球墨铸铁皮下气孔缺陷的成因及控制
分析球墨铸铁气孔缺陷的成因及对策
分析球墨铸铁气孔缺陷的成因及对策球墨铸铁是一种重要的铸造材料,具有优异的力学性能和耐腐蚀性能。
然而,球墨铸铁在生产过程中常常会出现气孔缺陷,这给材料的性能和使用带来了一定的影响。
本文将分析球墨铸铁气孔缺陷的成因,并提出相应的对策。
一、球墨铸铁气孔缺陷的成因1. 原材料质量不过关球墨铸铁的原材料包括铸造合金、铁水和融化剂等。
如果原材料质量不过关,其中可能含有一些气体或杂质,这些气体和杂质在铸造过程中会引起气孔的形成。
2. 熔炼过程控制不当球墨铸铁的熔炼过程非常重要,包括预处理炉熔化、调温、组织调整等环节。
如果熔炼过程控制不当,如温度过高或过低、保温时间不足等,都会影响铸件的质量,导致气孔的生成。
3. 浇注工艺不合理浇注工艺是影响球墨铸铁气孔缺陷的另一个重要因素。
如果浇注过程中温度不适宜、过急或过慢,浇注口设计不合理等,都会导致铸件内部无法顺利排出气体,从而产生气孔。
4. 冷却过程不当冷却过程是球墨铸铁形成细小球状石墨的关键环节。
如果冷却速度过快或过慢,都会导致气孔的形成。
此外,冷却过程中如果没有进行充分的冷镦处理,也会使气孔得不到有效修复。
二、对策1. 加强原材料质量检验提高球墨铸铁的质量,关键在于对原材料进行严格的质量检验。
选用质量好、经过认证的原材料,并充分进行化验和试样,确保原材料中没有含有气体或杂质。
2. 控制熔炼过程在熔炼过程中,需严格控制炉温和保温时间,确保炉内温度适宜,熔铁中的合金溶解均匀。
同时,需要合理添加融化剂和调节剂,以提高铁水的流动性和抗气化能力,减少气孔的形成。
3. 优化浇注工艺浇注工艺的优化可以通过优化浇注温度和速度,改进浇注系统和浇注口的设计,避免过度的温度梯度和急剧的温度变化。
此外,还可以采取减少浇注冲击力和加强细化剂的添加等措施,提高铁水的流动性和浇注质量。
4. 控制冷却过程在冷却过程中,需要控制铸件的冷却速度。
这可以通过适当调整冷却水的供应量和加强冷却设备的管理来实现。
浅析球墨铸铁件缺陷产生原因及防止措施
浅析球墨铸铁件缺陷产生原因及防止措施
1、坯料的缺陷:由于坯料的杂质含量过高,砂砾过大,沿铸缸边缘空隙较大等,都有可能导致炉内坯料缺陷大,从而产生球墨铸铁件缺陷。
2、成型工艺有问题:如砂芯型腔孔形不规则,型腔深度低,入型质量差,表面光洁度及粘结质量差等,都有可能产生球墨铸铁件缺陷。
3、浇注不合理:球墨铸铁件的浇注工艺过程中需要满足一定的条件,当不合理时,会导致溶质的不均匀分布,产生球墨铸铁件缺陷。
4、冷却不合理:冷却工艺是球墨铸铁件质量重要影响因素,冷却不合理,有可能使坯体结晶不良,从而产生球墨铸铁件缺陷。
二、防止球墨铸铁件缺陷的措施
1、提高坯料质量:在生产过程中,应加强原料检查,确保原料质量良好,并严格控制杂质含量,以减少成型过程中缺陷的发生。
2、改进成型工艺:应采用有利于消除和避免缺陷的成型工艺,如采用自动模具成型等技术,减少缺陷产生的可能性。
3、改善浇注工艺:采用有利于消除缺陷的浇注工艺,如采用连续浇铸或提高浇注压力,改善浇注品质,以减少球墨铸铁件缺陷。
4、优化冷却工艺:采用合理的冷却系统可以有效地控制坯体扩大速度,减少坯体内部残余应力,提高结晶度,以减少球墨铸铁件缺陷的产生。
三、结论
球墨铸铁件的缺陷的产生主要由坯料质量、成型工艺、浇注工艺以及冷却工艺不合理等原因引起。
因此,为防止球墨铸铁件缺陷的产生,应采取提高坯料质量、改进成型工艺、改善浇注工艺以及优化冷却工艺等措施。
只有这样,才能在生产过程中控制住缺陷,获得优良质量的球墨铸铁件。
球墨铸铁铸造皮下气孔
球墨铸铁铸造皮下气孔、砂眼如何消除? 铸造中出现的涨箱是什么原因?1、皮下气孔的主要影响因素还是型砂的含水量:在3~5%的合理范围内(保证型砂的湿态性能),应尽量控制较低。
2、第二个主要影响因素为S含量。
铁液中的S和球化剂中的Mg反应生成MgS被型砂中水还原生成H2S气体,如铸件冷却速度快来不及完全排出,就会在铸件表皮下产生皮下气孔。
所以第一应尽量使用含硫量低的球生铁;第二在球化处理后应快速扒渣,并且扒渣干净,防止回硫。
3、第三个影响因素为浇注系统的合理性:气孔的形成方式有很多,如卷入式气孔,浸入式气孔等。
若浇注系统不合理,就会在浇注过程中卷入等空气,又由于球磨铸铁的糊状凝固方式,又或若铸件壁薄凝固快将很难使空气排出而产生皮下气孔。
4、球化剂和生铁中含铝量:湿型球墨铸铁的危险残留铝量在0.030-0.050%,此时会产生皮下气孔。
在浇注前往浇包内添加0.2%以上的铝(在不影响金相组织的前提下),就可以消除球墨铸铁件的皮下气孔。
5、浇注温度:应根据铸件的主要壁厚选择合适的浇注温度,使体液中的气体在铁液凝固前排出铁液。
若壁厚小于10,则浇注温度应控制在1380~1430;若壁厚大于10,温度可控制在1320~1380。
具体应根据你的铸件主要壁厚来实践摸索。
6、如若铸件为加工件,有些小的皮下气孔也是被允许的,应控制在合理的加工量范围内。
否则,要完全避免皮下气孔,需要严格的多方措施,可能在成本上得不偿失;若成品零件为铸造表面的要求,那就要花大力气避免皮下气孔了。
