压电式传感器应用实例

合集下载

压电式传感器的应用

压电式传感器的应用
压电式传感器的应用 压电式传感器的应用 如图是压电式单向测力传感器的结构图, 如图是压电式单向测力传感器的结构图,主要由石 英晶片、绝缘套、电极、上盖及基座等组成。 英晶片、绝缘套、电极、上盖及基座等组成。
F
石石石石
上上
绝绝绝
压电
基基
图1 压力式单向测力传感器结构图
压电式传感器的应用 传感器上盖为传力元件,它的外缘壁厚为 0.1~0.5mm, 外力作用使它产生弹性变形 , 将力传 mm , 外力作用使它产生弹性变形, 递到石英晶片上。石英晶片采用xy切型, 递到石英晶片上。石英晶片采用xy切型, 利用其纵向 xy切型 实现力—电转换。 压电效应, 压电效应, 通过d11实现力—电转换。
压电陶瓷圆环 铝头
压电式传感器的应用 当一定频率的声频信号加在换能器上时,换能器上的 当一定频率的声频信号加在换能器上时, 压电陶瓷片受到外力作用而产生压缩变形,由于压电 压电陶瓷片受到外力作用而产生压缩变形, 陶瓷的正压电效应,压电陶瓷上将出现充、放电现象, 陶瓷的正压电效应,压电陶瓷上将出现充、放电现象, 即将声频信号转换成了交变电信号。这时的声传感器 即将声频信号转换成了交变电信号。 就是声频信号接收器。 就是声频信号接收器。 如果换能器中压电陶瓷的振荡频率在超声波范围,则 如果换能器中压电陶瓷的振荡频率在超声波范围, 其发射或接收的声频信号即为超声波, 其发射或接收的声频信号即为超声波,这样的换能器 称为压电超声换能器 称为压电超声换能器。 压电超声换能器。
信号发生器 游标卡尺 图5 超声速测量实验装置
压电式传感器的应用 当信号发生器产生的正弦交流信号加在压电陶瓷片两端 面时,压电陶瓷片将产生机械振动, 面时,压电陶瓷片将产生机械振动,在空气中激发出声 波。所以,换能器S1是声频信号发生器。 所以,换能器 是声频信号发生器。 当S发出的声波信号经过空气传播到达换能器 2时,空 发出的声波信号经过空气传播到达换能器S 发出的声波信号经过空气传播到达换能器 气振动产生的压力作用在S 气振动产生的压力作用在 2的压电陶瓷片上使之出现 充、放电现象,在示波器上就能检测出该交变信号。 放电现象,在示波器上就能检测出该交变信号。 所以,换能器 是声频信号接收器。 所以,换能器S2是声频信号接收器。

压电式压力传感器原理及应用

压电式压力传感器原理及应用

压电式压力传感器原理及应用自动化研1302班王民军压电式压力传感器是工业实践中最为常用的一种传感器。

而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也叫压电式压电传感器。

压电式压力传感器可以用来测量发动机内部燃烧压力的测量与真空度的测量。

也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。

它既可以用来测量大的压力,也可以用来测量微小的压力。

一、压电式传感器的工作原理1、压电效应某些离子型晶体电介质(如石英、酒石酸钾钠、钛酸钡等)沿着某一个方向受力而发生机械变形(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷。

当外力去掉后,它又会重新回到不带电的状态,此现象称为“压电效应”。

压电式传感器的原理是基于某些晶体材料的压电效应。

2、压电式压力传感器的特点压电式压力传感器是基于压电效应的传感器。

是一种自发电式和机电转换式传感器。

它的敏感元件由压电材料制成。

压电材料受力后表面产生电荷。

此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。

压电式压力传感器用于测量力和能变换为力的非电物理量,如压力、加速度等(见压电式压力传感器、加速度计)。

压电式压力传感器是利用压电材料的压电效应将被测压力转换为电信号的。

由压电材料制成的压电元件受到压力作用时产生的电荷量与作用力之间呈线性关系:Q=k*S*p。

式中 Q为电荷量;k为压电常数;S为作用面积;p为压力。

通过测量电荷量可知被测压力大小。

压电式压力传感器的工作原理与压电式加速度传感器和力传感器基本相同,不同的是弹性元件是由膜片等把压力转换成集中力,再传给压电元件。

为了保证静态特性及稳定性,通常多采用压电晶片并联。

在压电式压力传感器中常用的压电材料有石英晶体和压电陶瓷,其中石英晶体应用得最为广泛。

二、压电压力传感器等效电路和测量电路在校准用的标准压力传感器或高精度压力传感器中采用石英晶体做压电元件外,一般压电式压力传感器的压电元件材料多为压电陶瓷,也有用高分子材料(如聚偏二氟乙稀)或复合材料的合成膜的。

