光纤传感器测速实验.

合集下载

光纤传感器的位移测量与及数值误差分析实验

光纤传感器的位移测量与及数值误差分析实验

光纤传感器的位移测量与及数值误差分析实验一、实验原理1.光纤传感器工作原理2.实验仪器和材料(1)光纤传感器:包括光源、探头和电子控制单元。

(2)被测物体:选择一个具有一定位移范围的物体,如斜坡或弹簧。

(3)信号处理器:用于采集和处理光纤传感器的输出信号。

3.实验步骤(1)将光纤传感器的探头安装在被测物体上,并将光源和电子控制单元连接好。

(2)调整光纤传感器的位置和方向,使其能够正确地检测到被测物体的位移。

(3)通过信号处理器采集光纤传感器的输出信号,并进行相应的数据处理。

(4)对被测物体进行一系列的位移变化,记录光纤传感器的输出信号,并计算位移值。

(5)分析和比较测量结果,评估光纤传感器的测量精度和可靠性。

二、数值误差分析1.线性度误差线性度误差是指光纤传感器在测量范围内的输出与被测物体实际位移之间的偏差。

通过在不同位移范围内进行测量,可以绘制出光纤传感器的输入输出曲线,并通过拟合得到线性度误差。

2.灵敏度误差灵敏度误差是指光纤传感器输出信号的增益与被测物体位移之间的偏差。

通过改变被测物体的位移步长,可以测量得到不同位移值下的输出信号,并计算灵敏度误差。

3.常数误差常数误差是指光纤传感器输出信号在零位移点上的固有偏移。

可以通过将被测物体置于零位移点附近,记录测量结果,并计算常数误差。

4.稳定性误差稳定性误差是指光纤传感器在长时间测量过程中输出信号的波动。

通过对输出信号进行连续测量,并统计其标准差,可以评估光纤传感器的稳定性。

5.总误差估计将上述各项误差进行合并,可以得到光纤传感器的总体误差估计。

同时,也可以根据具体的应用需求,确定误差允许范围,评估光纤传感器的适用性。

通过以上实验步骤和数值误差分析,可以深入了解光纤传感器的位移测量原理,并评估其测量精度和可靠性。

同时,针对实验结果中的误差,可以进一步优化光纤传感器的设计和应用。

光纤传感器实验

光纤传感器实验

实验5—5 光纤传感器实验人类进人21世纪,信息传递的方式也在悄然改变。

从两根电线传输一路电话到一根光纤传输几十、几百路电话,从海底电缆到欧亚光缆,光纤传递光信息的优点是显而易见的。

光在光纤中不断地被全反射传输,免受大气的干扰、散射,衰减大大减少,从而实现上百公里的远距离传输而不需要中间放大器。

光纤在信息传输中的应用已为人们所熟知,但将光纤用作传感器却了解不多,该实验将介绍反射式光纤位移传感器,增强对光纤传感器的了解。

光纤传感器是一种新型传感器,随着其技术的日益发展,应用越来越广泛。

光纤传感器的机理是外界物理量的变化导致光纤参数的相应改变,例如应力或温度变化时,会引起光纤长度和折射率的变化,从而形成光纤应变或温度传感器。

光纤传感器具有许多优点:重量轻、灵敏度较高;几何形状具有多方面的适应性,可以制成任意形状的光纤传感器;耐高温、耐化学腐蚀、耐水性好,还能高速率和大容量传输测得的信息,便于测试自动化和远距离传输;光纤传感器可以用于高压、电气、噪音、高温、腐蚀或其他的恶劣环境,并可实现非破坏和非接触测量,而且具有与光纤遥感技术的内在相容性。

目前,正在研制中的光纤传感器有磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、电流和压变等类型的光纤传感器。

【实验目的】1.了解光纤、光纤传感器的基本概念。

2.了解反射式光纤位移传感器的基本原理。

3.测量并绘出输出电压与位移特性曲线。

4.了解利用反射式光纤位移传感器测量转盘转速和振动频率的工作原理。

【实验原理】Array1.光纤的基本知识1)光纤的基本结构光纤(Optic Fiber)是光导纤维的简称,一般由纤芯、包层、涂敷层与护套构成,是一种多层介质结构的对称性柱体光学纤维。

光纤的一般结构如图5-5-1所示。

纤芯和包层为光纤结构的主体,对光波的传播起着决定性作用,其中纤芯是光密媒质,包层是光疏媒质。

涂敷层与护套则主要用于隔离杂散光,提高光纤强度,保护光纤。

传感器实验报告实验总结(3篇)

传感器实验报告实验总结(3篇)