铸造中出现的涨箱是什么原因?具体情况具体分析,影响因素较多,如:铸件材质、结构(壁厚),浇注温度,铁液压力头、型砂紧实度、充型速度等,情况不明不能盲下结论,有的薄壁件冷却氛围较好,早早的可行成壳体抗力,而不会引起涨箱。
常见的有以下几个原因:1.压箱铁重量不够,一般为浇注重量的1.5倍左右。
2.浇注速度过快3.砂型紧实度不够4.排气不好。
铸钢件气孔缺陷的分析及预防
铸钢件气孔缺陷的分析及预防铸钢件是一种广泛应用于制造工业的产品,在各行各业都有着广泛的应用。
然而,在铸钢件的生产过程中,常常会出现气孔缺陷。
在本文中,将对铸钢件气孔缺陷的分析及预防进行详细的介绍。
气孔缺陷是铸钢件生产过程中经常出现的一种缺陷,其原因主要是由于铸造过程中,铸钢件内的气体无法顺利释放,而形成的空气泡所致。
具体分析如下:1.铸造温度过高或过低铸造温度过高或过低会导致铸造过程中熔化金属与气体相互作用不充分,或者是在凝固时,金属凝固异常迅速,导致铸造件内部气体排放不及时,进而形成气孔缺陷。
2.金属液中气体含量过高铸钢件气孔缺陷的一个重要原因是金属液中气体含量过高。
这主要是由于铸造过程中,将熔化的金属液错流于模具中时,金属液中气体无法快速排出,而形成的气泡后来就会形成气孔缺陷。
3.模具设计不合理模具是制造铸造件的核心部分之一。
如果模具设计不合理,例如模具壁厚不符合要求、孔隙率过高等造成模具过于松散、不好密封,使熔融金属鼓荡时容易进入焦模震荡区域,从而使气体被气团包裹形成气泡,而成为铸钢件气孔缺陷.了解了铸钢件气孔缺陷发生的原因,我们可以采取一些技术性措施来预防气孔缺陷的出现。
1.合适的铸造温度我们可以在铸造前对熔融金属的净化处理,或者使用真空、熔覆反应等特殊工艺。
这些技术手段可以有效地去除金属液中的气体,减少气孔的发生。
合理的模具设计可以有效地避免铸造中应力集聚,提供良好的流动通道和顺畅的气流通道,避免产生气泡,降低气孔发生的概率。
对于大型铸钢件,可以采用完整的、结构合理的模具,避免模具的壁厚不符合要求等情况。
4.严格的生产工艺控制在生产过程中,我们还需要严格执行质量控制方案,不断优化铸造工艺,并加强现场监督管理。
避免铸造过程中出现偏差,加强对炉温、铸型、冷却等关键环节的控制,并在浇注后及时进行冷却处理,以提高铸钢件的质量。
总结:铸钢件气孔缺陷的原因主要是铸造温度过高或过低导致气体无法充分释放,金属液中气体含量过高,模具设计不合理等情况所致。
铸件皮下气孔解决方案
铸件皮下气孔解决方案一、引言铸件是工业生产中常见的一种零件制造方式,但在铸造过程中,常常会产生气孔缺陷,特别是在铸件的皮下。
这些气孔不仅会降低铸件的强度和密封性能,还可能导致铸件的失效。
因此,解决铸件皮下气孔问题对于提高铸件质量和延长使用寿命具有重要意义。
二、铸件皮下气孔形成原因铸件皮下气孔的形成主要与以下几个方面有关:2.1 铸造工艺因素铸造工艺是铸件质量的关键因素之一。
若铸造工艺不合理,例如浇注温度过高、浇注速度过快、浇注压力不稳定等,都会导致铸件内部产生气体,从而形成气孔。
2.2 材料因素铸件材料的成分和性能也会影响气孔的形成。
例如,含有过多的气体元素或杂质的铸造材料容易产生气孔。
此外,材料的液态性能和凝固收缩率也会对气孔的形成起到一定影响。
2.3 模具设计因素模具的设计对于铸件质量有着重要影响。
模具的排气性能、浇注系统设计、浇注口的位置和尺寸等都会对铸件皮下气孔的形成产生影响。
三、铸件皮下气孔解决方案为了解决铸件皮下气孔问题,可以从以下几个方面入手:3.1 优化铸造工艺通过优化铸造工艺,可以减少铸件内部气体的产生,从而降低气孔的形成。
具体措施包括: - 合理控制浇注温度和浇注速度,避免温度过高和速度过快导致气体无法及时排出; - 稳定浇注压力,避免压力波动引起气体的吸入; - 采用合适的浇注系统,如喷杆、浇注管等,以提高模具排气性能。
3.2 优化铸件材料选择合适的铸造材料对于减少铸件皮下气孔也具有重要意义。
应选择低气体含量和低杂质含量的材料,并对材料进行严格的质量控制。
此外,还可以通过添加一些特殊的合金元素来改善材料的液态性能和凝固收缩率,从而减少气孔的形成。
3.3 改进模具设计模具设计是解决铸件皮下气孔问题的关键。
应优化模具的排气性能,确保气体能够顺利排出。
同时,合理设计浇注系统,控制浇注口的位置和尺寸,以减少气孔的形成。
3.4 加强质量控制加强质量控制是解决铸件皮下气孔问题的基础。
应建立完善的质量管理体系,对原材料进行严格检验,确保材料的质量符合要求。
铸件皮下气孔产生的原因和解决方案
铸件皮下气孔产生的原因和解决方案下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!铸件皮下气孔的成因及解决策略铸件在生产过程中,常常会遇到一种常见的质量问题——皮下气孔。
浅析球墨铸铁件缺陷产生原因及防止措施
浅析球墨铸铁件缺陷产生原因及防止措施球墨铸铁件是金属材料的重要形式之一,铸件能有效地满足我们对各种结构形式的需求,而球墨铸铁件特别具有优良的物理机械性能,应用范围广泛,它们已成为轻量化、高强度、低成本的产品,可用来生产复杂的零部件和设备,因此球墨铸铁件成为工程用铸件中使用最多的一种类型。
但是,随着生产工艺的复杂性增加,球墨铸铁件在生产过程中也容易发生缺陷。