传感器作业一

传感器作业一

传感器作业一、设计一种传感器应用实例:压电式传感器压电式传感器工作原理:它是以某些电介质的压电效应为基础,在外力的作用下,在电介质的表面上产生电荷,实现力与电荷的转接,从而完成非电量如动态力、加速度等的检测,但不能用于静态参数的测量。

压电效应:某些电介质在沿一定方向上受到外力的作用而变形时,内部会产生极化现象,同时在其表面上产生电荷;当外力去掉后,又重新回到不带电的状态;当作用力方向改变时,电荷的极性也随之改变,这种现象称为压电效应。

应用方案:我的方案是应用在鼠标上,现在是冬季来领,玩电脑时手不能取暖,因此我想到运用压电式传感器,在鼠标外面装一个套子,里面放入散热片,在鼠标面上装上压电式传感器连接到散热片,这样当我们在玩电脑时手伸进套子里就不会冷了,当然键盘上也可以诸如此类设置。

电路图:二、查找并写出教材以外的一种传感器的工作原理,应用实例:烟雾传感器烟雾传感器工作原理:烟雾报警器就是通过监测烟雾的浓度来实现火灾防范的,烟感器内部采用离子式烟雾传感,离子式烟雾传感器是一种技术先进,工作稳定可靠的传感器,被广泛运用到各种消防报警系统中,性能远优于气敏电阻类的火灾报警器。

它在内外电离室里面有放射源媚241,电离产生的正、负离子,在电场的作用下各自向正负电极移动。

在正常的情况下,内外电离室的电流、电压都是稳定的。

一旦有烟雾窜逃外电离室。

干扰了带电粒子的正常运动,电流,电压就会有所改变,破坏了内外电离室之间的平衡,于是无线发射器发出无线报警信号,通知远方的接收主机,将报警信息传递出去。

烟雾传感器检测原理:在探测器的电离室内放α放射源Am241,其不断地持续放射出α粒子射线,以高速运动撞击空气中的氮、氧等分子,在α粒子的轰击下引起电离,产生大量的带正负电荷的离子,从而使得原来不导电的空气具有导电性,当在电离室两端加上一定的电压后,使得空气中的正负离子向相反的电极移动,形成电离电流。

具体电流的大小与电离室本身的几何形状、放射度、 粒子能量、电极电压的大小及空气的密度、温度、湿度和气流速度等因素有关烟雾传感器特征:整机电路由稳压、信号检测、信号处理、比较触发、信号输出及声光报警等电路组成用途:烟雾传感器用于煤矿井下有瓦斯和煤尘爆炸危险及火灾危险的场所,能对烟雾进行就地监测、遥测和集中监视,能输出标准的开关信号,并能与国内多种生产安全监测系统及多种火灾监控系统配套使用。

