(完整版)人教版高中数学必修1与必修4综合试题及答案.doc
高一数学必修一和必修四综合测试卷

高一数学必修一和必修四综合测试卷高一数学必修①④综合练(一)一.填空题1.已知集合A={13,x},B={1,x^2},AB={13,x},则这样的x的不同值有____个。
x-3,x≥92.已知f(x)={f[f(x+4)],x<9;f(x-3),x≥9},则f(5)的值为____。
f[f(5+4)]=f[f(9)]=f(6)=f[6-3]=f(3)3.已知函数f(x)的定义域为R,满足f(x+2)=-f(x),当-2≤x≤1时,f(x)=x,则f(8.5)等于____。
f(8.5)=f(6.5+2)=-f(6.5)=-f(4.5+2)=f(4.5)=4.54.a-a等于____。
5.若lg2=a,lg3=b,则log5 12等于____。
log2 12=log2 3+log3 4=log2 3+log2 2=log2 66.若loga 2>logb 2,则有a,b,1三者关系为____。
a<b<17.函数f(x)=4+a/(8-|x-1|)的图象恒过定点P,则P点坐标是____。
1,4+a/7)8.下列大小关系为____。
1/3,1/2)<(1/2,3/5)<(1,2/5)9.设角α是第四象限角,且|cosα|=1/3,则α是第____象限角。
二10.函数f(x)=lg(sin x)+1-2cos x的定义域是____。
0,π/2)11.已知sin x/(1-cos x/2)=-1/2,则cos x/(1+sin x/2)____。
1/212.在锐角ΔABC中,cosA与sinB的大小关系为____。
cosA<sinB13.函数f(x)=tanx(-2< x< π/4)的值域是____。
0)14.将函数y=f(x)的图象上的每一点的纵坐标变为原来的平方,得到图象C1,再将C1上每一点的横坐标变为原来的π/4倍,得到图象C2,若C2的表达式为y=sin x,则y=f(x)的解析式为____。
高中数学必修一、必修四、必修二综合练习(含答案)

高中数学必修一、必修四、必修二综合练习选择题:1.函数f(x) 1 2x的定义域是( )3 1 3 1A .-B .-C. D —2 2 2 25.在正项等比数列a n中,若a2 a3 2 , a4 a5 8,则a5 a6 ()A.16B. 32C. 36D. 646. 程序框图如下:如果上述程序运行的结果为S= 40,那么判断框中应填入A . k 6B . k 5 C. k 6 D . k 57.已知x11 ,则y x 的取小值为x 1A.1B. 2C. 2 2D. 38.已知图1是函数y f(x)的图象,则图2中的图象对应的函数可能是2.3.A. ( ,0]B. [0, C ( ,0)F列四个命题中正确的是(A. lg2 lg3 lg5B.mnxD. lOg a x lOg a y lOg a —ycos300(B) (C) (D)_J32uuu4 .正三角形ABC的边长为1,设ABuuuc, BCuuu a ,CA b ,那么acb bcp ccp的值是(A . yf(|x|)B . y 1 f (x)1C . y f( |x|)D y f( |x|)29.已知全集U 0,1,2,且C U A 2,则集合A 的子集共有( )A. 2个B . 3个C . 4个D . 5个 10.为了得到函数ycos(2x -)的图象,可以将函数 y sin2x 的图象(314 .对定乂域是 D f 、 D g 的函数yf(x)、 y g(x), 规定:函数f (x)g(x),当 xD f 且 x D gAh(x)f(x), 当x D f 且x D g ,若 函 数 f (x)1 ,g(x) x 2, 则g(x),当x D f 且xD gx 1h(1) h(2)o三、解答题uuu)^Luuu15.设向量OA3, \3,OB (cos ,sin), 其中 0 -A 向右平移—个单位长度 6B. 向右平移 个单位长度12 C. 向左平移—个单位长度6二、填空题(每小题 5分,共20分)11.已知向量 a (3,1), b (1,3), c D.向左平移个单位长度12(k,7),若(a C) // b ,则 k =12.满足约束条件 |x|+ 2|y|w 2的目标函数 z = y — x 的最小值是13.已知 cos (―2贝H cos2 _________(1 )若 uurAB■ 13,求tan 的值;(2)求厶AOB 面积的最大值.16.(本小题满分12分)等差数列a n中,34 10且33, 36,印0成等比数列,求数列a n前20项的和S2o.17.(本小题满分14 分)设函数f(x) ' 3cos2x sin xcos x a (其中 >0,a R),且f(x)的图象在y轴右侧的第一个高点的横坐标为一.6(1)求的值;(2)如果f(x)在区间—上的最小值为.3,求a的值3 618.(本小题满分14 分)在厶ABC 中,若(a b c)(a b c) 3ac,且tanA ta nC 3 .3 , AB边上的高为4-3,求角代B,C的大小与边a, b, c的长19.(本小题满分14分)设S n为数列a n的前n项和,对任意的n N*,都有S n m 1 ma n(m为常数,且m 0). (1)求证:数列a n是等比数列;(2)设数列a n 的公比q fm,数列b n 满足b, 2a「b n f b n 1 (n 2 , n N*),求数列b n的通项公式;2⑶设C n ()3 T n是c n的前项和,求T n。
(完整版)高一数学必修1必修4试卷含答案,推荐文档

3 x 0 x 2 0
1
2
3
4
5
6
7
8
9 10 11 12
A
BDBAACCDCAC
x x
3 2
A x 2 x 3
二、填空题(16 分)
13. 13
14. 1
15.
f
(a
1)
a 2 a 2
6a 2a
5 3
a 1 a 1
16.
(2) A B B x x a a a 3
(2)解不等式 f (x) log a ; 3
(3) g(x 2) 2 2b 有两个不等实根时,求 b 的取值范围.
⑴求 f (0) 的值; ⑵求证: f (x) 为奇函数; ⑶若函数 f (x) 是 R 上的增函数,已知 f (1) 1, 且 f (2a) f (a 1) 2 ,求 a 的取值范围.
(1)求 a, b 的值;
f (a b) f (a) f (b) ,当 x 0 时,有 f (x) 1,其中 f (1) 2 . (1)求 f (0) 、 f (1) 的值; (2)证明 不等式 m 2
(k
2)m
3
f (x)
所以函数的值域为1,
……12 分
(B 类)解:(1) 1 x 0, x 1 0,即x 1x 1 0.
1 x
x 1
1 x 1, f x的定义域为1,1
20 解:设经过 n 天,该同学所服的第一片药在他体内的残留量不超过10mg ……2
分
(2)证明:
则: 200(1 60%)n 10
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天
建议收藏下载本文,以便随时学习! 22(本小题分 A,B 类,满分 14 分,任选一类,若两类都选,以 A 类记分)
最新高中数学必修1综合测试卷(三套+含答案)教学教材

