人教版小学数学五年级上册【重点知识点】_及复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(人教课标版)五年级数学上册【知识点】第一单元《小数乘法》
第二单元《小数除法》
第三单元 《观察物体》
具体内容 重 点 知 识
观察物体(一) 1.从不同方向观察同一物体,看到的形状可能是不同的。
2.站在任一位置都不能同时看到长方体所有的面,最多只能看到它的三
个面。
3.辨认从不同方向看立体图形得到的平面图形时,可以假设自己是观察
者,站在不同方向看到的图形是什么形状,从而判断给出的图形是从哪个
方向看到的。
观察物体(二) 1.从同一角度观察不同形状的立体图形,得到的平面图形可能是相同的,
也可能是不同的。
2.观察两个简单立体图形,要注意两个图形的位置关系。
第四单元 《四简易方程》
具体内容 重 点 知 识
用字母表示数 1.用字母表示数。
在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略
不写。
数和字母相乘时,省略乘号后,一律将数写在字母前面。
2.用字母表示运算定律。
加法交换律是 a+b=b+a ;加法结合律是 (a+b)+c=a+(b+c); 乘法交换律是 ab=ba ; 乘法结合律是 (ab)c=a(bc);
乘法分配律是 (a+b)c=ac+bc 。
3.用字母表示常见的数量关系及计算公式。
用含有字母的式子表示指定的数量,再把字母的取值代入式子中求
值,只要在答旬中写出得数即可。
方程的意义 1.方程与等式的区别。
含有未知数的等式叫做方程;方程一定是等式,而等式不一定是方程。
2.等式的性质。
等式两边同时加上或减去相同的数,同时乘或除以相同的数(0除外),左
右两边仍然相等。
解方程
1.方程的解与解方程。
“方程的解”是一个数,是使等号左右两边相等的未知数的值;“解方程”
是指演算过程。
2.解形如 ±a=b 和 a =b 的方程。
依据等式性质来解此类方程。
解方程时要注意写清步骤,等号对齐。
3.验算。
把未知数的值代人原方程,看等号左边的值是否等于等号右边的值。
稍复杂的方程1.列方程解决问题的步骤。
(1)弄清题意,找出未知数,用表示;
(2)分析、找出数量之间的相等关系,列方程;
(3)解方程;
(4)检验,写出答语。
2.算术解法与方程解法的区别。
(1)列方程解决问题时,未知数用字母表示,参加列式;算术解法中未知数不参加列式。
(2)列方程解决问题是根据题中的数量关系,列出含有未知数的等式,求未知数的过程由解方程来完成。
算术解法是根据题中已知数和未知数问的关系,确定解答步骤,再列式计算。
3.验算。
除了把未知数的值代人方程检验之外,还可以把求得的未知数的值代入原题进行检验,这样验算更有效,也更简便。
第五单元《多边形的面积》
具体内容重点知识
平行四边形的
面积
平行四边形的面积=底×高用字母表示:S=ah
三角形的面积三角形的面积=底×高÷2用字母表示:S=ah÷2
梯形的面积梯形的面积=(上底+下底)x高÷2 用字母表示:S=(a+b)h÷2组合图形的面
积
把求组合图形的面积转化成求几个简单的平面图形面积的和或差
第六单元《统计与可能性》
具体内容重点知识
可能性1.游戏的公平性:判断一个游戏规则是否公平,也就是看每种情况出现的可能性是否相等。
相等,游戏规则公平;不相等,游戏规则不公平。
2.用分数表示事件发生可能性的大小:明确事件可能出现的所有情况,用所有可能出现的情况的数量作分母,某一种情况出现的数量作分子。
中位数1.中位数的意义:把一组数据按大小顺序排列后,最中间的数据就是中位数。
2.中位数的作用:反映一组数据的一般水平、对事物大体趋势进行掌握和判断。
不受偏大或偏小数据的影响。
3.中位数的求法:(1)单数个数据:按大小排序最中间的一个。
(2)双数个数据:按大小排序最中间两个数据的平均数。
第七单元《数学广角》
【邮政编码的意义和机构】
1.邮政编码的意义:邮政编码是代表投送邮件的邮局的一种专用代号,也是这个局(所)投送范围内的居民与单位的通信代号。
2.邮政编码的结构:邮政编码由六位数字组成,前两位数字表示省(或自治区、直辖市);第三位数表示邮区;第四位数表示县(市);最后两位数表示投递局(所)。
【身份证号码蕴含的信息和编码的含义】
1.公民身份证的意义:公民身份号码是每个公民唯一的、终身不变的身份代码,由公安机关按照公民身份号码国家标准编制的。
2.身份证的作用:居民身份证是公民进行社会活动,维护社会秩序,保障公民合法权益,证明公民身份的法定证件。
它的作用很多,如:(1)选民登记;(2)户口登记;(3)兵役登记;(4)入学、就业;(5)办事公证事务;(6)办理申请出境手续;(7)办理机动车、船驾驶证和行驶证、非机动车执照……