压电式力传感器的应用场景

压电式力传感器的应用场景

压电式力传感器的应用场景压电式力传感器是一种常用于测量力的传感器,具有灵敏度高、响应速度快、体积小、重量轻等特点。

由于其优越的性能和广泛的应用领域,压电式力传感器在工业、医疗、航空航天等领域有着广泛的应用。

1. 工业自动化在工业自动化领域,压电式力传感器可以用于测量机械设备的力学特性,例如测量机械臂的扭矩、压力、力量等参数。

通过实时监测这些参数,可以对机械设备进行精确控制,提高生产效率和产品质量。

2. 汽车行业压电式力传感器在汽车行业的应用非常广泛。

例如,在汽车制动系统中,可以使用压电式力传感器来测量制动踏板的力度,从而实现对刹车系统的精确控制。

另外,压电式力传感器还可以用于测量引擎输出的扭矩和功率,以及车辆的加速度和行驶速度等参数。

3. 医疗设备在医疗设备中,压电式力传感器被广泛应用于各种测量和监测系统中。

例如,在手术中,可以使用压电式力传感器来测量手术器械的握力,以确保手术的精确性和安全性。

此外,压电式力传感器还可以用于测量患者的呼吸、心跳等生理参数,以监测患者的健康状况。

4. 航空航天在航空航天领域,需要对飞机、火箭等飞行器的各种力学参数进行准确测量。

压电式力传感器可以用于测量飞行器的气动力、推力、重力等参数,从而为飞行器的设计和控制提供重要的数据支持。

此外,压电式力传感器还可以用于测量航天器的姿态变化和振动特性等。

5. 智能手机和电子设备压电式力传感器在智能手机和其他电子设备中也有着广泛的应用。

例如,智能手机的触摸屏和按键部分常常使用压电式力传感器来实现用户的触摸输入。

此外,压电式力传感器还可以用于测量电池的充电状态、设备的重量和压力等参数。

压电式力传感器具有广泛的应用场景,在工业、医疗、航空航天和电子设备等领域发挥着重要的作用。

随着科技的不断进步和创新,压电式力传感器的应用将会越来越广泛,为各个领域的发展和进步提供更加可靠和精确的力学测量。

压电式超声波传感器的工程应用案例

压电式超声波传感器的工程应用案例

压电式超声波传感器在工程中有许多应用案例,以下是其中一些:1. 盲点检测:在汽车工程中,压电式超声波传感器可用于检测相邻车道上的车辆,以便进行盲点检测。

这种传感器可以检测到汽车周围的物体,并在必要时提醒驾驶员。

2. 距离和位置测量:压电式超声波传感器可用于测量物体之间的距离和位置。

例如,在机器人技术中,这种传感器可以用于机器人对周围环境的感知和定位。

3. 液位测量:在化工和食品加工行业中,压电式超声波传感器可用于测量液体的液位。

这种传感器可以非接触地测量液位,并且可以在液体表面有波动或泡沫的情况下使用。

4. 流量测量:在流体动力学中,压电式超声波传感器可用于测量流体的流量。

这种传感器可以安装在管道中,以非侵入式的方式测量流体的流速和流量。

5. 振动检测:在机械工程中,压电式超声波传感器可用于检测机器的振动和异常。

这种传感器可以检测机器的振动频率和振幅,以便及时发现机器的故障或异常情况。

总之,压电式超声波传感器在工程中具有广泛的应用,可以在不同领域中实现多种功能。

生物医学传感-压电式

生物医学传感-压电式
生物医学传感-压电式

CONTENCT

• 压电式传感器简介 • 生物医学中压电式传感器的应用 • 压电式传感器在生物医学中的挑战
与解决方案 • 压电式传感器的发展趋势与未来展
望 • 案例分析:压电式传感器在生物医
学中的应用实例
01
压电式传感器简介
压电效应原理
压电效应
某些材料在受到外部压力时会产生电荷,这种现象 被称为压电效应。
用于脑电信号检测的压电式传感器
总结词
压电式传感器在脑电信号检测中具有高精度 和高稳定性的特点,能够准确记录大脑的神 经活动,为神经科学和心理学研究提供有力 支持。
详细描述
压电式传感器利用压电材料的压电效应,将 大脑的电生理信号转换为机械振动,再通过 换能器将机械振动转换为电信号。这种传感 器具有高精度、高稳定性、低噪声等优点, 因此在脑电信号检测中得到广泛应用。它可 以用于研究大脑的认知、情感、学习等方面 的神经机制,以及用于诊断和治疗神经系统
压电式传感器在生物医学成像 技术中发挥着重要的作用,如 超声成像和振动成像等。
压电式传感器在生物医学成像 技术中发挥着重要的作用,如 超声成像和振动成像等。
压电式传感器在生物医学成像 技术中发挥着重要的作用,如 超声成像和振中发挥着重要的作用,如 超声成像和振动成像等。
压电式传感器通常与电极相连,通过电信号的转换 ,将生物体产生的机械振动转换为可测量的电信号 ,进而实现生物医学信号的检测。
在实际应用中,压电式传感器常与放大器和滤波器 等辅助设备配合使用,以提高信号的信噪比和分辨 率。
生理参数的监测
压电式传感器在生理参数监测 方面具有实时、连续和无创的 特点,能够准确监测人体的生 理参数,如血压、血氧饱和度 、呼吸频率等。

压电式压力传感器

压电式压力传感器

实例6 :煤气灶电子点火装置
20XX
ND!
此处添加正文,文字是您思想的提炼,为了演示发布的良好 ,请言简意赅地阐述您的观点。
压电式传感器的等效电路:压电传感器在受外力作用时,在两个 电极表面聚集电荷,电荷 量相等,极性相反,相当于一个以压 电材料 为电介质的电容器。其电容量为:C0=ε0 εA/d
电荷源
电压源
五、压电式传感器的应用
压电式力传感器 压电式压力传感器 压电式加速度传感器 。。。。。。
实例1:火炮堂内压力测试
发射药在堂内燃烧形成压力完成炮弹的发射。 堂内压力的大小,不仅决定着炮弹的飞行速度,而且 与火炮、弹丸的设计有着密切关系。
实例2:汽车安全气囊系统
事故性碰撞:点火信号、电点火管、气体发生剂、 气体、充气、弹性体
实例3:压电式血压传感器 实例4 :指套式电子血压计
实例05.0:M 1水深P/测m a量仪
2

逆压电效应
4
动画演示
机械能
正压电效应
压电介质
电能
逆压电效应
三、压电材料
压电晶体 石英晶体外形图 压电晶体是一种单晶体。 例如: 石英晶体; 酒石酸钾钠等 常见压电材料
天然形成的石英晶体外形图
(2)压电陶瓷
压电陶瓷是一种人工制造的多晶体。 例如:钛酸钡、锆钛酸铅、铌酸锶等 压电陶瓷外形图
(3)有机压电材料
➢ 在实际使用中,如仅用单片压电元件工作 的话,要产生足够的表面电荷就要很大的作用力, 因此一般采用两片或两片以上压电元件组合在一 起使用。 ➢ 由于压电元件是有极性的,因此连接方法 有两种:并联连接和串联连接。
C 2 C ,q 2 q ,U U
串联:
C1C,qq,U2U 2