因此,本文的目的是研究球墨铸铁件的缺陷产生原因以及它们的防止措施。
一、球墨铸铁件缺陷产生原因1、生产工艺参数设置不当在球墨铸铁件生产过程中,不同工序的工艺参数设置不当,可能会造成缺陷产生。
如果没有适当调整球墨铸铁件的温度、合金比例、凝结时间、含气量等工艺参数,就会导致缺陷的产生,如缺棱、晶粒粗化、孔洞、收缩口等。
2、焊接工艺条件不当在球墨铸铁件的制造过程中,焊接工艺的条件设置不当,也会导致缺陷的产生,如熔池深度不够、焊接温度太高、电流大小不当、焊接电压太低等。
3、金属材料质量不佳金属材料质量不佳也是造成球墨铸铁件缺陷的一个重要原因,这是由于金属材料不合格,有氧化物、夹杂物等污染物。
这些杂质可以在球墨铸铁件内部形成孔洞或层,造成缺陷。
4、操作人员技术素养不足操作人员的技术素养也是产生缺陷的一个重要原因,如果操作人员缺乏技术素养,他们就不能熟练掌握工艺流程,也会导致生产过程中的缺陷。
二、防止球墨铸铁件缺陷的措施以上是球墨铸铁件缺陷的原因,那么如何防止缺陷产生呢?1、优化工艺参数设置在球墨铸铁件生产过程中,加强对工艺参数的监控,优化工艺参数设置,确保金属材料在加工上能满足一定的质量要求。
2、严格控制焊接工艺条件焊接是一项技术复杂的任务,因此我们应该在焊接工艺中严格控制各项工艺参数,确保球墨铸铁件能获得良好的焊接性能,从而防止缺陷的产生。
3、挑选优质金属材料在球墨铸铁件生产中,应该重视金属材料的质量,仅选用合格的金属材料,这样可以减少出现缺陷的概率。
4、提升操作人员技术素养提升操作人员的技术素养是防止球墨铸铁件缺陷的重要措施之一,建立科学的操作流程,以此来提高操作人员的技术水平,减少因技术不足而导致的缺陷。
球墨铸铁缺陷产生原因及应对措施
改进生产工艺
优化浇铸工艺:控 制浇铸温度、速度、
压力等参数,提高 1
铸件质量
加强质量控制:建 4
立完善的质量管理 体系,确保生产过
程符合标准要求
改进模具设计:优 化模具结构、尺寸、
2 材料等,提高铸件
成型精度
3
采用先进技术:如
快速凝固技术、电
磁搅拌技术等,提
高铸件性能
维护设备性能
01
定期检查设备,确保 其正常运行
设备维护不当:设备维护不及时,导致设备 性能下降,影响铸件质量
设备设计不合理:设备设计不合理,导致 生产过程中容易出现缺陷
球墨铸铁缺陷应对措 施
优化原材料选择
选择优质生 铁,降低杂
质含量
选用合适的 球化剂和孕 育剂,提高
球化效果
控制合金元 素含量,保 证化学成分
稳定
选用合适的 铸造工艺, 减少缺陷产
球墨铸铁缺陷产生 原因及应对措施
演讲人
目录
01. 球墨铸铁缺陷产生原因 02. 球墨铸铁缺陷应对措施 03. 球墨铸铁缺陷预防措施
球墨铸铁缺陷产生原 因
原材料质量
01 铁水成分:铁水中的碳、硅、锰等元素含 量对球墨铸铁的缺陷产生有很大影响
02 球化剂:球化剂的质量和加入量对球墨铸 铁的缺陷产生有很大影响
04
加强员工培训,提高员工的质量 意识和技能水平
定期检查设备
01
定期检查设备,确保设 备正常运行
02
定期更换磨损部件,避 免设备故障
03
定期清洁设备,保持设 备清洁
04
定期校准设备,确保设 备精度
05
定期培训员工,提高员 工操作技能
06
皮下气孔难解决?6道工艺措施让你轻松解决难题!
皮下气孔难解决?6道工艺措施让你轻松解决难题!1、皮下气孔成因分析皮下气孔是湿型球墨铸铁件常见的铸造缺陷,所以说它带有流行性缺陷,且对薄壁铸件特别敏感,原因是薄壁件凝固速度快,气体来不及形成气泡,厚壁件凝固速度慢,气体形成气泡后有足够的时间上浮排出,不会滞留在铸件表层。
影响皮下气孔形成的主要因素有:①残余镁量和残余稀土量,当镁残留量>0.06%时,皮下气孔显著增加。
统计数据显示,湿型球墨铸铁件ωMg残留=0.05%时,皮下气孔缺陷率为7%,当ωMg残留=0.065%时,皮下气孔缺陷率剧增,高达33%。
残留镁量越高,形成皮下气孔的倾向性越大。
稀土元素会增大铁液的表面张力,能有效防止皮下气孔产生倾向,以ωRE残留=0.025%左右为佳。
②铁液中硫含量高,容易引起皮下气孔,含硫量越高,情况就越严重。
这是因为除了有氢致皮下气孔外,还可能由于H2S气体而使缺陷情况更为严重,球化处理后会产生氧化物和硫化物(包括MgS)渣滓,若扒渣不净MgS随铁液流进型腔,上浮至金属一铸型界面的MgS同界面水气发生化学反应,反应产物H2S气体也会形成皮下气孔。
③铝和钛的影响,铁液中Al>0.03%时,皮下气孔增加,若残留铝和残留钛兼有时,则皮下气孔急骤增加,生产实践证明:球墨铸铁件Al<0.03%时,一般不会产生皮下气孔,但如果同时Ti >0.01%,则会促使铸件产生皮下气孔。
④铸型水分>5%时,湿型球墨铸铁件易出现皮下气孔。
因为铁液与铸型界面上的水分存在化学反应,产生H2、H2S气体,在铸件快速凝固时,来不及上浮,就停留在靠近铸件表面上,形成皮下气孔。
⑤炉料有水、球化剂和孕育剂吸潮及铁液中含氢量增加均会导致皮下气孔较多。
⑥熔渣过多和铁液氧化夹杂是产生皮下气孔的重要原因(渣为触媒导致皮下气孔产生)。
⑦铁水出炉温度低,或浇注温度低,易形成皮下气孔。
⑧浇注速度慢,铁液易氧化、降温、进渣,易形成皮下气孔。