3.身份证号码的分类:身份证号码有15和18位之分。
1985年我国实行居民身份证制度,当时签发的身份证号码是15位的(属于第一代居民身份证),1999年签发的身份证由于年份的扩展(由两位变为四位)和末尾加了校验码,就成了18位(属于第二代居民身份证)。
这两种身份证号码将在相当长的一段时期内共存。
(备注:第一代居民身份证或将于2013年1月1号停止使用。
)
4.身份证号码的组成。
(1)18位身份证号码的组成:
举例: 110102 20050107 151 9
前6位第7~14位第15~17位第18位
前6位:行政区划代码,其中1、2位数为各省级政府的代码,
3、4位数为地、市级政府的代码,
5、6位数为县、区级政府代码。
第7~10位为出生年份,11~12位为出生月份,13~14位为出生日期。
第15~17位为顺序号及性别区分,单数为男性分配码,双数为女性分配码。
第18位校验码(识别码)。
(2)15位身份证号码的组成:
①1、2位代表申办身份证时户口所在省分(省公安厅)编号;
②3、4位代表所在地区(市级公安局)编号;
③5、6位代表所在地区的更进一步行政划分(城市中的区,县一级的公安局);
④7、8位代表出生年后两位(1901~2000);
⑤9、10位代表出生月份;
⑥11、12位代表出生日;
⑦13、14、15这后三位代表户口所在派出所被分配到的号码段。
(提示:同一省份的公民身份证的前几位数字都相同)
(3)字母表示身份证号的组成:
AABBCC——所属区域编码
YYYY MM DD——出生年月日
AABBCCYYYYMMDDNNNC NNN——地区编号及性别区分
C——校验码
【归纳总结】:
居民身份证的号码是按照国家的标准编制的,由18个数字组成;前6位为行政区划分代码,第7至14位为出生日期码,第15至17位为顺序码,第18位为校验码。
八总复习
1.数与代数
重点知识
具体内容重点知识
小数乘法1.小数乘法的计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
乘得的积的小数位数不够时,要在前面用0补足,再点上小数点。
2.乘法的验算:一是“把因数的位置交换一下,再乘一遍”;二是“用计算器验算”。
3.积的近似数:求积的近似数时,首先明确要保留的小数位数,再看要保留的小数位数下一位上的数字,按“四舍五入”法截取积的近似数。
4.乘法运算定律:
(1)乘法交换律:ab=ba
(2)乘法结合律:(ab)c=a(bc)
(3)乘法分配律:(a+b)c=ac+bc
小数除法1.小数除法的计算方法:先去掉除数的小数点,看原来除数有几位小数,被除数的小数点也向右移动几位,然后按照除数是整数的计算方法计算。
2.求商的近似数的方法:用竖式计算商时,要除到比需要保留的小数位数多出一位,然后按照“四舍五入”法截取商的近似数。
3.循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
4.有限小数和无限小数:小数部分的位数是有限的小数叫做有限小数。
小数部分的位数是无限的小数叫做无限小数。
5.用计算器探索规律的方法:先用计算器计算,观察发现规律,根据规律写商。
简易方程1.用字母表示数:在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。
数字和字母相乘时,省略乘号后,一律将数字写在字母前面。
2.方程的意义:含有未知数的等式,称为方程。
3.方程的解:使方程左右两边相等的未知数的值。
4.解方程:求方程的解的过程叫做解方程。
5.验算:把未知数的值代入原方程,看方程左边的值是否等于方程右边的值。
6.列方程解决问题的步骤:(1)弄清题意,找出未知数,用表示;(2)分析、找出数量之间的相等关系,列方程;(3)解方程;(4)检验,写出答语。
数学广角运用数字、字母可以进行编码。
2.空间与图形
3.统计与可能性
人教版小学数学五年级上册单元知识点
小数加减法的计算方法:计算小数加减法,要先把小数点对齐,然后按照整数加减法的法则进行计算。
第一单元《小数乘法》知识点
1、小数乘整数意义:求几个相同加数的和的简便运算。
如:3.6×5表示5个3.6的和是多少
或者3.6的5倍是多少。
小数乘小数的意义:就是求这个数的几分之几是多少。
如:2.6×0.4就是求2.4的十分之四是多少。
8.5×3.4就是求8.5的3.4倍是多少。
2、小数乘法的计算方法:计算小数乘法,先按整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点;乘得积的小数位数不够时,要在前面用0补足,再点小数点;小数末尾有0的要去掉。
3、一个数(0除外)乘大于1的数,积比原来的数大,一个数(0除外)乘小于1的数,积比原来的数小。