第6章压电式传感器原理及其应用

第6章压电式传感器原理及其应用
第6章 压电式传感器原理及其应用 章
6.1 压电效应和压电材料 6.2 压电元件的常用结构 6.3 压电式传感器等效电路和测量电路 6.4 压电式传感器的应用
压电式传感器概述
压电式传感器的压电元件是利用压电材料制成的, 压电式传感器的压电元件是利用压电材料制成的, 它是一种电量型传感器。 它是一种电量型传感器。 工作原理:以某些电介质的压电效应为基础 以某些电介质的压电效应为基础, 工作原理 以某些电介质的压电效应为基础,在外力 作用下,电介质的表面就会产生电荷,有电压输出, 作用下,电介质的表面就会产生电荷,有电压输出, M 从而实现力—电信号转换 再通过检测电荷量( 电信号转换, 从而实现力 电信号转换,再通过检测电荷量(或 输出电压)的大小,即可测出作用力的大小。 输出电压)的大小,即可测出作用力的大小。 压电元件是一种典型的力敏感元件, 压电元件是一种典型的力敏感元件,可用来测量最 终可变换为力的各种物理量,如测量压力、应力、 终可变换为力的各种物理量,如测量压力、应力、 加速度等。由于压电元件具有体积小、重量轻、 加速度等。由于压电元Байду номын сангаас具有体积小、重量轻、结 构简单、可靠性高、频带宽、 构简单、可靠性高、频带宽、灵敏度和信噪比高等 优点,压电式传感器也随之得到了飞速发展。 优点,压电式传感器也随之得到了飞速发展。 在声学、力学、 在声学、力学、医学和航空航天等领域都得到了广 泛应用。其缺点是无静态输出, 泛应用。其缺点是无静态输出,要求有很高的输出 阻抗,需用低电容的低噪声电缆等。 阻抗,需用低电容的低噪声电缆等。
铜芯线充当内电极铜网屏蔽层作外电极管状pvdf高分子压电材料为绝缘层最外层是橡胶保护层为承压弹性元件当管状高分子压电材料受压时其内外表面产生电荷可达到测量的目的图620高分子压电电缆2高分子压电电缆的典型应用高分子压电电缆测速系统由两根高分子压电电缆相隔一段距离平行埋设于柏油公路的路面下50mm处如图621所示

压电式传感器及其应用

压电式传感器及其应用

压电式加速度传感器及其应用一、压电式加速度传感器原理压电式加速度传感器又称压电加速度计。

它也属于惯性式传感器。

它是利用某些物质如石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。

当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加速度成正比。

加速度传感器是一种惯性传感器,它能感受加速度并转换成可用输出信号,被广泛用于航空航天、武器系统、汽车、消费电子等。

实际电路图如下:二、压电式加速度传感器构成元件预压弹簧压电元件外壳质量块基座常用的压电式加速度计的结构形式如图所示,是由预压弹簧,质量块,基座,压电元件和外壳组成。

图中为环形剪切型,结构简单,能做成极小型、高共振频率的加速度计,环形质量块粘到装在中心支柱上的环形压电元件上。

由于粘结剂会随温度增高而变软,因此最高工作温度受到限制。

三、压电式加速度传感器的实际应用加速度传感器应用范围广泛,一般来讲它有六种检测感应功能:倾斜度检测、运动检测、定位检测、震动检测、振动检测和自由落下检测。

(一)倾斜度检测加速度传感器水平放置时,在重力作用下经激励有一定幅度的输出,当与重力方向有倾角时,传感器信号输出幅度会有所变化,对两种状态下信号输出进行比较计算可推算出倾斜角的大小,应用双轴、三轴加速度传感器就可测出任意倾斜角的大小和方向。

利用加速度传感器测量倾斜度的这种检测感应功能,加速度传感器可应用于倾斜仪、倾斜度侦测电子罗盘、图像旋转、文本滚动浏览/用户界面、LCD投影和物理治疗法等方面。

飞思卡尔半导体公司推出的MMA7260Q三轴加速度传感器是用于倾角测量的典型应用之一,它以重力为输入矢量来决定物体在空间的姿态。

把加速度传感器固定于物体的水平面上,当物体姿态改变时,加速度传感器的敏感轴随之转动一定角度,由于重力的作用,传感器敏感轴上的加速度会发生改变,因此可通过测量加速度的变化来反映物体姿态的变化。

