G,H分别为AE,EF的中点,∴GH是△AEF的中位线,∴GH=AF,当AF⊥BC时,AF最小,GH得到最小值,则∠AFB=90°,∵∠B=45°,∴△ABF是等腰直角三角形,∴AF=AB=×2=,∴GH=,即GH的最小值为,故答案为:.【点评】本题考查了菱形的性质、三角形的中位线定理、等腰直角三角形的判定与性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.15.【分析】根据EG=EF=EH=2,BE=CE=1,可求出∠BEG=∠CEH=60°,所以∠GEH=60°,再根据弧长公式计算即可.【解答】解:∵正方形ABCD的边AB=2,点E、F为正方形边的中点,∴EG=EF=EH=2,BE=CE=1,∴cos∠BEG=cos∠CEH==,∴∠BEG=∠CEH=60°,∴∠GEH=60°,∴长为=π.故答案为:π.【点评】此题考查了弧长公式、正方形的性质、解直角三角形,正确求出∠GEH=60°是解题的关键.16.【分析】由勾股定理可求出AB=12,再根据面积法可求出点O到线段AB的距离;由图易知△ABM的AB边最小高为M在D时,最大高为M在过O垂直于AB的直线上,求出最小高和最大高,进而求出△ABM的面积为S的取值范围.【解答】解:在△AOB中,,∴,,∴∠OAB=60°,∠ABO=30°,设点O到线段AB的距离为h,又,∴,∴点O到线段AB的距离为;如图:Ⅰ.由图可知,△ABM的AB边最小高为M在D时,∵OD=2,AO=6,∴AD=4,∴,∴△ABM的面积为S的最小值=.Ⅱ.在过点O且垂直于AB的直线上时,△ABM的AB边的高最大,∴△ABM的AB边的高最大值为,∴△ABM的面积为S的最大值为=.∴△ABM的面积为S取值范围为:.故答案为:;.【点评】本题考查了勾股定理以及直线与圆的位置关系,正确作出图形是解决此题的关键.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.【分析】不等式的两边同时除以一个负数,要改变不等号的方向.先去括号、再移项,然后合并同类项,最后系数化1求得不等式的解集.【解答】解:3(2x+7)>23,6x+21>23,6x>2,.【点评】本题考查解一元一次不等式,熟练掌握不等式的性质是关键.18.【分析】运用AAS证明△ABC≌△DEF,得到EF=BC,再根据等式的性质即可得出结论.【解答】证明:∵AB⊥CF,DE⊥CF,∴∠ABC=∠DEF=90°.∵AC∥DF,∴∠C=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS).∴EF=BC.∴EF﹣BE=BC﹣BE.即:BF=CE.【点评】本题考查全等三角形的判定与性质,解题的关键是掌握全等三角形的判定方法.19.【分析】(1)根据点D的位置,结合平移的性质可得出答案.(2)运用平移的性质作出图形即可;(3)线段AB沿AD的方向平移到DE的过程中扫过的图形为平行四边形ADEB,求出面积【解答】解:(1)点B的坐标为(﹣2,4);∵A(﹣4,1),D(1,﹣1),C(0,3)∴由平移得点F的坐标为:(5,1),故答案为:(﹣2,4);(5,1);(2)如图,△DEF和AD即为所作:(3)线段AB沿AD的方向平移到DE的过程中扫过的图形为平行四边形ADEB,.【点评】本题考查作图—平移变换,解题的关键是掌握平移的性质及平行四边形面积求法.20.【分析】(1)利用分式的减法法则化简即可;(2)①由点P在反比例函数图象上,即可得出a(a+2)的值,代入A化解后的分式中即可得出结论;②a是方程x2+x=8﹣x的一个根,即可得出a(a+2)的值,代入A化解后的分式中即可得出结论.【解答】解:(1)=﹣=;(2)①点P(a,a+2)是反比例函数图象上的点,∴a(a+2)=8,∴A==;②∵a是方程x2+x=8﹣x的一个根,∴a2+a=8﹣a,∴a(a+2)=8,∴A==;【点评】本题考查了反比例函数图象上点的坐标特征,一元一次方程的解,分式的运算,把分式化简是解题的关键.21.【分析】(1)直接根据概率公式计算即可.(2)首先画出树状图或列表列出可能的情况,再计算出甲赢和乙赢的概率,最后进行比较即可.【解答】解:(1)共有4张牌,正面是整数的情况有2种,所以摸到正面是整数的纸牌的概率是;(2)这个规定否公平,理由如下:画树状图如下:共产生16种结果,每种结果出现的可能性相同,其中两张牌面数字之积为正数的有8种,∴甲赢的概率为,乙赢的概率为,∴甲赢的概率=乙赢的概率,故这个规定否公平.【点评】本题考查的是用列表法或树状图法求概率以及概率公式,掌握概率公式使解题的关键.22.【分析】(1)分别利用正比例函数以及反比例函数解析式求法得出即可;(2)利用y=2分别得出x的值,进而得出答案.【解答】解:(1)当0≤x≤4时,设直线解析式为:y=kx,将(4,10)代入得:6=4k,解得:k=,故直线解析式为:y=x,当4≤x≤10时,设反比例函数解析式为:y=,将(4,10)代入得:10=,解得:a=40,故反比例函数解析式为:y=;因此血液中药物浓度上升阶段的函数关系式为y=x(0≤x≤4),下降阶段的函数关系式为y=(4≤x≤10).(2)当y=5,则5=x,解得:x=2,当y=5,则5=,解得:x=8,∵8﹣2=6(小时),∴血液中药物浓度不低于2微克/毫升的持续时间6小时.【点评】此题主要考查了反比例函数的应用,根据题意得出函数解析式是解题关键.23.【分析】(1)在半圆AB上取点E,使,根据垂径定理的推论可知AB⊥DE,由此即可完成作图;(2)①连接OD,证明△ACB∽△OFD,设的半径为r,利用相似三角形的性质得r=5,AB=2r=10,由勾股定理求得BC,得到,即可得到;②过点B作BG⊥CP交CP于点G,证明△CBG是等腰直角三角形,解直角三角形得到,由得到,解得,由CP=CG+GP即可求解.【解答】解:(1)如图,在半圆AB上取点E,使,连接DE交AB于F,∴DE⊥AB,(2)解:①连接OD,∵D是BC的中点∴CD=BD,∴∠CAB=∠DOB,∵AB为⊙O的直径,∴∠ACB=90°,∵DE⊥AB,∴∠DFO=90°,∴△ACB∽△OFD,∴,设⊙O的半径为r,则,解得r=5,经检验,r=5是方程的解,∴AB=2r=10,∴,∴,∵∠BPC=∠CAB,∴;②如图,过点B作BG⊥CP交CP于点G,∴∠BGC=∠BGP=90°,∵∠ACB=90°,CP是∠ACB的平分线,∴∠ACP=∠BCP=45°,∴∠CBG=45°,∴,∴,∴,∴,∴.【点评】本题考查了相似三角形的判定与性质,垂径定理,圆周角定理及推论,解直角三角形等知识,熟练掌握以上知识并灵活运用是解题的关键.24.【分析】(Ⅰ)将A(1,0)代入抛物线的解析式求出b=2,由配方法可求出顶点坐标;(Ⅱ)①根据题意得出a=1,b=﹣m﹣1.求出抛物线的解析式为y=x2﹣(m+1)x+m.则点C(0,m),点E(m+1,m),过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).根据题意求出m的值,可求出CF的长,则可得出答案;②得出CN=EF=.求出MC=﹣m,当MC≥,即m≤﹣1时,当MC<,即﹣1<m<0时,根据MN的最小值可分别求出m的值即可.【解答】解:(Ⅰ)当a=1,m=﹣3时,抛物线的解析式为y=x2+bx﹣3.∵抛物线经过点A(1,0),∴0=1+b﹣3,解得b=2,∴抛物线的解析式为y=x2+2x﹣3.∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线的顶点坐标为(﹣1,﹣4).(Ⅱ)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,∴0=a+b+m,0=am2+bm+m,即am+b+1=0.∴a=1,b=﹣m﹣1.∴抛物线的解析式为y=x2﹣(m+1)x+m.根据题意得,点C(0,m),点E(m+1,m),过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).在Rt△EAH中,EH=1﹣(m+1)=﹣m,HA=0﹣m=﹣m,∴AE==﹣m,∵AE=EF=2,∴﹣m=2,解得m=﹣2.此时,点E(﹣1,﹣2),点C(0,﹣2),有EC=1.∵点F在y轴上,∴在Rt△EFC中,CF==.∴点F的坐标为(0,﹣2﹣)或(0,﹣2+).②由N是EF的中点,连接CN,CM,得CN=EF=.根据题意,点N在以点C为圆心、为半径的圆上,由点M(m,0),点C(0,m),得MO=﹣m,CO=﹣m,∴在Rt△MCO中,MC==﹣m.