1、设全集 集合 从 到 的一个映射为 ,其中 则 _________________。
2、已知 是方程 的根, 是方程 的根,则 值为______________。
3、已知函数 的图象关于直线 对称,且当 时 则当 时
________________。
4、函数 的反函数 的图像与 轴交于点 (如图所示),则方程 在 上的根是
5、设
A、0B、1 C、2D、3
6、从甲城市到乙城市 分钟的电话费由函数 给出,其中 , 表示不大于 的最大整数(如 ),则从甲城市到乙城市 分钟的电话费为______________。
7、函数 在区间 上为增函数,则 的取值范围是______________。
8、函数 的值域为______________。
令 (0≤t≤ ),则x=t2+1,
∴ …………………………………………………8分
故当t= 时,可获最大利润 万元.……………………………………………………10分
此时,投入乙种商品的资金为 万元,
投入甲种商品的资金为 万元.……………………………………………………12分
21、(1)证明: ,令x=y=1,则有:f(1)=f(1)-f(1)=0,…2分
22、解:(1) 是R上的奇函数 ,
即 ,即
即 ∴
或者 是R上的奇函数
,解得 ,然后经检验满足要求。…………………………………3分(2)由(1)得
设 ,则
,
,所以 在 上是增函数…………………………………7分
(3) ,
所以 的值域为(-1,1)
或者可以设 ,从中解出 ,所以 ,所以值域为(-1,1)…12分
高中数学必修1综合测试卷(三套+含答案)
高中数学必修一、必修四、必修二综合练习(含答案)

高中数学必修一、必修四、必修二综合练习一. 选择题:1.函数()12x f x =-的定义域是 ( )A .(,0]-∞B .[0,)+∞C .(,0)-∞D .(,)-∞+∞2.下列四个命题中正确的是( )A .lg 2lg3lg5⋅=B .mn n m a a a =⋅C .a a n n =D .yxy x aa a log log log =- 3. cos300︒= ( )(A)32-(B)-12 (C)12(D) 32 4.正三角形ABC 的边长为1,设=u u u rAB c ,=u u u r BC a ,=u u u r CA b ,那么a b b c c a ++g g g 的值是( ) A .32 B .12 C .32- D .12- 5.在正项等比数列{}n a 中,若232a a +=,458a a +=,则56a a += ( )A.16B. 32C. 36D. 646. 程序框图如下:如果上述程序运行的结果为S =40,那么判断框中应填入 A .6k ≤ B .5k ≤ C .6k ≥ D .5k ≥ 7.已知1x > ,则11y x x =+-的最小值为 ( ) A.1 B. 2 C. 22 D. 38.已知图1是函数()y f x =的图象,则图2中的图象对应的函数可能是 ( )A .(||)y f x =B .|()|y f x =C .(||)y f x =-D .(||)y f x =--9.已知全集{}0,1,2U =,且{}2U C A =,则集合A 的子集共有( ) A .2个B .3个C .4个D .5个10.为了得到函数cos(2)3y x π=-的图象,可以将函数sin 2y x =的图象( )A .向右平移6π个单位长度 B .向右平移12π个单位长度 C .向左平移6π个单位长度D .向左平移12π个单位长度二、填空题(每小题5分,共20分)11.已知向量(3,1)a =r ,(1,3)b =r ,(,7)c k =r ,若()a c -r r∥b r ,则k = .12. 满足约束条件|x |+2|y |≤2的目标函数z =y -x 的最小值是________. 13.已知3cos()25πα-=,则cos2α= 14.对定义域是f D 、g D 的函数)(x f y =、)(x g y =,规定:函数⎪⎩⎪⎨⎧∈∉∉∈∈∈=g f gf g f Dx D x x g D x D x x f D x D x x g x f x h 且当且当且当),(),(),()()(,若函数11)(-=x x f ,2)(x x g =,则=+)2()1(h h 。
完整word版,高一数学必修1、4测试题(分单元测试,含详细答案,强烈推荐,共90页)【适合14523顺序】

迄今为止最全,最适用的高一数学试题(必修1、4)(特别适合按14523顺序的省份)必修1 第一章 集合测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( ) A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( ) A. a B. {a ,c } C. {a ,e } D.{a ,b ,c ,d } 4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( ) A.}0{=∅ B. }0{⊆∅ C. }0{⊇∅ D. }0{∈∅ 6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为 ( ) A.A∩B B.A ⊇B C.A ∪B D.A ⊆B 7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( ) A.(a+b )∈ A B. (a+b) ∈B C.(a+b) ∈ C D. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A Y ={1,2,3,4,5},则x =( ) A. 1 B. 3 C. 4 D. 5MNAMNBNMCMND9.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( )A. 8 B . 7 C. 6 D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )A.B. B A IC. B C A C U U ID. B C A C U U Y11.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z I 则,≤≤ ( )A .{}01,B .{}101-,,C .{}012,, D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 . 14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ; (3){1} }{2x x x =; (4)0 }2{2x x x =. 15.含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M . 三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A I ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式; (2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 函数的性质一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+ 1C .y =x2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A I ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t ) =f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.若函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围 ( ) A .a ≤3B .a ≥-3C .a ≤5D .a ≥311. 函数c x x y ++=42,则 ( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则( )A .(10)(13)(15)f f f <<B .(13)(10)(15)f f f <<C .(15)(10)(13)f f f <<D .(15)(13)(10)f f f <<.二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。
(完整版)高中数学必修四(综合测试题+详细答案)(可编辑修改word版)