第1篇一、实验背景随着科技的不断发展,传感器技术已成为现代工业、医疗、环保等领域不可或缺的重要组成部分。

为了深入了解传感器的工作原理和应用,我们开展了本次传感器实验,通过实际操作和数据分析,加深对传感器性能的理解。

二、实验目的1. 熟悉各类传感器的结构、原理和应用。

2. 掌握传感器的测试方法及数据分析技巧。

3. 培养实验操作能力和团队协作精神。

三、实验内容本次实验主要包括以下几部分:1. 压电式传感器测振动实验- 实验目的:了解压电式传感器测量振动的原理和方法。

- 实验步骤:1. 将压电传感器安装在振动台上。

2. 连接低频振荡器,输入振动信号。

3. 通过示波器观察振动波形,分析传感器输出。

2. 光纤式传感器测量振动实验- 实验目的:了解光纤传感器动态位移性能。

- 实验步骤:1. 将光纤位移传感器安装在振动台上。

2. 连接低频振荡器,输入振动信号。

3. 通过示波器观察振动波形,分析传感器输出。

3. 传感器设计实验- 实验目的:认识传感器,了解其设计原理和调试方法。

- 实验步骤:1. 根据实验要求,设计传感器电路。

2. 连接实验设备,进行电路调试。

3. 分析测试数据,评估传感器性能。

四、实验结果与分析1. 压电式传感器测振动实验- 实验结果显示,压电式传感器能够有效地测量振动信号,输出波形与输入信号一致。

- 分析原因:压电式传感器利用压电效应将振动信号转换为电信号,具有较高的灵敏度和抗干扰能力。

2. 光纤式传感器测量振动实验- 实验结果显示,光纤式传感器能够准确地测量振动位移,输出波形与输入信号一致。

- 分析原因:光纤式传感器采用光导纤维传输信号,具有抗电磁干扰、高抗拉性能等特点。

3. 传感器设计实验- 实验结果显示,所设计的传感器电路能够正常工作,输出信号稳定。

- 分析原因:在电路设计和调试过程中,充分考虑了传感器性能、信号传输和抗干扰等因素。

五、实验结论1. 压电式传感器和光纤式传感器在振动测量方面具有较好的性能,能够满足实际应用需求。

光纤传感实验报告(最终5篇)

光纤传感实验报告(最终5篇)

光纤传感实验报告(最终5篇)第一篇:光纤传感实验报告光纤传感实验报告1、基础理论 1 1、1 1 光纤光栅温度传感器原理1、1、1 光纤光栅温度传感原理光纤光栅得反射或者透射峰得波长与光栅得折射率调制周期以及纤芯折射率有关,而外界温度得变化会影响光纤光栅得折射率调制周期与纤芯折射率,从而引起光纤光栅得反射或透射峰波长得变化,这就是光纤光栅温度传感器得基本工作原理.光纤 Bragg 光栅传感就是通过对在光纤内部写入得光栅反射或透射 Br agg 波长光谱得检测,实现被测结构得应变与温度得绝对测量。

由耦合模理论可知,光纤光栅得 Bragg中心波长为式中Λ为光栅得周期;neff 为纤芯得有效折射率。

外界温度对 Bragg 波长得影响就是由热膨胀效应与热光效应引起得。

由公式(1)可知,Bragg 波长就是随与而改变得。

当光栅所处得外界环境发生变化时,可能导致光纤光栅本身得温度发生变化。

由于光纤材料得热光效应,光栅得折射率会发生变化;由于热胀冷缩效应,光栅得周期也会发生变化,从而引起与得变化,最终导致 Bragg 光栅波长得漂移。

只考虑温度对 Bragg波长得影响,在忽略波导效应得条件下,光纤光栅得温度灵敏度为式中F为折射率温度系数;α 为光纤得线性热膨胀系数;p11 与p12 为光弹常数。

由式(2)可知光纤光栅受到应变作用或当周围温度改变时,会使 n eff 与发生变化,从而引起Bragg 波长得移动。

通过测量Bragg 波长得移动量,即可实现对外部温度或应变量得测量。

1、1、2 光纤光栅温度传感器得封装为满足实际应用得要求,在设计光纤光栅温度传感器得封装方法时,要考虑以下因素:(1)封装后得传感器要具备良好得重复性与线性度;(2)必须给光纤光栅提供足够得保护,确保封装结构要有足够得强度;(3)封装结构必须具备良好得稳定性,以满足长期使用得要求。

为了能够有效起到增敏作用一般采用合金、钢、铜、铝等热膨胀系数大得材料对光纤光栅进行封装。

光纤位移传感器静态实验报告

光纤位移传感器静态实验报告

光纤位移传感器静态实验报告传感器实验报告--光纤传感器静态实验北京XXX大学实验报告课程(项目)名称:实验四光纤传感器静态实验学院:自动化专业:自动化班级:学号:姓名:成绩:2013年12月10日一、任务与目的了解光纤位移传感器的原理结构、性能。

二、原理(条件)反射式光纤位移传感器的光纤采用Y型结构,两束多膜光纤一端合并组成光纤探头,另一端分为两束,分别作为光源光纤和接收光纤,光纤只起传输信号的作用,当光发射器发出的红外光,经光源光纤照射至反射面,被反射的光经接收光纤至光电转换器将接受到的光纤转换为电信号。

其输出的光强决定于反射体距光纤探头的距离,通过对光强的检测而得到的位移量。

三、内容与步骤(1)观察光纤位移传感器结构,它由两束光纤混合后,组成Y形光纤,探头固定在Z型安装架上,外表为螺丝的端面为半圆分布;(2) 了解振动台在实验仪上的位置(实验仪台面上右边的圆盘,在振动台上贴有反射纸作为光的反射面。

)(3) 如图31接线:因光/电转换器内部已按装好,所以可将电信号直接经差动放大器放大。

F/V显示表的切换开关置2V档,开启主、副电源。

图31(4) 旋转测微头,使光纤探头与振动台面接触,调节差动放大器增益最大,调节差动放大器零位旋钮使电压表读数尽量为零,旋转测微头使贴有反射纸的被测体慢慢离开探头,观察电压读数由小—大—小的变化。

(5)旋转测微头使F/V电压表指示重新回零;旋转测微头,每隔0.5mm读出电压表的读数,并将其填入表格中。

(6)关闭主、副电源,把所有旋钮复原到初始位置。

(7) 作出V-ΔX曲线,计算灵敏度S=ΔV/ΔX及线性范围。

四、数据处理(现象分析)旋转测微头使贴有反射纸的被测体慢慢离开探头时,电压读数的变化见下表:作出V-ΔX曲线:由图表可知当旋转测微头使贴有反射纸的被测体慢慢离开探头时在距离0.5到2.5mm区间和6.5mm到9.5mm区间的线性度较好,经计算,0.5到2.(转载于: 写论文网:光纤位移传感器静态实验报告)5mm区间的灵敏度S=0.831V/mm,6.5mm到9.5mm区间的灵敏度S=0.147V/mm。

