人教版八年级数学上册第十四章:143《因式分解》习题.doc
人教版八年级数学上册 14.3.2 用公式法进行因式分解 同步练习(含答案)
用公式法进行因式分解一、填空题(本大题共20小题,共60.0分)1.分解因式:xy2+8xy+16x= ______ .2.因式分解:4m2-36= ______ .3.因式分解:2a3-8ab2= ______ .4.将多项式mn2+2mn+m因式分解的结果是______ .5.把多项式4ax2-9ay2分解因式的结果是______ .6.因式分解:2x2-32x4= ______ .7.因式分解:a2b-4ab+4b= ______ .8.分解因式:mx2-4m= ______ .9.分解因式a2b-a的结果为______ .10.分解因式:2ax2-8a= ______ .11.分解因式:2m2-8= ______ .12.分解因式:ma2+2mab+mb2= ______ .13.分解因式:a2b-b3= ______ .14.分解因式:x(x-1)-y(y-1)= ______ .15.分解因式:ax3y-1axy= ______ .416.因式分解:3y2-12= ______ .17.因式分解:m2n-6mn+9n= ______ .18.因式分解:a2b-ab+1b= ______ .419.分解因式-a3+2a2b-ab2= ______ .20.分解因式:a2b+4ab+4b= ______ .二、计算题(本大题共30小题,共180.0分)21.分解因式(1)a2(a-b)+4b2(b-a)(2)m4-1(3)-3a+12a2-12a3.22.把下列多项式分解因式:(1)6x2y-9xy;(2)4a2-1;(3)n2(n-6)+9n.23.把下列各式因式分解(1)ap-aq+am(2)a2-4(3)a2-2a+1(4)ax2+2axy+ay2.24.分解因式:x+xy+xy2(1)14(2)(m+n)3-4(m+n)25.因式分解:(1)x(x-2)-3(2-x)(2)x2-10x+25.26.把下列各式进行因式分解:(1)a3-6a2+5a;(2)(x2+x)2-(x+1)2;(3)4x2-16xy+16y2.27.因式分解:(1)x2-y2(2)-4a2b+4ab2-b3.28.分解因式(1)x3-16x(2)8a2-8a+2.(2)b4-4ab3+4ab2.30.分解因式:(1)2x2-4x(2)a2(x-y)-9b2(x-y)(3)4ab2-4a2b-b3(4)(y2-1)2+6(1-y2)+9.31.分解因式:(1)3a2+6ab+3b2(2)9(m+n)2-(m-n)2.32.因式分解:(1)a(x-y)-b(y-x)(2)3ax2-12ay2(3)(x+y)2+4(x+y+1)33.分解因式:(1)a(x-y)-b(y-x);(2)16x2-64;(3)(x2+y2)2-4x2y2.34.分解因式(1)4x3y-xy3(2)-x2+4xy-4y2.35.分解下列因式:(1)9a2-1(2)p3-16p2+64p.36.因式分解:(1)x2-10xy+25y2(2)3a2-12ab+12b2(3)(x2+y2)2-4x2y2(4)9x4-81y4.37.将下列各式分解因式(1)16a2b2-1(2)12ab-6(a2+b2)38.把下列各式因式分解(1)4a2-16(2)(x2+4)2-16x2.39.把下列多项式因式分解:(1)x3y-2x2y+xy;(2)9a2(x-y)+4b2(y-x).40.分解因式(1)x3-xy2(2)(x+2)(x+4)+1.41.因式分解:-3a3b+6a2b2-3ab3.42.把下列各式分解因式:①4m(x-y)-n(x-y);②2t2-50;③(x2+y2)2-4x2y2.43.因式分解(1)x2-5x-6(2)2ma2-8mb2(3)a3-6a2b+9ab2.44.分解因式:2x2-12x+18.45.分解因式:(1)x3+2x2+x(2)x3y3-xy.46.因式分解:(1)ax2-2ax+a(2)24(a-b)2-8(b-a)47.因式分解:(1)4x2-16y2(2)x2-10x+25.48.分解因式(1)m(a-3)+2(3-a)(2)x2-6x+9.49.因式分解:6xy2-9x2y-y2.50.分解因式(1)x2(a+b)-a-b(2)a3b-2a2b2+ab3(3)y4-3y3-4y2(4)-(a2+2)2+6(a2+2)-9.用公式法进行因式分解答案和解析【答案】1.x(y+4)22.4(m+3)(m-3)5.a (2x +3y )(2x -3y )6.2x 2(1+4x )(1-4x )7.b (a -2)28.m (x +2)(x -2)9.a (ab -1)10.2a (x +2)(x -2)11.2(m +2)(m -2)12.m (a +b )213.b (a +b )(a -b )14.(x -y )(x +y -1)15.axy (x +12)(x -12)16.3(y +2)(y -2)17.n (m -3)218.b (a -12)219.-a (a -b )220.b (a +2)221.解:(1)原式=a 2(a -b )-4b 2(a -b )=(a -b )(a 2-4b 2)=(a -b )(a +2b )(a -2b );(2)原式=(m 2+1)(m 2-1)=(m 2+1)(m +1)(m -1);(3)原式=-3a (4a 2-4a +1)=-3a (2a -1)2.22.解:(1)原式=3xy (2x -3);(2)原式=(2a +1)(2a -1);(3)原式=n (n 2-6n +9)=n (n -3)2.23.解:(1)原式=a (p -q +m );(2)原式=(a +2)(a -2);(3)原式=(a -1)2;(4)原式=a (x 2+2xy +y 2)=a (x +y )2.24.解:(1)原式=14x (1+4y +4y 2)=14x (1+2y )2;(2)原式=(m +n )[(m +n )2-4]=(m +n )(m +n +2)(m +n -2).25.解:(1)原式=x (x -2)+3(x -2)=(x -2)(x +3);(2)原式=(x -5)2.26.解:(1)原式=a (a 2-6a +5)=a (a -1)(a -5);(2)原式=(x 2+x +x +1)(x 2+x -x -1)=(x +1)2(x +1)(x -1);(3)原式=4(x 2-4xy +4y 2)=4(x -2y )2.27.解:(1)原式=(x +y )(x -y );(2)原式=-b (4a 2-4ab +b 2)=-b (2a -b )2.28.解:(1)原式=x (x 2-16)=x (x +4)(x -4);(2)原式=2(4a 2-4a +1)=2(2a -1)2.29.解:(1)原式=3(m 4-16)=3(m 2+4)(m +2)(m -2);30.解:(1)原式=2x(x-2);(2)原式=(x-y)(a2-9b2)=(x-y)(a+3b)(a-3b);(3)原式=-b(b2-4ab+4a2)=-b(2a-b)2;(4)原式=(y2-1)2-6(y2-1)+9=(y2-4)2=(y+2)2(y-2)2.31.解:(1)原式=3(a2+2ab+b2)=3(a+b)2;(2)原式=[3(m+n)+m-n][3(m+n)-(m-n)]=(4m+2n)(2m+4n)=4(2m+n)(m+2n).32.解:(1)原式=a(x-y)+b(x-y)=(x-y)(a+b);(2)原式=3a(x2-4y2)=3a(x+2y)(x-2y);(3)原式=(x+y)2+4(x+y)+4=(x+y+2)2.33.解:(1)原式=a(x-y)+b(x-y)=(x-y)(a+b);(2)原式=16(x2-4)=16(x+2)(x-2);(3)原式=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2.34.解:(1)原式=4xy(x2-y2)=4xy(x+y)(x-y);(2)原式=-(x2-4xy+4y2)=-(x-2y)2.35.解:(1)原式=(3a+1)(3a-1);(2)原式=p(p2-16p+64)=p(p-8)2.36.解:(1)原式=(x-5y)2;(2)原式=3(a2-4ab+4b2)=3(a-2b)2;(3)原式=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2;(4)原式=9(a2+3y2)(x2-3y2).37.解:(1)原式=(4ab+1)(4ab-1);(2)原式=-6(a2-2ab+b2)=-6(a-b)2.38.解:(1)原式=4(a2-4)=4(a+2)(a-2);(2)原式=(x2+4+4x)(x2+4-4x)=(x-2)2(x+2)2.39.解:(1)原式=xy(x2-2x+1)=xy(x-1)2;(2)原式=9a2(x-y)-4b2(x-y)=(x-y)(3a+2b)(3a-2b).40.解:(1)原式=x(x2-y2)=x(x+y)(x-y);(2)原式=(x+3)2.41.解:原式=-3ab(a2-2ab+b2)=-3ab(a-b)2.42.解:①4m(x-y)-n(x-y)=(x-y)(4m-n);②2t2-50=2(t2-25)=2(t+5)(t-5);③(x2+y2)2-4x2y2=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2.43.解:(1)原式=(x-6)(x+1);(2)原式=2m(a2-4b2)=2m(a+2b)(a-2b);(3)原式=a(a2-6ab+9b2)=a(a-3b)2.44.解:原式=2(x2-6x+9)=2(x-3)2.45.解:(1)原式=x(x2+2x+1)=x(x+1)2;(2)原式=xy(x2y2-1)=xy(xy+1)(xy-1).(2)原式=24(a-b)2+8(a-b)=8(a-b)[3(a-b)+1]=8(a-b)(3a-3b+1).47.解:(1)原式=(2x+4y)(2x-4y);(2)原式=(x-5)2.48.解:(1)原式=m(a-3)-2(a-3)=(a-3)(m-2);(2)原式=(x-3)2.49.解:原式=-y(9x2-6xy+y).50.解:(1)原式=x2(a+b)-(a+b)=(a+b)(x2-1)=(a+b)(x+1)(x-1);(2)原式=ab(a2-2ab+b2)=ab(a-b)2;(3)原式=y2(y2-3y-4)=y2(y-4)(y+1);(4)原式=-[(a2+2)-3]2=-(a-1)2(a+1)2.。
人教版八年级上册 14.3因式分解综合训练(含答案)
人教版八年级上册 因式分解综合训练(含答案)1.分解因式:(1)(a 2+2a -2)(a 2+2a +4)+9; (2)(b 2-b +1)(b 2-b +3)+1.2.分解因式(1)20a 3-30a 2 (2)25(x+y )2-9(x-y )23.分解因式:x 2-y 2-4x +6y -5.4.因式分解:222()14()24x x x x ---+.5.因式分解:a (n -1)2-2a (n -1)+a.6.因式分解(1) 2()3()x a b y b a -+- (2) 22222(16)64x y x y +-6.因式分解:22444x xy y --+.8.因式分解:(1)316x x - (2)221218x x -+9.因式分解:c(a-b)-2(a-b)2c+(a-b)3c.10.因式分解:()()()219a x y y x -+- ()532288ax ax ax ++11.分解因式:(1)18a 3-2a ; (2)ab(ab -6)+9; (3)m 2-n 2+2m -2n.12.因式分解:x 2﹣5x+4;13.因式分解:(1)x 2﹣5x ﹣6 (2)9a 2(x ﹣y )+4b 2(y ﹣x )(3)y 2﹣x 2+6x ﹣9 (4)(a 2+4b 2)2﹣16a 2b214.把下列各式因式分解:(1)224a b - (2)32269x x y xy -+(4)2()()m m n n m -+- (4)222(4)16x x +-15.对下列多项式进行分解因式:(1)(x ﹣y )2+16(y ﹣x ). (2)1﹣a 2﹣b 2﹣2ab .16.分解因式:(1)x 4﹣2x 2y 2+y 4; (2) 322a a a -+.17.分解因式:(1)()()36x a b y b a ---; (2)4224817216x x y y -+;18.因式分解:(1)3349x y xy - (2)222(6)6(6)9x x ---+19.因式分解:(1)-4(xy +1)2+16(1-xy )2; (2)(x 2-3)2+2(3-x 2)+1;(3) x 2-ax -bx +ab .19.因式分解:2()16()a x y y x -+-20.因式分解:()()222x 2x 7x 2x 8+-+-21.分解因式:(1)81x 4﹣16;(2)8ab 3+2a 3b ﹣8a 2b223.分解因式.(1)-2a 2+4a (2)3349x y xy - (3)4x 2-12x +9 (4)2()6()9a b a b +-++24.因式分解:(1)-2m+4m2-2m3;(2)a2﹣b2﹣2a+1;(3)(x-y)2-9(x+y)2;25.把下面各式分解因式:(1)4x2﹣8x+4 (2)x2+2x(x﹣3y)+(x﹣3y)2.26.分解因式:(a2+2a)2﹣7(a2+2a)﹣8.27.(1)分解因式:22222a b-4a b+8ab(2)分解因式:9a2(x—y)+4b2(y—x)(3)分解因式:(x2+y2)2-4x2y2(4)利用分解因式计算求值:2662-2342(5)利用分解因式计算求值:已知x-3y=-1,xy=2,求x 3y-6x 2y 2+9xy 3的值.28.分解因式:(1)222(4)16a a +-; (2)(2)(2)3a a a +-+.29.计算:32)(32)x y c x y c -+++(.30.分解因式:(1)-3x 2+6xy -3y 2; (2)2216()25()a b a b +--.参考答案1.(1)(a+1)4(2)(b2-b+2)2【解析】试题分析:(1) 设a2+2a=m,原式转化为: (m-2)(m+4)+9,然后先利用整式乘法法则展开可得: m2+4m -2m-8+9,即m2+2m+1,利用完全平方公式因式分解可得(m+1)2,最后将m替换为a2+2a即可,(2)设b2-b=n,原式转化为: (n+1)(n+3)+1,然后先利用整式乘法法则展开可得: n2+3n+n+3+1,即n2+4n+4,利用完全平方公式因式分解可得(n+2)2,最后将n替换为b2-b即可.试题解析:(1)设a2+2a=m,则原式=(m-2)(m+4)+9,=m2+4m-2m-8+9,=m2+2m+1,=(m+1)2,=(a2+2a+1)2,=(a+1)4.(2)设b2-b=n,则原式=(n+1)(n+3)+1,=n2+3n+n+3+1,=n2+4n+4,=(n+2)2,=(b2-b+2)2.2.(1)10a2(2a﹣3)(2)4(4x+y)(x+4y)【解析】分析:(1)利用提公因式法,找到并提取公因式10a2即可;(2)利用平方差公式进行因式分解,然后整理化简即可.详解:(1)解:20a 3﹣30a 2=10a 2(2a ﹣3)(2)解:25(x+y )2﹣9(x ﹣y )2=[5(x+y )+3(x ﹣y )][5(x+y )﹣3(x ﹣y )] =(8x+2y )(2x+8y ); =4(4x+y)(x+4y) .点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).3.(x +y -5)(x -y +1)【解析】试题分析: 把-5拆成4-9 “凑”成(x 2-4x +4)和(y 2-6y +9)两个整体,然后利用完全平方公式进行因式分解即可.试题解析:原式=(x 2-4x +4)-(y 2-6y +9),=(x -2)2-(y -3)2,=(x +y -5)(x -y +1). 4.(x-2)(x+1)(x-4)(x+3) 【解析】分析:先把x 2-x 看做一个整体,然后根据十字相乘法的分解方法和特点分解因式.详解:原式=(x 2-x ﹣2)(x 2-x ﹣12)=(x -2)(x +1)(x -4)(x +3)点睛:本题考查了十字相乘法分解因式,用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,难点在于要二次利用十字相乘法分解因式,整体思想的利用也比较关键. 5.a(n-2)2【解析】试题分析:根据题意,先提公因式a ,然后把n-1看做一个整体,利用完全平方公式分解即可.试题解析:原式=a[(n-1)2-2(n-1)+1]=a[(n-1)-1]2=a(n-2)2点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).6.(1) (2x-3y)(a ﹣b );(2)(x +4y)2(x -4y)2. 【解析】试题分析:(1)将b -a 转化为-(a -b ),然后提出公因式(a -b )即可; (2)先利用平方差公式分解,然后利用完全平方公式分解即可. 试题解析:(1)原式=2x(a -b)-3y(a -b) =(2x -3y )(a ﹣b )(2)原式=[(x 2+16y 2)+8xy ][(x 2+16y 2)-8xy ]=(x +4y )2(x -4y )2.7. (x-2y+2)(x-2y-2) 【解析】分析:将多项式第一、三、四项结合,利用完全平方公式分解因式,再利用平方差公式分解,即可得到结果.详解:原式=(x ﹣2y )2﹣4=(x ﹣2y ﹣2)(x ﹣2y +2).点睛:本题考查了因式分解﹣分组分解法,涉及的知识有:完全平方公式,平方差公式,熟练掌握公式是解答本题的关键.8.(1)(4)(4)x x x +-;(2)22(3)x - 【解析】试题分析:根据因式分解的方法步骤,一提(公因式)二套(平方差公式,完全平方公式)三检查(是否分解彻底),可直接进行因式分解.试题解析:(1)原式=()216x x - =()()44x x x +-(2)原式=()2269x x -+=()223x - 9.c(a-b)(a-b-1)2. 【解析】 【分析】首先提取公因式c(a-b),再利用完全平方公式进行分解因式即可得答案. 【详解】c(a-b)-2(a-b)2c+(a-b)3c. =c(a-b)[1-2(a-b)+(a-b)2] =c(a-b)(a-b-1)2. 【点睛】本题考查了因式分解,本题需要二次分解,先提公因式,然后再利用完全平方公式分解,一定要做到不能再分解因式为止.熟练利用提公因式,完全平方公式是解题关键.10.(1)()()() 33x y a a -+-;(2)()222ax x +.【解析】 【分析】(1)先提取公因式()x y -,再用平方差公式继续分解即可;(2)先提取公因式2ax ,再用完全平方公式继续分解即可. 