232a -b 2 a - b 2a - ba - b一、选择题(12 道)必修四综合复习1.已知 AB = (6,1), BC = (x , y ), C D = (-2,-3),且BC ∥ DA ,则 x+2y 的值为( )1 A .0B. 2C.D. -222. 设0 ≤< 2,已知两个向量OP 1 = (cos , sin ), OP 2 = (2 + sin , 2 - cos ),则向量 P 1 P 2 长度的最大值是( ) A. B. C. 3 D. 23.已知向量 a , b 满足 a = 1, b = 4, 且 a ⋅ b = 2 则 a 与b 的夹角为A.B .C .D .64 3 24. 如图 1 所示,D 是△ABC 的边 AB 上的中点,则向量CD = ()A. - BC + 1 1BA2B. - BC - 1BA 21C. BC - BA 2D. BC + BA25. 设 a 与b 是两个不共线向量,且向量 a +b 与-(b - 2a )共线,则=( )A .0B .-1C .-2D .0.56. 已知向量 a =( 3,1), b 是不平行于 x 轴的单位向量,且a ⋅ b =,则b =()A. ⎛ 3 1 ⎫B.⎛ 1 3 ⎫C.⎛ 1 3 3 ⎫ D .(1,0), ⎪, ⎪ , ⎪⎝ 2 2 ⎭ ⎝ 2 2 ⎭⎝ 4 4 ⎭7.在∆OAB 中, = a , = b , OD 是 AB 边上的高,若 =,则实数等 于( )OAA. a ⋅ (b - a )OB B. a ⋅ (a - b )C. a ⋅ (b - a ) AD ABD. a ⋅ (a - b )8.在∆ABC 中, a , b , c 分别为三个内角 A 、B 、C 所对的边,设向量 m = (b - c , c - a ), n = (b , c + a ) ,若向量 m ⊥ n ,则角 A 的大小为 ( )2A.B .C .D .632 39.设∠BAC 的平分线 AE 与 BC 相交于 E ,且有 BC = CE , 若 AB = 2 A C 则等于()1 1 A 2BC -3D -2310.函数 y = sin x cos x + 3 cos 2x -的图象的一个对称中心是()A. ( , 33 3 , - 3)2 , -3 )B. ( 5 ,- 3 ) C. (- 23 ) D. ( 3 2 62 3 233 2 b 11. (1+ tan 210 )(1+ tan 220 )(1+ tan 230 )(1+ tan 240 ) 的值是()A. 16B. 8C. 4D. 2cos 2 x12.当0 < x <时,函数 f (x ) = 41cos x sin x - sin 2x1 的最小值是( )A. 4B.C . 2D .24二、填空题(8 道) 13.已知向量 a = (cos , s in ) ,向量= ( 3, -1) ,则 2a - 的最大值是.b b14.设向量 a 与 的夹角为,且 a= (3,3) , 2b - a = (-1,1) ,则cos=.15.在∆AOB 中, O A = (2 c os,2 s in ), OB = (5 c os,5sin ) ,若OA ⋅ O B = -5 ,则∆AOB 的面积为.16. tan 20 + tan 40 + tan 20tan 40 的值是 .3 517. ABC 中, sin A = 5 , cos B =13,则cos C =.18. 已知sin + c os = 1, s in - c os = 3 1 ,则sin(- ) =.2⎡ ⎤19. 函数 y = sin x + cos x 在区间 ⎢⎣0, 2 ⎥⎦上的最小值为 .20. 函数 y = (a cos x + b sin x ) cos x 有最大值2 ,最小值-1,则实数 a =, b =.三、解答题(3 道)21. 已知|a|= ,|b|=3,向量 a 与向量 b 夹角为45 ,求使向量 a+b 与a+b 的夹角是锐角时,的取值范围3dongguan XueDa Personalized Education Development Center22 .已知向量 a = (sin ,-2) 与b = (1, c os ) 互相垂直,其中∈(0, ) .2(1)求sin 和cos 的值;(2)若sin(-) =, 0 <<,求cos的值.10223.)已知向量 a = (sin , cos - 2 sin ), b = (1, 2).若| a |=| b |, 0 << , 求的值。
高一数学必修1、4测试题(分单元测试_含详细答案_强烈推荐_共90页)【适合14523顺序】

迄今为止最全,最适用的高一数学试题(必修1、4)(特别适合按14523顺序的省份)必修1 第一章 集合测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( ) A.学校篮球水平较高的学生B.校园中长的高大的树木年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( ) A. a B. {a ,c } C. {a ,e } D.{a ,b ,c ,d } 4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( ) A.}0{=∅ B. }0{⊆∅ C. }0{⊇∅ D. }0{∈∅ 6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参 加自由泳又参加蛙泳的运动员”用集合运算表示为 ( ) ∩B ⊇ ∪B ⊆7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( )MNAM N BNM CMNDA.(a+b )∈ AB. (a+b) ∈BC.(a+b) ∈ CD. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A Y ={1,2,3,4,5},则x =( ) A. 1 B. 3 C. 4 D. 59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( )A. 8B. 7C. 6D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )A. A B YB. B A IC. B C A C U U ID. B C A C U U Y11.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z I 则,≤≤ ( ) A .{}01,B .{}101-,,C .{}012,, D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 . 14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ; (3){1} }{2x x x =; (4)0 }2{2x x x =. 15.含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合. 18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A I ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式; (2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 函数的性质一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+ 1C .y =x2 D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5)4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A I ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t ) =f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1)C .f (9)<f (-1)<f (13)D .f (13)<f (-1)<f (9)9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.若函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围 ( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥311. 函数c x x y ++=42,则 ( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则( )A .(10)(13)(15)f f f <<B .(13)(10)(15)f f f <<C .(15)(10)(13)f f f <<D .(15)(13)(10)f f f <<.二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数f (x )=2x 2-mx +3,当x ∈-2,+时是增函数,当x ∈-,-2时是减函数,则f (1)= 。
高一上学期数学试卷(必修1和必修4)+(Word版含解析)

高一数学试卷(必修1和必修4)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合P={x|0≤x<3},M={x|x2≤9},则P∩M=()A.{x|0<x<3} B.{x|0≤x<3} C.{x|0<x≤3} D.{x|0≤x≤3} 2.(5分)函数f(x)=﹣x的图象关于()对称.A.y轴B.x轴C.坐标原点D.直线y=x3.(5分)在区间(0,1)上单调递减的函数是()A.y=B.y=log2(x+1)C.y=2x+1D.y=|x﹣1|4.(5分)若函数y=f(x)的定义域是,则函数的定义域是()A.B.D.(0,1)5.(5分)要得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位6.(5分)函数f(x)=e x+x﹣2的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)7.(5分)设a=log2,b=log,c=()0.3,则()A.a<c<b B.a<b<c C.b<c<a D.b<a<c8.(5分)同时具有性质“①最小正周期是π,②图象关于直线对称;③在上是增函数”的一个函数是()A.B.C. D.9.(5分)已知函数若f(2﹣a2)>f(a),则实数a的取值范围是()A.(﹣∞,﹣1)∪(2,+∞)B.(﹣1,2)C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)10.(5分)定义*=|a|×|b|sinθ,θ为与的夹角,已知点A(﹣3,2),点B(2,3),O是坐标原点,则*等于()A.5B.13 C.0D.﹣2二、填空题:(本大题共4小题,每小题5分,满分20分)11.(5分)2log510+log50.25=__________.12.(5分)已知函数若f(f(0))=4a,则实数a=_______.13.(5分)在Rt△ABC中,C=90°,AC=4,则•等于___________.14.(5分)已知f(x)在R上是奇函数,且f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=_________.三、解答题.(本大题共6小题,满分80分,解答须写出文字说明、证明过程和演算步骤)15.(12分)(1)已知tanα=2,计算的值;(2)化简:(3)已知一扇形的圆心角是72°,半径等于20cm,求扇形的面积.16.(12分)已知集合A={x||x﹣a|<4},B={x|x2﹣4x﹣5>0}且A∪B=R,求实数a的取值范围.17.(14分)已知函数f(x)=sin(ωx+φ),(ω>0),f(x)图象相邻最高点和最低点的横坐标相差,初相为.(Ⅰ)求f(x)的表达式;(Ⅱ)求函数f(x)在上的值域.18.(14分)已知函数f(x2﹣1)=log m(1)求f(x)的解析式并判断f(x)的奇偶性;(2)解关于x的不等式f(x)≥0.19.(14分)设函数y=f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f (y),.(1)求f(1)的值;(2)若存在实数m,使得f(m)=2,求m的值;(3)如果f(x)+f(2﹣x)<2,求x的取值范围.20.(14分)已知向量,,,,k,t为实数.(Ⅰ)当k=﹣2时,求使成立的实数t值;(Ⅱ)若,求k的取值范围.。
(完整word)高一数学必修一和必修四综合测试卷