实验07(光纤传感器的位移测量及数值误差分析实验)实验报告

实验07(光纤传感器的位移测量及数值误差分析实验)实验报告

实验报告:实验07(光纤传感器的位移测量及数值误差分析实验)实验一:光纤传感器位移特性实验一、实验目的:了解光纤位移传感器的工作原理和性能,测量其静态特性实验数据。

学会对实验测量数据进行误差分析。

二、基本原理:本实验采用的是传光型光纤,它由两束光纤混合后,组成Y 型光纤,半园分布即双D 分布,一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。

两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X 有关,因此可用于测量位移。

三、器件与单元:主机箱、光纤传感器、光纤传感器实验模板、测微头、反射面。

四、实验数据:实验数据记录如下所示:表1光纤位移传感器输出电压与位移数据实验二:随机误差的概率分布与数据处理1.利用Matlab语句(或C语言),计算算术平均值和标准差(用贝塞尔公式)clc; clear;l=[20.42 20.43 20.40 20.43 20.42 20.43 20.39 20.30 20.40 20.43 20.42 20.41 20.39 20.39 20.40];%例2-22数据v0=l-mean(l)%残差列M1=mean(l)%算术平均值M2=std(l)%标准差计算结果数据分布2.利用Matlab语句(或C语言),用残余误差校核法判断测量列是否存在线性和周期性系统误差%残余误差校核法校核线性系统误差N=length(l)%原数组长度if(mod(N,2))%求数组半长K=(N+1)/2elseK=(N)/2endA1=0;delta=0;%delta=A1-A2for i=1:K;%计算前半部分残差和A1=A1+v0(i);endA2=0;for j=K+1:N;%计算后半部分残差和A2=A2+v0(j);endA1;A2;fprintf('Delta校核结果\n');delta=A1-A2%校核结果%阿贝-赫梅特准则校核周期性系统误差u=0for i=1:N-1;u=u+v0(i)*v0(i+1);endu=abs(u)if((u-sqrt(N-1)*M30)>0)fprintf('存在周期性系统误差\n');elsefprintf('未发现周期性系统误差\n');end运行结果可见delta近似于0,由马利克夫准则可知,此案例中应用的残余误差校核法无法确定是否存在系统误差。

光纤位移传感器实验报告

光纤位移传感器实验报告

光纤位移传感器实验报告光纤位移传感器实验报告引言光纤位移传感器是一种基于光纤传输原理的高精度测量设备,广泛应用于机械、航空航天、电子等领域。

本实验旨在通过搭建光纤位移传感器实验装置,探究其原理和性能,并对其进行实际应用测试。

一、实验装置搭建实验装置主要由光源、光纤传输线、光纤接收器和信号处理器组成。

首先,将光源连接到光纤传输线的一端,然后将另一端连接到光纤接收器。

在实验过程中,需要保证光纤传输线的稳定性和光源的亮度。

信号处理器用于接收光纤传输线传输过来的信号,并将其转化为位移数值。

二、原理分析光纤位移传感器的工作原理基于光的传输特性。

光纤传感器通过测量光纤中的光信号的强度变化来确定位移的大小。

当物体发生位移时,光纤中的光信号会受到干扰,从而导致光强度的变化。

通过测量光强度的变化,可以计算出位移的数值。

三、性能测试1. 精度测试为了测试光纤位移传感器的精度,我们将其与一个标准测量仪器进行对比。

首先,我们将标准测量仪器测量得到的位移数值作为参考值,然后使用光纤位移传感器进行测量。

通过对比两者的测量结果,可以评估光纤位移传感器的精度。

2. 灵敏度测试光纤位移传感器的灵敏度是指其对位移变化的响应能力。

我们可以通过改变物体的位移大小,然后观察光纤位移传感器的输出值来测试其灵敏度。

在实验中,我们可以逐渐增加物体的位移,然后记录下光纤位移传感器的输出值。

通过分析数据,可以得出光纤位移传感器的灵敏度。

3. 稳定性测试光纤位移传感器的稳定性是指其在长时间使用过程中的性能表现。

为了测试稳定性,我们可以将光纤位移传感器连接到一个振动平台上,然后进行长时间的振动测试。

通过观察光纤位移传感器的输出值,可以评估其在振动环境下的稳定性。

四、实际应用光纤位移传感器在实际应用中具有广泛的用途。

例如,在机械领域,光纤位移传感器可以用于测量机械零件的位移,以确保其工作正常。

在航空航天领域,光纤位移传感器可以用于测量飞机结构的变形,以确保飞机的安全性。

反射式光纤位移传感器测距原理实验

反射式光纤位移传感器测距原理实验

反射式光纤位移传感器测距原理实验一.实验目的1.了解光纤传输的基本原理2.了解反射式光纤传感器的一般原理结构、性能3.利用反射式光纤位移传感器测量出光强随位移变化的函数关系。