【详解】()()()2 19a x y y x -+-()()29x y a =--()()()33x y a a =-+-;()532288ax ax ax ++()42244ax x x =++ ()222ax x =+.【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.11.(1)2a(3a +1)(3a -1)(2)(ab -3)2 (3)(m -n)(m +n +2)【解析】 【分析】(1)提公因式2a 后利用平方差公式二次分解即可;(2)整理后利用完全平方公式分解因式即可;(3)利用分组分解法分解因式即可. 【详解】(1)18a3-2a=2a(9a2-1)=2a(3a+1)(3a-1);(2)ab(ab-6)+9=a2b2-6ab+9=(ab-3)2;(3)m2-n2+2m-2n=(m+n)(m-n)+2(m-n)=(m-n)(m+n+2).【点睛】本题考查了因式分解,根据题目特点,灵活选用因式分解的方法是解本题的关键,解题时要分解到每一个因式都不能够再分解为止.12.(x﹣1)(x﹣4)【解析】【分析】利用“十字交叉”法因式分解;【详解】x2﹣5x+4=(x-1)(x-4)【点睛】考查了因式分解,对于mx +px+q形式的多项式,用a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c).13.(1)(x﹣6)(x+1);(2)(x﹣y)(3a+2b)(3a﹣2b);(3)(y+x﹣3)(y﹣x+3);(4)(a+2b)2(a﹣2b)2.【解析】【分析】(1)直接利用十字相乘法分解因式得出答案;(2)直接提取公因式(x﹣y),进而利用平方差公式分解因式即可;(3)直接将后三项分组进而利用公式法分解因式即可;(4)直接利用平方差公式以及完全平方公式分解因式得出答案.【详解】解:(1)x2﹣5x﹣6=(x﹣6)(x+1);(2)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(3)y2﹣x2+6x﹣9=y2﹣(x2﹣6x+9)=y2﹣(x﹣3)2=(y+x﹣3)(y﹣x+3);(4)(a2+4b2)2﹣16a2b2=(a2+4b2+4ab)(a2+4b2﹣4ab)=(a+2b)2(a﹣2b)2.【点睛】此题主要考查了公式法以及分组分解法和十字相乘法分解因式,正确应用公式是解题关键,因式分解要分解到每个因式都不能再分解为止.14.(1)(a+2b)(a-2b) ;(2)x(x-3y)2;(3)(m-n)(m+1)(m-1);(4)(x+2)2(x-2)2【解析】分析:(1)直接利用平方差公式进行分解即可;(2)首先提取公因式x,再利用完全平方公式进行分解即可;(3)首先提取公因式(m-n),再利用平方差公式进行分解即可;(4)首先利用平方差公式进行分解,再完全平方公式进行分解即可.详解:(1)原式=(a+2b)(a-2b);(2)原式=x(x2-6xy+9y2)= x(x-3y)2;(3)原式=(m-n)(m2-1)=(m-n)(m+1)(m-1);(4)原式=(x2+4x+4)(x2-4x+4)=(x+2)2(x-2)2点睛:此题主要考查了平方差公式分解,关键是掌握平方差公式:a2-b2=(a+b)(a-b).15.(1)(x﹣y)(x﹣y﹣16);(2)(1+a+b)(1﹣a﹣b).【解析】【分析】(1)先把第二项变形,然后把x﹣y看做一个整体,提取x﹣y即可;(2)先把后三项提取“-”号,并用完全平方公式分解,然后再用平方差公式分解即可. 【详解】解:(1)原式=(x﹣y)2﹣16(x﹣y)=(x﹣y)(x﹣y﹣16);(2)原式=1﹣(a2+b2+2ab)=1﹣(a+b)2=(1+a+b)(1﹣a﹣b).【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.16.(1)(x ﹣y )2(x+y )2;(2)()21a a -【解析】分析:(1)先用完全平方公式,再用平方差公式即可.(2)先提取公因式,再用完全平方公式即可. 详解:(1)原式=()()()22222x y x y x y -=-+.(2)原式=()()222a 11a a a a -+=-.点睛:(1)考查了完全平方公式、平方差公式;(2)考查了提取公因式法、完全平方公式. 17.(1)()()32a b x y -+;(2)()()223232x y x y +-【解析】分析:(1)直接提取公因式3(a-b )即可;(2)先利用完全平方公式分解因式,再利用平方差公式继续分解因式即可. 详解:(1)原式=3x (a-b )+6y (a-b )=3(a-b )(x+2y ).(2)81x 4-72x 2y 2+16y 4,=(9x 2-4y 2)2,=(3x+2y )2(3x-2y )2.点睛:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.(1) (2)22(3)(3)x x +-【解析】试题分析:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).试题解析:(1)3349x y xy - =xy (2x-3y )(2x+3y ) (2)()()2226669x x ---+=(x 2-6-3)2 =(x+3)2(x-3)219.(1) 4(xy -3)(3xy -1);(2) (x +2)2(x -2)2;(3) (x -a )(x -b ). 【解析】 【分析】(1)先提取公因式﹣4,再利用平方差公式因式分解即可; (2)先配方成完全平方式,再利用平方差公式因式分解即可; (3)用提取公因式法因式分解即可. 【详解】(1)-4(xy +1)2+16(1-xy )2=-4[(xy +1)2-4(1-xy )2]=-4[(xy +1)+2(1-xy )][(xy +1)-2(1-xy )] =-4(xy +1+2-2xy )(xy +1-2+2xy ) =-4(-xy +3)(3xy -1) =4(xy -3)(3xy -1); (2)(x 2-3)2+2(3-x 2)+1=(x 2-3)2-2(x 2-3)+1=(x 2-3-1)2=(x 2-4)2=(x +2)2(x -2)2;(3)x 2-ax -bx +ab =x (x -a )-b (x -a ) =(x -a )(x -b ). 20.(x-y)(a+4)(a-4) 【解析】试题分析:根据因式分解的步骤和方法,根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解),即解可求解.试题解析:原式=a²(x-y )-16(x-y) =(x-y )(a²-16) =(x-y)(a+4)(a-4)点睛:此题主要考查了因式分解,解题关键是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解),即可求解. 21.()()()2x 2x 4x 1-++ 【解析】 【分析】根据因式分解的方法即可解答.【详解】解:原式()()222821x x x x -=+++()()()2241x x x -=++【点睛】本题考查因式分解,掌握提公因式是解题关键.22.(1)(9x 2+4)(3x+2)(3x ﹣2);(2)2ab (a ﹣2b )2.【解析】 【分析】(1)直接利用平方差公式分解因式得出答案;(2)首先提取公因式2ab ,再利用完全平方公式分解因式得出答案. 【详解】(1)原式=(9x 2+4)(9x 2﹣4)=(9x 2+4)(3x+2)(3x ﹣2);(2)原式=2ab (4b 2+a 2﹣4ab )=2ab (a ﹣2b )2.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.23.(1)-2a (a-2)(2)xy (2x+3y )(2x-3y )(3)(2x-3)2(4)(a+b-3)2【解析】分析:(1)提取公因式-2a 即可;(2)提取公因式xy 后,再运用平方差公式; (3)运用完全平方公式,进行因式分解即可; (4)运用完全平方公式,进行因式分解即可.详解:(1)-2a2+4a=-2a(a-2);()33-x y xy249()22=-49xy x y()()=+-xy x y x y2323()2-+x x34129=(2x-3)2(4)原式=(a+b-3)2点睛:本题考查了公式法、分组分解法分解因式,熟练掌握公式结构是解题的关键.24.(1)-2m(m-1)²;(2) (a﹣1+b)(a﹣1﹣b);(3) -4(2x+y)(x+2y).【解析】【分析】1、可将-2m提取出来即可得出.2、可以先将一个完全平方式提取出来,即可得出答案.3、可先将式子乘出来,再合并同类项,提出-4,即可得出答案.【详解】(1)原式=-2m(m-1)² .(2)解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).(3)原式=-4(2x+y)(x+2y).【点睛】本题考查了多项式化简合并,熟悉掌握多项式的花间合并是解决本题的关键.25.(1)4(x﹣1)2(2)(2x﹣3y)2【解析】分析:(1)首先提取公因式4,进而利用完全平方公式分解因式得出答案;(2)直接利用完全平方公式分解因式进而得出答案.详解:(1)4x2-8x+4=4(x2-2x+1)=4(x-1)2;(2)x2+2x(x-3y)+(x-3y)2=(x+x-3y)2=(2x-3y)2.点睛:此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.26.(a+4)(a﹣2)(a+1)2.【解析】【分析】将a2+2a看成一个整体,可将(a2+2a)2-7(a2+2a)-8分解为(a2+2a-8)(a2+2a+1)的形式,进而根据十字相乘法和公式法,可继续分解.【详解】(a2+2a)2﹣7(a2+2a)﹣8=(a2+2a﹣8)(a2+2a+1)=(a+4)(a﹣2)(a+1)2.【点睛】本题考查了因式分解,熟练掌握因式分解法中十字相乘法,公式法是解题的关键.27.(1)2ab(ab-2a+4b)(2)(x—y)(3a+2b)(3a—2b)(3)(x+y)2(x-y)2(4)16000(5)2.分析:(1)直接提公因式2ab 即可分解;(2)首先提公因式(x-y ),然后利用平方差公式分解;(3)利用平方差方公式即可分解;(4)直接利用平方差公式分解,再计算即可;(5)首先提公因式xy ,然后利用完全平方公式分解后,把x-3y=-1,xy=2代入即可求值.详解:(1)原式=2ab (ab-2a+4b )(2)原式=(x —y )(3a+2b )(3a —2b )(3)原式=(x +y)2(x-y)2(4)原式=(266+234)(266-234)=16000(5)原式=()()22xy x 3y 2-1=2-=⨯点睛:此题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.28.(1)22(2)(2)a a +-;(2)(1)(4)a a -+.【解析】试题分析:(1)先用平方差公式,再用完全平方公式分解即可;(2)先用整式乘法计算,再用十字相乘法分解即可.试题解析:解:(1)原式=22(44)(44)a a a a +++-=22(2)(2)a a +-; (2)原式=243a a -+=(1)(4)a a -+.29.x 2+4cx+4c 2-9y 2【分析】先提取公因式再去括号化简即可.【详解】解:原式=()()2323x c y x c y ⎡⎤⎡⎤+-++⎣⎦⎣⎦=()()2223x c y +-=222449x cx c y ++-.【点睛】本题考查了多项式,解题的关键是熟练的掌握多项式的运算法则.30.(1) -3(x-y )2 ;(2)(9a-b)(9b-a) 【解析】【分析】(1)先提取公因式,再用完全平方公式即可;(2)直接用平方差公式分解即可.【详解】(1)原式= -3(x 2-2xy+y 2)= -3(x-y )2 ;(2)原式 =[4(a+b )+5(a-b )][4(a+b )-5(a-b )]=(9a-b)(9b-a)【点睛】本题考查了提公因式法与公式法的综合运用,解题的关键是熟练的掌握提公因式法与公式法的综合运用.。
人教版八年级数学上册14.3因式分解过关练习题(含答案)(含知识点)
2021-2022学年度秋季八年级上学期人教版数学因式分解过关练习题(含答案)1.将下列各式分解因式(1)3p2﹣6pq(2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy(2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y2 4.分解因式:(1)2x2﹣x(2)16x2﹣1(3)6xy2﹣9x2y﹣y3(4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a(2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y27.因式分解:(1)x2y﹣2xy2+y3(2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy(2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a 的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).人教版八年级数学上册必须要记、背的知识点第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n边形的内角和等于(2)n-·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)n-条对角线,把多边形分成(2)n-个三角形.②n边形共有(3)2n n-条对角线.第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上. ⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -.②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质: ①等腰三角形两腰相等. ②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合. ④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质: ①等边三角形三边都相等. ②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.八年级上册练习题4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式一、知识框架:二、知识概念: 1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯=⑵幂的乘方:()nm mn a a =⑶积的乘方:()nn nab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式.⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:⑴平方差公式:()()22a b a b ab -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+ 4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式.⑶多项式÷单项式:用多项式每个项除以单项式后相加.⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式 子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:()()22a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±③立方和:332()(a b a b a ab b+=+-+④立方差:332()(a b a b a ab b-=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++ ⑷拆项法 ⑸添项法第十五章 分式一、知识框架 :二、知识概念:整式乘法整式除法 因式分解乘法法则等边三角形的性质人教版数学2020-2021八年级上册题 1.分式:形如AB,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a bc c c±±=⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cbb d bd±±=⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c acb d bd⨯=⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d adb d bc bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭ 8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数) ⑵()nm mnaa=(m n 、是正整数) ⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >)⑸nn n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n n a a-=(0a ≠,n 是正整数)9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).。
人教版八年级数学上册14.3因式分解 (培优) 专练(含答案解析)