高一数学必修①④综合练习(一)一.填空题1.已知集合{13}A x =,,,2{1}B x =,,{13}A B x =,,,则这样的x 的不同值有 个.2.已知39()[(4)]9x x f x f f x x -⎧=⎨+<⎩, ≥,,则(5)f 的值为 .3.已知函数()f x 的定义域为R ,满足(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(8.5)f 等于 .6aa -等于 .5.若lg2a =,lg3b =,则5log 12等于 .6.若log 2log 20a b >>,那么有,,1a b 三者关系为 .7.函数1()4x f x a -=+的图象恒过定点P ,则P 点坐标是 .8. 122333111,,225⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭下列大小关系为 . 9.设角α是第四象限角,且|cos|cos2αα=-,则2α是第 象限角. 10.函数()lg sin f x x =+的定义域是 .11.已知1sin 1,cos 2x x +=-那么cos sin 1x x -的值是 . 12.在锐角ABC ∆中,cos A 与sin B 的大小关系为 .13.函数()tan ()43f x x x ππ=-≤<的值域是 .14.将函数()y f x =的图象上的每一点的纵坐标变为原来的13得到图象1C ,再将1C 上每一点的横坐标变为原来的12得到图象2C ,再将2C 上的每一点向右平移3π个长度单位得到图象3C ,若3C 的表达式为sin y x =,则()y f x =的解析式为 .15.已知tanx=6,那么21sin 2x+31cos 2x=_______________.16.已知(,),(,),tan 2222ππππαβα∈-∈-与tan β是方程240x ++=的两个实根,则__________.αβ+=二.解答题17.设集合{|2135}A x a x a =+-≤≤,{|322}B x x =≤≤,求能使A A B ⊆成立的a 值的集合.18.设函数2()log ()x xf x a b =-,且(1)1f =,2(2)log 12f =.(1)求 a b ,的值; (2)当[12]x ∈,时,求()f x 的最大值.19.已知1211log 21x f x x ⎛⎫-=⎪+⎝⎭. (1)求()f x 的解析式; (2)判断()f x 的奇偶性;(3)判断()f x 的单调性并证明.20.已知函数y=21cos 2x+23sinxcosx+1,x ∈R .(1)求它的振幅、周期和初相;(2)用五点法作出它的简图;(3)该函数的图象是由y=sinx(x ∈R )的图象经过怎样的平移和伸缩变换得到的? 21.某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床价每天的租金)不超过10元时,床位可以全部租出,当床位高于10元时,每提高1元,将有3张床位空闲. 为了获得较好的效益,该宾馆要给床位订一个合适的价格,条件是:①要方便结账,床价应为1元的整数倍;②该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高出得越多越好. 若用x 表示床价,用y 表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入) (1)把y 表示成x 的函数,并求出其定义域;(2)试确定该宾馆床位定为多少时既符合上面的两个条件,又能使净收入最多?22.已知函数()sin()(0,0)f x x ωϕωϕπ=+>≤≤在R 上是偶函数,其图象关于点3(,0)4M π对称,且在区间[0,]2π上是单调函数,求ϕ和ω的值.高一数学必修①④综合测试卷(一)答案一.填空题1.3个2.63.4.5.21a ba+ -6.1a b<<7. (15), 8. 221333111522⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭9.二 10.[2,2)()3k k k Z ππππ++∈11.1212.cos A <sin B 13.[-14.1()3sin()23f x x π=+15.111551363136211tan 31tan 21cos sin cos 31sin 21222222=++⨯=++=++x x x x x . 16.23π-二.解答题17.解:由A AB ⊆,得A B ⊆,则21352133522a a a a +-⎧⎪+⎨⎪-⎩≤,≥,≤,或2135a a +>-. 解得69a ≤≤或6a <. 即9a ≤.∴使A A B ⊆成立的a 值的集合为{9}a a ≤.18.解:由已知,得22222log ()1log log 12a b a b -=⎧⎨-=⎩,, 22212a b a b -=⎧∴⎨-=⎩,,解得42a b ==,. 19.解:(1)令121log 2t x =,则21124ttt x ⎛⎫⎛⎫∈== ⎪ ⎪⎝⎭⎝⎭R ,,11144().1411414()().14tt t txxf t f x x ⎛⎫- ⎪-⎝⎭==+⎛⎫+ ⎪⎝⎭-∴=∈+R (2)x ∈R ,且1441()()4141x x xx f x f x -----===-++, ()f x ∴为奇函数.(3)2()114xf x =-++, ()f x ∴在()-∞+∞,上是减函数. 证明:任取12x x ∈R ,,且12x x <,则21121212222(44)()()111414(14)(14)x x x x x x f x f x -⎛⎫⎛⎫-=-+---= ⎪ ⎪++++⎝⎭⎝⎭. 4x y =在()-∞+∞,上是增函数,且12x x <,1244x x ∴<.12()()0f x f x ∴->,即12()()f x f x >.14()14xxf x -∴=+在()-∞+∞,上是减函数.20.解:y=21cos 2x+23sinxcosx+1=41cos2x+23sin2x+45=21sin(2x+6π)+45. (1)y=21cos 2x+23sinxcosx+1的振幅为A=21,周期为T=22π=π,初相为φ=6π.(2)令x 1=2x+6π,则y=21sin(2x+6π)+45=21sinx 1+45,列出下表,并描出如下图象:x12π- 6π 125π 32π1211π x 1 0 2π π 32π 2π y=sinx 11-1y=21sin(2x+6π)+454547 45 43 45(3)解法一:将函数图象依次作如下变换:函数y=sinx 的图象−−−−−→−个单位向左平移6π函数y=sin(x+6π)的图象 −−−−−−−−−−→−)(21纵坐标不变的各点横坐标缩短到原来函数y=sin(2x+6π)的图象 −−−−−−−−−−→−)(21横坐标不变的各点纵坐标缩短到原来函数y=21sin(2x+6π)的图象−−−−−→−个单位向上平移45函数y=21sin(2x+6π)+45的图象.即得函数y=21cos 2x+23sinxcosx+1的图象.解法二:函数y=sinx 的图象−−−−−−−−−−→−)(21纵坐标不变的各点横坐标缩短到原来函数y=sin2x 的图象−−−−−→−个单位向左平移12π函数y=sin(2x+6π)的图象 −−−−−→−个单位向上平移25函数y=sin(2x+6π)+25的图象 −−−−−−−−−−→−)(21横坐标不变的各点纵坐标缩短到原来函数y=21sin(2x+6π)+45的图象.即得函数y=21cos 2x+23sinxcosx+1的图象.21.解:(1)由已知有10057510(1303)57510x x y x x x x *-⎧=∈⎨-->⎩N , ≤,, ,令0y >.由100575010x x ->⎧⎨⎩,≤,得610x ≤≤,x *∈N 又由(1303)57500x x x -->⎧⎨>⎩,,得1038x x *<∈N ≤,所以函数为210057561031305751038x x x y x x x x **⎧-∈⎪=⎨-+-<∈⎪⎩NN, ≤≤,且, ≤,且 函数的定义域为{638}x x x *∈N ≤≤,.(2)当10x ≤时,显然,当10x =时,y 取得最大值为425(元); 当0x >时,23130575y x x =-+-, 仅当130652(3)3x =-=⨯-时,y 取最大值,又x *∈N ,∴当22x =时,y 取得最大值,此时max 833y =(元) 比较两种情况的最大值,833(元)>425(元) ∴当床位定价为22元时净收入最多.22.解:2,23πϕω==或2。
人教版高一数学必修1必修4期末测试卷附答案.doc