铸钢件气孔缺陷的分析及预防
铸钢件气孔缺陷的分析及预防铸钢件是一种被广泛应用的工程部件。
然而,在铸钢件制造过程中很容易出现气孔缺陷,这是因为在高温下铸造过程中,气体在熔融钢液中生成并不能完全排除的原因。
气孔缺陷会降低铸钢件的强度和韧性,从而影响其使用寿命和安全性。
因此,分析气孔缺陷的产生原因及采取预防措施对于提高铸钢件的质量非常重要。
一、气孔缺陷的产生原因1. 熔融钢液的气体含量熔融钢液中的气体来自于多个方面,如钢水中的气体、重化学物质的分解气体、细小颗粒的表面氧化和水分蒸发等。
在铸造中,如果熔融钢液中气体含量过高,会产生严重的气孔缺陷。
2. 熔炼过程中的渣渣是熔炼过程中不完全燃烧的氧化物,常常会出现在钢液中。
如果钢液中存在较多的渣,会降低钢液的纯度,从而增加气泡的形成。
3. 浇注过程中的振动铸造过程中如果振动幅度过大,容易在钢液中产生气泡。
特别是在钢液还没有凝固之前,振动的影响更加显著。
振动过大可以造成气泡在钢液中形成,当钢液形成时,会造成气泡变成孔洞。
二、气孔缺陷的预防措施为了降低钢液中气体和渣的含量,需要控制好熔炼过程中的加热、保温、气氛等。
需要定期对熔炼炉进行清理和维护,保持炉壁和炉顶的完整性,避免炉龄过长、老旧不堪的炉子也会造成铸钢件气孔缺陷。
2. 浇注过程控制在浇注过程中,需要选择合适的浇注方法和流水口设计,对铸钢件进行预热和包裹冷却。
同时,要严格控制振动的幅度,避免振动过大,引起铸钢件中气泡的形成。
3. 铸件质量控制在铸件质量控制过程中,需要进行适当的清洁和调整铸型构造、放置和支撑等。
同时,要避免钢液受到污染和过度氧化,控制好液态钢的高温时间和冷却速度。
综上所述,铸钢件气孔缺陷是由于多种因素所引起的。
防止气孔缺陷的产生需要通过控制钢液中气体和渣的含量、严格控制振动幅度以及在铸件质量控制过程中进行适当的准备来实施。
只有采取有效的预防措施,才能提高铸钢件的质量和使用寿命。
铸钢件气孔缺陷的分析及预防
铸钢件气孔缺陷的分析及预防铸钢件气孔缺陷是一种常见的铸造缺陷,其主要原因是在熔融金属凝固过程中,金属中的气体不完全排出,形成气孔。
气孔缺陷不仅会降低铸钢件的强度和韧性,还会对其密封性和机械性能产生不利影响。
对于气孔缺陷的分析和预防具有重要意义。
气孔缺陷的形成与以下几个方面密切相关:1. 熔融金属中的气体含量较高:熔融金属中的气体主要来自于金属中的气体溶解度和金属液的气泡,而气泡往往是由于金属液中的杂质和气体不能及时排出而形成的。
要减少熔融金属中的气体含量,首先要提高金属液的纯净度和气体排出能力。
2. 浇注过程中的气体吸附:在金属液注入模具的过程中,气体往往会与铸钢件接触的模具表面接触,然后被吸附到铸钢件表面形成气孔。
为了减少这种情况的发生,可以在模具表面涂覆一层特殊的涂层或使用具有吸附气体能力的材料来减少气体的吸附。
3. 硅、锰等元素含量较高:铸钢件中的硅、锰等元素对气孔的形成有一定的影响,其中硅元素会使金属液变稠,增加气泡的数量,锰元素则会提高金属液的表面张力,使气泡难以排出。
在调整合金配方时要注意控制硅、锰等元素的含量。
4. 浇注温度过高或过低:浇注温度过高会导致金属液中的气体溶解度降低,造成气泡形成;而浇注温度过低则会使得金属凝固过程过长,气体排出不畅,同样会形成气孔。
要选择适宜的浇注温度,避免温度过高或过低。
为了预防铸钢件中气孔缺陷的发生,可以采取以下措施:1. 提高熔化金属的质量:要选择优质的原料,并进行严格的质量控制,确保金属液的纯净度和气体排出能力。
2. 优化模具设计:合理设计铸造系统,使得金属液能够顺畅地流动,减少气体的吸附和困留;采用有利于气体排出的模具结构,如设置适当的浇口和排气道。
3. 控制浇注工艺参数:包括浇注温度、浇注速度、浇注压力等。
要根据具体情况,选择合适的参数,以确保金属液能够充分流动,气体能够及时排出。
4. 加强铸造工艺监控:通过对浇注过程的实时监测,及时发现异常情况并采取相应的措施,避免气孔缺陷的发生。
缺陷特点、成因、预防(精)
讲解
球铁铸件的特有缺陷 裂 纹
特征:铸件冷却过程中收缩应力、热应力等铸造应力超过该断 面金属抗断裂能力形成的裂纹。
原因:碳硅含量低、碳化物形成元素增加、孕育不足、冷却过
快等都可以增加铸造应力。铸件壁厚差别大形状复杂也能产生
裂纹。 预防:提高碳当量降低含磷量增加孕育及必要的铸造工艺措施。
特征:气孔内壁粗糙,排满树枝晶,常见于热节处。
原因:碳当量低,增加缩孔缩松的倾向
预防:提高铸型刚度,提高铁液碳当量,适当降低浇注温度。
球铁铸件的特有缺陷
讲解
夹 渣
特征:分布于铸件浇注位置上表面、型芯的下面及死角处,破断
面上呈现暗黑色无光泽深浅不一的夹杂物,断续分布。 原因:一次夹渣中铁液含硫量高,氧化严重;二次夹渣中残留镁 量过高提高了氧化膜形成温度。 预防:降低原铁液硫、氧含量,提高出炉温度。
讲解
球铁铸件的特有缺陷 皮下气孔
特点:铸件表皮下2-3mm处均匀或者蜂窝状分布的球形、椭圆
形或针孔内壁光滑孔洞
原因:树脂砂粘结剂含氮较多,球墨铸铁糊状凝固特点使气体 通道较早被堵塞 预防:浇注温度不得低于1300℃,采用少氮或者无氮树脂砂, 减少铁液中的气体,可以预防。
球铁铸件的特有缺陷