(二) 运动检测在进行运动检测时,需要考虑几个因素:如何计算它的位移,g 值的范围选择及使用量测轴。

压电式传感器在日常生活中的应用

压电式传感器在日常生活中的应用

压电式传感器在日常生活中的应用【摘要】本文介绍了压电式传感器工作原理,以及压电式传感器在日常生活中的典型应用。

【关键词】压电式传感器;打火机;汽车;燃气灶1引言压电式传感器拥有结构简单、体积小、重量轻、使用时间长等优异的特点。

它在工业、农业、医疗、军事、航空领域广泛应用,在宇航领域中也有特别多的使用。

它在人们的日常生活中也被广泛的应用,例如打火机、汽车、燃气灶等。

2压电式传感器工作原理压电式传感器的工作原理是以某些物质的压电效应为基础。

对这些物质沿其某一方向施加压力或拉力时会产生变形,由于内部电荷的极化现象,此时这种材料的两个表面将产生符号相反的电荷。

将外力去掉后,它又重新回到不带电状态,这种现象被称为压电效应。

把这种机械能转变为电能的现象称为“正压电效应”。

反之,在某些物质的极化方向上施加电场,它会产生机械变形,当去掉外加电场后,该物质的变形随之消失,把这种电能转变为机械能的现象,称为“逆压电效应”。

它能实现机-电能量的相互转换。

3 压电式传感器日常生活中应用3.1 压电式打火机压电式打火机中有一种压电陶瓷——它是人造多晶体,它的压电机理与石英晶体并不相同。

压电陶瓷材料内的晶粒有许多自发极化的电畴(具有自发极化的晶体中存在一些自发极化取向一致的微小区域称电畴)。

在极化处理以前,各晶粒内电畴任意方向排列,自发极化的作用相互抵消,陶瓷内极化强度为零。

通过在陶瓷上施加外电场极化,电畴自发极化方向转到与外加电场方向一致。

当极化后,各电畴的自发极化在一定程度上还是取向原外加电场方向,陶瓷极化强度也并不恢复到零。

压电陶瓷一旦被压缩,其厚度变化,则两边束缚电荷距离发生变化,其极化电荷减少,与表面的正负离子中和程度降低,使降落在陶瓷表面的正负电荷增多。

这些电荷可通过尖端放电产生电火花,所以只要用手指压一下打火按钮,打火机上的压电陶瓷就能产生高电压,形成电火花而点燃煤气,可以长久使用。

压电打火机于老式由火石和砂轮组成的打火机相比,不仅使用方便,安全可靠,使用长,例如一种钛铅酸铅压电陶瓷制成的打火机可使用100万次以上。

《传感器技术及其应用》第03单元 压电传感器的应用—压电传感实验

《传感器技术及其应用》第03单元 压电传感器的应用—压电传感实验

电荷放大模块电路图:
比较器模块电路图:
(1)压电传感模块场景模拟界面认识 压电传感模块场景模拟界面主要包括5个部分,
模拟场景、压电特性曲线、放大信号和灵敏度调节 信号AD值、模拟车速检测的参数、比较器输出状态。
任务一 实验目的 任务二 是按原理 任务三 实验步骤
1. 振动实验模块的启动
(1)将NEWLab实验硬件平台通电并与电脑连接。
原理说明
1. 压电式传感器的工作原理 (1)压电效应 :
表达这一关系的压电方程如式:
式中 F——作用的外力; Q——产生的表面电荷; d——压电系数,是描述压电效应的物理量。
原理说明
(2)等效电路 其电容量为:
式中 S——压电元件电极面的面积,单位为; δ——压电元件厚度,单位为; ε——压电材料的介电常数,单位为,它随材料不同而不 同,如锆钛酸铅的;
第3单元 压电传感器的应用--压 电传感器实验
任务一 实验目的 任务二 实验原理 任务三 实验步骤
单元任务预览
一、实验目的 了解压电传感器的检测原理 掌握压电传感器的检测电路及方法 了解压电传感模块的原理并掌握其测量方法
任务一 实验目的 任务二 实验原理 任务三 实验步骤
原理说明
压电式传感器是将被测量变化转换成材料受 机械力产生静电电荷或电压变化的传感器,是一 种典型的、有源的、双向机电能量转换型传感器 或自发电型传感器。压电元件是机电转换元件, 它可以测量最终能变换为力的非电物理量,例如 力、压力、加速度等。
点为1210℃。
c)压电陶瓷:
4. NEWLab压电传感模块认识
①LDT0-028K压电薄膜传感器; ②电荷放大模块电路; ③灵敏度调节电位器; ④信号放大比较器模块; ⑤灵敏度调节信号接口J10,测量灵敏度调节点位器可调端 输出电压,即比较器1正端(3脚)的输入电压; ⑥传感器信号接口J7,测量压电传感器的输出信号; ⑦电荷信号接口J4,测量电荷放大模块的输出信号; ⑧放大信号接口J6,测量信号放大电路输出信号,即比较器 1负端(2脚)的输入信号; ⑨比较输出接口J3,测试信号放大比较器模块的输出信号。 ⑩接地GND接口J2