人教版八年级数学上册:14.3因式分解(培优)专练习题一.选择题(共12小题)1.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于( )A.﹣1B.﹣1或﹣11C.1D.1或112.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为( )A.25B.20C.15D.103.将a3b﹣ab进行因式分解,正确的是( )A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)4.已知:a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值( )A.3B.2C.1D.05.已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为( )A.﹣1B.0C.3D.66.已知496﹣1可以被60到70之间的某两个整数整除,则这两个数是( )A.61,63B.63,65C.65,67D.63,647.对于算式20183﹣2018,下列说法错误的是( )A.能被2016整除B.能被2017整除C.能被2018整除D.能被2019整除8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是( )A.0B.1C.2D.39.分解因式b2(x﹣3)+b(x﹣3)的正确结果是( )A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)10.多项式x2+7x﹣18因式分解的结果是( )A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)11.若k为任意整数,且993﹣99能被k整除,则k不可能是( )A.50B.100C.98D.9712.任何一个正整数n都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解n=p×q(p≤q)称为正整数n的最佳分解,并定义一个新运算.例如:12=1×12=2×6=3×4,则.那么以下结论中:①;②;③若n是一个完全平方数,则F(n)=1;④若n是一个完全立方数(即n=a3,a是正整数),则.正确的个数为( )A.1个B.2个C.3个D.4个二.填空题(共6小题)13.已知a=,b=,c=,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值是 .14.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc= .15.已知a,b,c满足a+b+c=1,a2+b2+c2=3,a3+b3+c3=5.则a4+b4+c4的值是 .16.已知ab=3,a+b=5,则a3b+2a2b2+ab3的值 .17.已知x,y,z是△ABC的三边,且满足2xy+x2=2yz+z2,则△ABC的形状是 .18.已知a2+a﹣1=0,则a3+2a2+2019= .三.解答题(共5小题)19.因式分解:a2﹣2ab+b2﹣1.20.因式分解.(1)a2(x+y)﹣4b2(x+y)(2)p2(a﹣1)+p(1﹣a)(3).21.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.22.观察下列各式.①4×1×2+1=(1+2)2;②4×2×3+1=(2+3)2;③4×3×4+1=(3+4)2…(1)根据你观察、归纳,发现的规律,写出4×2016×2017+1可以是哪个数的平方?(2)试猜想第n个等式,并通过计算验证它是否成立.(3)利用前面的规律,将4(x2+x)(x2+x+1)+1因式分解.23.定义:若数p可以表示成P=x2+y2﹣xy(x,y为自然数)的形式,则称P为“希尔伯特”数.例如:3=22+11﹣2×1,39=72+52﹣7×5,147=132+112﹣13×11…所以3,39,147是“希尔伯特”数.(1)请写出两个10以内的“希尔伯特”数.(2)像39,147这样的“希尔伯特”数都是可以用连续两个奇数按定义给出的运算表达出来,试说明所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)已知两个“希尔伯特”数,它们都可以用连续两个奇数按定义给出的运算表达出来,且它们的差是224,求这两个“希尔伯特”数.人教版八年级数学上册14.3因式分解培优专练习题参考答案与试题解析一.选择题(共12小题)1.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于( )A.﹣1B.﹣1或﹣11C.1D.1或11【解答】解:a2﹣ab﹣ac+bc=11(a2﹣ab)﹣(ac﹣bc)=11a(a﹣b)﹣c(a﹣b)=11(a﹣b)(a﹣c)=11∵a>b,∴a﹣b>0,a,b,c是正整数,∴a﹣b=1或11,a﹣c=11或1.故选:D.2.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为( )A.25B.20C.15D.10【解答】解法一:∵x2﹣2x﹣5=0,∴x2=2x+5,∴d=x4﹣2x3+x2﹣12x﹣5,=(2x+5)2﹣2x(2x+5)+x2﹣12x﹣5=4x2+20x+25﹣4x2﹣10x+x2﹣12x﹣5=x2﹣2x﹣5+25=25.解法二:∵x2﹣2x﹣5=0,∴x2﹣2x=5,∴d=x4﹣2x3+x2﹣12x﹣5=x2(x2﹣2x+1)﹣12x﹣5=6x2﹣12x﹣5=6(x2﹣2x)﹣5=6×5﹣5=25.故选:A.3.将a3b﹣ab进行因式分解,正确的是( )A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.4.已知:a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值( )A.3B.2C.1D.0【解答】解:∵a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,∴a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,∴a2+b2+c2﹣ab﹣bc﹣ca======3,故选:A.5.已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为( )A.﹣1B.0C.3D.6【解答】解:a2b+ab2﹣a﹣b=(a2b﹣a)+(ab2﹣b)=a(ab﹣1)+b(ab﹣1)=(ab﹣1)(a+b)将a+b=3,ab=1代入,得原式=0.故选:B.6.已知496﹣1可以被60到70之间的某两个整数整除,则这两个数是( )A.61,63B.63,65C.65,67D.63,64【解答】解:利用平方式公式进行分解该数字:496﹣1=(448+1)(448﹣1)=(448+1)(424+1)(424﹣1)=(448+1)(424+1)(412+1)(46+1)(43+1)(43﹣1)=(448+1)(424+1)(412+1)(46+1)×65×63故选:B.7.对于算式20183﹣2018,下列说法错误的是( )A.能被2016整除B.能被2017整除C.能被2018整除D.能被2019整除【解答】解:20183﹣2018=2018(20182﹣1)=2018×(2018+1)(2018﹣1)=2018×2019×20172018×2019×2017能被2017、2018、2019整除,不能被2016整除.故选:A.8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是( )A.0B.1C.2D.3【解答】解:∵a=2018x+2018,b=2018x+2019,c=2018x+2020,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,∴a2+b2+c2﹣ab﹣ac﹣bc=====3,故选:D.9.分解因式b2(x﹣3)+b(x﹣3)的正确结果是( )A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)【解答】解:b2(x﹣3)+b(x﹣3),=b(x﹣3)(b+1).故选:B.10.多项式x2+7x﹣18因式分解的结果是( )A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)【解答】解:原式=(x﹣2)(x+9).故选:D.11.若k为任意整数,且993﹣99能被k整除,则k不可能是( )A.50B.100C.98D.97【解答】解:∵993﹣99=99×(992﹣1)=99×(99+1)×(99﹣1)=99×100×98,∴k可能是99、100、98或50,故选:D.12.任何一个正整数n都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解n=p×q(p≤q)称为正整数n的最佳分解,并定义一个新运算.例如:12=1×12=2×6=3×4,则.那么以下结论中:①;②;③若n是一个完全平方数,则F(n)=1;④若n是一个完全立方数(即n=a3,a是正整数),则.正确的个数为( )A.1个B.2个C.3个D.4个【解答】解:依据新运算可得①2=1×2,则,正确;②24=1×24=2×12=3×8=4×6,则,正确;③若n是一个完全平方数,则F(n)=1,正确;④若n是一个完全立方数(即n=a3,a是正整数),如64=43=8×8,则F(n)不一定等于,故错误.故选:C.二.填空题(共6小题)13.已知a=,b=,c=,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值是 6 .【解答】解:a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,2(a2+b2+c2﹣ab﹣bc﹣ac)=2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=(a﹣b)2+(a﹣c)2+(b﹣c)2=(﹣1)2+(﹣4)2+(﹣1)2=1+4+1=6故答案为6.14.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc= 3 .【解答】解:∵a=2005x+2006,b=2005x+2007,c=2005x+2008,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=3.故答案为:3.15.已知a,b,c满足a+b+c=1,a2+b2+c2=3,a3+b3+c3=5.则a4+b4+c4的值是 .【解答】解:∵(a+b+c)2=a2+b2+c2+2(ab+bc+ac),a+b+c=1,a2+b2+c2=3,∴1=3+2(ab+bc+ac),∴ab+bc+ac=﹣1,∵a3+b3+c3﹣3abc=(a+b+c)(a2+b2+c2﹣ab﹣bc﹣ac),a3+b3+c3=5∴5﹣3abc=3+1∴abc=,∵(ab+bc+ac)2=a2b2+b2c2+a2c2+2abc(a+b+c)∴1=a2b2+b2c2+a2c2+∴a2b2+b2c2+a2c2=∵(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)∴9=a4+b4+c4+∴a4+b4+c4=.故答案为:.16.已知ab=3,a+b=5,则a3b+2a2b2+ab3的值 75 .【解答】解:∵a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2又已知ab=3,a+b=5,∴原式=3×52=75故答案为:75.17.已知x,y,z是△ABC的三边,且满足2xy+x2=2yz+z2,则△ABC的形状是 等腰三角形 .【解答】解:∵2xy+x2=2yz+z2,∴2xy+x2﹣2yz﹣z2=0,因式分解得:(x﹣z)(x+z+2y)=0,∵x,y,z是△ABC的三边,∴x+z+2y≠0,∴x﹣z=0,∴x=z,∴△ABC是等腰三角形;故答案为:等腰三角形.18.已知a2+a﹣1=0,则a3+2a2+2019= 2020 .【解答】解:∵a2+a﹣1=0∴a2+a=1∴a3+a2=a又∵a3+2a2+2019=a3+a2+a2+2019=a+a2+2019=1+2019=2020∴a3+2a2+2019=2020三.解答题(共5小题)19.因式分解:a2﹣2ab+b2﹣1.【解答】解:a2﹣2ab+b2﹣1,=(a﹣b)2﹣1,=(a﹣b+1)(a﹣b﹣1).20.因式分解.(1)a2(x+y)﹣4b2(x+y)(2)p2(a﹣1)+p(1﹣a)(3).【解答】解:(1)原式=(x+y)(a2﹣4b2)=(x+y)(a+2b)(a﹣2b);(2)原式=(a﹣1)(p2﹣p)=p(a﹣1)(p﹣1);(3)原式===.21.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.【解答】解:∵a2c2﹣b2c2=a4﹣b4,∴a4﹣b4﹣a2c2+b2c2=0,∴(a4﹣b4)﹣(a2c2﹣b2c2)=0,∴(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=0,∴(a2+b2﹣c2)(a2﹣b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC为直角三角形或等腰三角形或等腰直角三角形.22.观察下列各式.①4×1×2+1=(1+2)2;②4×2×3+1=(2+3)2;③4×3×4+1=(3+4)2…(1)根据你观察、归纳,发现的规律,写出4×2016×2017+1可以是哪个数的平方?(2)试猜想第n个等式,并通过计算验证它是否成立.(3)利用前面的规律,将4(x2+x)(x2+x+1)+1因式分解.【解答】解:(1)根据观察、归纳、发现的规律,得到4×2016×2017+1=(2016+2017)2=40332;(2)猜想第n个等式为4n(n+1)+1=(2n+1)2,理由如下:∵左边=4n(n+1)+1=4n2+4n+1,右边=(2n+1)2=4n2+4n+1,∴左边=右边,∴4n(n+1)+1=(2n+1)2;(3)利用前面的规律,可知4(x2+x)(x2+x+1)+1=(x2+x+x2+x+1)2=(x2+2x+1)2=(x+1)4.23.定义:若数p可以表示成P=x2+y2﹣xy(x,y为自然数)的形式,则称P为“希尔伯特”数.例如:3=22+11﹣2×1,39=72+52﹣7×5,147=132+112﹣13×11…所以3,39,147是“希尔伯特”数.(1)请写出两个10以内的“希尔伯特”数.(2)像39,147这样的“希尔伯特”数都是可以用连续两个奇数按定义给出的运算表达出来,试说明所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)已知两个“希尔伯特”数,它们都可以用连续两个奇数按定义给出的运算表达出来,且它们的差是224,求这两个“希尔伯特”数.【解答】解:(1)∵0=02+02×0,1=12+02﹣1×0,3=22+11﹣2×1,4=22+02﹣2×0,7=22+32﹣2×3,9=32+02﹣3×0,∴10以内的“希尔伯特”数有0,1,3,4,7,9;(2)设“希尔伯特”数为(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1).(n为自然数)∵(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1)=4n2+3,∵4n2能被4整除,∴所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)设两个“希尔伯特”数分别为:(2m+1)2+(2m﹣1)2﹣(2m+1)(2m﹣1)和(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1).(m,n为自然数).由题意:(2m+1)2+(2m﹣1)2﹣(2m+1)(2m﹣1)﹣[(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1)]=224,∴m2﹣n2=56,∴(m+n)(m﹣n)=56,可得整数解:或,∴这两个“希尔伯特”数分别为:327和103或903和679.。
2022-2023学年人教版八年级数学上册《14-3因式分解》同步练习题(附答案)
2022-2023学年人教版八年级数学上册《14.3因式分解》同步练习题(附答案)一.选择题1.下列等式中,从左到右的变形是因式分解的是()A.a(a﹣3)=a2﹣3a B.(a+3)2=a2+6a+9C.6a2+1=a2(6+)D.a2﹣9=(a+3)(a﹣3)2.4a2b3与2ab4c的公因式为()A.ab B.2ab C.2ab3D.2abc3.把多项式x2+2x﹣8因式分解,正确的是()A.(x﹣4)2B.(x+1)(x﹣8)C.(x+2)(x﹣4)D.(x﹣2)(x+4)4.下列多项式中,不能用乘法公式进行因式分解的是()A.a2﹣1B.a2+2a+1C.a2+4D.9a2﹣6a+1 5.若x2+px+q=(x﹣3)(x﹣5),则p+q的值为()A.15B.7C.﹣7D.﹣86.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解7.a2(a2﹣1)﹣a2+1的值()A.不是负数B.恒为正数C.恒为负数D.不等于08.若c2﹣a2﹣2ab﹣b2=10,a+b+c=﹣5,则a+b﹣c的值是()A.2B.5C.20D.99.已知a2+b2=2a﹣b﹣2,则3a﹣b的值为()A.4B.2C.﹣2D.﹣410.分解因式x2+ax+b,甲看错了a的值,分解的结果为(x+6)(x﹣1),乙看错了b的值,分解结果为(x﹣2)(x+1),那么x2+ax+b分解因式的正确结果为()A.(x﹣2)(x+3)B.(x+2)(x﹣3)C.(x﹣2)(x﹣3)D.(x+2)(x+3)11.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:蜀、爱、我、巴、丽、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.巴蜀美C.我爱巴蜀D.巴蜀美丽12.如果△ABC的三边a、b、c满足ac2﹣bc2=(a﹣b)(a2+b2),则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形13.(﹣8)2022+(﹣8)2021能被下列数整除的是()A.3B.5C.7D.9二.填空题14.分解因式x2+ax+b,甲看错a的值,分解结果是(x+6)(x﹣1),乙看错b的值,分解的结果是(x﹣2)(x+1),则a=,b=.15.若实数x满足x2﹣3x﹣1=0,则2x3﹣5x2﹣5x﹣2020的值为.16.多项式8x2m y n﹣1﹣12x m y n中各项的公因式为.17.已知a+b=1,则代数式a2﹣b2+2b+9的值为.18.若多项式x2﹣mx+n(m、n是常数)分解因式后,有一个因式是x﹣3,则3m﹣n的值为.19.若a=12,b=109,则ab﹣9a的值为.20.如图,六块纸板拼成一张大矩形纸板,其中一块是边长为a的正方形,两块是边长为b 的正方形,三块是长为a,宽为b的矩形(a>b).观察图形,发现多项式a2+3ab+2b2可因式分解为.21.