讲解
缩 孔
常见的铸件气孔缺陷及防止措施
常见的铸件气孔缺陷及防止措施气孔是铸件内由气体形成的孔洞。
气孔可分为:侵入气孔、裹携气孔(或卷入气孔)、析出气孔等。
1、侵入气孔从浇注到铸件表面凝固成固体壳的期间,外部气体源(型砂、芯砂等)发生的气体侵入型腔内的金属液中,形成气泡而产生的气孔,称为侵入气孔。
形成该气孔的气体来自外部气体源,所以侵入气孔又称为外生式气孔。
(1)目视特征①形状呈圆球形、团球形;有时呈梨形,梨形的侵入气孔如图1所示。
图1.梨形的侵入气孔a)梨形气孔小头指出外部气体源在铸件内圆处b)梨形气孔小头指出外部气体源在铸件外圆处①孔壁平滑。
对于铸钢、铸铁件:当侵入气孔的主要成分为CO 时,孔壁呈蓝色;主要成分为氢气时,孔壁呈金属本色,是发亮的;主要成分为水蒸气时,孔壁呈氧化色,是发暗的。
①尺寸通常较大,最大尺寸达几毫米以上。
①常为内部气孔,按浇注位置,常处于铸件上表面的截面中。
①大多数情况下,是单个或几个聚集的尺寸较大的气孔。
有时成为局部聚集的蜂窝状气孔,很少成为弥散性气孔或针孔。
(2)形成机理侵入气孔分三个阶段形成:第一阶段,气体侵入金属液;第二阶段,型壁上气泡形成;第三阶段,气泡在型腔金属液中的滞留或排出。
侵入性气孔形成的条件如下:p A>(p0+p m+p z)式中:p A为“金属—铸型”界面上气泡所在处的压力;p0为型腔中的气体压力,一般为标准大气压力;p m为金属液静压力;p z为金属液的表面阻力。
(3)防止措施防止侵入气孔产生应主要从减小p A,增加气体进入金属液的阻力和使气泡容易从金属液中浮出等方面入手。
具体措施如下:①减少砂型(芯)在浇注时的发气量,严格控制湿型的含水量等。
①使浇注时产生的气体容易从砂型(芯)中排出,如多扎出气孔等。
①提高气体进入金属液的阻力,如表面施用涂料等。
2、裹携气孔(或卷入气孔)浇注系统中的金属液流裹携着气泡,气泡随液流进入型腔,或液流冲击型腔内金属液面,将气泡卷入金属液中。
当气泡不能从型腔金属液中排除,就会使铸件产生气孔,又称卷入气孔。
铸钢件气孔缺陷的分析及预防
铸钢件气孔缺陷的分析及预防铸钢件作为工业制造中常见的零部件,其质量的好坏直接影响着整个产品的性能和安全性。
铸钢件在生产过程中常常会出现气孔缺陷,这种缺陷会严重影响铸钢件的质量和使用寿命。
对于铸钢件气孔缺陷的分析和预防具有非常重要的意义。
一、气孔缺陷的产生原因1.1 原料质量问题铸钢件的气孔缺陷的产生原因之一可能是原料的质量问题。
原料中含有过多的杂质或含氧量过高,会导致铸钢件的气孔缺陷。
1.2 浇注过程中的问题在铸造过程中,如果浇注温度控制不当或者浇注速度过快,都有可能造成气孔缺陷。
1.3 模具设计问题模具设计不合理或者模具使用过程中磨损严重,也会导致铸钢件的气孔缺陷。
1.4 涂料和砂芯问题在铸造过程中使用的涂料和砂芯,如果质量不过关,也会导致铸钢件的气孔缺陷。
二、气孔缺陷的危害气孔缺陷对铸钢件的性能和安全性都会造成严重影响。
气孔缺陷会降低铸钢件的力学性能,使得其承载能力大大降低。
气孔缺陷还会对铸钢件表面造成影响,使得表面粗糙度增加,从而影响其准确度。
最重要的是,气孔缺陷会严重影响铸钢件的耐久性和使用寿命,一旦出现气孔缺陷,铸钢件就容易出现断裂或者损坏,给使用带来了极大的安全隐患。
3.1 外观检查法通过外观检查法可以初步判断铸钢件是否存在气孔缺陷,一般来说,气孔缺陷的铸钢件表面会出现突起或凹槽。
3.3 X射线检测法X射线检测法是一种非破坏性检测方法,通过对铸钢件进行X射线检测可以清晰地观察到其中的气孔缺陷情况。
四、气孔缺陷的预防措施4.1 优化原料首先要做好原料的筛选工作,保证原料的质量符合要求,避免其中含有过多的杂质或氧化物。
4.3 设计优化模具对于模具的设计和使用,要进行优化和维护,确保模具的质量符合要求,避免因此造成气孔缺陷。
4.5 定期检测定期对铸钢件进行外观检查和X射线检测,发现问题及时进行处理,避免气孔缺陷的出现。
球墨铸铁件缺陷产生的原因与预防措施(3)
球墨铸铁件缺陷产生的原因与预防措施(3)球墨铸铁件缺陷产生的原因与预防措施(5)必要情况下,可以加入钼等反石墨化元素,提高碳在铁液中的溶解度,从而减少石墨析出。
4 皮下气孔4. 1 影响因素(1)碳当量:适当增加含硅量有助于皮下气孔的减少。
同时,在硅量保持不变的情况下,随着含碳量的增加,球铁中皮下气孔的个数呈现出单峰曲线,且峰值点总保持在共晶点左右,因此,最好将碳硅含量选择得高一些,以使球铁的碳当量稍大于共晶点。
(2)硫:硫高会引起皮下气孔等缺陷,这是因为产生H2S气体而形成。
当含硫量超过0.094%时就会产生皮下气孔,含硫量越高,情况越严重。
(3)稀土:铁液中加入稀土元素能脱氧、脱硫,提高铁液表面张力,因此有利于防止产生皮下气孔。
但稀土含量太高,会增加铁液中氧化物的含量,使气泡外来核心增加,皮下气孔率增加。
残余稀土量应控制在0.043%以下。
(4)镁:过高的镁将会加剧铁液的吸氢倾向,大量的镁气泡和氧化物进入型腔,增加气泡的外来核心;此外镁蒸汽直接与砂型中的水分作用,产生MgO烟气及氢气,也会产生皮下气孔。
试验表明,残镁量大于0.05%后便易出现皮下气孔,残镁越高越严重。
