高分子纳米复合材料的制备

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子纳米复合材料的制备

摘要:

纳米材料科学是一门新兴的并正在迅速发展的材料科学。由于纳米材料体系具有许多独特的性质,应用前景广阔,而且涉及到原子物理、凝聚态物理、胶体化学、配位化学、化学反应动力学和表面、界面科学等多种学科,在实际应用和理论上都具有极大的研究价值,所以成为近些年来材料科学领域研究的热点之一,被誉为“21世纪最有前途的材料”[1, 2]。

关键词:高分子纳米复合材料,纳米单元,制备

由于纳米微粒尺寸小、比表面积大,表面原子数、表面能和表面张力随粒径的下降急剧增大,表现出小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等特点,从而使纳米粒子出现了许多不同于常规固体的新奇特性,展示了广阔的应用前景;同时它也为常规的复合材料的研究增添了新的内容,含有纳米单元相的纳米复合材料[5]通常以实际应用为直接目标,是纳米材料工程的重要组成部分,正成为当前纳米材料发展的新动向,其中高分子纳米复合材料[6~10]由于高分子基体具有易加工、耐腐蚀等优异性能,且能抑止纳米单元的氧化和团聚,使体系具有较高的长效稳定性,能充分发挥纳米单元的特异性能,而尤受广大研究人员的重视。

高分子纳米复合材料是由各种纳米单元与有机高分子材料以各种方式复合成型的一种新型复合材料,所采用的纳米单元按成分分可以是金属,也可以是陶瓷、高分子等;按几何条件分可以是球状、片状、柱状纳米粒子,甚至是纳米丝、纳米管、纳米膜等;按相结构分可以是单相,也可以是多相,涉及的范围很广,广义上说多相高分子复合材料,只要其某一组成相至少有一维的尺寸处在纳米尺度范围(1 nm~100 nm)内,就可将其看为高分子纳米复合材料。对通常的纳米粒子/高分子复合材料按其复合的类型大致可分为三种:0-0复合,0-2 复合和0-3复合,纳米粒子在高分子基体中可以均匀分散,也可以非均匀分散;可能有序排布,也可能无序排布,甚至粒子聚集体形成分形结构;复合体系的主要几何参数包括纳米单元的自身几何参数,空间分布参数和体积分数,本文主要涉及后两种类型的高分子纳米复合材料。此外,还有1-3复合型,2-3复合型高分子纳米复合材料,高分子纳米多层膜复合材料,有机高分子介孔固体与异质纳米粒子组装的复合材料等等[1]。

纳米单元与高分子直接共混

此法是将制备好的纳米单元与高分子直接共混,可以是溶液形式、乳液形式,也可以是熔融形式共混。可用于直接共混的纳米单元的制备方法种类繁多[15~18],通常有两种形式的制备:从小到大的构筑式,即由原子、分子等前体出发制备;从大到小的粉碎式,即由常规块材前体出发制备(一般为了更好控制所制备的纳米单元的微观结构性能,常采用构筑式制备法)。总体上又可分为物理方法、化学方法和物理化学方法三种。

物理方法有物理粉碎法,采用超细磨制备纳米粒子,利用介质和物料间相互研磨和冲击,并附以助磨剂或大功率超声波粉碎,达到微粒的微细化;物理气相沉积法(PVD):在低压的惰性气体中加热欲蒸发的物质,使之气化,再在惰性气体中冷凝成纳米粒子,加热源可以是电阻加热、高频感应、电子束或激光等,不同的加热方法制备的纳米粒子的量、大小及分布等有差异;还有流动液

面真空蒸发法,放电爆炸法,真空溅射法等等。

化学方法有化学气相沉积法(CVD),采用与PVD法相同的加热源,将原料(金属氧化物、氢氧化物,金属醇盐等)转化为气相,再通过化学反应,成核生长得到纳米粒子;水热合成法:高温高压下在水溶液或蒸气等流体中合成;化学沉淀法[19,20]:将沉淀剂加入金属盐溶液中,得到沉淀后进行热处理,包括直接沉淀、共沉淀、均一沉淀等;溶胶-凝胶(Sol-Gel)法[21,22]:将金属有机醇盐或无机盐溶液经水解,使溶质聚合成溶胶再凝胶固化,再在低温干燥,磨细后再煅烧得到纳米粒子;另外还有喷雾法[30 ]、固液氧化还原法[31,32]等等。

物理化学法有活性氢-熔融金属反应法:含有氢气的惰性气体等离子体与金属间产生电弧,熔融金属,同时电离的惰性气体和氢气溶入熔融金属,然后使熔融金属强制蒸发-凝聚,得到纳米粒子,此法能制备各种金属的高纯纳米粒子及陶瓷纳米粒子,如氮化钛、氮化铝等,生产效率高。

总的来说,纳米单元与高分子直接共混的方法简单易行,可供选择的纳米单元种类多,其自身几何参数和体积分数等便于控制,但所得复合体系的纳米单元空间分布参数一般难以确定,纳米单元的分布很不均匀,且易于发生团聚,影响材料性能,改进方法是对制得的纳米单元做表面改性,改善其分散性、耐久性,提高其表面活性,还能使表面产生新的物理、化学和机械性能等特性[18,33]。纳米单元表面改性方法根据表面改性剂和单元间有无化学反应可分为表面物理吸附方法和表面化学改性方法两类,既可以采用低分子化合物主要为各种偶联剂改性,而表面接枝聚合改性主要分为在含有可聚合物基团的粒子表面接枝聚合物作为无机粒子的界面改性剂,从粒子表面引发接枝聚合物,再引发接枝聚合物,具有广阔的应用前景。

在高分子基体中原位生成纳米单元:此法是利用聚合物特有的官能团对金属离子的络合吸附及基体对反应物运动的空间位阻 ,或是基体提供了纳米级的空间限制,从而原位反应生成纳米复合材料,常用于制备金属、硫化物和氧化物等纳米单元复合高分子的功能复合材料。生成纳米单元的前体可以是有机金属化合物,也可以是高分子官能团上吸附(如螯合等)的金属离子等;纳米单元生成的反应方式有辐射、加热、光照、气体反应和溶液反应等多种形式[39~52]。

如果有机高分子树脂本身就是介孔状结构作为“模板”,在其中反应生成纳米单元,例如先将金属离子引入,再在氧气氛中加热或通入硫化氢,可制得氧化物及硫化物纳米粒子,而且通过控制介孔的尺寸及形状可以控制纳米粒子的尺寸和形状[49,50]。

另外,有机高分子纳米粒子复合薄膜可以用纳米粒子胶体悬浮体系直接沉积扩散在高分子膜上制成[51];也可以用分子沉积(MD)技术[52]制备。

在纳米单元存在下单体分子原位聚合生成高分子:此法主要是指在含有金属、硫化物或氢氧化物胶体粒子的溶液中单体分子原位聚合生成高分子,其关键是保持胶体粒子的稳定性,使之不易发生团聚。纳米粒子表面接枝聚合物后可直接压制成高固含量的复合材料。

纳米单元和高分子同时生成:此法包括插层原位聚合[55~59]制备聚合物基有机-无机纳米复合材料,蒸发(或溅射、激光)沉积法制备纳米金属-有机聚合物复合膜[60]及溶胶-凝胶法[61~63]等。

对纳米级金属微粒均匀分布于有机聚合物中的金属-有机聚合物复合膜,制备方法[64,65]有蒸发沉积、溅射沉积和激光沉积,都是使有机单体在衬底表面聚合,同时金属气化沉积在衬底上,得到金属-有机聚合物复合膜。

相关文档
最新文档