人教版高一数学必修1必修4期末测试卷姓名____________班级___________学号____________分数______________一、选择题(每题5分,共40分)1 .集合A ={x ∈N ﹡|-1<x<3)的子集的个数是( )A .4B .8C .16D .322 .函数1()lg(1)1f x x x =++-的定义域是( )A .(,1)-∞-B .(1,)+∞C .(1,1)(1,)-+∞ D .(,)-∞+∞3 .设2135,2ln ,2log -===c b a,则( )A .c b a <<B .a c b <<C .b a c <<D .a b c <<4 .函数245y x x =-++( )A .(],2-∞B .[]1,2-C .[)2,+∞D .[]2,55 .已知函数2()23f x x ax =-+在区间()2,2-上为增函数,则a 的取值范围是 ()A .2a ≤B .22a -≤≤C .2a ≤-D 2a ≥6 .下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是 ( )A .2y x -=B .1y x -=C .2y x =D .13y x =7 .若函数))(12()(a x x xx f -+=为奇函数,则a =( )A .21 B .32 C .43 D .18 .已知α是第四象限角,5tan()12πα-=,则sin α= ( )A .15B .15-C .513D .513-9 .若tan 3α=,则sin cos αα=( )A .32 B 3C .33D .3410.sin600︒的值为( )A 3B .3C .12-D .1211.已知3cos 5α=,0πα<<,则πtan()4α+=( )A .15 B .-1 C .17D .7-12.在ABC ∆中,sin(A+B)=sin(A-B),则ABC ∆一定是( )A .等腰三角形B .等边三角形C .直角三角形D .锐角三角形二、填空题(每题5分,共30分) 13.函数y =的定义域为______________.14.用二分法求方程x 3-2x-5=0在区间[2,3]上的近似解,取区间中点x 0=2.5,那么下一个有解区间为_____________.15.若圆心角是2弧度的扇形的弧长是cm 15,则扇形的面积是______________ 16.若3cos 5α=-,且3(,)2παπ∈,则tan α=___________________ 三、解答题(每题10分,共30分) 17.已知α为锐角,且tan()24πα+=.(Ⅰ)求tan α的值; (Ⅱ)求sin 2cos sin cos 2αααα-的值.18.已知函数2()sin 22sin f x x x =-(I)求函数()f x 的最小正周期.(II)求函数()f x 的最大值及()f x 取最大值时x 的集合.19.已知:()132sin cos 322+-+=x x x f ()R x ∈.求:(Ⅰ)()x f 的最小正周期; (Ⅱ)()x f 的单调增区间;(Ⅲ)若x ∈[4π-,4π]时,求()x f 的值域. 20.求函数)46tan(3xy -=π的周期及单调区间.21.已知||2,||3,a b a ==与b 的夹角为120°。(I)求()()23a b a b -⋅+的值;(II)当x 为何值时,xa b -与3a b +垂直。22.已知向量)3,cos 2(2x a =→-,)2sin ,1(x b =→-,函数→-→-⋅=b a x f )(,(Ⅰ)求函数)x (f 的最小正周期和值域;(Ⅱ)在∆ABC 中,c b a ,,分别是角C B A ,,的对边,且3)(=C f ,1=c ,32=ab ,且b a >,求b a ,的值。
必修1、必修4数学试卷(含答案)