因此在保证球化基础上,尽量降低残留镁量。
(5)铝:铁液中的铝是铸件产生氢气孔的主要原因。
据报道,当湿型铸造球墨铸铁的残留铝量为0.030%~0.050%时,将产生皮下气孔。
e.r.kaczmarek等人研究认为,铁液与铸型中的水反应生成FeO与H2,由于铝的脱氧作用,又生成Al2O3,其即为气泡生成的核心而又能吸附一定的气体,增加了球铁产生皮下气孔的倾向。
但是在减少渣中的`FeO成分时,镁的存在使得铝显得多余,故铝的敏感含量是有一定范围的。
(6)壁厚:皮下气孔还有“壁厚效应”特征,即气孔的产生在一定壁厚范围内,实际上这与铸件的凝固速度有关。
铸件壁厚大时,其凝固结皮时间推迟,有利于气泡逸出。
因此,一般来说壁厚小于6mm或大于25mm时不易产生皮下气孔。
球墨铸铁件缺陷产生的原因与预防措施
球墨铸铁件缺陷产生的原因与预防措施球墨铸铁件缺陷产生的原因与预防措施球墨铸铁是20世纪五十年代发展起来的一种高强度铸铁材料,其综合性能接近于钢,正是基于其优异的性能,已成功地用于铸造一些受力复杂,强度、韧性、耐磨性要求较高的零件。
球墨铸铁已迅速发展为仅次于灰铸铁的、应用十分广泛的铸铁材料。
所谓“以铁代钢”,主要指球墨铸铁。
下面跟着店铺来看看球墨铸铁件缺陷产生的原因与预防措施吧!希望对你有所帮助。
球墨铸铁件缺陷产生的原因与预防措施11、球墨铸铁管件产生夹渣缺陷的原因有:(1)硅:硅的氧化物也是夹渣的主要组成部门,因此尽可能降低含硅量。
(2)硫:铁液中的硫化物是球铁件形成夹渣缺陷的主要原因之一。
硫化物的熔点比铁液熔点低,在铁液凝固过程中,硫化物将从铁液中析出,增大了铁液的粘度,使铁液中的熔渣或金属氧化物等不易上浮。
因而铁液中硫含量太高时,铸件易产生夹渣。
球墨铸铁原铁液含硫量应控制在006%以下,当它在009%~0135%时,铸铁夹渣缺陷会急剧增加。
(3)稀土和镁:近年来研究认为夹渣主要是因为镁、稀土等元素氧化而致,因此残余镁和稀土不应太高。
(4)浇注系统:浇注系统设计应合理,具有挡渣功能,使金属液能平稳地充填铸型,力求避免飞溅及紊流。
(5)浇注温度:浇注温度太低时,金属液内的金属氧化物等因金属液的粘度太高,不易上浮至表面而残留在金属液内;温度太高时,金属液表面的熔渣变得太稀薄,不易自液体表面往除,往往随金属液流进型内。
而实际出产中,浇注温度太低是引起夹渣的主要原因之一。
此外,浇注温度的选取还应考虑碳、硅含量的关系。
(6)型砂:若型砂表面粘附有多余的砂子或涂料,它们可与金属液中的氧化物合成熔渣,导致夹渣产生;砂型的紧实度不平均,紧实度低的型壁表面等闲被金属液侵蚀和形成低熔点的化合物,导致铸件产生夹渣。
2、防止措施:(1)控制铁液成分:尽量降低铁液中的含硫量(<006%),适量加进稀土合金(01%~02%)以净化铁液,尽可能降低含硅量和残镁量。
球墨铸铁皮下气孔缺陷的成因及控制
球墨铸铁皮下气孔缺陷的成因及控制2010-04-27 08:06 来源:我的钢铁试用手机平台皮下气孔是球墨铸铁最常见的缺陷之一。
皮下气孔出现在铸件表面下1-2mm处,直径为1-3mm。
有些气孔位置较浅,铸件落砂清理后即能发现,有的则在表皮以下,清理后不会暴露出来,要在机械加工后才能被发现。
其成因为:1、硫含量当硫含量超过0.094%就会出现皮下气孔,含硫量越高,皮下气孔越严重。
2、镁含量镁含量过高将会加剧铁液的吸氢倾向。
铁液中残余镁量大于0.05%便易出现皮下气孔。
3、稀土含量稀土含量太高,会增加铁液中氧化物的含量,使气泡外来核心增加,皮下气孔增加。
残余稀土含量应控制在0.043%。
4、铝含量铁液中的铝是铸件产生氢气孔德主要原因。
当湿型铸造球墨铸铁的残留铝量为0.03%-0.05%,将产生皮下气孔。
5、铸件壁厚薄壁件和厚大件不易产生皮下气孔。
6、型砂含水量随着型砂水分的提高,球墨铸铁产生皮下气孔的倾向增大,当型砂水分控制在4.8%下时,皮下气孔率接近于零。
7、此外,还与型砂的紧实度、浇注温度等有关。
为此控制措施为:1、减少硫化镁夹杂采用低硫生铁或在球化处理时适当加入小苏打进行脱硫。
球化处理后,要多次扒渣和静止片刻,使MgS渣上浮。
2、控制浇注温度浇注温度薄壁件不得小于1320℃;中等壁厚铸件不得小于1300℃;导盘类厚壁件不得小于1280℃。
3、控制型砂水分导盘这类大型铸件,采用干型铸造,通常要求砂型必须烘干,造型时摆放一些草绳以增加砂型的透气性并使型壁所产生的气体顺利排出型外。
4、铸型、铁液分离在湿型型砂中加入煤粉或在砂型表面喷涂一层稀润滑油、石墨涂料;在砂型表面喷涂一些含有Fe2O3细粉的煤油悬浊液形成玻璃状物质,将铸型、铁液分离。
(紫焰)铸造灰铁铸件和球铸铁件时产生皮下气孔缺陷的原因是什么?来源:德翔重工机械发布时间:2011-6-4 10:55:37 点击:3湿型砂生产灰铁铸件和球墨铸铁件时,铸件的上表面和表皮下经常有一些密集的小气孔,带树脂砂芯时更易产生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
球墨铸铁皮下气孔缺陷的成因及控制2010-04-27 08:06 来源:我的钢铁试用手机平台皮下气孔是球墨铸铁最常见的缺陷之一。