已知多项式f(x)除以x﹣1,x﹣2,x﹣3的余数分别为1,4,5,则f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式的最大值为.三.解答题22.因式分解:(1)ax2﹣4ax+4a;(2)x2(m﹣n)+y2(n﹣m);(3)(x+2)(x+4)﹣3;(4)9(a+b)2﹣(a﹣b)2.23.把下列各式分解因式:(1)x2+3x﹣4;(2)a3b﹣ab;(3)3ax2﹣6axy+3ay2.24.因式分解:(1)﹣4x3+16x2﹣20x(2)a2(x﹣2a)2﹣2a(2a﹣x)3(3)(x2+2x)2﹣2(x2+2x)﹣3(4)x3+3x2﹣4(拆开分解法)25.如图是L形钢条截面,请写出它的面积公式.并计算:当a=54mm,b=54.5mm,c=8.5mm时的面积.26.(1)若代数式(m﹣2y+1)(n+3y)+ny2的值与y无关,且等腰三角形的两边长为m、n,求该等腰三角形的周长.(2)若x2﹣2x﹣5=0,求2x3﹣8x2﹣2x+2020的值.27.例题:已知二次三项式x2﹣4x+m中有一个因式是x+3,求另一个因式以及m的值.解:设另一个因式为x+n,得x2﹣4x+m=(x+3)(x+n).∴解得n=﹣7,m=﹣21.另一个因式为x﹣7,m的值为﹣21.仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是x﹣5,求另一个因式以及k的值.28.整体思想是数学解题中常见的一种思想方法:下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程.将“x2+2x”看成一个整体,令x2+2x=y,则原式=y2+2y+1=(y+1)2再将“y”还原即可.解:设x2+2x=y.原式=y(y+2)+1(第一步)=y2+2y+1(第二步)=(y+1)2(第三步)=(x2+2x+1)2(第四步).问题:(1)①该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;②请你模仿以上方法尝试对多项式(x2﹣4x)(x2﹣4x+8)+16进行因式分解;(2)请你模仿以上方法尝试计算:(1﹣2﹣3﹣…﹣2021)×(2+3+…+2022)﹣(1﹣2﹣3﹣…﹣2022)×(2+3+…+2021).参考答案一.选择题1.解:A.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.从等式的右边不是几个整式的积的形式,即从左到右的变形不属于因式分解,故本选项不符合题意;D.左到右的变形属于因式分解,故本选项符合题意;故选:D.2.解:4a2b3与2ab4c的公因式为2ab3,故选:C.3.解:x2+2x﹣8=(x﹣2)(x+4),故选:D.4.解:A、a2﹣1=(a+1)(a﹣1),可以运用公式法分解因式,不合题意;B、a2+2a+1=(a+1)2,可以运用公式法分解因式,不合题意;C、a2+4,无法利用公式法分解因式,符合题意;D、9a2﹣6a+1=(3a﹣1)2,可以运用公式法分解因式,不合题意;故选:C.5.解:∵x2+px+q=(x﹣3)(x﹣5),∴x2+px+q=x2﹣8x+15,故p=﹣8,q=15,则p+q=﹣8+15=7.故选:B.6.解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.7.解:∵a2(a2﹣1)﹣a2+1=a2(a2﹣1)﹣(a2﹣1)=(a2﹣1)(a2﹣1)=(a2﹣1)2,∴a2(a2﹣1)﹣a2+1的值不是负数.故选:A.8.解:∵c2﹣a2﹣2ab﹣b2=10,∴c2﹣(a2+2ab+b2)=10,∴c2﹣(a+b)2=10,∴(c+a+b)(c﹣a﹣b)=10,∵a+b+c=﹣5,∴c﹣a﹣b=﹣2,∴a+b﹣c=2,故选:A.9.解:∵a2+b2=2a﹣b﹣2,∴a2﹣2a+1+b2+b+1=0,∴,∴a﹣1=0,b+1=0,∴a=1,b=﹣2,∴3a﹣b=3+1=4.故选:A.10.解:因为(x+6)(x﹣1)=x2+5x﹣6,(x﹣2)(x+1)=x2﹣x﹣2,由于甲看错了a的值没有看错b的值,所以b=﹣6,乙看错了b的值而没有看错a的值,所以a=﹣1,所以多项式x2+ax+b为x2﹣x﹣6=(x﹣3)(x+2)故选:B.11.解:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x+y)(x﹣y)(a+b)(a﹣b),由已知可得:我爱巴蜀,故选:C.12.解:∵ac2﹣bc2=(a﹣b)(a2+b2),∴(a﹣b)(a2+b2﹣c2)=0,∴a=b或a2+b2=c2,即该三角形是等腰三角形或直角三角形.故选:D.13.解:∵(﹣8)2022+(﹣8)2021=(﹣8)2021×(﹣8)+(﹣8)2021=(﹣8)2021×(﹣8+1)=(﹣8)2021×(﹣7)=82021×7.∴能被7整除.故选:C.二.填空题14.解:∵分解因式x2+ax+b,甲看错a的值,分解结果是(x+6)(x﹣1),∴x2+ax+b=x2+5x﹣6,故b=﹣6;∵乙看错b的值,分解的结果是:∴x2+ax+b=(x﹣2)(x+1)=x2﹣x﹣2,∴a=﹣1则a=﹣1,b=﹣6.故答案为:﹣1,﹣6.15.解:∵x2﹣3x﹣1=0,∴x2﹣3x=1,∴2x3﹣5x2﹣5x+2020=2x3﹣6x2+x2﹣3x﹣2x+2020=2x(x2﹣3x)+(x2﹣3x)﹣2x+2020=2x+1﹣2x+2020=2021,故答案为:2021.16.解:系数的最大公约数是4,各项相同字母的最低指数次幂是x m y n﹣1,所以公因式是4x m y n﹣1,故答案为:4x m y n﹣1.17.方法一:解:∵a2﹣b2+2b+9=(a+b)(a﹣b)+2b+9又∵a+b=1,∴原式=a﹣b+2b+9=a+b+9=10.方法二:解:∵a2﹣b2+2b+9=a2﹣(b2﹣2b+1)+10=a2﹣(b﹣1)2+10=(a﹣b+1)(a+b﹣1)+10.又∵a+b=1,∴原式=10.18.解:设另一个因式为x+a,则(x+a)(x﹣3)=x2+(﹣3+a)x﹣3a,∴﹣m=﹣3+a,n=﹣3a,∴m=3﹣a∴3m﹣n=3(3﹣a)﹣(﹣3a)=9﹣3a+3a=9,故答案为:9.19.解:因为a=12,b=109,所以ab﹣9a=a(b﹣9)=12×(109﹣9)=12×100=1200,故答案为:1200.20.解:根据图形得到长方形的面积为:a2+ab+ab+ab+b2+b2=a2+3ab+2b2,也可以为(a+b)(a+2b),则根据此图,多项式a2+3ab+2b2分解因式的结果为(a+b)(a+2b),故答案为:(a+b)(a+2b).21.解:∵(x﹣1)(x﹣2)(x﹣3)的结果是三次多项式,∴多项式f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式为二次多项式,设这个余式为ax2+bx+c,由题意得:,解得:.∴f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式为﹣x2+6x﹣4.∵﹣x2+6x﹣4=﹣(x﹣3)2+5,∴f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式的最大值为5.故答案为:5.三.解答题22.解:(1)原式=a(x2﹣4x+4)=a(x﹣2)2;(2)原式=x2(m﹣n)﹣y2(m﹣n)=(m﹣n)(x2﹣y2)=(m﹣n)(x+y)(x﹣y);(3)原式=x2+6x+8﹣3=x2+6x+5=(x+1)(x+5);(4)原式=[3(a+b)+(a﹣b)][3(a+b)﹣(a﹣b]=(4a+2b)(2a+4b)=4(2a+b)(a+2b).23.解:(1)x2+3x﹣4=(x+4)(x﹣1);(2)a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1);(3)3ax2﹣6axy+3ay2=3a(x2﹣2xy+y2)=3a(x﹣y)2;24.解:(1)﹣4x3+16x2﹣20x=﹣4x(x2﹣4x+5);(2)a2(x﹣2a)2﹣2a(2a﹣x)3=a2(2a﹣x)2﹣2a(2a﹣x)3=a(2a﹣x)2[a﹣2(2a﹣x)]=a(2a﹣x)2[a﹣4a+2x]=a(2a﹣x)2(﹣3a+2x);(3)(x2+2x)2﹣2(x2+2x)﹣3=[(x2+2x)﹣3][(x2+2x)+1]=(x2+2x﹣3)(x2+2x+1)=(x+3)(x﹣1)(x+1)2;(4)x3+3x2﹣4=(x3+2x2)+(x2﹣4)=x2(x+2)+(x+2)(x﹣2)=(x+2)(x2+x﹣2)=(x+2)(x+2)(x﹣1)=(x+2)2(x﹣1).25.解:L形钢条的面积=ac+(b﹣c)c=ac+bc﹣c2=c(a+b﹣c);当a=54mm,b=54.5mm,c=8.5mm时,原式=8.5×(54+54.5﹣8.5)=850(mm2),即面积为850mm2.26.解:(1)(m﹣2y+1)(n+3y)+ny2=mn+3my﹣2ny﹣6y2+n+3y+ny2=mn+n+(3m﹣2n+3)y+(n﹣6)y2∵代数式的值与y无关,∴,∴,①若等腰三角形的三边长分别为6,6,3,则等腰三角形的周长为15.②若等腰三角形的三边长分别为6,3,3,则不能组成三角形.∴等腰三角形的周长为15.(2)∵x2﹣2x﹣5=0,∴x2=2x+5,∴2x3﹣8x2﹣2x+2020=2x(2x+5)﹣8x2﹣2x+2020=4x2+10x﹣8x2﹣2x+2020=﹣4x2+8x+2020=﹣4(2x+5)+8x+2020=﹣8x﹣20+8x+2020=2000.27.解:设另一个因式为(2x+a),得2x2+3x﹣k=(x﹣5)(2x+a),则2x2+3x﹣k=2x2+(a﹣10)x﹣5a,∴,解得a=13,k=65,故另一个因式为(2x+13),k的值为65.28.解:(1)①没有,设x2+2x=y.原式=y(y+2)+1(第一步)=y2+2y+1(第二步)=(y+1)2(第三步)=(x2+2x+1)2(第四步)=(x+1)4(第五步).故答案为:(x+1)4;②设x2﹣4x=y.原式=y(y+8)+16=y2+8y+16=(y+4)2=(x2﹣4x+4)2=(x﹣2)4;(2)设x=1﹣2﹣3﹣...﹣2021,y=2+3+ (2022)则1﹣2﹣3﹣…﹣2022=x﹣2022,2+3+…+2021=y﹣2022,x+y=1+2022=2023,所以原式=xy﹣(x﹣2022)(y﹣2022)=xy﹣xy+2022(x+y)﹣20222=2022×2023﹣20222=2022(2022+1)﹣20222=2022.。
2022-2023学年人教版八年级数学上册《14-3因式分解》解答题专题提升训练(附答案)
2022-2023学年人教版八年级数学上册《14.3因式分解》解答题专题提升训练(附答案)1.分解因式:(1)5x2﹣5y2;(2)m3+6m2+9m.2.因式分解:(1)2a2b﹣a3﹣ab2;(2)9(a﹣b)2﹣(a+b)2.3.分解因式:(1)a2(b﹣2)+(2﹣b);(2)2x2+2x+.4.把下列各式因式分解:(1)﹣6x2+4xy;(2)3a2+12a+12;(3)2x(a﹣2)﹣y(2﹣a);(4)4a4﹣16a2.5.因式分解(1)a3﹣2a2b+ab2(2)4(m+n)2﹣(m﹣n)2(3)x2﹣2x﹣15(4)1﹣a2﹣4b2+4ab6.已知a+b=,ab=﹣,求代数式a3b+2a2b2+ab3的值.7.(1)因式分解:2a2(a﹣b)﹣8(a﹣b);(2)利用因式分解简化计算:2002﹣400×199+1992.8.观察下面的因式分解过程:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)利用这种方法解决下列问题:(1)因式分解:2a+6b﹣3am﹣9bm(2)△ABC三边a,b,c满足a2﹣ac﹣ab+bc=0,判断△ABC的形状.9.下面是某同学对多项式(x2﹣3x+4)(x2﹣3x+6)+1进行因式分解的过程.解:设x2﹣3x=m原式=(m+4)(m+6)+1(第一步)=m2+10m+25(第二步)=(m+5)2(第三步)=(x2﹣3x+5)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的.A.提取公因式;B.平方差公式;C.完全平方公式(2)请你模仿以上方法尝试对多项式(x2+2x)(x2+2x+6)+9进行因式分解.(3)因式分解:(x2﹣4x+6)(x2﹣4x+2)+4=(在横线处直接写出因式分解的结果).10.△ABC三边a、b、c满足a2+c2+2b2﹣2ab﹣2bc=0,判断△ABC的形状,并说明理由.11.常用的分解因式的方法有提取公因式法、公式法及十字相乘法.但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x ﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)已知:x+y=7,x﹣y=5.求:x2﹣y2﹣2y+2x的值.(3)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.12.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=a,则原式=(a+2)(a+6)+4(第一步)=a2+8a+16(第二步)=(a+4)2(第三步)=(x2﹣4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若彻底,直接跳到第(3)问;若不彻底,请先直接写出因式分解的最后结果:.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.13.甲、乙两个同学因式分解x2+ax+b时,甲看错了a,分解结果为(x+4)(x﹣8),乙看错了b,分解结果为(x﹣2)(x+6).求多项式x2+ax+b分解因式的正确结果.14.阅读下面材料完成分解因式.x2+(p+q)x+pq型式子的因式分解x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)=x(x+p)+q(x+p)=(x+P)(x+q)这样,我们得到x2+(p+q)x+pq=(x+p)(x+q).利用上式可以将某些二次项系数为1的二次三项式分解因式例把x2+3x+2分解因式分析:x2+3x+2中的二次项系数为1,常数项2=1×2,一次项系数3=1+2,这是一个x2+(p+q)x+pq型式子.解:x2+3x+2=x2+(1+2)x+2=(x+1)(x+2)请仿照上面的方法将下列多项式分解因式,(1)x2+10x+24;.(2)3a2﹣3ab﹣36b2.15.因为x2+2x﹣3=(x+3)(x﹣1),这说明多项式x2+2x﹣3有一个因式为x﹣1,我们把x =1代入此多项式发现x=1能使多项式x2+2x﹣3的值为0.利用上述阅读材料求解:(1)若x﹣3是多项式x2+kx+12的一个因式,求k的值;(2)若(x﹣3)和(x﹣4)是多项式x3+mx2+12x+n的两个因式,试求m,n的值.(3)在(2)的条件下,把多项式x3+mx2+12x+n因式分解.16.把下列各多项式因式分解:(1)﹣3x3y2+6x2y3﹣3xy4;(2)3x(a﹣b)﹣6y(b﹣a);(3)18b(a﹣b)2+12(b﹣a)3;(4)(x2+16y2)2﹣64x2y2;(5)(m2﹣5)2+8(m2﹣5)+16;(6)16x4﹣72x2y2+81y4.17.先阅读,再分解因式x3﹣1=x3﹣x2+x2﹣1=x2(x﹣1)+(x+1)(x﹣1)=(x﹣1)(x2+x+1)参考上述做法,将下列多项式因式分解(1)a3+1(2)a4+4.18.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,设x+y=m,则原式=m2+2m+1=(m+1)2.再将x+y=m代入,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法.请你写出下列因式分解的结果:(1)因式分解:1﹣2(x﹣y)+(x﹣y)2=;(2)因式分解:25(a﹣1)2﹣10(a﹣1)+1=;(3)因式分解:(y2﹣4y)(y2﹣4y+8)+16=.19.请先阅读下列文字与例题,再回答后面的问题:当因式分解中,无法直接运用提取公因式和乘法公式时,我们往往可以尝试将一个多项式分组后,再运用提取公因式或运用乘法公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)(2)x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)(1)根据上面的知识,我们可以将下列多项式进行分解:ax﹣ay﹣bx+by=()﹣()=()();x2﹣y2+x﹣y=()+()=()()(2)分解下列因式:①ab﹣ac+b﹣c;②﹣4b2+9a2﹣6ac+c2.20.现有足够多的甲、乙、丙三种卡片,如图1所示.(1)选用其中若干张卡片拼成一个长方形(图2).①请用两种不同的方法表示长方形(图2)的面积(用含有a,b的代数式表示).②若b=a,且长方形(图2)的面积是35,求一张乙卡片的面积.(2)若从中取若干张卡片拼成一个面积为4a2+4ab+b2的正方形,求出拼成的正方形的边长.参考答案1.解:(1)原式=5(x2﹣y2)=5(x+y)(x﹣y);(2)原式=m(m2+6m+9)=m(m+3)2.2.解:(1)2a2b﹣a3﹣ab2=﹣a(a2﹣2ab+b2)=﹣a(a﹣b)2;(2)9(a﹣b)2﹣(a+b)2=[3(a﹣b)+(a+b)][3(a﹣b)﹣(a+b)]=(3a﹣3b+a+b)(3a﹣3b﹣a﹣b)=(4a﹣2b)(2a﹣4b)=4(2a﹣b)(a﹣2b).3.解:(1)a2(b﹣2)+(2﹣b)=(b﹣2)(a2﹣1)=(b﹣2)(a+1)(a﹣1);(2)2x2+2x+=(4x2+4x+1)=(2x+1)2.4.解:(1)﹣6x2+4xy=﹣2x(3x﹣2y);(2)3a2+12a+12=3(a2+4a+4)=3(a+2)2;(3)2x(a﹣2)﹣y(2﹣a)=2x(a﹣2)+y(a﹣2)=(a﹣2)(2x+y);(4)4a4﹣16a2=4a2(a2﹣4)=4a2(a+2)(a﹣2).5.解:(1)原式=a(a2﹣2ab+b2)=a(a﹣b)2;(2)原式=[2(m+n)+(m﹣n)][2(m+n)﹣(m﹣n)]=(2m+2n+m﹣n)(2m+2n﹣m+n)=(3m+n)(m+3n);(3)原式=(x+3)(x﹣5);(4)原式=1﹣(a2﹣4ab+4b2)=1﹣(a﹣2b)2=(1+a﹣2b)(1﹣a+2b).6.解:a3b+2a2b2+ab3=a3b+a2b2+a2b2+ab3=a2b(a+b)+ab2(a+b)=(a2b+ab2)(a+b)=ab(a+b)(a+b)∵a+b=,ab=﹣,∴原式=﹣××=﹣;∴代数式a3b+2a2b2+ab3的值是﹣.7.