当MC≥,即m≤﹣1时,满足条件的点N在线段MC上.MN的最小值为MC﹣NC=﹣m﹣=,解得m=﹣;当MC<,即﹣1<m<0时,满足条件的点N落在线段CM的延长线上,MN的最小值为NC﹣MC=﹣(﹣m)=,解得m=﹣.∴当m的值为﹣或﹣时,MN的最小值是.【点评】本题是二次函数综合题,考查了二次函数的性质,待定系数法,二次函数图象上点的坐标特征,勾股定理等知识,熟练掌握二次函数的性质是解题的关键.25.【分析】(1)根据等边三角形的性质得到点D是BC的中点,,求得,得到,根据旋转的性质得到,∠DAE=120°,得到∠FAE=90°,由勾股定理求得EF=2;(2)①将AB绕点A逆时针旋转120°后得到AM.将AD绕点A逆时针旋转120°后得到AE.证明△ABD≌AME(SAS),证明∠MEA=∠CAE,得l∥AC;②点E在定直线上运动,当CE⊥AC时CE最短.过A作AH⊥CD于H,根据全等三角形的性质得到AH=CE,DH=AC=2,根据等边三角形的性质得到,根据勾股定理即可得到结论.【解答】解:(1)∵△ABC是等边三角形,AD⊥BC,∴点D是BC的中点,,∵AB=2,∴,∴∵将AD绕点A逆时针旋转120°后得到AE,∴,∴∠ADE=∠E=30°,∴∠FAE=90°,∵由勾股定理得,AE2+AF2=EF2,∴解得,EF=2;(2)①l∥AC,理由如下:如图,将AB绕点A逆时针旋转120°得到AM,连接ME,∴AB=AM,∠BAM=120°,∵将AD绕点A逆时针旋转120°后得到AE,∴AD=AE,∠DAE=120°,∴∠DAB=∠EAM,∴△ABD≌AME(SAS)∴∠AME=∠ABD=120°,∴∠MEA+∠MAE=60°,∵∠DAE=120°,∠BAC=60°,∴∠DAB+∠CAE=60°,∴∠MAE+∠CAE=60°,∴∠MEA=∠CAE,∴ME∥AC,即l∥AC;②∵点E在定直线上运动,当CE⊥AC时CE最短.过A作AH⊥CD于H,∴∠AHD=∠ACE=90°,∵∠CAM=120°﹣∠BAC=60°,∴∠CAD=60°﹣∠EAM,∵,∴∠ADH=180°﹣∠AHD﹣∠BAH﹣∠DAB=60°﹣∠DAB,∴∠ADH=∠CAE,∵AD=AE,∴△ADH≌△EAC(AAS),∴AH=CE,DH=AC=2,∵,∴BD=1,∵,∴,∴.所以,CE的最小值为,.【点评】本题考查了三角形综合,等边三角形的性质,全等三角形的判定和性质勾股定理以及30°角所对直角边等于斜边的一半等知识.正确作出辅助线是解题的关键。
广东省专版 广州中考数学一模试卷(附答案)
广东省广州中考数学一模试卷一、选择题(本大题共4小题,共12.0分)1.已知一组数据a、b、c的平均数为5,那么数据a-2、b-2、c-2的平均数是()A. 2B. 3C. 5D.2.如图,为了测量河岸A、B两点的距离,在与AB垂直的方向点C处测得AC=a,∠ACB=50°,那么AB等于()A. B. C. D.3.在A、B、C、D四幅图案中,能通过图平移得到的是()A.B.C.D.4.如图,圆锥的底面半径为2,母线长为6,则侧面积为()A.B.C.D.二、填空题(本大题共2小题,共6.0分)段长度l与直线在x轴上平移的距离m的函数图象如图(b)所示,那么AD的长为______.6.已知直线y=2x+(3-a)与x轴的交点在A(1,0),B(3,0)之间(包括A、B两点),则a的取值范围是______.三、解答题(本大题共8小题,共92.0分)7.已知菱形ABCD,∠DAB=60°.(1)若菱形ABCD的边长为2cm,如图(a)所示,点P从A点出发,以cm/s 的速度沿AC向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P运动到C点时,P、Q都停止运动,设P点的运动时间为t秒①当P异于A、C时,请说明PQ∥BC;②以P为圆心,PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?(2)如图(b)所示,菱形ABCD对角线交于点O,AE=,BE=1,连接OE,请直接写出OE的最大值.8.某水果店销售樱桃,其进价为40元/千克,按60元/千克出售,平均每天可售出100千克,经调查发现,这种樱桃每降价1元/千克,每天可多售出10千克,若该水果店销售这种樱桃要想每天获利2240元,每千克樱桃应降价多少元?9.如图,已知Rt△ABC中∠A=90°,AC=4.(1)利用尺规作∠ABC的平分线交AC于点D;(保留作图痕迹,不写作法)(2)过点D作DE⊥BC于点E,若CE=,△CDE的周长为y,先化简A=,再求A的值.10.解不等式3x-2>,并把它的解集在数轴上表示出来.11.已知抛物线y=x2-2mx+m2-3(m是常数)与x轴交于点A、B(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)若m取不同的值,线段AB的长度是否保持不变?若不变,请求出AB的长;若改变,请说明理由;(2)若点B在x轴正半轴上,且△BCD是以点D为直角顶点的直角三角形,请求出m的值;(3)设抛物线与直线x=交于点P,△PAB的外接圆圆心为点Q,问:点Q是否总在某个函数的图象上?若是,请求出该函数解析式;若不是,请说明理由.12.如图,边长为2的圆内接正方形ABCD中,P为边CD的中点,直线AP交圆于E点(1)求证:∠AED=45°;(2)求弦DE的长;(3)若Q是线段BC上一动点,当线段BQ的长度为何值时,13.如图,四边形ABCD为平行四边形,F是CD的中点,连接AF并延长与BC的延长线交于点E.求证:BC=CE.14.已知反比例函数y=(k≠0).(1)若点,和点,是该反比例函数图象上的两点,试利用反比例函数的性质比较y1和y2的大小;(2)设点P(m,n)(m>0)是其图象上的一点,过点P作PM⊥x轴于点M,若cos∠POM=,PO=(O为坐标原点),求k的值,并直接写出不等式2kx->0的解集.答案和解析1.【答案】B【解析】解:∵数据a,b,c的平均数为5,∴(a+b+c)=5,∴(a-2+b-2+c-2)=(a+b+c)-2=5-2=3,∴数据a-2、b-2、c-2的平均数是3.故选:B.根据数据a,b,c的平均数为5可知(a+b+c)=5,据此可得出(a-2+b-2+c-2)的值.本题考查了平均数:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.2.【答案】B【解析】解:根据题意,在Rt△ABC,有AC=a,∠ACB=50°,且tan50°=,则AB=AC×tan50°=a•tan50°,故选:B.根据题意,可得Rt△ABC,同时可知AC与∠ACB.根据三角函数的定义解答.本题考查了解直角三角形的应用,要熟练掌握三角函数的定义.3.【答案】B【解析】解:能通过图甲平移得到的是B,故选:B.根据平移后对应点的连线平行且相等可得答案.此题主要考查了图形的平移,关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.4.【答案】C解:根据圆锥的侧面积公式:πrl=π×2×6=12π,故选:C.根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.5.【答案】【解析】解:设当直线y=-x平移到C时,与直线AB交于点E,过点C作CF⊥AE于F 由题意,直线y=-x从A平移到D时,平移距离为7-4=3则BE=3,设直线平移到D时交AB于M,此时直线被平行四边形所截线段最长DM=由平移可知CE=DM=∵∠CEF=45°∴CF=EF=2则BF=1∴AD=BC=故答案为:图象可知,直线y=-x由点A平移到点D平移距离为3,则由B平移到C时平移距离BE=3,在平移过程中直线被平行四边形截得的线段长度最大值为CE=2,由∠CEF=45°,可求EF,进而求BF及AD本题为动点问题的函数图象探究题,考查了平行四边形的性质、图形平移的6.【答案】5≤a≤9【解析】解:∵直线y=2x+(3-a)与x轴的交点在A(1,0)、B(3,0)之间(包括A、B两点),∴1≤x≤3,令y=0,则2x+(3-a)=0,解得x=,则1≤≤3,解得5≤a≤9.故答案是:5≤a≤9.根据题意得到x的取值范围是1≤x≤3,则通过解关于x的方程2x+(3-a)=0求得x的值,由x的取值范围来求a的取值范围.本题考查了一次函数图象与系数的关系.根据一次函数解析式与一元一次方程的关系解得x的值是解题的突破口.7.【答案】解:(1)①∵四边形ABCD是菱形,且菱形ABCD的边长为2cm,∴AB=BC=2,∠BAC=∠DAB,又∵∠DAB=60°(已知),∴∠BAC=∠BCA=30°;如图1,连接BD交AC于O.