皮下气孔出现在铸件表面下1-2mm处,直径为1-3mm。
有些气孔位置较浅,铸件落砂清理后即能发现,有的则在表皮以下,清理后不会暴露出来,要在机械加工后才能被发现。
其成因为:1、硫含量当硫含量超过0.094%就会出现皮下气孔,含硫量越高,皮下气孔越严重。
2、镁含量镁含量过高将会加剧铁液的吸氢倾向。
铁液中残余镁量大于0.05%便易出现皮下气孔。
3、稀土含量稀土含量太高,会增加铁液中氧化物的含量,使气泡外来核心增加,皮下气孔增加。
残余稀土含量应控制在0.043%。
4、铝含量铁液中的铝是铸件产生氢气孔德主要原因。
当湿型铸造球墨铸铁的残留铝量为0.03%-0.05%,将产生皮下气孔。
5、铸件壁厚薄壁件和厚大件不易产生皮下气孔。
6、型砂含水量随着型砂水分的提高,球墨铸铁产生皮下气孔的倾向增大,当型砂水分控制在4.8%下时,皮下气孔率接近于零。
7、此外,还与型砂的紧实度、浇注温度等有关。
为此控制措施为:1、减少硫化镁夹杂采用低硫生铁或在球化处理时适当加入小苏打进行脱硫。
球化处理后,要多次扒渣和静止片刻,使MgS渣上浮。
2、控制浇注温度浇注温度薄壁件不得小于1320℃;中等壁厚铸件不得小于1300℃;导盘类厚壁件不得小于1280℃。
3、控制型砂水分导盘这类大型铸件,采用干型铸造,通常要求砂型必须烘干,造型时摆放一些草绳以增加砂型的透气性并使型壁所产生的气体顺利排出型外。
4、铸型、铁液分离在湿型型砂中加入煤粉或在砂型表面喷涂一层稀润滑油、石墨涂料;在砂型表面喷涂一些含有Fe2O3细粉的煤油悬浊液形成玻璃状物质,将铸型、铁液分离。
(紫焰)铸造灰铁铸件和球铸铁件时产生皮下气孔缺陷的原因是什么?来源:德翔重工机械发布时间:2011-6-4 10:55:37 点击:3湿型砂生产灰铁铸件和球墨铸铁件时,铸件的上表面和表皮下经常有一些密集的小气孔,带树脂砂芯时更易产生。
铸件表面和皮下的小气孑L大多数属于反应性气孔或析出性气孔,其原因是砂型水分与铁液以及铁液所溶解的化合物发生化学反应产生气体,形成直径1~3mm的小孔,存在于表皮内1~3mm处,呈球形或泪滴形,孑L壁光滑发亮,覆盖着一层石墨膜,孔洞边缘常是无石墨组织的金属层,有的孑L洞是开口的,孔壁呈氧化色,抛丸清理或粗加工时露出。
雨季(5~8月)和潮湿地区生产时产生皮下气孔的概率大。
球墨铸铁皮下气孔通常出现在某一临界壁厚的铸件,较薄或较厚的铸件很少出现。
这种皮下气孔缺陷的生成机理如下。
①球墨铸件具有内生一糊状凝固的特点,开始凝固时形成的固态层很薄,利于气体的入侵;而气体进入糊状区后,由于共晶团数很多,晶团间的液体通道很窄,不利于分子态的H2或H2s通过该层液体进入尚未凝固的液相区,故无法在液态金属内部通过上浮至表面而去除;加之液态表面存在一层氧化膜,也增加排气的困难。
②炉料和孕育剂可能将铝、钛带人铁液中,湿砂型含水量较高时,铝、钛与水反应产生极易溶入铁液层的原子态[H],该层凝固时氢的溶解度降低而以分子态气相析出并长大成氢气泡。
③球墨铸铁的铁液浇入湿型后,铁液中残留镁同水分子中的氧强烈反应形成Hz:Mg+H20—一MgO+H2稀土也进行上述反应。
这也是产生皮下气孔缺陷的主要原因之一。
④球墨铸铁液含有硫分,球化处理后成为硫化镁夹杂物,如果扒渣不干净,流人砂型中,上浮至砂型界面的硫化镁渣与砂型中的水分发生反应:MgS+H20—一MgO+H2S 生成硫化氢气体,混入铸件中而成皮下气孔缺陷。
稀土硫化物也进行上述反应。
⑤铁液在铸型充填时,将型腔内的空气迅速驱赶,如果腔内气体不能迅速通过砂型中砂粒间隙、冒口或排气孔排出,则型腔的空气受到压缩,产生一定的压力,加之空气被铁液加热而温度上升,与砂型表面受热而蒸发的水分结合在一起,就会形成含有高湿度的气体。
这些气体的压力足够大时,就会压入正在凝固的铸件内部。
通过上述分析,可以理解为什么球墨铸铁皮下气孔仅出现在某一临界壁厚。
因为铸件较薄时,凝固层的外壳厚度较厚,能够顶住气体的压力;而对于厚壁件,上述气体压入时,铸件尚未凝固或刚开始、凝固,气体可通过该层进入液相层内而上浮到液面排出。
而只有某一临界尺寸壁厚,气体既侵入,又不可能进入液相层上浮而排除,才以皮下气孔的形态出现。
⑥如果铸件有树脂砂芯,树脂砂中黏结剂分解出NH。
或-NH2,在高温进一步分解出原子态的[N]和[H],溶解在铁液中并向内扩散,但其溶解度随着铁液温度的下降而下降,凝固时溶解度突然变小,过饱和的氢和氮以分子态析出成小气泡。
球墨铸铁皮下气孔的防止处施球墨铸铁皮下气孔的防止处施:1,控制残留Ai量,灰铸铁危险残留Ai量0015%-0.15%湿型砂球墨铸铁的危险残留Ai量0.03%-0.05%孕育剂(回炉料)是铝量的主要来源2, 浇注温度,危险浇注温度1310℃-1250℃3, 控制铁液的含氢量,冲天炉铁液含氢量4-5PPm,开炉后100-200min以内的铁液的含氢量较高,浇铸湿型重要铸件不适合.4, 湿型型砂水份,死粘土和附加物, 水份应小于5%,5, 型砂加入煤粉4-5%.浇注时煤粉在金属-铸型界面形成还原性气膜,不仅可以防治铸件粘砂,而且可能抵制了界面水气的反应,也是防止皮下气孔。
沥青2%或木屑粉2%-3%来防止皮下气孔6,球墨铸铁件面砂中加入赤铁矿粉2%。