压电式传感器

压电式传感器

当 (1 A)CF
C
时,即A》1: Uo
Q CF
返回
上一页
下一页
结论:
1. 放大器的输出Uo正比于信号Q,线性转换;
返回
上一页
下一页
解决电缆问题的办法
将放大器装入传感器中,组成一体化传感器。
压 电 式 加 速 度 传 感 器
返回
上一页
下一页
压电式加速度传感器的压电元件是
二片并联连接的石英晶片,放大器是一 个超小型静电放大器。这样引线非常短, 引线电容几乎等于零就避免了长电缆对 传感器灵敏度的影响。放大器的输入端 可以得到较大的电压信号,这样弥补了 石英晶体灵敏度低的缺陷。
把压电式传感器的微弱信号放大; 把传感器的高阻抗输出变换为低阻抗输出。
返回
上一页
下一页
4.2.2 电压输出型测量电路
串联输出型压电元件可以等效为电压源,但由于压电效 应引起的电容量Ca很小,因而其电压源等效内阻很大,在 接成电压输出型测量电路时,要求前置放大器不仅有足够的 放大倍数,而且应具有很高的输入阻抗。
压电式传感器是一种典型的有源传感器; 压电效应具有可逆性,也是一种典型的”双向传感器”。 它以某些电介质的压电效应为基础,在外力作用下,电 介质表面产生电荷,从而实现外力与电荷量间的转换,达到 非电量的电如目的。
特点: 工作频带宽,灵敏度高,结构简单,体积小,重量轻,
工作可靠。
应用范围: 各种动态力、机械冲击、振动测量、生物医学、超声、
返回
上一页
下一页
4.1.2 压电陶瓷的压电效应
人工制造的多晶体,压电机理与压电晶体不同。
具有类似于铁磁材料磁畴结构的电畴结构,在末极化之前各电畴的极化方 向在晶体内杂乱分布,如图 (a)所示,极化强度相互抵消为0,对外呈中性,不 具备压电效应。

压电式传感器应用 PPT课件

压电式传感器应用 PPT课件

压电式传感器的应用实例
成员:郑逸凯 11192133 崔露凯 11192107 唐文杰 11192118
压电式传感器?
• 压电效应:某些电介质(晶体,极化的陶瓷,高分子聚合物和负
合材料等),当在它的适当方向施加作用力时,内部会产生电极化状 态的变化,同时在电介质的两端表面出现符号相反、与外力成正比的 束缚电荷。这种由外力作用而导致电介质带电的现象即为压电效应。
• 如果换能器中压电陶瓷的振荡频率在超声波范围,则其发 射或接收的声频信号即为超声波,这样的换能器称为压电 超声换能器。
压电式流量计
• 压电超声换能器 每隔一段时间(如 1/100s)发射和接 收互换一次。在 顺流和逆流的情 况下,发射和接 收的相位差与流 速成正比。
压电式传感器在测漏中的应用
• 如果地面下一均匀的自来水直管道某处O发生漏水,水漏 引起的振动从O点向管道两端传播,在管道上A、B两点放 两只压电传感器,由从两个传感器接收到的由O点传来的 t0时刻发出的振动信号所用时间差可计算出LA或LB。
两者时间差为
• Δt= tA-tB=(LA - LB )/v
又L=LA +LB ,所以
L t v
LA 2
LB

L t v
2
压电声传感器在超声速测量实验中的应用
• 超声速测量实验装置Fra bibliotek当信号发生器产生的正弦交流信号加在压电 陶瓷片两端面时,压电陶瓷片将产生机械振 动,在空气中激发出声波。所以,换能器S1 是声频信号发生器。
加速度式心音传感器:将声信号转换为电信号
压电式声 传感器
• 当交变信号加在压电陶 瓷片两端面时,由于压 电陶瓷的逆压电效应, 陶瓷片会在电极方向产 生周期性的伸长和缩短 。

压电式

压电式
压电式传感器 17
2012-1-9
2 等效电路和测量电路
Equivalent circuit and measurement circuit
1. 等效电路 2. 测量电路
2012-1-9
压电式传感器
18
1. 等效电路 Equivalent circuit
压电器件实际上是一个电荷发生器, 压电器件实际上是一个电荷发生器,也可视 为一个电容器。 为一个电容器。
压电式传感器
2012-1-9
22
1)电压放大器 ) Voltage amplifier
电压放大器又称阻抗变换器, 电压放大器又称阻抗变换器,它的主要作用是 把压电器件的高输出阻抗变换为传感器的低输 出阻抗,并保持输出电压与输入电压成正比。 出阻抗,并保持输出电压与输入电压成正比。
电压放大器的测量特性: 电压放大器的测量特性:
在开路状态,其输出电荷 在开路状态, 和电荷灵敏度分别为: 和电荷灵敏度分别为:
Q = Ca ⋅ U a K q = Q / F = Ca ⋅ U a / F 则 : K u = K q / Ca
2012-1-9 压电式传感器 20
1. 等效电路 Equivalent circuit
(2)当需要输出电压时,压电器件可等效成 )当需要输出电压时, 一个与电容串联的电压源。 一个与电容串联的电压源。
三效应: 三效应:
纵向效应: 纵向效应:沿x轴加力 横向效应: 横向效应:沿y轴加力 切向效应: 轴方向形成力矩。 切向效应:垂直z轴方向形成力矩。
2012-1-9 压电式传感器
横向效应 切向效应 8 纵向效应
1. 压电效应 Piezoelectric effect
2)逆压电效应 Reverse piezoelectric effect):由 )逆压电效应( 于外电场作用导致物体的机械变形现象, 于外电场作用导致物体的机械变形现象, 称为逆压电效应,又称电致伸缩效应。 称为逆压电效应,又称电致伸缩效应。