∵四边形ABCD是∴AC⊥BD,OA=AC,菱形,∴OB=AB=1(30°角所对的直角边是斜边的一半),∴OA=(cm),AC=2OA=2(cm),运动ts后,,∴又∵∠PAQ=∠CAB,∴△PAQ∽△CAB,∴∠APQ=∠ACB(相似三角形的对应角相等),∴PQ∥BC(同位角相等,两直线平行)②如图2,⊙P与BC切于点M,连接PM,则PM⊥BC.在Rt△CPM中,∵∠PCM=30°,∴PM=PC=,由PM=PQ=AQ=t,即=t 解得t=4-6,此时⊙P与边BC有一个公共点;如图3,⊙P过点B,此时PQ=PB,∵∠PQB=∠PAQ+∠APQ=60°∴t=1∴<时,⊙P与边BC有2个公共点.如图4,⊙P过点C,此时PC=PQ,即=t,∴t=3-.∴当1<t≤3-时,⊙P与边BC有一个公共点,当点P运动到点C,即t=2时P与C重合,Q与B重合,也只有一个交点,此时,⊙P 与边BC有一个公共点,∴当t=4-6或1<t≤3-或t=2时,⊙P与菱形ABCD的边BC有1个公共点;当4-6<t≤1时,⊙P与边BC有2个公共点;(2)当OE⊥AB时,OE取最大值,OE=.【解析】(1)①连接BD交AC于O,构建直角三角形AOB.利用菱形的对角线互相垂直、对角线平分对角、邻边相等的性质推知△PAQ∽△CAB;然后根据“相似三角形的对应角相等”证得∠APQ=∠ACB;最后根据平行线的判定定理“同位角相等,两直线平行”可以证得结论;②如图2,⊙P与BC切于点M,连接PM,构建Rt△CPM,在Rt△CPM利用特殊角的三角函数值求得PM=PC=,然后根据PM=PQ=AQ=t列出关于t的方程,通过解方程即可求得t的值;如图3,⊙P过点B,此时PQ=PB,根据等边三角形的判定可以推知△PQB为等边三角形,然后由等边三角形的性质以及(2)中求得t的值来确定此时t的取值范围;如图4,⊙P过点C,此时PC=PQ,据此等量关系列出关于t的方程,通过解方程求得t的值.(2)当OE⊥AB时,OE取最大值,进而解答即可.本题综合考查了菱形的性质、直线与圆的位置关系以及相似三角形的判定等性质.解答(2)题时,根据⊙P的运动过程来确定t的值,以防漏解.8.【答案】解:设每千克樱桃应降价x元,则每天销售量为(100+10x)千克,根据题意得:(60-40-x)(100+10x)=2240,整理得:x2-10x+24=0,解得:x1=4,x2=6.设每千克樱桃应降价x元,则每天销售量为(100+10x)千克,根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.本题考查了一元二次方程的应用,根据总利润=每千克利润×销售数量,列出关于x的一元二次方程是解题的关键.9.【答案】解:(1)如图,∠ABC的平分线如图所示;(2)∵BD平分∠ABC,DA⊥BA,DE⊥BC,∴DA=DE,∴△CDE的周长为y=DE+DC+CE=DA+DC+EC=AC+EC=4+,A==÷=,把y=4+代入,原式=14+5.【解析】(1)利用尺规作出∠ABC的角平分线即可;(2)根据角平分线角平分线的性质定理可知AD=DE,可得,△CDE的周长为y=4+,化简后代入计算即可;本题考查作图-复杂作图、角平分线的性质、分式的混合运算等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】解:3x-2>,6x-4>x+1,6x-x>1+4,5x>5,x>1,在数轴上表示为:.先求出不等式的解集,再在数轴上表示出来即可.本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.11.【答案】解:(1)∵抛物线y=x2-2mx+m2-3(m是常数)与x轴交于点A、B,设(x1,0),B(x2,0)∴令y=0,∴x2-2mx+m2-3=0,∴x1+x2=2m,x1x2=m2-3,∴AB=|x1-x2|====2,即:m取不同的值,线段AB的长度是保持不变,AB的长为2;(2)∵抛物线y=x2-2mx+m2-3=(x-m)2-3,∴C(0,m2-3),D(m,-3),令y=0,∴0=(x-m)2-3,∴x1=m-,x2=m+,∴A(m-,0)B(m+,0),∴BC2=(m+)2+(m2-3)2=m4-5m2+2m+12,BD2=3+9=12,CD2=m4+m2,∵△BCD是以点D为直角顶点的直角三角形,∴BC2=BD2+CD2,∴m4-5m2+2m+12=m4+m2+12,∴m=0或m=;(3)抛物线与直线x=交于点P,∴P(,m2-2m),由(2)知,A(m-,0)B(m+,0),∵△PAB的外接圆圆心为点Q,∴AQ=PQ,设Q(x,y),∴x=m,∴Q(m,y),∴AQ2=y2+3,PQ2=(m-)2+[(m2-2m)-y]2=m2-2m+3+(m2-2m)2-2(m2-2m)y+y2∵AQ=PQ,∴y2+3=m2-2m+3+(m2-2m)2-2(m2-2m)y+y2,∴0=(m2-2m)2-(m2-2m)+2(m2-2m)y,∴y=m2-m+,∵x=m,∴y=x2-x+.∴点Q是否总在函数y=x2-x+的图象上.(1)令y=0,根据根与系数的关系得x1+x2=2m,x1x2=m2-3,进而得出AB=|x1-x2|====2得出结论;(2)先确定出点B,C,D坐标,利用两点间的距离公式得出BC2=m4-5m2+2m+12,BD2=3+9=12,CD2=m4+m2,最后用勾股定理建立方程求解即可得出结论.(3)先表示出点A,B,P坐标,设出点点Q坐标,利用Q到点A,B,P的距离相等建立方程求解即可得出结论.此题是二次函数综合题,主要考查了待定系数法,根与系数的关系,两点间的距离公式,勾股定理,三角形的外接圆的性质,用方程的思想解决问题是解本题的关键.12.【答案】证明:(1)连接AC,BD交于点O∵四边形ABCD是正方形∴∠BAD=∠ADC=90°,AC⊥BD∴AC与BD是直径∴O是圆心∵∠AED=∠AOD∴∠AED=45°(2)∵点P是CD的中点,∴DP=PC=1在Rt△ADP中,AP==在Rt△ADC中,AC==2∵∠CAE=∠CDE,∠ACD=∠DEP∴△ACP∽△DPE∴即∴DE=(3)如图:连接AQ,PQ,延长CB到F,使BF=DP,连接AF∵四边形ABCD是正方形∴AB=AD=BC=2,∠ADC=∠ABC=90°∵AB=AD,BF=DP,∠ABF=∠ADP∴△ABF≌△ADP∴AF=AP,∠DAP=∠FAB若AQ∥DE∴∠QAE=∠AED=45°∴∠BAQ+∠DAP=45°∴∠FAB+∠BAQ=∠FAQ=45°∵∠FAQ=∠QAE=45°,AP=AF,AQ=AQ∴△AFQ≌△APQ∴QP=QF∵FQ=FB+BQ=DP+BQ=1+BQ∴QP=1+BQ在Rt△PQC中,PQ2=QC2+CP2∴(1+BQ)2=(2-BQ)2+1∴BQ=【解析】(1)由题意可得AC,BD是圆的直径,即点O是直径,根据同弧所对的圆周角等于圆心角的一半,可证∠AED=45°;(2)由题意可证△APC∽△DPE,可求DE的长;(3)连接AQ,PQ,延长CB到F,使BF=DP,连接AF,可证△AFB≌△ADP,可得AF=AP,∠FAB=∠DAP,再证△AFQ≌△APQ,可得PQ=FQ,根据勾股定理可求BQ的长.本题考查了圆的综合题,圆周角定理,勾股定理,相似三角形,添加恰当的辅助线构造全等三角形是本题的关键.13.【答案】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,又∵F是CD的中点,即DF=CF,∴△ADF≌△ECF,∴AD=CE,∴BC=CE.【解析】根据平行四边形的对边平行且相等可得AD=BC,AD∥BC,根据两直线平行,内错角相等可得∠DAF=∠E,∠ADF=∠ECF,根据线段中点的定义可得DF=CF,然后利用“角角边”证明△ADF≌△ECF,根据全等三角形对应边相等可得AD=CE,从而得证.本题考查了平行四边形的性质,全等三角形的判定与性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.14.【答案】解:(1)∵y=(k≠0).∴k2>0,∴x<0时,y随x的增大而减小,∵-<-,∴y1>y2.(2)如图作PM⊥x轴于M.∵OP=,cos∠POM=,∴PM=4,OM=1,∴P(1,4),∵点P在y=上,∴k2=4,∴k=±2,当k=2时,,解得或∴A(1,4),B(-1,-4),∴不等式2kx->0的解集为-1<x<0或x>1.当k=-2时,不等式2kx->0的解集为x<0.【解析】(1)根据反比例函数的增减性即可解决问题;(2)求出点P坐标即可解决问题;本题考查反比例函数与一次函数的交点问题、解直角三角形、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