解:(1)2a2(a﹣b)﹣8(a﹣b)=2(a﹣b)(a2﹣4)=2(a﹣b)(a+2)(a﹣2);(2)2002﹣400×199+1992=2002﹣2×200×199+1992=(200﹣199)2=1.8.解:(1)2a+6b﹣3am﹣9bm=(2a+6b)﹣(3am+9bm)=2(a+3b)﹣3m(a+3b)=(a+3b)(2﹣3m);或2a+6b﹣3am﹣9bm=(2a﹣3am)+(6b﹣9bm)=a(2﹣3m)+3b(2﹣3m)=(2﹣3m)(a+3b);(2)∵a2﹣ac﹣ab+bc=0,∴(a2﹣ac)﹣(ab﹣bc)=0,∴a(a﹣c)﹣b(a﹣c)=0,∴(a﹣c)(a﹣b)=0,∴a﹣c=0或a﹣b=0,∴a=c或a=b,∴△ABC是等腰三角形.9.解:(1)该同学第二步到第三步运用了因式分解的完全平方公式.故答案为:C;(2)设x2+2x=y,原式=y(y+6)+9=y2+6y+9=(y+3)2=(x2+2x+3)2;(3)设x2﹣4x+2=z,原式=z(z+4)+4=z2+4z+4=(z+2)2=(x2﹣4x+2+2)2=(x2﹣4x+4)2=[(x﹣2)2]2=(x﹣2)4.故答案为:(x﹣2)4.10.解:∵a2+c2+2b2﹣2ab﹣2bc=(a﹣b)2+(b﹣c)2=0,∴a=b=c,∴△ABC是等边三角形.11.解:(1)x2﹣2xy+y2﹣16=(x﹣y)2﹣42=(x﹣y+4)(x﹣y﹣4);(2)x2﹣y2﹣2y+2x=(x2﹣y2)+(2x﹣2y)=(x﹣y)(x+y+2)∵x+y=7,x﹣y=5,∴原式=(x﹣y)(x+y+2)=5×(7+2)=45;(3)∵a2﹣ab﹣ac+bc=0∴a(a﹣b)﹣c(a﹣b)=(a﹣b)(a﹣c)=0,∴a=b或a=c,∴△ABC是等腰三角形.12.解:(1)从第二步到第三步是两个数和的完全平方式,故选:C.(2)分解因式必须分解到每一个多项式都不能再分解为止,而(x2﹣4x+4)2=(x﹣2)4,故答案为:不彻底,(x﹣2)4.(3)设x2﹣2x=a,则原式=a(a+2)+1=a2+2a+1=(a+1)2=(x2﹣2x+1)2=(x﹣1)4.13.解:∵甲看错了a,分解结果为(x+2)(x+4),但b是正确的,(x+4)(x﹣8)=x2﹣4x﹣32,∴b=﹣32,∵(x﹣2)(x+6)=x2+4x﹣12,乙看错了b,但a是正确的,∴a=4,∴x2+ax+b=x2+4x﹣32=(x+8)(x﹣4).14.解:(1)x2+10x+24=(x+4)(x+6);(2)3a2﹣3ab﹣36b2=3(a2﹣ab﹣12b2)=3(a﹣4b)(a+3b).15.解:(1)∵x﹣3是多项式x2+kx+12的一个因式∴x=3时,x2+kx+12=0∴9+3k+12=0∴3k=﹣21∴k=﹣7∴k的值为﹣7.(2)(x﹣3)和(x﹣4)是多项式x3+mx2+12x+n的两个因式∴x=3和x=4时,x3+mx2+12x+n=0∴解得∴m、n的值分别为﹣7和0.(3)∵m=﹣7,n=0,∴x3+mx2+12x+n可化为:x3﹣7x2+12x ∴x3﹣7x2+12x=x(x2﹣7x+12)=x(x﹣3)(x﹣4)16.解:(1)﹣3x3y2+6x2y3﹣3xy4=﹣3xy2(x2﹣2xy+y2)=﹣3xy2(x﹣y)2;(2)3x(a﹣b)﹣6y(b﹣a)=3x(a﹣b)+6y(a﹣b)=3(a﹣b)(x+2y);(3)18b(a﹣b)2+12(b﹣a)3=18b(a﹣b)2﹣12(a﹣b)3=6(a﹣b)2[3b﹣2(a﹣b)]=6(a﹣b)2(3b﹣2a+2b)=6(a﹣b)2(5b﹣2a);(4)(x2+16y2)2﹣64x2y2;=(x2+16y2)2﹣(8xy)2=(x2+16y2+8xy)(x2+16y2﹣8xy)=(x+4y)2(x﹣4y)2;(5)(m2﹣5)2+8(m2﹣5)+16=(m2﹣5+4)2=(m2﹣1)2=[(m+1)(m﹣1)]2=(m+1)2(m﹣1)2;(6)16x4﹣72x2y2+81y4=(4x2﹣9y2)2=[(2x+3y)(2x﹣3y)]2=(2x+3y)2(2x﹣3y)2.17.解:(1)原式=a3+a2﹣a2﹣1=a2(a+1)﹣(a+1)(a﹣1)=(a+1)(a2﹣a+1);(2)原式=a4+4a2+4﹣4a2=(a2+2)2﹣(2a)2=(a2+2+2a)(a2+2﹣2a).18.解:(1)设x﹣y=a,原式=1﹣2a+a2=(1﹣a)2;将x﹣y=a代入,原式=(1﹣x+y)2;(2)设a﹣1=m,原式=25m2﹣10m+1=(5m﹣1)2;a﹣1=m代入,原式=(5a﹣6)2;(3)设y2﹣4y=a,原式=a(a+8)+16=a2+8a+16=(a+4)2,将y2﹣4y=a代入,原式=(y2﹣4y+4)2=(y﹣2)4.故答案分别为:(1﹣x+y)2;(5a﹣6)2;(y﹣2)4.19.解:(1)ax﹣ay﹣bx+by=(ax﹣ay)﹣(bx﹣by)=(a﹣b)(x﹣y);x2﹣y2+x﹣y=(x﹣y)(x+y)+x﹣y=(x+y+1)(x﹣y)故答案为:ax﹣ay;bx﹣by;(a﹣b);(x﹣y);x2﹣y2;x﹣y;(x+y+1);(x﹣y).(2)①ab﹣ac+b﹣c=a(b﹣c)+(b﹣c)=(a+1)(b﹣c);②﹣4b2+9a2﹣6ac+c2=9a2﹣6ac+c2﹣4b2=(3a﹣c)2﹣(2b)2=(3a﹣c+2b)(3a﹣c﹣2b)20.解:(1)①大长方形的长是(2a+b),宽是(a+b),面积为(2a+b)(a+b);大长方形面积等于图中6个图形的面积和为2a2+3ab+b2;②根据题意得,(2a+b)(a+b)=35,∵b=a,∴a(a+a)=35,∴a=2或﹣2(舍弃)∴b=3,∴ab=6,∴一张乙卡片的面积为6;(2)∵4a2+4ab+b2=(2a+b)2,∴拼成的正方形的边长为2a+b.。
人教版初中数学八年级上册 第十四章 14.3 整式的乘法 因式分解练习(含答案)
第十四章14.3整式的乘法因式分解练习1.因式分解:a2+2a+1=.2.因式分解:﹣3x2+6xy﹣3y2=.3.分解因式:a2b+4ab+4b=______.4.分解因式:2x2﹣8=_____________5.因式分解:4ax2﹣4ay2=_____.6.计算:20182﹣2018×2017=_____.7.把多项式9x3﹣x分解因式的结果是_____.8.把16a3﹣ab2因式分解_____.9.已知x2﹣4x+3=0,求(x﹣1)2﹣2(1+x)=_____.10.已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc-2b2,则△ABC是_____三角形. 11.多项式3x﹣6与x2﹣4x+4有相同的因式是_________.12.已知m²-n²=16,m+n=5,则m-n=5 ___________________.二、解答题13.因式分解:(2x+y)2﹣(x+2y)2.14.因式分解(x﹣2y)2+8xy.15.利用因式分解计算:2022+202×196+98216.把下列多项式分解因式:(1)3a2﹣12ab+12b2 (2)m2(m﹣2)+4(2﹣m)17.分解因式:(1)3x2﹣12x (2)(3)18.已知n为整数,试说明(n+7)2﹣(n﹣3)2一定能被20整除.19.已知a=2017x+2016,b=2017x+2017,c=2017x+2018.求a2+b2+c2﹣ab﹣bc﹣ca的值.20.已知a,b,c是三角形ABC的三边的长,且满足a2+2b2+c2-2b(a+c)=0,试判断此三角形三边的大小关系.21.先化简,再求值:4xy+(2x ﹣y )(2x+y )﹣(2x+y )2,其中x=2016,y=1.22.先化简,再求值:2(x-y)2-(2x+y)(x-3y),其中x=1,y=51-.23化简,求值(1)已知代数式(x ﹣2y )2﹣(x ﹣y )(x+y )﹣2y 2①当x=1,y=3时,求代数式的值;②当4x=3y ,求代数式的值.(2)已知3a 2+2a+1=0,求代数式2a (1﹣3a )+(3a+1)(3a ﹣1)的值.24.已知x 4+y 4+2x 2y 2﹣2x 2﹣2y 2﹣15=0,求x 2+y 2的值参考答案1.(a+1)2 2.﹣3(x﹣y)2 3.b(a+2)24.2(x+2)(x﹣2)5.4a(x﹣y)(x+y)6.2018 7.x(3x+1)(3x﹣1)8.a(4a+b)(4a﹣b)9.-4 10.等边11.x﹣212. 16/513.3(x+y)(x﹣y).14.(x+2y)2.15.9000016.(1)3(a﹣2b)2;(2)(m﹣2)2(m+2).17.(1)3x(x-4) (2)-2(m-2n)2 (3)(x-1)(a+b)(a-b)18.∵(n+7)2﹣(n﹣3)2=[(n+7)+(n-3)][(n+7)﹣(n﹣3)]=20(n+2),∴(n+7)2﹣(n﹣3)2一定能被20整除.19.3.∵a=2017x+2016,b=2017x+2017,c=2017x+2018,∴a﹣b=-1,b﹣c=-1,a﹣c=-2,则原式=(2a2+2b2+2c2-2ab-2bc-2ac)=[(a-b)2+(b-c)2+(a-c)2]=×(1+1+4)=3.20.a=b,c=b21.﹣2y2,﹣2.22.,023.(1)①15;②0;(2)﹣2.24.x2+y2=5.。
人教版八年级数学上册《14.3因式分解》练习题-附带答案
人教版八年级数学上册《14.3因式分解》练习题-附带答案一、单选题1.因式分解:=()A.B.C.D.2.多项式分解因式时应提取的公因式是()A.B.C.D.3.下列各式从左到右的变形因式分解正确的是()A.B.C.D.4.若则的值为()A.13 B.18 C.5 D.15.当为自然数时一定能()A.被5整除B.被6整除C.被7整除D.被8整除6.已知则代数式的值是()A.9 B.18 C.20 D.247.篮子里有若干苹果可以平均分给名同学也可以平均分给名同学(x为大于3的正整数)用代数式表示苹果数量不可能的是()A.B.C.D.8.小东是一位密码爱好者在他的密码手册中有这样一条信息:、、、、、依次对应下列六个字:科、爱、勤、我、理、学现将因式分解其结果呈现的密码信息可能是().A.勤学B.爱科学C.我爱理科D.我爱科学二、填空题9.在实数范围内分解因式:.10.分解因式:.11.若多项式有两个因式和则.12.已知x+y=4 x+3y=2则代数式x2+4xy+4y2的值为.13.将一个二次三项式分解因式一位同学因看错了一次项系数而分解成3(x-1)(x-9)另一位同学因看错了常数项而分解成3(x-2)(x-4) 那么这个二次三项式正确的分解应是.三、计算题14.因式分解:(1)(2) .15.把下列各式分解因式:(1)(2)(3)(4)16.已知:求下列多项式的值.(1)(2)17.先阅读下列材料再解答下列问题:分解因式:将:将看成整体设则原式再将换回去得原式上述解题用到的是“整体思想”“整体思想"是数学解题中常用的一种思想方法请你仿照上面的方法将下列式子进行因式分解:(1)(2).参考答案:1.A2.C3.D4.A5.D6.C7.B8.C9.10.11.-312.913.3(x﹣3)2 14.(1)解:=(6+x)(6−x)(2)解:=-2a()=-2a(a−3)2. 15.(1)解:(2)解:(3)解:(4)解:.16.(1)解:原式(2)解:将代入原式17.(1)解:设则原式将换回去得:原式(2)解:设则原式将换回去得:原式。
2024-2025学年人教版八年级上册数学 第十四章 整式的乘法与因式分解 测试卷(含答案)
第十四章测试卷一、选择题1.计算(a³)²÷a² 的结果是 ( )A. a³B. a⁴C. a⁷D. a⁸2.若(x−4)⁰=1,则x的取值范围是 ( )A. x≠4B. x>4C. x<4D. x≥43.下列因式分解正确的是( )A.2ax²−4ax=2a(x²−2x)B.−ax²+4ax−4a=−a(x−2)²C.x²+2xy+4y²=(x+2y)²D.−m²+n²=(−m+n)(−m−n)4.已知x+1x =5, 那么x2+1x2=( )A.10B.23C.25D.275.化简(a+b+c)²−(a−b+c)² 的结果为( )A.4ab+4bcB.4acC.2acD.4ab--4bc6.不等式(x+1)(x-2)>x(x+2)的解集是( )A.x>23 B.x>−23C.x<23 D.x<−237.已知((10x-31)(13x-17)-(13x-17)(3x-23)可因式分解成( ax+b)(7x+c),其中a,b,c均为整数,则a-b+c的值为( )A.-12B.-4C.22D.388.长方形的面积是9a²−3ab+6a³,一边长是3a,则它的另一边长是( )A.3a²−b+2a²B.b+3a+2a²C.2a²+3a−bD.3a²−b+2a9.已知a²−2a−1=0, 则a⁴−2a³−2a+ 1 等于( )A.0B.1C.2D.310.如图,两个正方形的边长分别为a、b,如果a+b=18, ab=60,则图中阴影部分的面积为( )A.144B.72C.68D.36二、填空题11.计算: (18x3y2−12x2y3+x2y2)÷(−6x2y2)=12.分解因式:a²b+ab²-a-b= .13.若规定 a⊗b=10ᵃ×10ᵃ,如 2⊗3=10²×10³=10⁵,则 4⊗8为 .14.若a-b=2,a-c=1.则(2a−b−c)²+(c−a)²=.15.多项式 x²+y²−4x+6y+15的最小值是 .三、解答题16.(8分)计算:(1)[(m+n)(m−n)+(m−n)2−4m(m−n)]÷(2m);(2)(m+n+2)(m+n-2)-m(m+4n).17.(9分)把下列各式分解因式:(1)(x−1)+b²(1−x);(2)−3x⁷+24x⁵−48x³;(3)(x+3)(x+4)+(x²−9).18.(9分)化简并求值:(2a−b)²−(4a+b)(a−b)−2b²,其中 a=12,b=−13.19.(9分)如图,一块长为 (6a²+4b²)m,宽为 5a ⁴m 的长方形铁皮,在它的四个角上各剪去一个边长为 2a³m的小正方形,然后将剩余部分折成一个无盖的盒子,则这个盒子的表面积是多少?20.(9分)已知 2ⁿ=a,5ⁿ=b,20ⁿ= c.试探究a ,b ,c 之间有什么关系.21.(10分)已知 2⁴⁸−1可以被 60 至 70 之间的某两个数整除,求这两个数.22.(10分)阅读材料:常用的分解因式方法有提公因式法、公式法等,但有的多项式只用上述方法是无法分解的,如 x²−4y²+2x −4y,细心观察这个式子会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式,过程:x²−4y²+2x −4y=(x²−4y²)+(2x −4y )=(x+2y)(x-2y)+2(x-2y)=(x-2y)(x+2y+2).这种分解因式的方法叫分组分解法,利用这种方法解决下列问题:(1)分解因式: x²−6xy +9y²−3x +9y;(2)△ABC 的三边长a,b,c 满足 a²−b²−ac +bc =0,判断 △ABC 的形状.^23.(11分)在《乘法公式》中我们学习了完全平方公式:(a±b)²=a²±2ab +b².类比此公式,我们把( (a+b)ⁿ写成如下形式:(a+b)n=Ca n b0+C1a n−1b1+C2a n−2b2+⋯+C n−1ab n−1+C n a0b n,右边的多项式叫做(a+b)ⁿ的二项展开式.把C0,C1,C2,⋯,Cn−1,Cn叫做二项式的系数,C+C1+C2+⋯+Cn−1+Cn的和叫做二项式的系数之和.(1)仔细观察下列各式中系数的规律,并填空:①(a+b)¹的二项式的系数之和为,((a+b)²的二项式的系数之和为,((a+b)³的二项式的系数之和为;②请写出(a+b)¹⁰的二项式的系数之和: .(2)设(x+1)17=a17x17+a16x16+⋯+a1x+a0,求a1+a2+a3+⋯+ a₁₆+a₁₇的值;(3)你能在(2)的基础上求出a2+a4+a6+⋯+a14+a16的值吗? 若能,请写出过程,若不能,请说明理由.第十四章测试卷1、B2、A3、B4、B5、A6、D7、C8、C9、C 10、B11、-3x+2y-1612、(a+b)(ab-1)13、101214、10 15、216、(1)解:原式=(m²−n²+m²−2mn+n²−4m²+4mn)÷(2m)=(−2m²+2mn)÷(2m)=-m+n.(2)解:原式= (m+n)²−2²−m²−4mn=m²+2mn+n²−4−m²−44mn =n²−2mn−4.17、(1)解:原式= (x−1)−b²(x−1)=(x−1)(1−b²)=(x−1)(1−b)(1+b).(2)解:原式=−3x³(x⁴−8x²+16)=−3x³(x²−4)²=−3x³(x+2)(x−2)².(3)解:原式= (x+3)(x+4)+(x+3)(x−3)=(x+3)(x+4+x−-3) =(x+3)(2x+1). 18、解:原式=4a²−4ab+b²−(4a²−3ab−b²)−2b²=−ab,当 a=12,b=−13时,原式=−12×(−13)=16.19、解:由题意,得这个盒子的表面积为(6a²+4b²)⋅5a⁴−4×(2a³)²=30a⁶+20a⁴b²−16a⁶=(14a⁶+20a⁴b²)(m²).20、解:因为 c=20ⁿ=(4×5)ⁿ=4ⁿ×5ⁿ=(2²)ⁿ×5ⁿ=(2ⁿ)²×5ⁿ=a²b,所以a,b,c之间的关系是 c=a²b.21、解:248−1=(224+1)(224−1)=(224+1)(2¹²+1)(2¹²−1)=(224+1)) (2¹²+1)(2⁶+1)(2⁶−1)=(224+1)(2¹²+1)×65×63,所以这两个数为63和65.22、解:(1)x²−6xy+9y²−3x+9y=(x²−6xy+9y²)−(3x−9y)=(x−3y)²-3(x-3y)=(x-3y)(x-3y-3).(2)∵a²−b²−ac+bc=0,(a²−b²)−(ac−bc)=0,∴(a+b)(a−b)−c(a−b)=0,∴(a−b))[(a+b)-c]=0,∵a,b,c是△ABC的三边长,∴(a+b)−c>0,∴a− b=0,得 a=b,∴△ABC是等腰三角形.23.解:(1) ①2¹、 2²、2³ ② 2¹⁰ .(2)由(1)①得( (x+1)¹⁷的二项式的系数之和为2¹⁷,即 a₀+a₁+a₂+a3+⋯+a16+a17=217,当x=0时, 1=a0,∴a1+a2+a3+⋯+a16+a17=2¹⁷−1.(3)当x=1时, (1+1)17=217=a17×1+a16×1+⋯+a1×1+a=a17+a16+⋯+a1+a①,当x=-1 时, (−1+1)¹⁷=0=−a17+a16−⋯+a2−a1+a0②,①+②)得 2(a0+a2+a4+a6+⋯+a14一a16=1,∴a2+a4+a6+⋯+a14+a16=216−1.。
初中数学人教版八年级上册 第十四章 14.3因式分解