二.实验原理1.光导纤维与光纤传感器的一般原理图1光纤的基本结构光导纤维是利用光的完全内反射原理传输光波的一种介质。

如图1所示,它是由高折射率的纤芯和包层所组成。

包层的折射率小于纤芯的折射率,直径大致为0.1mm~0.2mm。

当光线通过端面透入纤芯,在到达与包层的交界面时,由于光线的完全内反射,光线反射回纤芯层。

这样经过不断的反射,光线就能沿着纤芯向前传播。

由于外界因素(如温度、压力、电场、磁场、振动等)对光纤的作用,引起光波特性参量(如振幅、相位、偏振态等)发生变化。

因此人们只要测出这些参量随外界因素的变化关系,就可以通过光特性参量的变化来检测外界因素的变化,这就是光纤传感器的基本工作原理。

2.反射式位移传感器的结构原理反射式光纤位移传感器是一种传输型光纤传感器。

其原理如图2所示:光纤采用Y型结构,两束多模光纤,一端合并组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。

光从光源耦合到光源光纤,通过光纤传输,射向反射片,再被反射到接收光纤,最后由光电转换器接收,转换器接受到的光源与反射体表面性质、反射体到光纤探头距离有关。

当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。

显然,当光纤探头紧贴反射片时,接收器接收到的光强为零。

随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。

图3所示就是反射式光纤位移传感器的输出特性曲线,利用这条特性曲线可以通过对光强的检测得到位移量。

反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。

图2反射式位移传感器原理图3反射式光纤位移传感器的输出特性实验仪器:SET-QX型光纤位移传感器实验箱。

各类传感器测速性能比较实验

各类传感器测速性能比较实验

各类传感器测速性能比较实验一、实验目的比较各类传感器对测速实验的性能差异。

二、实验要求通过实验二十(霍尔测速实验)、实验二十一(磁电式传感器测速实验)、实验二十八(电涡流传感器测转速实验)、实验三十一(光纤传感器测速实验)以及实验三十二(光电转速传感器的转速测量实验),获得实验数据,进而对实验数据进行比较,获得各传感器测速的性能。

三、基本原理(一)霍尔测速实验:利用霍尔效应表达式UH = KHIB,当被测圆盘上装上N只磁性体时,圆盘每转一周,磁场就变化N次,霍尔电势相应变化N次,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速(转速=60*频率/12)。

(二)磁电式传感器测速实验:基于电磁感应原理,N匝线圈所在磁场的磁通变化时,线圈中感应电势:发生变化,因此当转盘上嵌入N 个磁钢时,每转一周线圈感应电势产生N次变化,通过放大、整形和计数等电路即可测量转速。

(三)电涡流传感器测转速实验:利用电涡流的位移传感器及其位移特性,当被测转轴的端面或径向有明显的位移变化(齿轮、凸台)时,就可以得到相应的电压变化量,再配上相应电路测量转轴转速。

本实验请实验人员自己利用电涡流传感器和转动源、数显单元组建。

(四)光纤传感器测速实验:利用光纤位移传感器探头对旋转体被测物反射光的明显变化产生的电脉冲,经电路处理即可测量转速。

(五)光电转速传感器的转速测量实验:光电式转速传感器有反射型和直射型两种,本实验装置是反射型的,传感器端部有发光管和光电管,发光管发出的光源在转盘上反射后由光电管接收转换成电信号,由于转盘上有黑白相间的12个间隔,转动时将获得与转速及黑白间隔数有关的脉冲,将电脉冲计数处理即可得到转速值。

四、主要器件及单元霍尔式传感器、磁电式传感器、电涡流传感器、光纤传感器、光电转速传感器、直流源±15V、转速调节2~24V,转动源模块、光纤传感器实验模块、+5V直流电源、转动源单元及转速调节2-24V、数显转速/频率表。

光纤位移传感器性能测试试验目的1了解光纤位移传感器的原理

光纤位移传感器性能测试试验目的1了解光纤位移传感器的原理

光纤位移传感器性能测试一、实验目的:1、了解光纤位移传感器的原理结构、性能。

2、了解光纤位移传感器的动态应用。

3、了解光纤位移传感器的测速应用。

二、实验内容:1、光纤传感器的静态实验;2、光纤位移传感器的动态应用实验;3、光纤位移传感器的测速应用实验;(一)光纤传感器的静态实验实验单元及附件:主副电源、差动放大器、F/V表、光纤传感器、振动台。

实验原理:反射式光纤位移传感器的工作原理如下图所示,光纤采用Y型结构,两束多膜光纤一端合并组成光纤探头,另一端分为两束,分别作为光源光纤和接收光纤,光纤只起传输信号的作用,当光发射器发出的红外光,经光源光纤照射至反射面,被反射的光经接收光纤至光电转换器将接受到的光纤转换为电信号。

其输出的光强决定于反射体距光纤探头的距离,通过对光强的检测而得到的位移量如下图8-1所示图8-1实验步骤:(1)观察光纤位移传感器结构,它由两束光纤混合后,组成Y形光纤,探头固定在Z 型安装架上,外表为螺丝的端面为半圆分布的光纤探头。

(2)了解振动台在实验仪上的位置(实验仪台面上右边的圆盘,在振动台上贴有反射纸作为光的反射面。

)(3)如图8-2接线:因光/电转换器内部已安装好,所以可将电信号直接经差动放大器放大。

F/V显示表的切换开关置2V档,开启主、副电源。

(4)旋转测微头,使光纤探头与振动台面接触,调节差动放大器增益最大,调节差动放大器零位旋钮使电压表读数尽量为零,旋转测微头使贴有反射纸的被测体慢慢离开探头,观察电压读数由小-大-小的变化。

(5)旋转测微头使F/V电压表指示重新回零;旋转测微头,每隔0.05mm读出电压表的读数,并将其填入下表:△X(mm) 0.05 0.10 0.15 0.20 10.00指示(V)图8-2(二)光纤传感器的动态应用实验实验单元及附件:主、副电源、差动放大器、光纤位移传感器、低通滤波器、振动台、低频振荡器、激振线圈、示波器。