2024年广东省实验中学数学九年级第一学期开学联考模拟试题【含答案】
2024年广东省实验中学数学九年级第一学期开学联考模拟试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)有意义,则m 能取的最小整数值是()A .0m =B .1m =C .2m =D .3m =2、(4分)下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是()A .0个B .1个C .2个D .3个3、(4分)若不等式组1++9+1+1-123x a x x <⎧⎪⎨≥⎪⎩有解,则实数a 的取值范围是()A .a <-36B .a ≤-36C .a >-36D .a ≥-364、(4分)如图,▱ABCD 的对角线AC、BD 交于点O,AE 平分∠BAD 交BC 于点E,且∠ADC=60°,AB=12BC,连接OE,下列结论:①∠CAD=30°;②S ▱ABCD =AB•AC ;③OB=AB ;④OE=14BC,成立的个数有()A .1个B .2个C .3个D .4个5、(4分)下列各点中,在第四象限的点是()A .(2,3)B .(﹣2,﹣3)C .(2,﹣3)D .(﹣2,3)6、(4分)如图,在四边形ABCD 中,∠ABC=90°,,E 、F 分别是AD 、CD的中点,连接BE 、BF 、EF ,若四边形ABCD 的面积为6,则△BEF 的面积为()A .2B .94C .52D .37、(4分)在实数范围内有意义,则x 的取值范围是()A .3x ≥B .3x ≤C .3x ≠D .x <38、(4分)一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例计算选手的综合成绩.某选手的演讲内容、演讲能力、演讲效果成绩依次为85,95,95,则该选手的综合成绩为()A .92B .88C .90D .95二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在△ABC 中,点D ,E 分别是边AB ,AC 的中点,AF ⊥BC ,垂足为点F ,∠ADE =30°,DF =3,则AF 的长为_.10、(4分)如图,已知菱形OABC 的顶点O(0,0),B(2,2),则菱形的对角线交点D 的坐标为____;若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,点D 的坐标为_____.11、(4分)请写出“三个角都相等的三角形是等边三角形”的逆命题:_____.12、(4分)若一组数据1,3,5,x ,的众数是3,则这组数据的方差为______.13、(4分)如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3),若直线y=2x 与线段AB 有公共点,则n 的值可以为_____.(写出一个即可)三、解答题(本大题共5个小题,共48分)14、(12分)如图,为美化校园环境,某校计划在一块长为100米,宽为60米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米.(1)如果通道所占面积是整个长方形空地面积的14,求出此时通道的宽;(2)如果通道宽a (米)的值能使关于x 的方程212515004x ax a -+-=有两个相等的实数根,并要求修建的通道的宽度不少于5米且不超过12米,求出此时通道的宽.15、(8分)已知:AC 是菱形ABCD 的对角线,且AC=BC .(1)如图①,点P 是△ABC 的一个动点,将△ABP 绕着点B 旋转得到△CBE .①求证:△PBE 是等边三角形;②若BC=5,CE=4,PC=3,求∠PCE 的度数;(2)连结BD 交AC 于点O ,点E 在OD 上且DE=3,AD=4,点G 是△ADE 内的一个动点如图②,连结AG ,EG ,DG ,求AG+EG+DG 的最小值.16、(8分)已知:如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,E 、F 分别是线段BM 、CM 的中点.(1)求证:△ABM ≌△DCM ;(2)判断四边形MENF 是什么特殊四边形,并证明你的结论.17、(10分)关于x 的方程x 2+(2k +1)x +k 2﹣1=0有两个不相等的实数根.(1)求实数k 的取值范围;(2)若k 为负整数,求此时方程的根.18、(10分)某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕着矩形ABCD (AB <BC )的对角线交点O 旋转(如图①→②→③),图中M 、N 分别为直角三角板的直角边与矩形ABCD 的边CD 、BC 的交点.(1)该学习小组中一名成员意外地发现:在图①(三角板的一直角边与OD 重合)中,BN 1=CD 1+CN 1;在图③(三角板的一直角边与OC 重合)中,CN 1=BN 1+CD 1.请你对这名成员在图①和图③中发现的结论选择其一说明理由.(1)试探究图②中BN 、CN 、CM 、DM 这四条线段之间的关系,写出你的结论,并说明理由.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,将三角形纸片的一角折叠,使点B 落在AC 边上的F 处,折痕为DE .已知AB =AC =3,BC =4,若以点E ,F ,C 为顶点的三角形与△ABC 相似,那么BE 的长是_______.20、(4分)直线y=3x-2与x 轴的交点坐标为____________________21、(4分)把抛物线2531y x x =-+沿y 轴向上平移1个单位,得到的抛物线解析式为______.22、(4分)若关于x 的分式方程526(1)1+=---x k x x x x 有增根,则k 的值为__________.23、(4分)已知点(2,7)在函数y =ax +3的图象上,则a 的值为____.二、解答题(本大题共3个小题,共30分)24、(8分)一块直角三角形木块的面积为1.5m 2,直角边AB 长1.5m,想要把它加工成一个面积尽可能大的正方形桌面,甲、乙两人的加工方法分别如图①、图②所示。
2023-2024学年广东省九年级数学中考一模模拟卷(解析版)
2023-2024学年广东省九年级数学中考一模模拟卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请将正确选项前的字母代号填在()内)1.下列函数中,y 是x 的二次函数的是( )A .y =3xB .y =-x 2C .y =x 1+5 D .y =x 2-3x +5【答案】D2.下列图形中,既是是中心对称图形的是( )A. B. C. D.【答案】B3.下列运算正确的是( )A. xx 2+xx 3=xx 5B. ()()22x y x y x y +−=−C. (xx 4)4=xx 8D. ()222x y x y +=+【答案】B4.如图是一个正方体的展开图,则与“养”字相对的是( )A. 核B. 心C. 数D. 养【答案】C5.如图是某几何体的三视图,则该几何体的面积是( )A .16πcm 2B .(16+165)πcm 2C .165πcm 2D .(16+323)πcm 2【答案】B6.已知点A (-3,a ),()1,B b ,C (5,c )在反比例函数ky x =(k<0)的的图像上,下列结论正确的是()A. a b c <<B. a c b <<C. b<c<aD. c b a <<【答案】C 7.若△ABC ∽△DEF ,面积比为25∶9,则△ABC 与△DEF 的周长比为( )A .5∶3B .25∶9C .9∶25D .3∶5【答案】A8.如图,平行于主光轴MN 的光线AB 和CD 经过凹透镜的折射后,折射光线BE DF 、的反向延长线交于主光轴MN 上一点P .若∠CDF=135°,∠ABE=150°,则EPF ∠的度数是( )A. 60°B. 70°C. 75°D. 80°【答案】C 9.古秤是一种人类智慧的产物,也是华夏文明的瑰宝之一.如图,我们可以用秤砣到秤纽(秤杆上手提的部分)的水平距离得出秤钩上所挂物体的重量,称重时,若秤钩所挂物重为x (斤),秤砣到秤纽的水平距离为()cm y .