初中数学人教版八年级上册第十四章14.3因式分解一、单选题(共9题;共18分)1. ( 2分) 方程x2﹣x=0的解为()A. x1=x2=1B. x1=x2=0C. x1=0,x2=1D. x1=1,x2=﹣12. ( 2分) 下列由左到右的变形,属于因式分解的是()A. (x+3y)(x﹣3y)=x2﹣9yB. x2﹣3x+2=(x﹣1)(x﹣2)C. 3x2+6x﹣1=3x(x+2)﹣1D. (x﹣2y)2=x2﹣4xy+4y23. ( 2分) 已知,,则的值为A. 12B.C.D. 244. ( 2分) 某天数学课上,老师讲了提取公因式分解因式,放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:-12xy2+6x2y+3xy=-3xy•(4y-__)横线空格的地方被钢笔水弄污了,你认为横线上应填写()A. 2xB. -2xC. 2x-1D. -2x-l5. ( 2分) 多项式2a2-18与3a2-18a+27的公因式是( )A. a-3B. a+3C. a-9D. a+96. ( 2分) 多项式x2﹣4xy﹣2y+x+4y2分解因式后有一个因式是x﹣2y,另一个因式是()A. x+2y+1B. x+2y﹣1C. x﹣2y+1D. x﹣2y﹣17. ( 2分) 已知实数(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值为()A. ﹣1B. 7C. ﹣1或7D. 以上全不正确8. ( 2分) 把多项式1+a+b+ab分解因式的结果是()A. (a-1)(b-1)B. (a+1)(b+1)C. (a+1)(b-1)D. (a-1)(b+1)9. ( 2分) 若a ,b ,c是三角形的三边之长,则代数式a-2ac+c-b的值()A. 小于0B. 大于0C. 等于0D. 以上三种情况均有可能二、填空题(共6题;共6分)10. ( 1分) 分解因式2(y – x)2+ 3(x – y)=________.11. ( 1分) 多项式15a2b2+5a2b﹣20a2b2中各项的公因式是________.12. ( 1分) 有一种用“分解因式”法产生的密码,方便记忆.原理是:如对于多项式,分解因式的结果是,若取,,则各个因式的值是:,,,于是就可以把“018162”作为一个六位数的密码.对于多项式,取,时,用上述方法产生的密码是:________ 写出一个即可.13. ( 1分) 若mn = 1,m - n = 2,则m2n - mn2的值是________.14. ( 1分) 已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,则△ABC为________三角形.15. ( 1分) 因式分解:x3-5x2+4x=________.三、计算题(共3题;共20分)16. ( 10分) 把下列各式因式分解:(1)(2)17. ( 5分) 先因式分解,再求值:(2x-3y)2-(2x+3y)2,其中x=,y=.18. ( 5分) 若|a+b-6|+(ab-4)2=0,求-a3b-2a2b2-ab3的值.四、解答题(共4题;共30分)19. ( 5分) 设x>0,试比较代数式x3和x2+x+2的值的大小.20. ( 5分) 数257-512能被120整除吗?请说明理由.21. ( 10分) 已知:多项式A=b3﹣2ab(1)请将A进行因式分解:(2)若A=0且a≠0,b≠0,求的值.22. ( 10分) 常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2-4y2-2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2-4y2-2x+4y=(x+2y)(x-2y)-2(x-2y)=(x-2y)(x+2y-2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2-2xy+y2-16;(2)△ABC三边a,b,c 满足a2-ab-ac+bc=0,判断△ABC的形状.答案解析部分一、单选题1.【答案】C【考点】提公因式法因式分解【解析】【解答】解:∵x2﹣x=0,∴x(x﹣1)=0,∴x=0或x﹣1=0,∴x1=0,x2=1,故答案为:C.【分析】通过提取公因式对等式的左边进行因式分解,然后解两个一元一次方程即可.2.【答案】B【考点】因式分解的定义【解析】【解答】A、(x+3y)(x﹣3y)=x2﹣9y是整式的乘法,不是因式分解,故本选项不符合题意;B、x2﹣3x+2=(x﹣1)(x﹣2)是因式分解,故本选项符合题意;C、3x2+6x﹣1=3x(x+2)﹣1结果不是整式的积的形式,不是因式分解,故本选项不符合题意;D、(x﹣2y)2=x2﹣4xy+4y2是整式的乘法,不是因式分解,故本选项不符合题意.故答案为:B.【分析】根据因式分解的定义:把整式分解为几个整式乘积的形式,即可作出判断.3.【答案】D【考点】因式分解的应用【解析】【解答】∵,,∴.故答案为:D.【分析】先提取公因式,整理后把已知条件整体代入计算即可.4.【答案】C【考点】提公因式法因式分解【解析】【解答】解:原式=-3xy×(4y-2x-1),空格中填2x-1.故答案为:C.【分析】根据题意,提取公因式-3xy,进行因式分解即可.5.【答案】A【考点】提公因式法因式分解【解析】【解答】2a2-18=2(a2-9)=2(a+3)(a-3)3a2-18a+27=3(a2-6a+9)=3(a-3)2所以多项式的公因式为(a-3)故答案为:A【分析】对多项式进行提取公因式进行因式分解,即可找到公因式。
人教版八年级数学上册《14.3 因式分解》练习题-附参考答案
人教版八年级数学上册《14.3 因式分解》练习题-附参考答案一、选择题1.下列式子从左到右的变形,属于因式分解的是()A.(x+1)(x−1)=x2−1B.x2+2x−1=x(x+2)−1C.a2b+ab2=ab(a+b)D.a(a+b)=a2+ab2.下列多项式能用平方差公式分解因式的是()A.4x2+y2B.-4x2-y2C.-4x2+y2D.-4x+y23.因式分解:x3﹣4x2+4x=()A.x(x−2)2B.x(x2−4x+4)C.2x(x−2)2D.x(x2−2x+4)4.将下列多项式因式分解,结果中不含有因式(x−2)的是()A.x3−4x2−12x B.(x−3)2+2(x−3)+1C.x2−2x D.x2−45.下列因式分解正确的是()A.15x2−12xz=3xz(5x−4)B.x2−2xy+4y2=(x−2y)2C.x2−xy+x=x(x−y)D.x2+4x+4=(x+2)26.已知n是正整数,则下列数中一定能整除(2n+3)2−25的是()A.6 B.3 C.4 D.57.设a,b,c是△ABC的三条边,且a3−b3=a2b−ab2+ac2−bc2,则这个三角形是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形8.若a+b=2,a−b=6则b2−a2的值是()A.-12 B.12 C.8 D.-8二、填空题9.请写出一个多项式,并用平方差公式将其分解因式:. 10.多项式12ab3c+8a3b的公因式是.11.分解因式:a2b−2ab2+b3=.12.在○处填入一个整式,使关于x的多项式x2+◯+1可以因式分解,则○可以为.(写出一个即可)13.已知一个长方形的长、宽分别为a,b,如果它的周长为10,面积为5,则代数式a2b+ab2的值为三、解答题14.因式分解:(1)16a 2−(a 2+4)2(2)3a 2m 2(x −y)+27b 2n 2(y −x)15.若△ABC 的三边长a 、b 、c ,满足a 2+b 2+c 2﹣ab ﹣bc ﹣ac=0,请你判断△ABC 的形状.16.仔细阅读下面例题,并解答问题:例题:已知二次三项式 x 2−4x +m 有一个因式为 x +3 ,求另一个因式以及 m 的值.解:设另一个因式为 x +n由题意得 x 2−4x +m =(x +3)(x +n)即 x 2−4x +m =x 2+(n +3)x +3n则有 {n +3=−43n =m ,解得 {m =−21n =−7所以另一个因式为 x −7 , m 的值是 −21 .问题:请仿照上述方法解答下面问题(1)若 x 2+bx +c =(x −1)(x +3) ,则 b = , c = ;(2)已知二次三项式 2x 2+5x +k 有一个因式为 2x −3 ,求另一个因式以及 k 的值.17.下面是某同学对多项式 (x 2−4x)(x 2−4x +8)+16 进行因式分解的过程:解:设 x 2−4x =y原式 =y(y +8)+16 (第一步)=y 2+8y +16 (第二步)=(y +4)2 (第三步)=(x 2−4x +4)2 (第四步).回答下列问题:(1)该同学第二步到第三步运用了________.A .提取公因式B .平方差公式C .两数差的完全平方公式D .两数和的完全平方公式(2)该同学因式分解的结果是否彻底? (填“彻底”或“不彻底”),若不彻底,则该因式分解的最终结果为 .(3)请你模仿上述方法,对多项式 (x 2−2x −1)(x 2−2x +3)+4 进行因式分解.参考答案1.C2.C3.A4.A5.D6.C7.D8.A9.a2-4=(a+2)(a-2)(答案不唯一) 10.4ab11.b(a−b)212.2x13.2514.(1)解:16a2−(a2+4)2=(4a+a2+4)(4a−a2−4)=−(4a+a2+4)(−4a+a2+4)=−(a+2)2(a−2)2(2)解:3a2m2(x−y)+27b2n2(y−x) =3a2m2(x−y)−27b2n2(x−y)=3(x−y)(a2m2−9b2n2)=3(x−y)(am+3bn)(am−3bn) 15.解:∵a2+b2+c2﹣ab﹣bc﹣ac=0∴2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=0a2+b2﹣2ab+b2+c2﹣2bc+a2+c2﹣2ac=0∴(a﹣b)2+(b﹣c)2+(c﹣a)2=0∴a﹣b=0,b﹣c=0,c﹣a=0∴a=b=c∴△ABC为等边三角形16.(1)2;-3(2)设另一个因式为x+p由题意得: 2x 2+5x +k =(x +p)(2x −3) 即 2x 2+5x +k =2x 2+(2p −3)−3p则有 {2p −3=5−3p =k,解得 {k =−12p =4 所以另一个因式为 x +4 , k 的值是 −12 .17.(1)D(2)不彻底;(x −2)4(3)解:设 x 2−2x =y原式 =(y −1)(y +3)+4=y 2+2y +1=(y +1)2=(x 2−2x +1)2=(x −1)4 .。
2022-2023学年人教版八年级数学上册《14-3因式分解》同步达标测试题(附答案)
2022-2023学年人教版八年级数学上册《14.3因式分解》同步达标测试题(附答案)一.选择题(共10小题,满分30分)1.下列各式由左边到右边的变形中,是因式分解的是()A.a2•a4=a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x+4)(x﹣4)+3x2.下列各式中,从左到右的变形是因式分解的是()A.(x+2y)(x﹣2y)=x2﹣4y2B.x2y﹣xy2﹣1=xy(x﹣y)﹣1C.a2﹣4ax+4x2=(a﹣2x)2D.ax+ay+a=(ax+y)3.24ab与4ab2的公因式是()A.4B.4a C.4ab D.4ab24.多项式x2y+2xy与x2y﹣4y的公因式是()A.y B.x+2C.x﹣2D.y(x+2)5.将多项式m2﹣m分解因式,结果正确的是()A.m(m﹣1)B.(m+1)(m﹣1)C.m(m+1)(m﹣1)D.﹣m(m﹣1)6.把多项式m(a﹣2)+(a﹣2)分解因式等于()A.m(a﹣2)B.(a﹣2)(m+1)C.m(a+2)D.(m﹣1)(a﹣2)7.下列多项式中,不能用平方差公式进行因式分解的是()A.a2b2﹣1B.4﹣0.25a2C.﹣a2+1D.﹣a2﹣b28.下列多项式,①﹣x2+16y2,②81(a2﹣2ab+b2)﹣(a+b)2,③m2﹣mn+n2,④﹣x2﹣y2能用公式法因式分解的有()个A.1B.2C.3D.49.把多项式x2+ax+b分解因式,得(x﹣2)(x+3),则a,b的值分别是()A.2,3B.2,﹣3C.1,﹣6D.﹣1,﹣6 10.若x2+mx﹣10=(x﹣5)(x+n),则m+n的值为()A.5B.1C.﹣5D.﹣1二.填空题(共6小题,满分18分)11.一个长方形的长与宽分别为a,b,若周长为12,面积为5,则ab3+2a2b2+a3b的值为.12.分解因式:4x3+2x2﹣2x=.13.因式分解:a3﹣4a=.14.分解因式:am+an﹣bm﹣bn=.15.分解因式:2x﹣ay+ax﹣2y=.16.分解因式:x2﹣y2+4y﹣4=.三.解答题(共10小题,满分72分)17.分解因式:(1)3x﹣12x2;(2)a2﹣4ab+4b2;(3)x2﹣2x﹣8;(4)(2x+y)2﹣(x﹣2y)2.18.分解因式(1)x4﹣8x2y2+16y4;(2)x2(x+4)﹣4x(x+1);(3)(x2+1)2﹣4x2;(4)x2﹣7x+12.19.在实数范围内分解因式:x4﹣25.20.分解因式(在实数范围内):a3﹣3a.21.在实数范围内因式分解.22.阅读下列材料:材料1、将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(x+n)(1)x2+4x+3=(x+1)(x+3)(2)x2﹣4x﹣12=(x﹣6)(x+2)材料2、因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2上述解题用到“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把x2﹣6x+8分解因式.(2)结合材料1和材料2,完成下面小题:①分解因式:(x﹣y)2+4(x﹣y)+3;②分解因式:m(m+2)(m2+2m﹣2)﹣3.23.阅读并解决问题.对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像这样,先添﹣适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a2﹣6a+8.(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.(3)已知x是实数,试比较x2﹣4x+5与﹣x2+4x﹣4的大小,说明理由.24.先阅读下列解题过程,然后完成后面的题目.分解因式:x4+4解:x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2x+2)(x2﹣2x+2)以上解法中,在x4+4的中间加上一项,使得三项组成一个完全平方式,为了使这个式子的值保持与x4+4的值保持不变,必须减去同样的一项.按照这个思路,试把多项式x4+x2y2+y4分解因式.25.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)a2+b2﹣2a+1=0,则a=.b=.(2)已知x2+2y2﹣2xy+6y+9=0,求x y的值.(3)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长.26.定义:若数p可以表示成P=x2+y2﹣xy(x,y为自然数)的形式,则称P为“希尔伯特”数.例如:3=22+11﹣2×1,39=72+52﹣7×5,147=132+112﹣13×11…所以3,39,147是“希尔伯特”数.(1)请写出两个10以内的“希尔伯特”数.(2)像39,147这样的“希尔伯特”数都是可以用连续两个奇数按定义给出的运算表达出来,试说明所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)已知两个“希尔伯特”数,它们都可以用连续两个奇数按定义给出的运算表达出来,且它们的差是224,求这两个“希尔伯特”数.参考答案一.选择题(共10小题,满分30分)1.解:A.从左边到右边的变形不属于因式分解,故本选项不符合题意;B.从左边到右边的变形不属于因式分解,故本选项不符合题意;C.从左边到右边的变形属于因式分解,故本选项符合题意;D.从左边到右边的变形不属于因式分解,故本选项不符合题意;故选:C.2.解:A.从左边到右边的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.等式的右边不是整式的积的形式,不属于因式分解,故本选项不符合题意;C.从左边到右边的变形属于因式分解,故本选项符合题意;D.等式的的左右两边不相等,应改为ax+ay+a=a(x+y+1),故本选项不符合题意;故选:C.3.解:24ab与4ab2的公因式是4ab.故选:C.4.解:x2y+2xy=xy(x+2),x2y﹣4y=y(x+2)(x﹣2),∴多项式x2y+2xy与x2y﹣4y的公因式是y(x+2).故选:D.5.解:原式=m(m﹣1).故选:A.6.解:原式=(a﹣2)(m+1).故选:B.7.解:A、原式=(ab﹣1)(ab+1),不符合题意;B、原式=(2﹣0.5a)(2+0.5a),不符合题意;C、原式=(1﹣a)(1+a),不符合意义;D、原式不能利用平方差公式进行因式分解,符合题意,故选:D.8.解:①﹣x2+16y2=(﹣x+4y)(x+4y),符合题意;②81(a2﹣2ab+b2)﹣(a+b)2=81(a﹣b)2﹣(a+b)2=[9(a﹣b)+(a+b)][9(a﹣b)﹣(a+b)]=4(5a﹣4b)(4a﹣5b),符合题意;③m2﹣mn+n2,不符合题意;④﹣x2﹣y2,不符合题意.故选:B.9.解:∵把多项式x2+ax+b分解因式,得(x﹣2)(x+3),∴a=﹣2+3=1,b=(﹣2)×3=﹣6,故选:C.10.解:∵(x﹣5)(x+n)=x2+(n﹣5)x﹣5n,又∵x2+mx﹣10=(x﹣5)(x+n),∴﹣5n=﹣10,m=n﹣5,解得n=2,m=﹣3,∴m+n=﹣3+2=﹣1,故选:D.二.填空题(共6小题,满分18分)11.解:∵一个长方形的长与宽分别为a,b,周长为12,面积为5,∴ab=5,a+b=6,则ab3+2a2b2+a3b=ab(b2+2ab+a2)=ab(a+b)2=5×62=180.故答案为:180.12.解:原式=2x(2x2+x﹣1)=2x(2x﹣1)(x+1),故答案为:2x(2x﹣1)(x+1).13.解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2),故答案为:a(a+2)(a﹣2).14.解:am+an﹣bm﹣bn=(am+an)﹣(bm+bn)=a(m+n)﹣b(m+n)=(m+n)(a﹣b),故答案为:(m+n)(a﹣b).15.