D高一数学清北班入学选拔考试(必修1、4)试卷时量40分钟满分100分姓名得分一、选择题(每小题6分,共48分)1.若集合{}A=|1x x x R≤∈,,{}2B=|y y x x R=∈,,则A B= ()A.{}|11x x-≤≤ B. {}|0x x≥ C.{}|01x x≤≤ D.∅2.给定函数①12y x=,②12log(1)y x=+,③|1|y x=-,④12xy+=,期中在区间(0,1)上单调递减的函数序号是()A. ①②B.②③C.③④D.①④3.若x是方程式lg2x x+=的解,则x属于区间()A.(0,1)B.(1,1.25)C.(1.25,1.75)D.(1.75,2)4.函数x xx xe eye e--+=-的图像大致为()5.设}21sin|{<=xxA,{|cosB x x=>,则()A. BA⊂ B. BA= C. BA⊃ D. BA⊆6.已知函数tany xω=在(2π-,2π)内是减函数,则()A.01ω<≤B.10ω-≤<C.1ω≥D.1ω≤-7.若函数()y f x=的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移2π个单位,沿y轴向下平移1个单位,得到函数1sin2y x=的图象则()y f x=是()A.1sin(2)122y xπ=++ B.1sin(2)122y xπ=-+ C.1sin(2)124y xπ=++ D.1sin(2)124y xπ=-+ 8.设点M是线段BC的中点,点A在直线BC外,216,BC AB AC AB AC=∣+∣=∣-∣,则AM∣∣=()A. 8B. 4C. 2D. 1二、填空题(每小题6分,共42分) 9.设25abm ==,且112a b+=,则m = . 10.已知函数3log ,0()2,0x x x f x x >⎧=⎨≤⎩,则1(())9f f = .11.设函数)()()(R x ae e x x f xx ∈+=是偶函数,则实数=a _______________. 12.已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的范围是___ _.13.已知α为第二象限的角,则2α所在的象限是 . 14.函数xxxx y tan tan cos cos +=的值域为 . 15.点P 在平面上作匀速直线运动,速度向量(4,3)v =-(即点P 的运动方向与v 相同,且每秒移动的距离为v 个单位.设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为 . 三、解答题(10分)16.如图,已知点G 是△ABO 的重心.⑵若PQ 过△ABO 的重心G ,且,,b OB a OA ==OP ma =,OQ nb =.求证:113m n+=.高一数学清北班入学考试(必修1、4)试卷答案一、选择题(每小题6分,共48分) 1.C 2.B3.D4. A5.C6.B7.B8.C二、填空题(每小题6分,共42分)10.1411.1- 12.)12,1(-- 13.一、三14.}{2.2,0-15.(10,-5)三、解答题(10分) 16.解:显然OM ).(21b a += 因为G 是ABC ∆的重心, 所以=OG 321()3OM a b =⋅+由P 、G 、Q 三点共线,有GQ PG ,共线,所以,有且只有一个实数λ, .GQ PG λ=而OP OG PG -=,31)31()(31b a m a m b a +-=-+=GQ =OQ -OG =b n a b a b n )31(31)(31-+-=+-,所以1111()[()]3333m a b a n b λ-+=-+-.又因为a 、b 不共线,所以113311()33m n λλ⎧-=-⎪⎪⎨⎪=-⎪⎩,消去λ,整理得3mn =n m +,故311=+nm .65分以上进清北班。
(完整版)高中数学人教A版高一年级第一学期期末(必修1+必修4)数学考试卷(WORD文档有答案)

实数 k 的取值范围; 3
( 2)若函数 f (x) 的图象过点 P(1, ) ,是否存在正数 2
m( m
1) ,使函数
g ( x) log m[ a 2x a 2x mf ( x)] 在 [1,log 2 3] 上的最大值为 0?
若存在,求出 m 的值;若不存在,请说明理由.
高一数学试题答案
第 6 页 (共 12 页)
高一数学试题答案
第 2 页 (共 12 页)
3.14) 。 (12) 定 义 域 为 R 的 偶 函 数 f x , 满 足 对 任 意 的 x R 有 f x 2
f x , 且 当 x 2,3 时 ,
fx
2x 2 12x 18 ,若函数 y f (x) log a x 1 在 R 上至少有六个零点, 则 a 的取值范围是
3
,故选 A .
3
(13) 2
1
( 14)
2
( 15) 5 , 4
5 (或 a )
4
9
( 16)
4
(13)【解析】函数 f x 的图象过点 2,4 ,可得 4 a 2 ,又 a 0 ,解得 a 2 . (14)【解析】 cos18o cos42o cos72o sin 42o cos18o cos42o sin18o sin 42o cos60o 1 .
D. 3
0,
) 的图象的一部分,
则该解析式为(
)
A . y 2 sin(2x )
3
3
C. y
2 sin(y 2 sin( x ) 3 24
D. y
2 sin(2 x
2 )
3
3
y
2
7
35
高一数学必修1-4综合测试题含答案

高一数学必修1-4综合测试题含答案(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高一数学必修1-4综合测试题含答案共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.)225sin( -的值是 ( )A .22 B .22-C .21 D .23 2.若直线经过A (23, 9)、B(43, 15)两点, 则直线A B 的倾斜角是( ) A .45°B .60°C .120°D .135°3.幂函数)(x f 的图象过点⎪⎭⎫⎝⎛21,4,那么)8(f 的值为( )A.42B. 64C. 22D. 6414.为了得到函数)42sin(π-=x y 的图象,只需把函数x y 2sin =的图象上所有的点( )A .向左平移4π个单位长度 B .向右平移4π个单位长度C .向左平移8π个单位长度D .向右平移8π个单位长度5. 已知a 、b 是非零向量且满足(2)-⊥a b a ,(2)-⊥b a b ,则a 与b 的夹角是( )A .6π B .3π C .32π D .65π6.已知两直线m 、n ,两平面α、β,且βα⊂⊥n m ,.下面有四个命题1)若n m ⊥则有,//βα; 2)βα//,则有若n m ⊥; 3)βα⊥则有若,//n m ; 4)n m //,则有若βα⊥. 其中正确命题的个数是( ) A .0B .1C .2D .37.若直线03)1(:1=--+y a ax l 与直线02)32()1(:2=-++-y a x a l 互相垂直,则a 的值是( )A.3-B. 1C. 0或23-D.1或3-8.有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为:( ) A.224cm π,312cm π B.215cm π,312cm πC.224cm π,336cm π D.以上都不正确9.设函数2()3x f x x =-,则函数()f x 有零点的区间是( )A.[]0,1B.[]1,2C.[]2,1--D.[]1,0-10. 3名学生排成一排,其中甲、乙两人站在一起的概率是( ) A.23 B.12 C. 13 D. 1611. 已知函数()225f x x mx =-+,m R ∈,它在(,2]-∞-上单调递减,则()1f 的取值范围是( )A. 15)1(=fB. 15)1(>fC. 15)1(≤fD. 15)1(≥f 12. 对于向量,,a b e 及实数12,,,,x y x x λ,给出下列四个条件: ①3+=a b e 且5-=a b e ; ②12x x +=0a b③()λ≠0a =b b 且λ唯一; ④(0)x y x y +=+=0a b 其中能使a 与b 共线的是( )A .①②B .②④C .①③D .③④第Ⅱ卷(非选择题 共90分)注意事项:1.第Ⅱ卷包括填空题和解答题共两个大题.2.第Ⅱ卷所有题目的答案考生需用黑色签字笔答在“数学”答题卡指定的位置上. 二、填空题:本大题共4小题,每小题4分,共16分. 13.函数21()log (1)f x x =-的定义域是_________ ;14.过点(1,0)且与直线220x y --=平行的直线方程是 ;GM D 1C 1B 1A 1NDCBA15. 在区间[2,3]-上任取一个实数,则该数是不等式21x >解的概率为 .16.已知函数8log (3)9a y x =+-(0,1a a >≠)的图像恒过定点A ,若点A 也在函数()3x f xb =+的图像上,则b = 。
高中数学必修1、4、5、2、综合测试题附答案