下表中为若干次称重时所记录的一些数据:当x 为11斤时,对应的水平距离y 为( )A. 3cmB. 3.25cmC.3.5cmD.3.75cm【答案】B 【详解】解:设y kx b =+, 把(2,1)和(6,2)代入得:2162k b k b +=+= ①②, ②−①得:41k =,解得:14k =,把14k =代入①得:1214b ×+=, 解得:12b =, 1142y x ∴=+, 把x=11代入得:y=114+12=134=3.25.10.如图,在钝角三角形ABC 中,AB=4cm,AC=10cm ,动点D 从点A 出发沿AB 以1cm/s 的速度向点B 运动,同时动点E 从点C 出发沿CA 以2cm/s 的速度向点A 运动,当以,,A D E 为顶点的三角形与ABC 相似时,运动时间约是( )A .2.2s 或4.5sB .4.2sC .3sD .2.2s 或4.2s【答案】D二、填空题(本大题共5小题,每小题3分,共15分.不需写出解答过程,请把答案直接填写在题中横线上)11.因式分解:3ab-4a 2b= .【答案】ab(3-4a)12.西太湖是苏南仅次于太湖的第二大湖泊,南接宜兴,北通长江,东濒太湖,西接长荡湖,水域面积约164000000平方米,164000000这个数用科学记数法可表示为 .【答案】1.64×10813.若反比例函数y=kk+4xx 的图象分布在第二、四象限,则k 的取值范围是 .【答案】k<-4 14. 如图,平行四边形ABCD 中以点B 为圆心,适当长为半径作弧,交AB 、BC 于F 、G ,分别以点F 、G 为圆心,大于12FG 长为半径作弧,两弧交于点H ,连接BH 并延长,与AD 交于点E ,若AB=5,CE=4,DE=3,则BE 的长为_________.【答案】4√515.在平面直角坐标系中,已知A ()0,2,B ()4,0,点P 在x 轴上,把AP 绕点P 顺时针旋转90°得到线段A P ′,连接A B ′.若A PB ′△是直角三角形时,则点P 的横坐标为____________.【答案】2或1−+或1−【详解】解:∵()0,2A ,()4,0B ,∴2OA =,4OB =,设点(),0P m ,∵点P 、B 都在x 轴上,∴点P 不能为直角顶点,①如图,当点P 在x 轴的正半轴上,且90A BP ′∠=°时,由旋转可知,PA PA =′,∴90APO BPA ∠′+∠=°,90OAP APO ∠+∠=°,∴OAP BPA ′∠=∠,∴()AAS OAP BPA ′ ≌,∴2PB OA ==,∴482OP OB PB =−=−=,∴点P 的横坐标为2;②如图,当点P 在x 轴的正半轴上,且90PA B ′∠=°,过点A ′作A D PB ′⊥于点D ,则()0OP m m =>,由旋转可知,PA PA ′=,∴90APO DPA ′∠+∠=°,90OAP APO ∠+∠=°,∴OAP DPA ′∠=∠,∴()AAS OAP DPA ′ ≌,∴2PD OA ==,A D OP m ′==,∴422BD OB PD OP m m =−−=−−=−,∵90PA B A DB A DP ′′′∠=∠=∠=°, ∴90A PB PBA ∠′+∠=′°,90A PB PA D ′′∠+∠=°,∴PBA PA D ∠=′∠′,∴tan tan PBA PA D ∠=′∠′, ∴A D PD BD A D′=′,即22m m m =−,则2240m m +−=,解得:11m =−+21m =−(不合题意,舍去)∴点P 的横坐标为1−+;③如图,当点P 在x 轴的负半轴上,则90PA B ′∠=°,则OP m =−,过点A ′作A D PB ′⊥于点D ,同理可得()AAS OAP DPA ′ ≌,∴2PD OA ==,A D OP m ′==−,∴4PB OP OB m =+=−,422BD PB PD m m =−=−−=−,同理可得PBA PA D ∠=′∠′,∴tan tan PBA PA D ∠=′∠′, ∴A D PD BD A D′=′,即22m m m −=−−,解得11m =−21m =−(不合题意,舍去)∴点P 的横坐标为1−−综上所述,点P 的横坐标为2或1−或1−三、解答题(本大题共8小题,共75分)16.(8分)计算(1)2sin60°-tan45°+12cos30°+tan30°(2)(1-2024π)0 + √12 + 2sin60°-(-3)【答案】(1)19√312−12 (2)5-2√3 17.(5分)解不等式方程组:()33121318x x x x − +>+ −−≤−【答案】-2≤x<118.(9分)如图,线段AB ,CD 分别表示甲、乙建筑物的高,AB ⊥MN 于点B ,CD ⊥MN 于点D ,两座建筑物间的距离BD 为35 m .若甲建筑物的高AB 为20 m ,在点A 处测得点C 的仰角α为45°,则乙建筑物的高CD 为多少 m ?【答案】解:由题意得:AB =DE =20m ,AE =BD =35m ,∠CAE =45°,∠AEC =90°,在Rt △AEC 中,CE =AE •tan45°=35(m ),∴ CD =DE+CE =20+35=55(m ),答:乙建筑物的高CD 为55m.19.(9分)2020年我国进行了第七次全国人口普查,佛山市近五次人口普直常住人口分布情况如图所示,根据第七次全国人口普查结果,佛山市常住人口年龄构成情况如图所示,(1)佛山市2020年常住人口1559−岁段的占比是_______%;(2)根据普查结果显示,2020年60岁以上的人口约99.645万人,求2020年佛山市城镇人口有多少万人,并补全条形图;(3)城镇化率是一个国家或地区城镇人口占其总人口的百分率,是衡量城镇化水平的一个指标.根据统计图表提供的信息,1990年佛山市的城镇化率是_____%(结果精确到1%);(4)根据佛山市近五次人口普查统计图(常住人口),用一句话描述佛山市城镇化的趋势.【答案】(1)74.4%(2)949万,补全图形见解析(3)33(4)见解析【详解】(1)解:110.5%15.1%74.4%−−=,答:佛山市2020年常住人口1559−岁段的占比是74.4%,(2)佛山市常住人口总数为99.64510.5%949÷=(万人), 由统计图可知,乡村人口为45万人,∴城镇人口为94945904−=(万人), 补全统计图如图所示;.(3)由统计图可知,1900年城镇人口有100万人,常住人口总数为300万人, ∴1990年佛山市的城镇化率是 100100%33%300×≈, (4)随着年份的增加,佛山市城镇化率越来越高.20.(10分)如图,已知OA 是O 的半径,过OA 上一点D 作弦BE 垂直于OA ,连接AB ,AE .线段BC 为O 的直径,连接AC 交BE 于点F .(1)求证:ABE C ∠=∠;(2)若AC 平分OAE ∠,求AFFC 的值【答案】(1)见解析 (2)12【详解】(1)证明:∵OA BE ⊥,∴ AB AE =,∴ABE C ∠=∠;(2)解:∵AC 平分OAE ∠,∴OAC EAC ∠=∠,∵EAC EBC ∠=∠,∴OAC EBC ∠=∠,∵OA OC =,∴OAC C ∠=∠,∴EBC C ∠=∠,∴BF CF =,由(1)ABE C ∠=∠,∴ABE C EBC ∠=∠=∠,∵BC 为直径,∴90BAC ∠=°,∴90ABE C EBC ∠+∠+∠=°,∴30ABE ∠=°,∴12AF BF =, ∴12AF CF =, 即12AF CF =. 21.(10分)如图,反比例函数1k y x=的图象与一次函数2y k x b =+的图象交于(1,2)A −、14,2B −两点.(1)求函数1k y x =和2y k x b =+的表达式;(2)若在x 轴上有一动点C ,当S △ABC =4S △AOB 时,求点C 的坐标.【答案】(1)2y x =−,1322y x =−+(2)(3,0)−或(9,0)【详解】(1)解:将点(1,2)A −代入反比例函数1k y x =中,得,1122k =−×=−; 将点1(1,2),4,2A B−− 分别代入一次函2y k x b =+的解析式,得,222142k b k b −+= +=− ,21232k b =− ∴ = ;∴反比例函数的解析式为:2y x =−,一次函数的解析式为:1322y x =−+. (2)解:如图,设AB 与y 轴交于点D ,过点C 作CE y ∥轴交AB 于点E 设(0)C m ,,13,,22E m m ∴−+1322CE m ∴=−+ 令0x =,则2,3y = 30,,2D ∴ 32OD ∴=, ∴S △AOB=12OOOO ·(x B -x A )=12×32×[4-(-1)]=154.∵S △ABC =4S △AOB ,∴12·CE·(x B -x A )=15即12×�−12mm +32�×5=15 解得m=-9或m=15,∴点C 的坐标为(-9,0)或(15,0).22.