解:2x﹣ay+ax﹣2y=(2x﹣2y)+(ax﹣ay)=2(x﹣y)+a(x﹣y)=(x﹣y)(2+a).故答案是:(x﹣y)(2+a).16.解:原式=x2﹣(y2﹣4y+4)=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2).故答案为:(x+y﹣2)(x﹣y+2).三.解答题(共10小题,满分72分)17.解:(1)3x﹣12x2=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)a2﹣4ab+4b2=a2﹣2×a×2b+(2b)2=(a﹣2b)2;(3)x2﹣2x﹣8=(x﹣4)(x+2);(4)(2x+y)2﹣(x﹣2y)2=[(2x+y)+(x﹣2y)][(2x+y)﹣(x﹣2y)]=(3x﹣y)(x+3y).18.解:(1)x4﹣8x2y2+16y4=(x2﹣4y2)2=(x﹣2y)2(x+2y)2;(2)x2(x+4)﹣4x(x+1)=x(x2+4x﹣4x﹣4)=x(x2﹣4);=x(x﹣2)(x+2);(3)(x2+1)2﹣4x2=(x2+1﹣2x)(x2+1+2x)=(x﹣1)2(x+1)2;(4)x2﹣7x+12=x2+(﹣4﹣3)x+(﹣4)×(﹣3)=(x﹣4)(x﹣3).19.解:x4﹣25=(x2+5)(x2﹣5)=(x2+5)(x+)(x﹣).20.解:a3﹣3a=a(a2﹣3)=a(a+)(a﹣).21.解:原式=x2﹣2×x+()2=(x﹣)2.22.解:(1)x2﹣6x+8=(x﹣2)(x﹣4);(2)①令A=x﹣y,则原式=A2+4A+3=(A+1)(A+3),所以(x﹣y)2+4(x﹣y)+3=(x﹣y+1)(x﹣y+3);②令B=m2+2m,则原式=B(B﹣2)﹣3=B2﹣2B﹣3=(B+1)(B﹣3),所以原式=(m2+2m+1)(m2+2m﹣3)=(m+1)2(m﹣1)(m+3).23.解:(1)a2﹣6a+8,=a2﹣6a+9﹣1,=(a﹣3)2﹣1,=(a﹣3﹣1)(a﹣3+1),=(a﹣2)(a﹣4);(2)a2+b2,=(a+b)2﹣2ab,=52﹣2×6,=13;a4+b4=(a2+b2)2﹣2a2b2=132﹣2×62=169﹣2×36=169﹣72=97;(3)∵x2﹣4x+5,=x2﹣4x+4+1,=(x﹣2)2+1≥1>0﹣x2+4x﹣4,=﹣(x2﹣4x+4),=﹣(x﹣2)2≤0∴x2﹣4x+5>﹣x2+4x﹣4.(若用”作差法”相应给分)24.解:x4+x2y2+y4=x4+2x2y2+y4﹣x2y2(2分)=(x2+y2)2﹣x2y2(2分)=(x2+y2+xy)(x2+y2﹣xy).(2分)25.解:(1)∵a2+b2﹣2a+1=0,∴a2﹣2a+1+b2=0,∴(a﹣1)2+b2=0,∴a﹣1=0,b=0,解得a=1,b=0;(2)∵x2+2y2﹣2xy+6y+9=0,∴x2+y2﹣2xy+y2+6y+9=0即:(x﹣y)2+(y+3)2=0则:x﹣y=0,y+3=0,解得:x=y=﹣3,∴x y=(﹣3)﹣3=﹣;(3)∵2a2+b2﹣4a﹣6b+11=0,∴2a2﹣4a+2+b2﹣6b+9=0,∴2(a﹣1)2+(b﹣3)2=0,则a﹣1=0,b﹣3=0,解得,a=1,b=3,由三角形三边关系可知,三角形三边分别为1、3、3,∴△ABC的周长为1+3+3=7;26.解:(1)∵0=02+02×0,1=12+02﹣1×0,3=22+11﹣2×1,4=22+02﹣2×0,7=22+32﹣2×3,9=32+02﹣3×0,∴10以内的“希尔伯特”数有0,1,3,4,7,9;(2)设“希尔伯特”数为(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1).(n为自然数)∵(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1)=4n2+3,∵4n2能被4整除,∴所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)设两个“希尔伯特”数分别为:(2m+1)2+(2m﹣1)2﹣(2m+1)(2m﹣1)和(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1).(m,n为自然数).由题意:(2m+1)2+(2m﹣1)2﹣(2m+1)(2m﹣1)﹣[(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1)]=224,∴m2﹣n2=56,∴(m+n)(m﹣n)=56,可得整数解:或,∴这两个“希尔伯特”数分别为:327和103或903和679.。
2022-2023学年人教版八年级数学上册《14-3因式分解》同步达标测试题(附答案)
2022-2023学年人教版八年级数学上册《14.3因式分解》同步达标测试题(附答案)一.选择题(共8小题,满分32分)1.下列从左到右的变形是分解因式的是()A.(x+4)(x﹣4)=x2﹣16B.x2﹣y2+2=(x+y)(x﹣y)+2C.(x﹣1)(x﹣2)=(x﹣2)(x﹣1)D.2ab﹣2ac=2a(b﹣c)2.若x2+mx﹣10=(x﹣5)(x+n),则m+n的值为()A.5B.1C.﹣5D.﹣13.下列多项式中不能用公式法分解因式的是()A.a2+a+B.﹣a2﹣b2﹣2ab C.﹣a2+25b2D.﹣4﹣b24.如图,长为a,宽为b的长方形的周长为16,面积为15,则a2b+ab2的值为()A.100B.120C.48D.1405.已知2x﹣3y=3,3y﹣4z=5,x+2z=8,则代数式3x2﹣12z2的值是()A.32B.64C.96D.1286.若a2+ab=16+m,b2+ab=9﹣m,则a+b的值为()A.±5B.5C.±4D.47.若把多项式x2+mx+14分解因式后含有因式x+7,则m的值为()A.7B.﹣7C.9D.﹣98.在△ABC中,若三边长a,b,c满足a2+2ab+b2=c2+24,a+b﹣c=4,△ABC的周长是()A.12B.16C.8D.6二.填空题(共8小题,满分32分)9.分解因式:27x2﹣3=.10.分解因式:2x2y+4xy=.11.把多项式2mx2+4mx+2x分解因式的结果为.12.若a+b=3,ab=﹣1,则代数式a3b+2a2b2+ab3的值为.13.若a2+a﹣1=0,那么a2022+a2021﹣a2020=.14.已知a=6+3b,则代数式a2﹣6ab+9b2+3的值是.15.已知a=2021x+2022,b=2021x+2023,c=2021x+2024,则多项式a2+b2+c2﹣ab﹣ac﹣bc的值为.16.如图,在边长a的正方形钢板上挖去边长为b(a>2b)的4个小正方形,当a=4.2cm,b=0.3cm时,剩余部分的面积为cm2.三.解答题(共6小题,满分56分)17.因式分解:(1)x(x﹣6)+9;(2)x2(x﹣y)﹣(x﹣y).18.因式分解:(1)2bm2﹣24bm+40b;(2)(x2+4)2﹣16x2.19.给出三个多项式:①a2+3ab﹣2b2,②b2﹣3ab,③ab+6b2.(1)请任选择两个多项式进行加法运算,并把结果因式分解;(2)当a=4,b=﹣7时,求第(1)问所得的代数式的值.20.【问题背景】通常情况下,用不同方法计算同一图形的面积或体积,可以得到一个等式.【模型归纳】根据图1,可以得到的等式为:(a+b)2=a2+2ab+b2;根据图2,可以得到的等式为:;根据图3,用不同的方法算大正方体的体积,可以得到一个等式为:;【成果运用】利用上面的结论解答:(1)已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(2)若(x+y﹣8)2+|xy﹣15|=0,分别求x3+y3与x﹣y的值.21.已知整式A=5x2﹣9,B=﹣x2+5,若A+B=C.(1)求整式C;(2)将整式C因式分解;(3)整式D=﹣7﹣4x,比较整式C和整式D的大小.22.教科书中这样写道:“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式:x2﹣2x﹣3=(x2﹣2x+1)﹣4=(x﹣1)2﹣22=(x﹣1+2)(x﹣1﹣2)=(x+1)(x﹣3)又例如:求代数式2x2+4x﹣6的最小值.原式=2(x2+2x﹣3)=2(x2+2x+1﹣4)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8.根据阅读材料用配方法解决下列问题:(1)用配方法分解因式:x2﹣4x﹣5;(2)试说明:无论x、y取任何实数时,多项式x2+y2﹣4x+2y+6的值总为正数;(3)当a,b,c分别为△ABC的三边时,且满足a2+b2+c2﹣6a﹣6b﹣10c+43=0时,判断△ABC的形状并说明理由;(4)当a,b为何值时,多项式a2﹣2ab+2b2﹣2a﹣4b+20有最小值,并求出这个最小值.参考答案一.选择题(共8小题,满分32分)1.解:A、(x+4)(x﹣4)=x2﹣16,是多项式乘以多项式,故此选项不符合题意;B、x2﹣y2+2=(x+y)(x﹣y)+2,不符合因式分解的定义,故此选项不符合题意;C、(x﹣1)(x﹣2)=(x﹣2)(x﹣1),不符合因式分解的定义,故此选项不符合题意;D、2ab﹣2ac=2a(b﹣c),从左到右的变形是因式分解,故此选项符合题意.故选:D.2.解:∵(x﹣5)(x+n)=x2+(n﹣5)x﹣5n,又∵x2+mx﹣10=(x﹣5)(x+n),∴﹣5n=﹣10,m=n﹣5,解得n=2,m=﹣3,∴m+n=﹣3+2=﹣1,故选:D.3.解:A.a2+a+=,那么可用公式法进行因式分解,那么A符合题意.B.﹣a2﹣b2﹣2ab=﹣(a2+b2+2ab)=﹣(a+b)2,故﹣a2﹣b2﹣2ab可用公式法进行因式分解,那么B不符合题意.C.﹣a2+25b2=﹣(a2﹣25b2)=﹣(a+5b)(a﹣5b),故﹣a2+25b2能用公式法进行因式分解,那么C不符合题意.D.﹣4﹣b2=﹣(4+b2),那么﹣4﹣b2不能用公式法进行因式分解,那么D符合题意.故选:D.4.解:由题意知,ab=15,2(a+b)=16.∴a+b=8.∴a2b+ab2=ab(a+b)=15×8=120.故选:B.5.解:∵2x﹣3y=3①,3y﹣4z=5②,∴①+②得:2x﹣4z=8,∴x﹣2z=4③,而x+2z=8④,③+④得2x=12,∴x=6,把x=6代入③得:z=1,∴3x2﹣12z2=3×62﹣12×12=96.故选:C.6.解:∵a2+ab=16+m,b2+ab=9﹣m,∴(a2+ab)+(b2+ab)=(16+m)+(9﹣m),∴(a+b)2=25,∴a+b=±5,故选:A.7.解:设另一个因式为(x+n),根据题意得:(x+n)(x+7)=x2+(7+n)x+7n=x2+mx+14,∴,解得,故选:C.8.解:∵a2+2ab+b2=c2+24,∴(a+b)2﹣c2=24.∴(a+b+c)(a+b﹣c)=24.∵a+b﹣c=4.∴a+b+c=24÷4=6.故选:D.二.填空题(共8小题,满分32分)9.解:27x2﹣3=3(9x2﹣1)=3(3x+1)(3x﹣1).故答案为:3(3x+1)(3x﹣1).10.解:2x2y+4xy=2xy(x+2).故答案为:2xy(x+2).11.解:2mx2+4mx+2x=2x(mx+2m+1),故答案为:2x(mx+2m+1).12.解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,∵a+b=3,ab=﹣1,∴ab(a+b)2=﹣1×32=﹣9.故答案为:﹣9.13.解:a2022+a2021﹣a2020=a2020(a2+a﹣1),∵a2+a﹣1=0,∴a2020(a2+a﹣1)=a2020•0=0,∴a2022+a2021﹣a2020=0.故答案为:0.14.解:∵a=6+3b,∴a﹣3b=﹣6,∴a2﹣6ab+9b2+3=(a﹣3b)2+3=(﹣6)2+3=36+3=39,故答案为:39.15.解:设m=a2+b2+c2﹣ab﹣ac﹣bc,则2m=2a2+2b2+2c2﹣2ab﹣2ac﹣2bc=(a﹣b)2+(b﹣c)2+(a﹣c)2=[(2021x+2022)﹣(2021x+2023)]2+[(2021x+2023)﹣(2021x+2024)]2+[(2021x+2022)﹣(2021x+2024)]2=(﹣1)2+(﹣1)2+(﹣2)2=1+1+4=6,∴m=3;故答案为:3.16.解:当a=4.2cm,b=0.3cm时,a2﹣4b2=(a+2b)(a﹣2b)=(4.2+0.6)(4.2﹣0.6)=4.8×3.6=17.28(cm),故答案为:17.28三.解答题(共6小题,满分56分)17.解:(1)x(x﹣6)+9=x2﹣6x+9=(x﹣3)2;(2)x2(x﹣y)﹣(x﹣y)=(x﹣y)(x2﹣1)=(x﹣y)(x+1)(x﹣1).18.解:(1)2bm2﹣24bm+40b=2b(m2﹣12m+20)=2b(m﹣2)(m﹣10);(2)(x2+4)2﹣16x2=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2.19.解:(1)选择①③(答案不唯一),a2+3ab﹣2b2+ab+6b2.=a2+4ab+4b2=(a+2b)2;(2)当a=4,b=﹣7,原式=(4﹣14)2=100.20.解:∵图2可以看成一个大正方形其面积表示为:(a+b+c)2,也可以看成3个正方形与6个长方形组成的图形其面积表示为:a2+b2+c2+2ab+2bc+2ac,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故答案为:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;解:根据图3,大正方体的体积可表示为:(a+b)3,也可表示为:a3+b3+3a2b+3ab2,∴(a+b)3=a3+b3+3a2b+3ab2,故答案为:(a+b)3=a3+b3+3a2b+3ab2;(1)解:∵(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,∴a2+b2+c2=(a+b+c)2﹣(2ab+2bc+2ac),=(a+b+c)2﹣2(ab+bc+ac),∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=112﹣2×38=45,答:a2+b2+c2的值为45;(2)解:∵(x+y﹣8)2+|xy﹣15|=0∴x+y﹣8=0,xy﹣15=0,∴x+y=8,xy=15,∵(x+y)3=x3+y3+3x2y+3xy2,∴x3+y3=(x+y)3﹣(3x2y+3xy2),=(x+y)3﹣3xy(x+y),=83﹣3×15×8=152,∵(x﹣y)2=(x+y)2﹣4xy,=82﹣4×15=4,∴x﹣y=,答:x3+y3的值为152,x﹣y的值为±2.21.解:(1)∵A=5x2﹣9,B=﹣x2+5,∴C=A+B=5x2﹣9﹣x2+5=4x2﹣4;(2)C=4x2﹣4=4(x2﹣1)=4(x+1)(x﹣1);(3)∵C﹣D=4x2﹣4﹣(﹣7﹣4x)=4x2﹣4+7+4x=4(x+)2+2>0,∴C>D.22.解:(1)x2﹣4x﹣5=(x2﹣4x+4)﹣9=(x﹣2)2﹣32=(x﹣2+3)(x﹣2﹣3)=(x+1)(x﹣5);(2)x2+y2﹣4x+2y+6=x2﹣4x+4+y2+2y+1+1=(x﹣2)2+(y+1)2+1,∵(x﹣2)2≥0,(y+1)2≥0,∴(x﹣2)2+(y+1)2+1≥1,即多项式x2+y2﹣4x+2y+6的值总为正数;(3)a2+b2+c2﹣6a﹣6b﹣10c+43=0,a2﹣6a+9+b2﹣6b+9+c2﹣10c+25=0,(a﹣3)2+(b﹣3)2+(c﹣5)2=0,∴a=3,b=3,c=5,∴△ABC是等腰三角形;(4)原式=a2﹣2ab+b2+b2﹣4b+4﹣2a+16=(a﹣b)2+(b﹣2)2﹣2a+16,∵多项式a2﹣2ab+2b2﹣2a﹣4b+20有最小值,∴a=b,b=2,a=2,∴(a﹣b)2+(b﹣2)2﹣2a+16=(a﹣b)2+(b﹣2)2+12,∴最小值为12,综上,当a=b=2时,多项式a2﹣2ab+2b2﹣2a﹣4b+20有最小值,最小值为12.。
人教版初中八年级数学上册第十四章《整式的乘法与因式分解》经典习题(含答案解析)