数学必修1一、选择题1.设集合{}012345U =,,,,,,{}035M =,,,{}145N =,,,则()U M C N ⋂=( ) A .{}5 B .{}0,3 C .{}0,2,3,5 D .{}0,1,3,4,52、设集合2{650}M x x x =-+=,2{50}N x x x =-=,则M N 等于 ( ) A.{0}B.{0,5}C.{0,1,5}D.{0,-1,-5} 3、计算:9823log log ⋅= ( )A 12B 10C 8D 64、函数2(01)xy a a a =+>≠且图象一定过点 ( )A (0,1)B (0,3)C (1,0)D (3,0)5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相吻合是 ( )6、函数12log y x = 的定义域是( )A {x |x >0}B {x |x ≥1}C {x |x ≤1}D {x |0<x ≤1}7、把函数x 1y -=的图象向左平移1个单位,再向上平移2个单位后,所得函数的解析式应为 ( ) A 1x 3x 2y --= B 1x 1x 2y ---= C 1x 1x 2y ++= D 1x 3x 2y ++-= 8、设x x e1e )x (g 1x 1x lg )x (f +=-+=,,则 ( ) A f(x)与g(x)都是奇函数 B f(x)是奇函数,g(x)是偶函数C f(x)与g(x)都是偶函数D f(x)是偶函数,g(x)是奇函数9、使得函数2x 21x ln )x (f -+=有零点的一个区间是 ( ) A (0,1) B (1,2) C (2,3) D (3,4)10、若0.52a =,πlog 3b =,2log 0.5c =,则( )A a b c >>B b a c >>C c a b >>D b c a >>二、填空题11、函数5()2log (3)f x x =++在区间[-2,2]上的值域是______12、计算:2391- ⎪⎭⎫ ⎝⎛+3264=______13、函数212log (45)y x x =--的递减区间为______14、函数122x )x (f x -+=的定义域是______ 15.若一次函数b ax x f +=)(有一个零点2,那么函数ax bx x g -=2)(的零点是 .三、解答题16. 计算 5log 3333322log 2log log 859-+-18、已知函数⎪⎩⎪⎨⎧≥<<--≤+=)2(2)21()1(2)(2x x x x x x x f 。
最新高中数学必修一、必修四、必修二综合练习(含答案)