(12分)如图,抛物线2y x bx c =−++经过(1,0)A −,(0,3)C 两点,并交x 轴于另一点B ,点M 是抛物线的顶点,直线AM 与y 轴交于点D .(1)求该抛物线的表达式;(2)若点H 是x 轴上一动点,分别连接MH ,DH ,求MH DH +的最小值;(3)若点P 是抛物线上一动点,问在对称轴上是否存在点Q ,使得以D ,M ,P ,Q 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.【解答】解:(1) 抛物线2y x bx c =−++经过(1,0)A −,(0,3)C 两点,∴103b c c −−+= =, 解得:23b c = =, ∴该抛物线的表达式为223y x x =−++; (2)2223(1)4y x x x =−++=−−+ ,∴顶点(1,4)M ,设直线AM 的解析式为y kx d =+,则40k d k d += −+=, 解得:22k d = =, ∴直线AM 的解析式为22y x =+, 当0x =时,2y =,(0,2)D ∴,作点D 关于x 轴的对称点(0,2)D ′−,连接D M ′,D H ′,如图,则DH D H =′,MH DH MH D H D M ∴+=+′′ ,即MH DH +的最小值为D M ′,D M ′ ,MH DH ∴+(3)对称轴上存在点Q ,使得以D ,M ,P ,Q 为顶点的四边形是平行四边形.由(2)得:(0,2)D ,(1,4)M ,点P 是抛物线上一动点,∴设2(,23)P m m m −++,抛物线223y x x =−++的对称轴为直线1x =, ∴设(1,)Q n ,当DM 、PQ 为对角线时,DM 、PQ 的中点重合,∴20112423m m m n +=+ +=−+++, 解得:03m n = =, (1,3)Q ∴;当DP 、MQ 为对角线时,DP 、MQ 的中点重合,∴20112234m m m n +=+ −++=+, 解得:21m n = = , (1,1)Q ∴;当DQ 、PM 为对角线时,DQ 、PM 的中点重合,∴20112423m n m m +=+ +=−++, 解得:05m n = =, (1,5)Q ∴;综上所述,对称轴上存在点Q ,使得以D ,M ,P ,Q 为顶点的四边形是平行四边形,点Q 的坐标为(1,3)或(1,1)或(1,5).23.(12分)综合与实践数学活动课上,同学们用尺规作图法探究在菱形内部作一点到该菱形三个顶点的距离相等.【动手操作]如图,已知菱形ABCD ,求作点E ,使得点E 到三个顶点A ,D ,C 的距离相等.小红同学设计如下作图步骤∶①连接BD ;②分别以点A ,D 为圆心,大于12AD 的长为半径分别在AD 的上方与下方作弧:AD 上方两弧交于点M ,下方两弧交于点N ,作直线MN 交BD 于点E . ③连接AE ,EC ,则EA ED EC ==.(1)根据小红同学设计的尺规作图步骤,在题图中完成作图过程(要求∶用尺规作图并保留作图痕迹)(2)证明:EA ED EC ==.(3)当72ABC ∠=°时,求EBC 与EAD 的面积比.【详解】(1)解:根据小红同学设计,作图如下:.(2)在菱形ABCD 中,ADE CDE ∠=∠,AD DC =,∵DE DE =,∴()SAS ADE CDE ≌,∴AE EC =,∵MN 垂直平分AD ,∴AE DE =,∴AE DE EC ==;(3 )∵在菱形ABCD 中,72ABC ∠=°,∴36ABD DBC ∠=∠=°,∵AD BC ∥,∴36ADB DBC ∠=∠=°,180108DAB ABC ∠=−∠=°, ∵AE DE =,∴36EAD ADB ∠=∠=°, ∴36EAD ABD ∠=∠=°, ∵ADE BDA ∠=∠,∴ADE BDA △△∽, ∴AD DE BD AD=,即2AD BD DE =⋅, ∵72BAE BAD EAD ∠=∠−∠=°,72BEA EAD ADE ∠=∠+∠=°, ∴BAE BEA ∠=∠,∴BE AB =,设AB x BE ==,DE a =(其中,0x a >),则AD x BD BE DE x a ==+=+,,∴()2x x a a =+⋅, ∴220x ax a −−=,解得x =或x =(舍去), ∴AB DE = ∴EBC ABE EDC ADE S S BE AB S S DE DE ==== .。
2024年广东省中考数学模拟试卷(一)-普通用卷
2024年广东省中考数学模拟试卷(一)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.2024的倒数是()A.2024B.C.D.2.如图是一个正方体的展开图,则与“承”字相对的是()A.华B.文C.中D.化3.下列函数中,其图象一定不经过第二象限的是()A. B.C. D.4.如图,在平面直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点A、B的坐标分别为、,则点D的坐标为()A.B.C.D.5.在比小的数中,最大的整数是()A. B.0 C.1 D.26.下列运算错误的是()A. B.C. D.7.如图,矩形ABCD中以CD为直径的半圆O与AB相切于点E,连接BD,则阴影部分的面积为()A.B.C.D.8.如图,四边形ABCD内接于,连接若,,则的度数是()A.B.C.D.9.如图,万达广场主楼楼顶立有广告牌DE,小辉准备利用所学的三角函数知识估测该主楼的高度.由于场地有限,不便测量,所以小辉沿坡度:的斜坡从看台前的B处步行50米到达C处,测得广告牌底部D的仰角为,广告牌顶部E的仰角为小辉的身高忽略不计,已知广告牌米,则该主楼AD的高度约为结果精确到整数,参考数据:,,A.80mB.85mC.89mD.90m10.一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知两车相遇时轿车比货车多行驶了90千米,设行驶的时间为小时,两车之间的距离为千米,图中的折线表示从两车出发至轿车到达乙地这一过程中y与x之间的函数关系,根据图象提供的信息,以下选项中正确的个数是()①甲乙两地的距离为450千米;②轿车的速度为70千米/小时;③货车的速度为45千米/小时;④点C的实际意义是轿车出发5小时后到达乙地,此时两车间的距离为300千米.A.1B.2C.3D.4二、填空题:本题共5小题,每小题3分,共15分。
11.农业生产保持稳中有进,粮食产量连续9年保持在万亿斤以上,将数据“万亿”用科学记数法表示为______.12.若分式的值为0,则______.13.方程的根为______.14.现有4张完全相同的卡片分别写着数字,1,3,将卡片的背面朝上并洗匀,从中任意抽取一张,将卡片上的数字记作再从余下的卡片中任意抽取一张,将卡片上的数字记作c,则抛物线与x轴有交点的概率为______.15.如图,抛物线的对称轴是直线,下列结论:①;②;③;④,正确的是______.三、解答题:本题共8小题,共75分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
…… 第1个 第2个 第3个2011年广州省实初三数学一模试题本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时120分钟.第一部分(选择题 共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.|-3|的值是( * ). A .3 B .3- C .31 D .13- 2.下列运算正确的是 ( * ).A .523x x x =+ B .x x x =-23C .623x x x =⋅ D .x x x =÷233.函数2-=x y 中,自变量x 的取值范围是 ( * ).A .x < 2B .x ≤2C .x > 2D .x ≥24.将一张等边三角形纸片按图1-①所示的方式对折,再按图1-②所示的虚线剪去一个小三角形,将余下纸片展开得到的图案是( * ).5.下列说法正确的是( * ). A .抛一枚硬币,正面一定朝上;B .掷一颗骰子,点数一定不大于6;C .为了解一种灯泡的使用寿命,宜采用普查的方法;D .“明天的降水概率为80%”,表示明天会有80%的地方下雨. 6.下列四个点中,有三个点在同一反比例函数xky =的图象上,则不在..这个函数图象上的点是( * ).A .(5,1)B .(1-,5)C .(35,3) D .(3-,35-) 7.如图,等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,∠AEB =60°,AB = AD = 2cm ,则梯形ABCD 的周长为( * ). A .6cm B .8cm C .10cm D .12cm 8.