实验步骤:(1)了解激振线圈在实验仪上所在位置及激振线圈的符号。

实验五光电转速传感器测速实验(5篇)

实验五光电转速传感器测速实验(5篇)

实验五光电转速传感器测速实验(5篇)第一篇:实验五光电转速传感器测速实验实验五光电转速传感器测速实验一、实验目的了解光电转速传感器测量转速的原理及方法。

二、基本原理光电式转速转速传感器有反射型和透射型两种,本实验装置是透射型的,传感器端部有发光管和光电管,发光管发出的光源通过转盘上开的孔透射后由光电二极管接受转换成电信号,由于转盘上有相间的6个孔,转动时将获得与转速及孔数有关的脉冲,将电脉冲计数处理即可得到转速值。

三、需用器件与单元传感器实验模块四、实验步骤1.光电转速传感器已经安装在传感器实模块上。

2.将+5V直流稳压电源接到光电转速传感器的“+5V输入”端。

3.将光电转速传感器的输出接“频率/转速表”输入端。

4.将面板上的0~30V稳压电源调节到小于24V,接到传感器实验模块“0~24V转动电源”输入端。

5.调节0~30V直流稳压电源输出电压(+24V以下),使转盘的转速发生变化,观察频率/转速表显示的变化,并用虚拟示波器观察光电转速传感器输出波形。

五、注意事项1.转动源的正负输入端不能接反,否则可能击穿电机里面的晶体管。

2.转动源的输入电压不可超过24V,否则容易烧毁电机。

3.光电转速传感器中+5V电源不能接错,否则会烧毁光电传感器.六、思考题根据上面实验观察到的波形,分析为什么方波的高电平比低电平要宽。

第二篇:传感器实验五传感器实验报告五姓名江璐学号 1315212017 班级电子二班时间 2015.12.2 实验题目 CC2530基础实验一:实验设备1.硬件:教学实验箱、PC机。

2.软件:PC机操作系统Windows 98(2000、XP)+IAR开发环境。

二:实验(一)光照传感器采集实验1.实验目的(1)掌握光照传感器的操作方法。

(2)掌握光照传感器采集程序的编程方法。

2.实验内容在IAR集成开发环境中编写光照传感器采集程序。

3.相关电路图4.程序5.实验现象(二)人体感应传感器采集实验1.实验目的(1)掌握人体感应传感器的操作方法。

光纤传感实验报告

光纤传感实验报告

光纤传感实验报告光纤传感实验报告引言:光纤传感技术是一种基于光纤的传感器技术,利用光纤的特殊性质来实现对物理量的测量和监测。

光纤传感技术具有高精度、高灵敏度、抗干扰性强等优点,广泛应用于工业、医疗、环境监测等领域。

本实验旨在通过设计和搭建光纤传感系统,探究光纤传感技术的原理和应用。

实验一:光纤传感系统搭建在本实验中,我们搭建了一个简单的光纤传感系统,包括光源、光纤、光纤传感器和光电探测器。

首先,我们将光源与光纤连接,通过光纤传输光信号到传感器。

传感器可以根据不同的物理量,如温度、压力等,改变光信号的特性。

然后,光信号再通过光纤传输回来,经过光电探测器转换成电信号,最终通过数据采集系统进行分析和处理。

实验二:温度传感应用在本实验中,我们以温度传感应用为例,探究光纤传感技术在温度测量领域的应用。

通过将光纤传感器与温度测量物体接触,光纤传感器的特性会随温度的变化而改变。

我们通过测量光纤传感器输出的光功率的变化,可以间接得到温度的信息。

实验结果表明,光纤传感技术在温度测量中具有高精度和高灵敏度的优势。

实验三:压力传感应用在本实验中,我们以压力传感应用为例,进一步探究光纤传感技术在压力测量领域的应用。

通过将光纤传感器与被测压力物体接触,光纤传感器的特性会随压力的变化而改变。

我们通过测量光纤传感器输出的光功率的变化,可以间接得到压力的信息。

实验结果表明,光纤传感技术在压力测量中具有较高的准确度和稳定性。

实验四:光纤传感系统的优势与挑战在本部分,我们将对光纤传感技术的优势和挑战进行分析。

光纤传感技术具有高精度、高灵敏度、抗干扰性强等优点,可以实现对多种物理量的测量和监测。

然而,光纤传感系统的搭建和维护成本较高,对环境条件要求较高,同时在长距离传输和多参数测量方面还存在一定的挑战。

因此,在实际应用中需要综合考虑技术和经济等因素。

结论:通过本实验,我们对光纤传感技术有了更深入的了解。

光纤传感技术具有广泛的应用前景,可以在工业、医疗、环境监测等领域发挥重要作用。

光纤传感器在转速测量中的应用

光纤传感器在转速测量中的应用

实验四:光纤传感器在转速测量中的应用
一、实验目的:了解结构型光纤传感器在转速测量中的应用。

二、实验内容:实验原理基本同于光纤传感器在移测量中的应用(A)。

当光纤探头与反射面的相对位置发生周期性变化时,光电变换器输出电量也发生相应的变化,经V /F 电路变换成方波频率信号输出,这样,就可以根据方波频率信号计算出反射面转动物体的转速。