高中数学必修一、必修四、必修二综合练习一. 选择题:1.函数()f x = ( )A .(,0]-∞B .[0,)+∞C .(,0)-∞D .(,)-∞+∞2.下列四个命题中正确的是( )A .lg 2lg3lg5⋅=B .mn n m a a a =⋅C .a a n n =D .yxy x aa a log log log =- 3. cos300︒= ( )(A)2-(B)-12 (C)12(D) 2 4.正三角形ABC 的边长为1,设=AB c ,=BC a ,=CA b ,那么a b b c c a ++的值是( )A .32 B .12 C .32- D .12- 5.在正项等比数列{}n a 中,若232a a +=,458a a +=,则56a a += ( )A.16B. 32C. 36D. 646. 程序框图如下:如果上述程序运行的结果为S =40,那么判断框中应填入 A .6k ≤ B .5k ≤ C .6k ≥ D .5k ≥ 7.已知1x > ,则11y x x =+-的最小值为 ( )A.1B. 2C.D. 38.已知图1是函数()y f x =的图象,则图2中的图象对应的函数可能是 ( )A .(||)y f x =B .|()|y f x =C .(||)y f x =-D .(||)y f x =--9.已知全集{}0,1,2U =,且{}2U C A =,则集合A 的子集共有( ) A .2个B .3个C .4个D .5个10.为了得到函数cos(2)3y x π=-的图象,可以将函数sin 2y x =的图象( )A .向右平移6π个单位长度 B .向右平移12π个单位长度 C .向左平移6π个单位长度D .向左平移12π个单位长度二、填空题(每小题5分,共20分)11.已知向量(3,1)a =,(1,3)b =,(,7)c k =,若()a c -∥b ,则k = . 12. 满足约束条件|x |+2|y |≤2的目标函数z =y -x 的最小值是________. 13.已知3cos()25πα-=,则cos2α= 14.对定义域是f D 、g D 的函数)(x f y =、)(x g y =,规定:函数⎪⎩⎪⎨⎧∈∉∉∈∈∈=g f gf g f Dx D x x g D x D x x f D x D x x g x f x h 且当且当且当),(),(),()()(,若函数11)(-=x x f ,2)(x x g =,则=+)2()1(h h 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017 学年上学期期末考试数学模拟试卷( A )一、选择题 (本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列关系正确的是().A . 0 N . 1 R C . QD . 3 ZB2.若函数 y = f (x )的定义域为 M = { x|- 2≤ x ≤2} ,值域为 N = { y|0≤y ≤ 2} ,则函数y = f (x )的图象可能是().3.若 sin α<0 且 tan α> 0,则 α是().A .第一象限角B .第二象限角C .第三象限角D .第四象限角→ → →4.在四边形 ABCD 中,若 AC =AB +AD ,则四边形 ABCD 一定是().A .矩形B .菱形C .正方形D .平行四边形5.设 a ∈ - 1, 1,1, 3 ,则使函数 y = x a 的定义域为 R 且为奇函数的所有a 值为().2A .1,3B .- 1,1C .- 1,3D .- 1, 1, 36.若 f ( x)= x 22mx 4(m R ) 在 [2,) 单调递增,则 m 的取值范围为(). A . m = 2B . m <2C . m ≤ 2D . m ≥27.同时满足两个条件: ( 1)定义域内是减函数; ( 2)定义域内是奇函数的函数是().A . f ( x)= x xB .f ( x)= x1C . f ( x)= tan xD . xln xf ( x)=8.函数 yx 的定义域是 ().lg(2 x)A .[0,2)B . [0,1)∪( 1, 2)C .( 1, 2)D .[0,1)1 x≤9.设函数 f ( x )= 3 , x 1则满足 f (x )≤ 3 的 x 的取值范围是 ().1 log 3 x, x 1A .[0,+ ∞)B . [ 1,3]C .[0, 3]D .[ 1,+∞)r9r95=2 sin ) , b =(2cos ,2sin ) 且,若≤<<≤6r26r⊥ ( r) 则 - 的值为().a baA .或3B .4 C .3D .或74444411.已知函数 f ( x) sin(x) (其中0 ,)图象相邻对称轴的距离为,22一个对称中心为 (,0) ,为了得到 g(x) cos x 的图象,则只要将 f ( x) 的图象().6πB .向右平移π个单位个单位A .向右平移 612π D .向左平移 πC .向左平移 6个单位12个单位12.偶函数 f (x) 满足 f (x 1) f ( x 1) ,且在 x [0,1] 时, f ( x)x 2 , g( x) ln x ,则函数 f ( x) 与 g( x) 图象交点的个数是().A . 1B . 2C . 3D .4二、填空题 (本大题共 4 小题,每小题 5 分,共 20 分,将答案填在题中的横线上)13.已知 的终边过点 P( 12,5) ,则 cos =.= lg x, x 2 ,则 f [ f (2)].14. f ( x)x 2≥2e , xuuuruuuur15.在 △ABC 中, M 是 BC 的中点, AM =3 ,点 P 在 AM 上,且满足AP =2PM,则uuur uuur uuurPA (PB PC ) 的值为.2x 1 , x2.已知f (x),若 f ( x)- a 0 有三个不同的实数根,则实数a 的取值范163, x ≥2x 1围为.三、解答题(本大题共 6 小题,共70 分.解答应写出文字说明、证明过程或演算步骤)17.计算下列式子的值:(1)2lg 2+lg 3;1 11+2lg 0.36 +3lg 8(2)sin 25cos25tan(25) .6 3 418.已知集合A= { x|2≤ x≤8} , B= { x|1<x<6} , C= { x|x>a} , U= R.(1)求 A∪ B,(C U A)∩B;(2)若 A∩C≠,求 a 的取值范围.→→19.已知平面上三点 A, B, C,BC=( 2- k, 3), AC=( 2, 4).(1)若三点 A, B, C 不能构成三角形,求实数k 应满足的条件;(2)若△ ABC 中角 A 为直角,求 k 的值.20.一个工厂生产某种产品每年需要固定投资100 万元,此外每生产 1 件该产品还需要增加投资 1 万元,年产量为x( x∈ N* )件.当x≤20 时,年销售总收入为(33x-x2)万元;当x>20 时,年销售总收入为260 万元.记该工厂生产并销售这种产品所得的年利润为y 万元.(1)求y(万元)与x(件)的函数关系式,并写出自变量x 的取值范围;(2)该工厂的年产量为多少件时,所得年利润最大?(年利润=年销售总收入-年总投资).21.函数y Asin( x)( A 0,0,0) 在一个周期内的图象如下,求此函数的解析式。
22.已知f (x)是定义在[ 1,1]上的奇函数,且 f (1)=1 ,若 m, n [ 1,1], m n≠0 时,有f ( m) f ( n) >0.m n(1)求证:f (x)在[ 1,1]上为增函数;(2)求不等式f ( x 1) f (1 x) 的解集;2(3)若f ( x)≤t2 t 1 2 tan1 对所有 x [ 1,1],[ , ] 恒成立,求实cos2 3 4数 t 的取值范围.2016-2017 学年上学期期末考试数学模拟试卷( A)答案一、选择题题号123456789101112 答案A B C D A C A B A B D B 二、填空题13.-1214.0 15.- 4 16.( 0, 1)13三、解答题lg 12=lg 12= 1.17.( 1)原式=1+lg 1.2 lg 10+ lg 1.2( 2)原式=sin cos tan4 =11 1=0 .6 3 2 218.解:( 1) A∪ B= { x|2≤ x≤ 8} ∪ { x|1<x<6} = { x|1<x≤ 8} .∵C U A={ x|x<2 或 x>8} ,∴( C U A)∩B= { x|1<x<2} .( 2)∵ A∩C≠,∴ a<8.19.解:( 1)由三点A, B, C 不能构成三角形,得A, B, C 在同一直线上,→→即向量 BC与 AC平行,∴4( 2- k)- 2×3=0,解得 k=1.2→→(2)∵ BC=( 2- k, 3),∴ CB=( k- 2,- 3),→→ →∴AB= AC+ CB=( k, 1).→→→ →当 A 是直角时, AB⊥ AC,即 AB·AC= 0,∴ 2k+ 4= 0,解得 k=- 2.20.解:( 1)当 0< x≤ 20 时, y=( 33x- x2)- x- 100=- x2+ 32x- 100;当 x> 20 时, y= 260-100- x= 160- x.故 y x 2 32x<≤100,0x 20(x∈N*).160>20 x, x(2)当 0<x≤ 20 时, y=- x2+ 32x- 100=-( x- 16)2+ 156,x = 16 时, y max = 156.而当 x > 20 时, 160- x < 140,故 x = 16 时取得最大年利润.21. 解:( 1) f ( x)=2cos 2 x3 sin 2x = cos2x3sin 2x 1 = 2sin 2 x16令 — 2k ≤2x≤ 2k , k Z ,解得 2k 2≤2x ≤ 2k,26 233即 k≤ x ≤ k , kZ .36Q x [0,] , f ( x )的递增区间为 [0,],[2, ]63( 2)依题意:由 2sin2x61= t 1 ,得 t 2sin 2x,6即函数 y t 与 y2sin 2x6 的图象在 x [0, ] 有两个交点,2∵ x [0,] ,∴ 2x [ ,7].2 6 6 6当 2x [ , ] 时, sin 2x [ 1,1] , y ∈ 1,2 6 6 2 6 2当2x[ , 7] 时, sin 2x 6 [ 1,1] , y ∈ 1,26 2 62故由正弦图像得: 1≤ t <222. 解:( 1)证明:任取 x 1, x 2[ 1,1]且 x 1 x 2 ,则f ( x 2 ) f ( x 1)f ( x 2 )f ( x 1)f ( x 2 )f ( x 1 )gx 2 ( x 1)( x 2 x 1 )∴f (x 2 )f ( x 1 ) ,∴ f (x) 为增函数.1≤ x+ 1≤121) f (1 x)1≤ 1 x ≤1 0≤ x <1( 2) f (x21< 14x+ x2即不等式 f ( x1) f (1 x) 的解集为 0, 1.2 4( 3)由于 f (x) 为增函数,∴ f (x) 的最大值为f (1)=1≤ t 2 +t12tan1对 ∈, 恒成立cos 23 4t 2 +t ≥ 1+2 tan +2 对 [, ] 的恒成立,cos 23 4设 g(a)=12+t ≥ g( ) max , ∈,cos 2+2 tan +2 ,则 t 34又 g( )= 1+2 tan +2=cos 2+sin 2 +2 tan+2cos 2cos 2=1+tan 2 +2 tan2+2 ,+2= tan +1∴ ∈, , tan ∈3,1 , 当 tan =1时 , g( )max=g ( )=63 44∴ t 2 t ≥6 ,则 t +3 t2 ≥0 ,∴ t ≥2或t ≤ -3 ,所以实数 t 的取值范围为 t ≥2 或 t ≤ -3 .。