观察下列图形,则第n 个图形中三角形的个数是( * ).A .22n +B .44n +C .44n -D .4n① ②4题A .B .C .D . B ED C A7题9.关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( * ). A .1k >- B .1k >-且0k ≠C .1k <D .1k <且0k ≠10.如图是一个几何体的三视图,其中主视图、左视图都是腰为13cm ,底为10cm 的等腰三角形,则 这个几何体的侧面积是( * ).A .60πcm 2B .65πcm 2C .70πcm 2D .75πcm 2第二部分(非选择题 共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.某天最低气温是-5℃,最高气温比最低气温高8℃,则这天的最高气温是_*_℃. 12.如图,直线a ∥b ,∠1 = 70°,则∠2 = __*__.13.如图,某游乐场内滑梯的滑板与地面所成的角∠A = 35°,滑梯的高度BC = 2米,则滑板AB 的长约为___*___米(精确到0.1).14.甲、乙两位同学参加跳高训练,在相同条件下各跳10次,统计各自成绩的方差得22S S <乙甲,则成绩较稳定的同学是_*__.(填“甲”或“乙”)15.若⊙O 1和⊙O 2相切,O 1O 2 = 10cm ,⊙O 1的半径为3cm ,则⊙O 2半径为___*_cm . 16.如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点1A 、2A 、3A 、4A 、5A 分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点1P 、2P 、3P 、4P 、5P ,得直角三角形11A OP 、221A P A 、332A P A 、443A P A 、554A P A ,并设其面积分别为1S 、2S 、3S 、4S 、5S ,则5S 的值为 * .三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤) 17.(9分)化简:(a +1)(a -1)-a (a -1). 18.(9分)如图,在△ABC 和△DEF 中,AB = DE ,BE = CF ,∠B =∠1. 求证:AC = DF .主视图 左视图俯视图10题a b c1 2 12题BC A13题 1 FE D C B A 18题16题 2等级 19.(10分)某企业为了提高新招聘的农民工的就业能力,对400名新招聘农民工进行了专业技能培训,为了解培训的效果,培训结束后随机抽取了部分参训人员进行技能测试,测试结果分成“不合格”、“合格”、“良好”、“优秀”四个等级,并绘制了如图所示的统计图,请根据统计图提供的信息,回答下列问题:(1)培训结束后共抽取了 名参训人员进行技能测试;(2)从参加测试的人员中随机抽取一人进行技能展示,其测试结果为“优秀”的概率为 .(3)估计这400名参加培训的人员中,获得“优秀”的总人数大约是多少?20.(10分)如图,直线2--=x y 交x 轴于点A ,交y 轴于点B ,抛物线c bx ax y ++=2的顶点为A ,且经过点B . (1)求该抛物线的解析式; (2)若点C (m ,29-)在抛物线上,求m 的值.21.(12分)已知,如图,BC 是以线段AB 为直径的O ⊙的切线,AC 交O ⊙于点D ,过点D 作弦DE AB ⊥,垂足为点F ,连接BD BE 、.(1)仔细观察图形并写出四个不同的正确结论:①___*___,②____*__ ,③___*___,④___*____. (不添加其它字母和辅助线,不必证明);(2)A ∠=30°,CD =3,求O ⊙的半径r .22.(12分)已知一次函数1y kx b =+的图象分别过点(11)A -,,(22)B ,. (1)在直角坐标系中直接画出函数2||y x =的图象;(2)根据图象写出方程组||y x y kx b =⎧⎨=+⎩的解;(3)根据图象回答:当x 为何值时,21y y <.20题22题21题23.(12分)青青商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案;(3按上述优惠条件,若小王第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多少件?(通过计算求出所有符合要求的结果)24.(14分)在△ABC 中,AB=BC=2,∠ABC=120°,将△ABC 绕点B 顺时针旋转角α(0<°α90)<°得A BC A B 111△,交AC 于点E ,11A C 分别交AC 、BC 于D 、F 两点.(1)如图1,观察并猜想,在旋转过程中,线段1EA 与FC 有怎样的数量关系?并证明你的结论;(2)如图2,当α30=°时,试判断四边形1BC DA 的形状,并说明理由; (3)在(2)的情况下,求ED 的长.25.(14分)如图,在平面直角坐标系中,直线1(0)2y x b b =-+>分别交x 轴,y 轴于A ,B 两点,以OA ,OB 为边作矩形OACB ,D 为BC 的中点.以M (4,0),N (8,0)为斜边端点作等腰直角三角形PMN ,点P 在第一象限,设矩形OACB 与△PMN 重叠部分的面积为S .(1)求点P 的坐标.(2)当b 值由小到大变化时,求S 与b 的函数关系式.(3)若在直线1(0)2y x b b =-+>上存在点Q ,使OQM ∠等于90o,请直接写出....b 的取值范围. (4)在b 值的变化过程中,若PCD △为等腰三角形, 请直接写出....所有符合条件的b 值. 24题(1)(2)AD BEC F1A1CA DB ECF1A1C25题数学 参考答案1~10 A D DAB BCDBB 11.312.110° 13.3.5 14.甲15.7或1316.5117.解:)1()1)(1(---+a a a a=a a a +--221…………………………………………6分 =1-a …………………………………………………9分18.证明:∵BE=CF , ∴BE+EC=CF+EC ,即 BC=EF . ……………………………………………………………………2分在△ABC 和△DEF 中,14AB DE B BC EF =⎧⎪∠=∠⎨⎪=⎩L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L ,分,分. …………………………………………………………………………5分 ∴△ABC ≌△DEF …………………………………………………………………………7分 ∴AC=DF …………………………………………………………………………………9分19. 解:(1)40;………………………………………………3分(2)14;………………………………………………6分 (3)14001004⨯=(人). ………………………………………………10分20.解:(1)直线2--=x y .令2,0-==y x 则,∴点B 坐标为(0,-2).……………………………………………1分 令2,0-==x y 则 ∴点A 坐标为(-2,0).……………………………………………2分 设抛物线解析式为k h x a y +-=2)(. ∵抛物线顶点为A ,且经过点B ,∴2)2(+=x a y ,………………………………………………………………………4分∴-2=4a ,∴21-=a .…………………………………………………………………5分 ∴抛物线解析式为2)2(21+-=x y ,…………………………………………………5分∴22212---=x x y .………………………………………………………………6分(2)方法1:∵点C (m ,29-)在抛物线2)2(21+-=x y 上, ∴29)2(212-=+-m ,9)2(2=+m ,………………………………………………8分解得11=m ,52-=m .……………………………………………………………10分21.