三、实验要求:
1.光纤探头要保持与转盘平行,切不可相擦,以免使光纤受损。

2.实验时应避免强光直射转盘上面,以免造成测量误差。

3.实验开始前,转动电机开关应置于“关”一侧,以保证稳压电源正常工作。

四、实验装置:
同实验一。

五、实验步骤:
1.将光纤探头转向置于测速电机转盘的上方,并调整探头高度使探头距转盘顶面2~3mm ,光纤探头以对准转盘边缘内侧3~5mm 处为宜。

2.光纤探头接光电变换器,输出F o 端接电压\频率表2KHZ 档。

开启电机开关,使转盘旋转起来。

3.在转盘的有效转速范围内选用高,中,低三种不同的转速,用频率表读出光电变换器的输出频率f 。

六、实验数据及处理:
1.依据光电变换器的输出频率f 计算转盘转速 (转/分)
答:转速公式: n =
2
0P ×60 ,实验中观测的3个输出频率分别为: 14Hz ; 50Hz ; 76Hz
答: 方波曲线由实验软件绘制,见下页附表。

光纤位移传感器静态实验(998型)doc

光纤位移传感器静态实验(998型)doc

光纤位移传感器静态实验(998型)实验目的:了解光纤位移传感器的原理结构、性能。

所需单元及部件:主副电源、差动放大器、F/V表、光纤传感器、振动台。

实验步骤:(1)观察光纤位移传感器结构,它由两束光纤混合后,组成Y形光纤,探头固定在Z型安装架上,外表为螺丝的端面为半圆分布;(2) 了解振动台在实验仪上的位置(实验仪台面上右边的圆盘,在振动台上贴有反射纸作为光的反射面。

)(3) 如图31接线:因光/电转换器内部已按装好,所以可将电信号直接经差动放大器放大。

F/V显示表的切换开关置2V档,开启主、副电源。

图1(4) 旋转测微头,使光纤探头与振动台面接触,调节差动放大器增益最大,调节差动放大器零位旋钮使电压表读数尽量为零,旋转测微头使贴有反射纸的被测体慢慢离开探头,观察电压读数由小—大—小的变化。

记录下测微头初始刻度(5)旋转测微头使F/V电压表指示重新回零;旋转测微头,每隔0.05mm读出电压表的读数,并将其填入下表:(6)关闭主、副电源,把所有旋钮复原到初始位置。

(7) 作出V-ΔX曲线,计算灵敏度S=ΔV/ΔX及线性范围。

实验目的:了解光纤位移传感器的动态应用。

所需单元及部件:主、副电源、差动放大器、光纤位移传感器、低通滤波器、振动台、低频振荡器、激振线圈、示波器。

实验步骤:(1)了解激振线圈在实验仪上所在位置及激振线圈的符号。

(2)在实验(一)中的电路中接入低通滤波器和示波器,如图2接线。

图2示波器接法:将低通滤波器的输出接PC接口的Vi+端子,Vi-端子接低通滤波器的地端子。

运行XP-1系统中的CSY-V9.0.exe应用程序中虚拟仪器的示波器观测波形。

(3)将测微头与振动台面脱离,测微头远离振动台。

将光纤探头与振动台反射纸的距离调整在光纤传感器工作点即线性段中点上(利用静态特性实验中得到的特性曲线,选择线性中点的距离为工作点,目测振动台上的反射纸与光纤探头端面之间的相对距离即线性区ΔX的中点)。

传感器演示实验实验报告(3篇)

传感器演示实验实验报告(3篇)

第1篇一、实验目的1. 理解并掌握传感器的基本工作原理和特性。

2. 通过实际操作,验证不同类型传感器的应用效果。

3. 学习传感器在实际测量中的应用方法。

二、实验内容本次实验主要涉及以下传感器及其演示实验:1. 热电偶传感器2. 压电式传感器3. 光纤式传感器4. 生物传感器三、实验原理1. 热电偶传感器:利用热电效应,即两种不同导体或半导体在接触时,因温度差异而产生的电动势。

热电偶传感器常用于温度测量。

2. 压电式传感器:利用压电效应,即晶体在受到机械力作用时,会产生电荷,从而实现力或加速度的测量。

3. 光纤式传感器:利用光纤传输光信号,通过测量光信号的变化来实现对物理量的测量,如位移、压力、温度等。

4. 生物传感器:利用生物材料或生物活性物质,如酶、抗体等,实现对生物化学物质的检测。

四、实验仪器与设备1. 热电偶传感器实验模块2. 压电式传感器实验模块3. 光纤式传感器实验模块4. 生物传感器实验模块5. 数据采集卡6. 示波器7. 计算机等五、实验步骤1. 热电偶传感器实验a. 连接热电偶传感器与数据采集卡。