3、小数四则运算顺序跟整数是一样的:即有括号的要先算括号里的,没有括号的要先算乘
除法,后算加减法,同级运算按照从左往右的顺序计算。
4、整数乘法的交换律、结合律、分配律,对于小数乘法也适用。
第二单元《小数除法》知识点
1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:2.6÷1.3
表示已知两个因数的积2.6与其中的一个因数1.3,求另一个因数的运算。
小数除法的计算方法:
计算除数是整数的小数除法,按整数除法的计算方法去除,商的小数点要和被除数的小数点对齐,整数部分不够除,商0,点上小数点,继续除;如果有余数,要添0再除。
计算除数是小数的除法,先把除数转化成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,位数不够时,在被除数的末尾用0补足,然后按照除数是整数的小数除法进行计算。
2、取近似数的方法:
取近似数的方法有三种,①四舍五入法②进一法③去尾法
一般情况下,按要求取近似数时用四舍五入法,进一法、去尾法在解决实际问题的时候选择应用。
取商的近似数时,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似数。
没有要求时,除不尽的一般保留两位小数。
3、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
依次不断重复出现的数字,叫做这个循环小数的的循环节。
4、循环小数的表示方法:
一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。
如:0.3636…… 1.587587……
另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点。
如:12. 0.46
5、有限小数:小数部分的位数是有限的小数,叫做有限小数。
6、无限小数:小数部分的位数是无限的小数,叫做无限小数。
第三单元《观察物体》知识点
1、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
第四单元《简易方程》知识点
1、用字母表运算定律。
加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)
乘法交换律:a×b=b×a 乘法结合律:a×b×c=a×(b×c)
乘法分配律:(a±b)×c=a×c±b×c
2、用字母表示计算公式。
长方形的周长公式:c=(a+b)×2 长方形的面积公式:s=ab
正方形的周长公式:c=4a 正方形的面积公式:s=a2
3、x2读作:x的平方,表示:两个x相乘。
2x表示:两个x相加,或者是2乘x。
4、①含有未知数的等式称为方程。
②使方程左右两边相等的未知数的值叫做方程的解。
③求方程的解的过程叫做解方程。
5、把下面的数量关系补充完整。
路程=(速度)×(时间) 速度=(路程)÷(时间) 时间=(路程)÷(速度)
总价=(单价)×(数量) 单价=(总价)÷(数量) 数量=(总价)÷(单价)
总产量=(单产量)×(数量) 单产量=(总产量)÷(数量) 数量=(总产量)÷(单价)
工作总量=(工作效率)×(工作时间) 工作效率=(工作总量)÷(工作时间)
工作时间=(工作总量)÷(工作效率)
大数-小数=相差数大数-相差数=小数小数+相差数=大数
一倍量×倍数=几倍量几倍量÷倍数=一倍量几倍量÷一倍量=倍数
被减数=减数+差减数=被减数-差加数=和-另一个加数
被除数=除数×商除数=被除数÷商因数=积÷另一个因数
第五单元《多边形面积》知识点
1、长方形面积=长×宽字母公式:s=ab
长方形周长=(长+宽)×2 字母公式:c=(a+b)×2
2、正方形面积=边长×边长字母公式:s= a2或者s=a×a
正方形周长=边长×4 字母公式:c=4a 或者c= a×4
3、平行四边形面积=底×高字母公式:s=ah
4、三角形面积=底×高÷2 字母公式:s=ah÷2
5、梯形面积=(上底+下底)×高÷2 字母公式:s=(a+b)×h÷2
6、计算圆木、钢管等的根数:(顶层根数+底层根数)×层数÷2
7、等底等高的平行四边形面积相等。
等底等高的三角形面积相等。
等底等高的三角形和平行四边形面积关系:三角形的面积是平行四边形面积的一半,平行四边形的面积是三角形面积的2倍。
8、组合图形:转化成已学的简单图形,通过加、减进行计算。
第六单元《统计与可能性》知识点
1、平均数=总数量÷总份数
2、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。
第七单元数学广角
1、数不仅可以用来表示数量和顺序,还可以用来编码。
2、邮政编码:
3、身份证号码。