(1)BC AB AD BD ⊥⊥,,DF FE BD BE ==,,BDF BEF △≌△, BDF △∽BAD △,BDF BEF ∠=∠,A E DE BC ∠=∠,∥等(正确结论写对1个得2分,写对2个得3分,写对3个得5分,写对4个得6分) (2)解:AB Q 是O ⊙的直径90ADB ∴∠=° ···························· 7分又30E ∠=Q °30A ∴∠=° ···························································· 8分 12BD AB r ∴== ······················································ 9分 又BC Q 是O ⊙的切线90CBA ∴∠=° ··························································· 10分 60C ∴∠=︒在Rt BCD △中,23CD =tan 60233BD rDC ∴==° ············································································· 11分 2r ∴= ·································································································· 12分22.(1)如图所示………………………………………4分(2)⎩⎨⎧==2211y x ,⎩⎨⎧=-=1122y x …………………………8分(3)当2>x 或1-<x 时,21y y <.……………12分23.解:(1)设该商场能购进甲种商品x 件,根据题意,得1535(100)2700x x +-= ····································································· 2分40x =乙种商品:1004060-=(件) ································································ 3分 答:该商品能购进甲种商品40件,乙种商品60件.(2)设该商场购进甲种商品a 件,则购进乙种商品(100)a -件.根据题意,得(2015)(4535)(100)750(2015)(4535)(100)760a a a a -+--⎧⎨-+--⎩≥≤ ···················································· 5分 因此,不等式组的解集为4850a ≤≤ ··························································· 6分 根据题意,a 的值应是整数,48a ∴=或49a =或50a = ∴该商场共有三种进货方案:方案一:购进甲种商品48件,乙种商品52件, 方案二:购进甲种商品49件,乙种商品51件, 方案三:购进甲种商品50件,乙种商品50件. ··············································· 8分 (3)根据题意,得第一天只购买甲种商品不享受优惠条件 2002010∴÷=(件) ························· 9分 第二天只购买乙种商品有以下两种情况:情况一:购买乙种商品打九折,32490458÷÷=%(件) 情况二:购买乙种商品打八折,32480459÷÷=%(件) ······························ 10分 ∴一共可购买甲、乙两种商品:10818+=(件)或10919+=(件) ····················································· 12分 答:这两天他在该商场购买甲、乙两种商品一共18件或19件.24.解:(1)1EA FC =. (1分) 证明:(证法一)AB BC A C =∴∠=∠Q ,.由旋转可知,111AB BC A C ABE C BF =∠=∠∠=∠,,,∴ABE C BF 1△≌△. ·················································································· (4分) ∴BE BF =,又1BA BC =Q ,∴1BA BE BC BF -=-.即1EA FC =. ··························································· (6分) (证法二)AB BC A C =∴∠=∠Q ,.由旋转可知,11A C A B CB ∠=∠,=,而1EBC FBA ∠=∠,∴1A BF CBE △≌△. ···················································································· (4分) ∴BE BF =,∴1BA BE BC BF -=-,即1EA FC =. ····························································································· (6分) (2)四边形1BC DA 是菱形. ················································································ (7分)证明:111130A ABA AC AB ∠=∠=∴Q °,∥,同理AC BC 1∥. ∴四边形1BC DA 是平行四边形. ···································································· (9分)AD BECF 1A1CG又1AB BC =Q ,∴四边形1BC DA 是菱形. ························································ (10分) (3)(解法一)过点E 作EG AB ⊥于点G ,则1AG BG ==. 在Rt AEG △中,1cos cos30AG AE A ===°……(12分) 由(2)知四边形1BC DA 是菱形, ∴2AD AB ==,∴2ED AD AE =-= ········································································ (14分) (解法二)12030ABC ABE ∠=∠=Q °,°,∴90EBC ∠=°.在Rt EBC △中,tan 2tan 30BE BC C ==⨯=·°112EA BA BE ∴=-= ····································································· (12分) 11111AC AB A DE A A DE A ∴∠=∠∴∠=∠Q ∥,..∴12ED EA == ……………………………………………………(14分)25.(1)作PK MN ⊥于K ,则122PK KM NM ===. 6KO ∴=,(62)P ∴,. ·················································································· 2分 (2)当02b <≤时,如图①,0S =. 当23b <≤时,如图②,设AC 交PM 于H .24AM HA b ==-.21(24)2S b ∴=-. 即22(2)S b =-.或2288S b b =-+.当34b <<时,如图③,设AC 交PN 于H .82NA HA b ==-. 22(4)4S b ∴=--+,或221628S b b =-+-.当4b ≥时,如图④,4S =.⎪⎪⎩⎪⎪⎨⎧≥<<+--≤<-≤<=)4(4)43(4)4(2)32()2(2)20(022B B B B B B S ······················································· 7分图②(此问不画图不扣分)(3)01b <. ··············································· ·································· 10分 (提示:以OM 为直径作圆,当直线1(0)2y x b b =-+>与此圆相切时,1b =+.) (4)b 的值为4,5,8±. ································ ·································· 14分 (提示:当PC PD =时,4b =.当PC CD =时,12b =(舍),25b =.当PD CD =时,8b =±)(每个1分)图③图④图⑤。