压电式传感器课程思政案例

压电式传感器课程思政案例

压电式传感器课程思政案例压电式传感器是一种利用压电效应将机械能转化为电能或将电能转化为机械能的装置,广泛应用于工业自动化、环境监测、医疗器械等领域。

在传感器技术课程中,可以通过讲解和讨论压电式传感器的原理、应用和发展趋势,引导学生进行思政教育。

一种可能的案例是:压电式传感器在生物医学领域的应用。

生物医学工程是传感器技术的重要领域之一,通过对人体生理信号的监测和分析,可以用于疾病的诊断和治疗。

讲解过程中,可以采用一个真实的案例,如压电式心电图传感器的应用,来引导学生思考科技发展与伦理道德的关系。

首先,讲解心电图传感器的原理和应用,使学生了解其基本功能和工作原理。

然后,通过展示一个案例,如心电图传感器在心脏病患者监测中的应用,引导学生探讨这种技术给病人带来的福利和挑战。

讨论中可以提出一些问题如:心电图传感器对患者隐私的保护如何?医疗机构是否应该获得患者的明确同意才能使用传感器?传感器的数据使用和存储是否符合相关法律法规?在讨论中,可以引导学生发表自己的观点,并展开辩论。

通过引入这样的案例,可以让学生思考科技发展的伦理和道德问题,增强他们的社会责任感和职业道德意识。

此外,在压电式传感器课程中还可以进一步讨论压电材料的合成和应用的科研伦理问题。

压电材料的研究是压电式传感器发展的基础,可以引导学生思考科研中的伦理道德问题,如科研诚信、数据造假等。

通过讨论这些问题,可以让学生在学习传感器技术的同时,养成正确的科研态度和行为规范。

综上所述,通过引入压电式传感器在生物医学领域的应用和压电材料的研究等案例,可以在传感器技术课程中进行思政教育,引导学生思考科技发展中的伦理和道德问题,从而培养学生的社会责任感和职业道德意识。

这样既能够提高学生的专业能力,也能够培养他们的为人处事和思维能力。

压电式传感器的应用

压电式传感器的应用

2. 6100系列压电加速度计
压电加速度计是以压电晶体做敏感件。体积 小、重量轻、输出信号大,固有频率高,可用于 测量振动、冲击等信号。其外形见下图主要性能 指标见表6-4。
3. HZ-9508型测振表 HZ-9508型测振表是用于旋转机械进行振动测量、
简易故障诊断的一种便携式数字显示测振表,用YD型压 电式加速度传感器作为表头。它除了可测量一般机械振 动产生的加速度、速度、位 移等参数外,还具有测量 齿轮、轴承故障产生的高频 加速度值的功能,并具有低 电压监测功能。其外形结构 如右图所示。
主要参数如下:
1)测量范围: 位移: 1~1999μm(峰—峰值);速度: 0.1~ 199.9mm/S(有效值); 加速度: 0.1~199.9m/S2(峰值);高频加速度: 0.1~199.9 m/S2(峰值); 精度:测量值的±5%(允许±2误差); 2)频率范围: 位移:10Hz~1000Hz;速度:10Hz~1000Hz;加 速度:10Hz~1000Hz;高频加速度:1KHz~ 15KHz;
传感器与检测技术
压电式传感器的应用
压电式传感器可用于力、压力、速度、加速度、 振动等许多非电量的测量,可做成力传感器、压力传 感器、振动传感器等等。 1.1 5100系列压电式力传感器
航天702所所研制生产的5100系列力传感器,是 一种利用石英晶体的纵向压电效应,将“力”转换成 “电荷”并通过二次仪表转换成电压的压电式力传感 器。它具有气密性好、硬度高、刚度大、动态响应快 等优点。目前,5110、5112、5114和5115力传感器已 组成各种锤头(钢、铝、尼龙、橡胶)型测力锤,可 以测量动态力、准静态力和冲击力。
3)显示:三位半液晶显示 4)保持功能:当按住保持键时,显示振动值停止 变动