b. 打开实验软件,设置测量参数。

c. 将热电偶传感器置于不同温度环境中,观察并记录温度变化。

d. 分析实验数据,验证热电偶传感器的测温性能。

2. 压电式传感器实验a. 连接压电式传感器与数据采集卡。

b. 打开实验软件,设置测量参数。

c. 在振动台上施加不同频率和幅度的振动,观察并记录压电式传感器的输出信号。

d. 分析实验数据,验证压电式传感器的振动测量性能。

3. 光纤式传感器实验a. 连接光纤式传感器与数据采集卡。

b. 打开实验软件,设置测量参数。

c. 将光纤式传感器置于不同位移环境中,观察并记录位移变化。

d. 分析实验数据,验证光纤式传感器的位移测量性能。

4. 生物传感器实验a. 连接生物传感器与数据采集卡。

b. 打开实验软件,设置测量参数。

c. 在生物传感器上添加待测物质,观察并记录信号变化。

光纤传感器实验

光纤传感器实验

实验5—5 光纤传感器实验人类进人21世纪,信息传递的方式也在悄然改变。

从两根电线传输一路电话到一根光纤传输几十、几百路电话,从海底电缆到欧亚光缆,光纤传递光信息的优点是显而易见的。

光在光纤中不断地被全反射传输,免受大气的干扰、散射,衰减大大减少,从而实现上百公里的远距离传输而不需要中间放大器。

光纤在信息传输中的应用已为人们所熟知,但将光纤用作传感器却了解不多,该实验将介绍反射式光纤位移传感器,增强对光纤传感器的了解。

光纤传感器是一种新型传感器,随着其技术的日益发展,应用越来越广泛。

光纤传感器的机理是外界物理量的变化导致光纤参数的相应改变,例如应力或温度变化时,会引起光纤长度和折射率的变化,从而形成光纤应变或温度传感器。

光纤传感器具有许多优点:重量轻、灵敏度较高;几何形状具有多方面的适应性,可以制成任意形状的光纤传感器;耐高温、耐化学腐蚀、耐水性好,还能高速率和大容量传输测得的信息,便于测试自动化和远距离传输;光纤传感器可以用于高压、电气、噪音、高温、腐蚀或其他的恶劣环境,并可实现非破坏和非接触测量,而且具有与光纤遥感技术的内在相容性。

目前,正在研制中的光纤传感器有磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、电流和压变等类型的光纤传感器。

【实验目的】1.了解光纤、光纤传感器的基本概念。

2.了解反射式光纤位移传感器的基本原理。

3.测量并绘出输出电压与位移特性曲线。

4.了解利用反射式光纤位移传感器测量转盘转速和振动频率的工作原理。

【实验原理】Array1.光纤的基本知识1)光纤的基本结构光纤(Optic Fiber)是光导纤维的简称,一般由纤芯、包层、涂敷层与护套构成,是一种多层介质结构的对称性柱体光学纤维。

光纤的一般结构如图5-5-1所示。

纤芯和包层为光纤结构的主体,对光波的传播起着决定性作用,其中纤芯是光密媒质,包层是光疏媒质。

涂敷层与护套则主要用于隔离杂散光,提高光纤强度,保护光纤。

光纤传感物理实验报告

光纤传感物理实验报告

一、实验目的1. 理解光纤传感的基本原理和特点。

2. 掌握光纤传感器的制作和测试方法。

3. 通过实验验证光纤传感器在测量压力、温度等物理量时的准确性和可靠性。

二、实验原理光纤传感器是利用光纤作为传感介质,通过光的传输特性来检测环境中的物理量。

其主要原理包括:1. 光干涉原理:当光通过光纤时,由于光纤的弯曲、拉伸或温度变化等因素,光的传播路径发生变化,导致光的干涉现象,从而引起光强的变化。

2. 光散射原理:当光通过光纤时,由于光纤内部或外部环境的变化,光在光纤中发生散射,散射光的强度或相位发生变化,从而反映环境的变化。

三、实验仪器与材料1. 光纤传感器实验仪2. 激光器及电源3. 光纤夹具4. 光纤剥线钳5. 宝石刀6. 激光功率计7. 五位调整架8. 显微镜9. 显示器四、实验步骤1. 光纤传感器的制作:- 使用光纤剥线钳剥去光纤外皮,露出光纤芯。

- 使用宝石刀切割光纤,形成传感区域。

- 将传感区域插入光纤夹具中,固定好。

2. 光纤传感器的测试:- 将光纤传感器连接到光纤传感器实验仪上。

- 调整实验仪参数,设置测试模式。

- 通过实验仪对光纤传感器进行测试,记录数据。

3. 压力测试:- 将光纤传感器置于压力容器中,逐渐增加压力。

- 观察实验仪显示的光强变化,记录数据。

- 分析数据,验证光纤传感器在压力变化下的灵敏度。

4. 温度测试:- 将光纤传感器置于温度变化环境中。

- 观察实验仪显示的光强变化,记录数据。

- 分析数据,验证光纤传感器在温度变化下的灵敏度。

五、实验结果与分析1. 压力测试结果:- 实验结果显示,随着压力的增加,光纤传感器的光强逐渐减小,表明光纤传感器对压力变化具有较好的灵敏度。

2. 温度测试结果:- 实验结果显示,随着温度的升高,光纤传感器的光强逐渐减小,表明光纤传感器对温度变化具有较好的灵敏度。

六、实验结论1. 光纤传感器具有抗电磁干扰、体积小、灵敏度高等优点,适用于测量压力、温度等物理量。

6光纤传感器测量转速实验

6光纤传感器测量转速实验

桂林航天工业学院学生实验报告
1、将光纤传感器探头按图6-1安装于转动台传感器支架上,使光纤探头与电机转盘平台上的反射点对准。

图6-1
2、按实验五图5-2模块接线,数显电压表置2V档,并按以下步骤操作:①用手转动圆盘,使探头避开反射面,合上主控箱电源开关,调节RW2使数显表显示接近零(≥0)。

②再用手转动圆盘,使光纤探头对准反射点,调节升降支架高低,使数显表指示最大,重复①、②步骤,直至两者的电压差值最大(差值需大于1V)。

再将V01与转速/频率表的fin端相接,频率/转速表开关拨到转速档。

3、接入+2V—+24V直流电压至旋转电机,调节转速旋钮,使电机转动,逐渐加大转速电压,使电机转速加快,固定某一转速记下数显表上读数,并将频率/转速表开关拨到频率档,通过频率计算出转速,对比人工计算值跟仪表显示值的差别,分析原因。