也能防止皮下气孔7,球墨铸铁件面砂中加入二氟化氨2%-2.5% (氟化氢氨)8, 机器造型流水线生产铸件时.特别是对于皮下气孔非常敏感的湿型球墨铸铁件,不能用烫手、冒热气、温度超过35℃的热型砂造型,否则极易在铸件过热部位出现皮下气孔。
9, 在球墨铸铁件的湿型型腔表面抖熔剂粉,常用熔剂粉为冰晶石粉(氟铝酸钠、熔点994℃)或氟化钠10,禁止浇包中无覆盖剂。
防止铁液表面发生二次氧化,形成熔点低,流动性好的液态渣,加入量为铁液的0.4%。
反应铸件气孔的形成原因时间:2011-01-11 浏览次数:4111、金属液内的反应气孔发生在金属液中的反应气孔有两种情况:一种是由于金属与渣相相互作用而产生的(常称为渣气孔),另一种是由于金属液内各组成成分之间相互作用而产生的。
(1)渣气孔浇注前由于熔渣没有清理干净以及浇注过程中又产生二次氧化渣,以及铸件在凝固过程中,在结晶前沿液相区存在的低熔点渣含有FeO,与液相中的C原子产生以下反应:(FeO)+[C]→Fe十CO↑当金属液中的(FeO)和[C]较多时,就有可能形成渣气孔。
当铁水中石墨析出时,也将引起下列反应:(FeO)+C→Fe+CO↑上述反应产生的CO气体依附在熔渣上形成了渣气孔。
所以渣气孔的特点是,气孔和氧化渣夹杂在一起。
铸钢件最容易产生这种气孔。
因为氧化反应产生的CO实际上是不溶解于钢液中的,CO气泡在固液接口上的枝晶间形成成群的气泡核。
同时,气泡周围的钢液中溶解的氮、氢气体也会扩散到CO气泡中,使其长大。
这种气泡是在钢液凝固时期形成的,因此难以上浮逸出金属液,导致这种反应气孔呈弥散性分布。
(2)金属液中元素间反应气孔含镍铜合金熔炼时如果用木炭作覆盖剂时,会产生反应气孔。
其原因是:熔炼时,镍能化学吸附CO,并产生化学反应生成NiO和NiC;木炭促使镍化合物的产生。
NiO和NiC能溶解在含镍铜合金中,当浇注后,随着金属液的凝固和温度的降低,它们会重新从铜液中析出。
结果这两种镍化合物发生反应,产生CO气体:NiC+NiO←→2Ni+COCO气体在铜液中的溶解度极其微小,易形成CO气泡,使含镍铜合金在凝固时产生CO反应气孔。
类似这种反应气孔还有铜合金铸件中的水汽反应气孔。
2、金属与铸型(型芯)、冷铁或型芯撑等产生化学反应而形成的气孔这类气孔属于外生式反应气孔,其原因主要是金属液与外部因素之间的化学反应而产生的。
此类气孔可分为皮下气孔、表面气孔和内部气孔三种类型。
第一种,铸钢件皮下气孔。
铸钢件用湿型浇注时所产生的皮下气孔(针孔),是典型的金属与铸型产生化学反应而形成的皮下气孔。
铸钢件皮下气孔分布于铸件表皮下1~3mm(有时只有一层氧化皮厚),数量多而尺寸小,形状为垂直于铸件表面的针状。
这种皮下气孔形成于铸件凝固初期,气泡随铸件表面的凝固一起长大,成为针形气泡。
铸钢件形成皮下气孔的机理有两种观点。
第一种观点认为钢水与铸型接触时产生以下反应:Fe+H2O→FeO+2[H]反应生成的氢,一部分通过铸型逸出,一部分则向钢水中扩散,使钢水含氢量达到饱和溶解度。
随着铸件凝固开始并形成薄壳后,氢的溶解度在钢水中的溶解度减小,溶解不了的氢气被赶到了固、液相接口上,形成氢“偏析”。
如果钢水脱氧不好,在钢水中有较多的氧化铁,固体薄壳内附近的氢与钢水中的FeO就有可能发生如下反应:FeO+[H]→H2O+Fe生成的水蒸气就附着在生长的固体晶粒上,形成了气泡核心。
从钢水凝固过程中析出的氢和接口上的氢,都向H20气泡核心集中,新生的氢原子聚合成分子,使气孔扩大到相当的尺寸。
生产中许多现象可以用这一理论来解释。
例如,提高浇注温度对防止皮下气孔的产生是有效的,因为氢可以在凝固很慢的铸件中逸出。
第二种观点认为由于钢水脱氧不良,残留很多氧化亚铁,或钢水与水分反应生成的氧化亚铁,都能与钢水中的碳反应生成CO,使其成为皮下气孔的气泡核心,或直接形成CO 皮下气孔。
灰铸铁件和球墨铸铁件产生的皮下气孔是因为铁水浇注到湿型后,金属与铸型接口的水蒸气(H2O)与铁水中逸出的镁(Mg)和铁水表面的硫化镁发生如下反应:Mg+H2O→MgO+2[H]↑MgS+H2O→MgO+H2S↑反应生成的氢、硫化氢等气体,在铁水与铸型的接口上产生了较大的压力。
由于球墨铸铁的糊状凝固特性,其表面层往往在较长的时间内不能完全凝固,当铸型的透气性差时,可能有部分气体穿透铁水表层侵入铸件,形成皮下气孔.这种皮下气孔弥散分布于铸件表皮之下。
由于球墨铸铁件中的Mg能使金属与铸型接口的水蒸气强烈地还原,产生原子态氢,因此,球墨铸铁件产生皮下气孔的倾向性比灰铸铁件大:球墨铸铁件残留镁量越高,形成皮下气孔的倾向性越大。
第二种,表面气孔。
其主要有两种。
一种是型砂熔融表面气孔,它主要是指浇注金属液后,铸型型砂的熔融使铸件表面产生的气孔。
其产生原因是由于型砂的耐火度低,在高温金属液的作用下发生熔化,熔融的型砂接口层本身会释放大量的气体;同时,型砂的熔融堵塞了型砂颗粒间的空隙,导致型砂的透气性降低,使气体不能及时排出,产生型砂熔融表面气孔。
另一种表面气孔是外冷铁表面气孔。
它是铸件外表面同外冷铁直接接触处产生的表面气孔。
其形成原因为外冷铁表面有油污、铁锈、水汽;或干型刷涂料时,涂料中发气物过多;浇注时在铸件同外冷铁的表面上产生侵入气孔等。