5-4 压电式传感器的应用

5-4 压电式传感器的应用
q' =2q; U'=U; C'=2C 图5-22(b)为串联形式,正电荷集中在上极板,负电荷集中在下极板, 而中间的极板上产生的负电荷与下片产生的正电荷相互抵消。从图中可知, 输出的总电荷 q' 等于单片电荷 q ,而输出电压 U'为单片电压 U 的二倍,总 电容 C' 为单片电容 C 的一半,即
当膜片 5 受到压力 P 作用后,则在压电晶片上产生电荷。在一个压电片
上所产生的电荷 q 为
q=d11F=d11SP
式中 F——作用于压电片上的力;
(5-42)
d11——压电系数; P ——压强,P=F/S;
S ——膜片的有效面积。
测压传感器的输入量为压力 P,如果传感器只由一个压电晶片组成,则 根据灵敏度的定义有:
第五章习题
5.7 .分析压电式加速度计的频率响应特性。若测量电路的总电容 C= 1 000 pF,总电阻 R= 500 MΩ,传感器机械系统固有频率 f0=30 kHz,相对阻尼 系数ξ=0.5,求幅值误差小于 2 %时,其使用的频率范围 。
5.8.用石英晶体加速度计测量机器的振动,已知加速度计的灵敏度为 5 pC/g (g为重力加速度,g=9.8 m/s2),电荷放大器灵敏度为 50 mV/pC,当机 器达到最大加速度时,相应输出幅值电压为2V。试计算机器的振动加速 度。
1
0

1

0
2 2




2


0
2
(5-35) (5-36)
§5-4 压电式传感器的应用
相频特性



arctan
2

0

压电传感器的应用

压电传感器的应用

2019/11/13
3
2.压电式周界报警系统
(用于重要位置出入口、周界安全防护等)
将长的压电电缆埋在 泥土的浅表层,可起分布 式地下麦克风或听音器的 作用,可在几十米范围内 探测人的步行, 对轮式或履 带式车辆也可以通过信号 处理系统分辨出来。右图 为测量系统的输出波形。
2019/11/13
4
3.交通监测
将高分子压电电缆埋在公路上,可以获取车型分类信息 (包括轴数、轴距、轮距、单双轮胎)、车速监测、收费站地 磅、闯红灯拍照、停车区域监控、交通数据信息采集(道路监 控)及机场滑行道等。
2019/11/13
5
高分子压电 电缆的应用 演示
将两根高分子压电电缆相距若干米,平行埋设于柏油公路 的路面下约5cm,可以用来测量车速及汽车的载重量,并根据 存储在计算机内部的档案数据,判定汽车的车型。
2019/11/13
8
压电式动态力传感器在体育动态测量中的应用
压电传感器测量 双腿跳的动态力
压电式步态 分析跑台
压电式纵跳 训练分析装置
2019/11/13
9
本章作业 p108:2、3、5
2019/11/13
10
休息一下
2019/11/13
11
第六章:第三节 压电传感器的应用
一、高分子压电材料的应用
1. 玻璃打碎报Βιβλιοθήκη 装置 将高分子压电测振薄膜粘贴在玻璃上, 可以感受到玻璃破碎 时会发出的振动,并 将电压信号传送给集 中报警系统。
粘贴 位置
2019/11/13
1
高分子压电材料制作的玻璃打碎传感器
将厚约0.2mm左右的PVDF
薄膜裁制成1020mm大小。在它
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.共振型压电式爆燃传感器
共振型压电式爆燃传感器主要由插头、插接器、压电元件等组成。

传感器中的压电元件紧密的贴合在振荡片上,振荡片固定在传感器的基座上。

工作原理:振荡片随发动机的振荡而振荡,压电元件随振荡片的振荡而发生变形,进而在其上产生一个电压信号。

当发动机爆燃时,气缸的振动频率与传感器振荡片的固有频率相符合,此时振荡片产生共振,压电元件将产生最大的电压信号,如下图所示。

2.压电式雨滴传感器
组成:振动板、压电元件、放大器、壳体及阻尼橡胶构成。

振动板的作用是接收雨滴冲击能量,按自身固有的振动频率进行弯曲振动,并将振动传递给内侧压电元件上,压电元件把从振动板传递来的变形转换成电压信号。

当压电元件上出现机械变形时,在两侧的电极上就会产生电压,如下图所示。

当雨滴滴落在振动板上时,压电元件上就会产生电压,电压大小与加到板上的雨滴的能量成正比,一般是~300mV。

放大器将压电元件上产生的电压信号放大后再输入到刮水器放大器中。

3.压电式声传感器
压电陶瓷在电能与机械能之间相互转换的正、逆压电效应。

当交变信号加在压电陶瓷片两端面时,由于压电陶瓷的逆压电效应,陶瓷片会在电极方向产生周期性的伸长和缩短。

当一定频率的声频信号加在换能器上时,换能器上的压电陶瓷片受到外力作用而产生压缩变形,由于压电陶瓷的正压电效应,压电陶瓷上将出现充、放电现象,即将声频信号转换成了交变电信号。

这时的声传感器就是声频信号接收器。

如果换能器中压电陶瓷的振荡频率在超声波范围,则其发射或接收的声频信号即为超声波,这样的换能器称为压电超声换能器。

相关文档
最新文档