光纤传感器测速实验

光纤传感器测速实验

光纤传感器测速实验
一、实验目的:了解光纤位移传感器用于测量转速的方法。

二、基本原理:利用光纤位移传感器探头对旋转体被测物反射光的明显变化产生的电脉冲,经电路处理即可测量转速。

三、需用器件与单元:光纤传感器、光纤传感器实验模板、数显单元测转速档、直流源±15V、转速调节2-24V,转动源单元。

四、实验步骤:
1、将光纤传感器按下图装于传感器支架上,使光纤探头与电机转盘平台中反射点对准。

2、按下图将光纤传感器实验模板输出V 01与数显电压表V I 端相接,接上实验模板上±15V 电源,数显表的切换开关选择开关拨到2V 档。

①用手转动圆盘,使探头避开反射面(暗电流),合上主控箱电源开关,调节R W 使数显表显示接近零(≥0)。

②再用手转动圆盘,使光纤探头对准反射点,调节升降支架高低,使数显表指示最大,重复①、②步骤,直至两者的压差值最大,再将V01与转速/频率数显表
F in 输入端相接,数显表的波段开关拨到转速档。

3、将转速调节2-24V,接入转动电源24V 插孔上,使电机转动,逐渐加大转速源电压。

使电机转速盘加快,固定某一转速观察并记下数显表上读数n1。

4、固定转速电压不变,将选择开关拨到频率测量档,测量频率记下频率读数,根据转盘上的测速点数折算成转速值n2。

5、将实验步骤4与实验步骤3比较,以转速n1作为真值计算二种方法的测速误差(相对误差),相对误差r=((n1-n2)/n1)×100%。

五、思考题:测量转速时转速盘上反射 (或吸收点)的多少与测速精度有否影响,你可以用实验来验证比较转盘上是一个黑点的情况。

光纤传感器实验实验报告(3篇)

光纤传感器实验实验报告(3篇)

第1篇一、实验目的1. 理解光纤传感器的原理和结构。

2. 掌握光纤传感器的制作和调试方法。

3. 通过实验,验证光纤传感器在测量位移和温度等方面的性能。

二、实验原理光纤传感器是一种利用光纤的传输特性来实现对各种物理量进行测量的传感器。

其基本原理是:当光纤受到外界物理量的影响时,光纤的传输特性(如强度、相位、偏振态等)会发生变化,通过检测这些变化,就可以实现对物理量的测量。

本实验主要采用反射式光纤位移传感器和光纤温度传感器。

反射式光纤位移传感器的工作原理是:当光纤受到位移的影响时,光纤的反射光强会发生变化,通过检测光强的变化,就可以得到位移量。

光纤温度传感器的工作原理是:当光纤受到温度的影响时,光纤的折射率会发生变化,通过检测折射率的变化,就可以得到温度量。

三、实验仪器与设备1. 光纤传感器实验仪2. 激光器及电源3. 光纤剥线钳4. 宝石刀5. 激光功率计6. 五位调整架7. 显微镜8. 显示器四、实验步骤1. 搭建实验平台:将光纤传感器实验仪、激光器、光纤等设备连接好,确保实验平台的稳定性和安全性。

2. 制作光纤传感器:使用光纤剥线钳、宝石刀等工具,将光纤剥去外层保护层,形成裸光纤。

然后将裸光纤按照设计要求连接成反射式光纤位移传感器和光纤温度传感器。

3. 调试光纤传感器:调整激光器功率、光纤位置等参数,使光纤传感器正常工作。

4. 测量位移:将光纤位移传感器放置在待测物体上,通过调整光纤位置,使光纤反射光强发生变化。

记录不同位移量下的光强变化数据。

5. 测量温度:将光纤温度传感器放置在待测物体上,通过调整光纤位置,使光纤反射光强发生变化。

记录不同温度下的光强变化数据。

6. 数据处理与分析:将实验数据输入计算机,利用相关软件进行数据处理和分析,得到位移和温度的测量结果。

五、实验结果与分析1. 位移测量结果:根据实验数据,绘制位移-光强曲线。

从曲线可以看出,光纤位移传感器在测量位移方面具有良好的线性度和灵敏度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤传感器测速实验
一、实验目的:了解光纤位移传感器用于测量转速的方法。

二、基本原理:利用光纤位移传感器探头对旋转体被测物反射光的明显变化产生的电脉冲,经电路处理即可测量转速。

三、需用器件与单元:光纤传感器、光纤传感器实验模板、数显单元测转速档、直流源±15V、转速调节2-24V,转动源单元。

四、实验步骤:
1、将光纤传感器按下图装于传感器支架上,使光纤探头与电机转盘平台中
反射点对准。

2、按下图将光纤传感器实验模板输出V01与数显电压表V I端相接,接上实验模板上±15V电源,数显表的切换开关选择开关拨到2V档。

①用手转动圆盘,使探头避开反射面(暗电流),合上主控箱电源开关,调节R W使数显表显示接近零(≥0)。

②再用手转动圆盘,使光纤探头对准反射点,调节升降支架高低,使数显表指示最大,重复①、②步骤,直至两者的压差值最大,再将V01与转速/频率数显表F in输入端相接,数显表的波段开关拨到转速档。

3、将转速调节2-24V,接入转动电源24V插孔上,使电机转动,逐渐加大转速源电压。

使电机转速盘加快,固定某一转速观察并记下数显表上读数n1。

4、固定转速电压不变,将选择开关拨到频率测量档,测量频率记下频率读数,
根据转盘上的测速点数折算成转速值n2。

5、将实验步骤4与实验步骤3比较,以转速n1作为真值计算二种方法的测速误差(相对误差),相对误差r=((n1-n2)/n1)×100%。

五、思考题:
测量转速时转速盘上反射(或吸收点)的多少与测速精度有否影响,你可以用实验来验证比较转盘上是一个黑点的情况。

相关文档
最新文档