一、选择题1.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解D解析:D【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算.【详解】解:①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解;所以①是乘法运算,②因式分解.故选:D .【点睛】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义.2.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m +n =( )A .1B .2C .5D .7D 解析:D【分析】 由题意竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),即可解出n =5,从而求出m 值即可.【详解】解:由题意得竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),整理得n =5,则有m ﹣3+4=﹣3+1+5,解得m =2,∴m +n =5+2=7,故选:D .【点睛】此题主要考查列一元一次方程解决实际问题,理解题意,找出等量关系是解题关键. 3.已知3a b -=、4b c -=、5c d -=,则()()a c d b --的值为( )A .7B .9C .-63D .12C 解析:C【分析】由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,然后整体代入求解即可.【详解】解:由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,∴()()()7963a c d b --=⨯-=-;故选C .【点睛】本题主要考查求代数式的值,关键是根据题意利用整体思想进行求解.4.下列多项式中,不能用完全平方公式分解因式的是( )A .214m m ++ B .222x xy y -+- C .221449x xy y -++D .22193x x -+ C 解析:C【分析】直接利用完全平方公式分解因式得出答案.【详解】 A 、222111(44)(2)444m m m m m ++=++=+能用完全平方公式分解因式,不符合题意; B 、222222(2)()x xy y x xy y x y -+-=--+=--能用完全平方公式分解因式,不符合题意;C 、221449x xy y -++不能用完全平方公式分解因式,符合题意;D 、2222111(69)(3)9399x x x x x -+=-+=-能用完全平方公式分解因式,不符合题意; 故选:C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握完全平方公式是解本题的关键. 5.下列运算正确的是( )A .3m ·4m =12mB .m 6÷m 2= m 3(m≠0)C .236(3)27m m -=D .(2m+1)(m-1)=2m 2-m-1D解析:D【分析】利用同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式的运算法则计算即可判断.【详解】A 、 347·m m m =,该选项错误;B 、624m m m ÷=,该选项错误;C 、236(3)27m m -=-,该选项错误;D 、(()221)121m m m m +-=--,该选项正确; 故选:D .【点睛】本题考查了同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式,熟练掌握运算法则是解题的关键.6.已知552a =,443b =,334c =,则a ,b ,c 的大小关系是( )A .a b c >>B .b c a >>C .c a b >>D .a c b >> B解析:B【分析】由552a =,443b =,334c =,比较5432,3,4的大小即可.【详解】解:∵555112=(2)a =,444113(3)b == ,333114(4)c == ,435342>> , ∴411311511(3)(4)(2)>>,即b c a >>,故选B .【点睛】本题考查了幂的乘方的逆运算及数的大小的比较,解题的关键是熟练掌握幂的乘方运算法则.7.下列计算正确的是( )A .()222x y x y +=+B .()32626m m =C .()2224x x -=-D .()()2111x x x +-=- D 解析:D【分析】根据完全平方公式,平方差公式和积的乘方公式分别判断即可.【详解】A. ()2222x y x xy y +=++,故原选项错误;B.()32628m m =,故原选项错误;C.()22244x x x -=-+,故原选项错误;D. ()()2111x x x +-=-,故选项正确.故选:D .【点睛】本题考查完全平方公式,平方差公式和积的乘方公式.熟记公式是解题关键.8.下列各多项式中,能用平方差公式分解因式的是( )A .21x -+B .21x +C .21x --D .221x x -+ A 解析:A【分析】根据平方差公式:两个数平方的差,等于这两个数的和与差的平方解答.【详解】A 、21x -+,能用平方差公式分解因式;B 、21x +,不能用平方差公式分解因式;C 、21x --,不能用平方差公式分解因式;D 、221x x -+,不能用平方差公式分解因式;故选:A .【点睛】此题考查平方差公式:22()()a b a b a b -=+-,掌握公式中多项式的特点是解题的关键.9.若()()()248(21)2121211A =+++++,则A 的末位数字是( )A .4B .2C .5D .6D 解析:D【分析】在原式前面加(2-1),利用平方差公式计算得到结果,根据2的乘方的计算结果的规律得到答案.【详解】 ()()()248(21)2121211A =+++++=()()()248(21)(21)2121211-+++++=()()()2248(21)2121211-++++=()()448(21)21211-+++ =()88(21)211-++ =162,∵2的末位数字是2,22的末位数字是4,32的末位数字是8,42的末位数字是6,52的末位数字是2,,∴每4次为一个循环,∵1644÷=,∴162的末位数字与42的末位数字相同,即末位数字是6,故选:D .【点睛】此题考查利用平方差公式进行有理数的简便运算,数字类规律的探究,根据2的乘方末位数字的规律得到答案是解题的关键.10.下列各式计算正确的是( )A .5210a a a =B .()428=a aC .()236a b a b =D .358a a a += B解析:B【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断.【详解】解:A 、a 5•a 2=a 7,此选项计算错误,故不符合题意;B 、(a 2)4=a 8,此选项计算正确,符合题意;C 、(a 3b )2=a 6b 2,此选项计算错误,故不符合题意;D 、a 3与a 5不能合并,此选项计算错误,故不符合题意.故选:B .【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则. 二、填空题11.因式分解()()26x mx x p x q +-=++,其中m 、p 、q 都为整数,则m 的最大值是______.5【分析】根据整式的乘法和因式分解的逆运算关系按多项式乘以多项式法则把式子变形然后根据pq 的关系判断即可【详解】解:∵(x +p)(x +q)=x2+(p+q )x+pq=x2+mx-6∴p+q=mpq=解析:5【分析】根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.【详解】解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx-6∴p+q=m ,pq=-6,∴pq=1×(-6)=(-1)×6=(-2)×3=2×(-3)=-6,∴m=-5或5或1或-1,∴m 的最大值为5,故答案为:5.【点睛】此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.12.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式()35f x mx nx =++,当3x =时,多项式的值为()32735f m n =++,若()36f =,则()3f -的值为__________.4【分析】由得到整体代入求出结果【详解】解:∵∴即∴故答案是:4【点睛】本题考查代数式求值解题的关键是掌握整体代入求值的思想解析:4【分析】由()36f =得到2731m n +=,整体代入()32735f m n -=--+求出结果.【详解】解:∵()36f =,∴27356m n ++=,即2731m n +=,∴()()327352735154f m n m n -=--+=-++=-+=.故答案是:4.【点睛】本题考查代数式求值,解题的关键是掌握整体代入求值的思想.13.因式分解269x y xy y -+-=______.-y (x-3)2【分析】提公因式-y 再利用完全平方公式进行因式分解即可;【详解】解:-x2y+6xy-9y=-y (x2-6x+9)=-y (x-3)2故答案为:-y (x-3)2;【点睛】本题考查了因式解析:-y (x-3)2【分析】提公因式-y ,再利用完全平方公式进行因式分解即可;【详解】解:-x 2y+6xy-9y=-y (x 2-6x+9)=-y (x-3)2,故答案为:-y (x-3)2;【点睛】本题考查了因式分解的方法,掌握提公因式法、公式法是正确解答的关键.14.若26x x m ++为完全平方式,则m =____.9【分析】完全平方式可以写为首末两个数的平方则中间项为x 和积的2倍即可解得m 的值【详解】解:根据题意是完全平方式且6>0可写成则中间项为x 和积的2倍故∴m=9故答案填:9【点睛】本题是完全平方公式的【分析】 完全平方式可以写为首末两个数的平方()2x m +,则中间项为x 和m 积的2倍,即可解得m 的值.【详解】解:根据题意,26x x m ++是完全平方式,且6>0,可写成()2x m +,则中间项为x 和m 积的2倍,故62x x m =,∴m =9,故答案填:9.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意中间项的符号,避免漏解.15.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是:__________;(请选择正确的一个)A .2222()a ab b a b -+=-B .22()()a b a b a b -=+-C .2()a ab a a b +=+(2)应用:利用所选(1)中等式两边的等量关系,完成下面题目:若46x y +=,45x y -=,则221664x y -+的值为__________.B ;【分析】(1)先求出图1中剩余部分的面积为a2-b2再求出图2中图形的面积即可列得等式;(2)利用平方差公式分解因式后代入求值即可【详解】(1)图1中边长为a 的正方形的面积为:a2边长为b 的正方解析:B ; 94(1)先求出图1中剩余部分的面积为a 2-b 2,再求出图2中图形的面积即可列得等式; (2)利用平方差公式分解因式后代入求值即可.【详解】(1)图1中,边长为a 的正方形的面积为:a 2,边长为b 的正方形的面积为:b 2,∴图1中剩余部分面积为:a 2-b 2,图2中长方形的长为:a+b ,长方形的宽为:a-b ,∴图2长方形的面积为:(a+b )(a-b ),故选:B ;(2)∵46x y +=,45x y -=,∴221664x y -+=(4)(4)64x y x y +-+=6564⨯+=94,故答案为:94.【点睛】此题考查几何图形中平方差公式的应用,利用平方差公式进行计算,掌握平方差计算公式是解题的关键.16.如图所示,在这个运算程序当中,若开始输入的x 是2,则经过2021次输出的结果是________.4【分析】根据第一次输出的结果是1第二次输出的结果是6…总结出每次输出的结果的规律求出2021次输出的结果是多少即可【详解】解:把x=2代入得:2÷2=1把x=1代入得:1+5=6把x=6代入得:6解析:4【分析】根据第一次输出的结果是1,第二次输出的结果是6,…,总结出每次输出的结果的规律,求出2021次输出的结果是多少即可.【详解】解:把x=2代入得:2÷2=1,把x=1代入得:1+5=6,把x=6代入得:6÷2=3,把x=3代入得:3+5=8,把x=8代入得:8÷2=4,把x=4代入得:4÷2=2,把x=2代入得:2÷2=1,以此类推,∵2021÷6=336…5,∴经过2021次输出的结果是4.故答案为:4.【点睛】本题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.17.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第6个图形需要黑色棋子的个数是______,第n 个图形需要的黑色棋子的个数是______.(n 为正整数)【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3第二个图形需要黑色棋子的个数为3×4-4第三个图形需要黑色棋子的个数为4×5-5依此类推可得第n 个图形需要黑色棋子的个数为计算可得答案解析:()2n n +【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3,第二个图形需要黑色棋子的个数为3×4-4,第三个图形需要黑色棋子的个数为4×5-5,依此类推可得第n 个图形需要黑色棋子的个数为()()()122n n n ++-+,计算可得答案.【详解】解:观察图形可得:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子2×3-3个,第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子3×4-4个,第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子4×5-5个,按照这样的规律下去:则第n 个图形需要黑色棋子的个数是()()()()1222n n n n n ++-+=+,∴当n=6时,()26848n n +=⨯=;故答案为48;()2n n +.【点睛】本题主要考查图形规律及整式乘法的应用,关键是根据图形得到一般规律,然后问题可求解.18.若2249x mxy y -+是一个完全平方式,则m =______【分析】利用完全平方公式的结构特征判断即可确定出m 的值【详解】∵是一个完全平方式∴故答案为:【点睛】本题考查了完全平方公式的简单应用明确完全平方公式的基本形式是解题的关键解析:12±【分析】利用完全平方公式的结构特征判断即可确定出m 的值.【详解】∵2249x mxy y -+是一个完全平方式,∴22312m =±⨯⨯=±.故答案为:12±.【点睛】本题考查了完全平方公式的简单应用,明确完全平方公式的基本形式是解题的关键. 19.计算:32(2)a b -=________.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘解析:624a b【分析】积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可.【详解】32(2)a b -=624a b ,故答案为:624a b .【点睛】此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.20.已知22m mn -=,25mn n -=,则22325m mn n +-=________.31【分析】由然后把代入求解即可【详解】解:由题意得:∴把代入得:原式=;故答案为31【点睛】本题主要考查代数式的值及整式的加减关键是对于所求代数式进行拆分然后整体代入求解即可解析:31【分析】由()()222232535m mn n m mn mn n+-=-+-,然后把22m mn -=,25mn n -=,代入求解即可.【详解】解:由题意得: ()()222232535m mn n m mn mn n +-=-+-,∴把22m mn -=,25mn n -=代入得:原式=325531⨯+⨯=;故答案为31.【点睛】本题主要考查代数式的值及整式的加减,关键是对于所求代数式进行拆分,然后整体代入求解即可. 三、解答题21.(1)因式分解:()222224x y x y +- (2)计算:()()()233323a b a b a b a b ⎡⎤----++÷-⎣⎦解析:(1)()()22x y x y -+;(2)9a【分析】 (1)先用平方差公式进行因式分解,然后再用完全平方公式进行因式分解;(2)整式的混合运算,注意先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的.【详解】解:(1)()222224x y x y +- =()()222222x y xyx y xy +-++ =()()22x y x y -+(2)()()()233323a b a b a b a b ⎡⎤----++÷-⎣⎦=()222296923a ab b b a a b ⎡⎤++--÷-⎣⎦ =2222(96+9)23a ab b b a a b ++-÷-=2(186)23a ab a b +÷-=933a b b +-=9a【点睛】本题考查因式分解和整式的混合运算,掌握运算法则正确计算是解题关键.22.图1是一个长为2a 、宽为2b 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于________.(2)观察图2,请你写出下列三个代数式2()a b +,2()a b -,ab 之间的等量关系为________.(3)运用你所得到的公式,计算:若m 、n 为实数,且3=-mn ,4m n -=,试求m n +的值.(4)如图3,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设8AB =,两正方形的面积和1226S S +=,求图中阴影部分面积.解析:(1)44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)2或2-;(4)192. 【分析】(1)直接写出边长:长边减短边=a-b ,进而可得周长; (2)根据阴影正方形的面积=大正方形的面积-4个长方形的面积解答,或利用大正方形的面积=阴影方形的面积+4个长方形的面积解答,或利用4个长方形的面积=大正方形的面积-阴影方形的面积解答;(3)根据22()()4a b a b ab +=-+求解即可;(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,然后把8x y +=的两边平方求解即可.【详解】解:(1)由图可知,阴影部分正方形的边长为:a-b ,∴阴影部分的正方形的周长等于44a b -或者4()a b -,故答案为:44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或(22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)∵3=-mn ,4m n -=,∴222()()444(3)16124m n m n mn +=-+=+⨯-=-=,∴2m n +=±,∴m n +的值为2或2-.(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,而8x y AB +==, 而12S xy =阴影部分, ∵8x y +=,∴22264x xy y ++=,又∴2226x y +=,∴238xy =,∴13819242S xy ===阴影部分, 即,阴影部分的面积为192. 【点睛】本题主要考查完全平方公式的几何背景,利用图形的面积是解决此题的关键,利用数形结合的思想,注意观察图形.23.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++ 请用以上方法解决下列问题:(计算过程要有竖式)(1)计算:()()3223102x x x x +--÷- (2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值.解析:(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.24.材料:数学兴趣一小组的同学对完全平方公式进行研究:因2()0a b -≥,将左边展开得到2220a ab b -+≥,移项可得222a b ab +≥.(当且仅当a b =时,取“=”)数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数m ,n ,都存在2m n mn +≥m n =时,取“=”)并进一步发现,两个非负数m ,n 的和一定存在着个最小值.根据材料,解答下列问题:(1)22(3)(4)x y +≥________(0x >,0y >);221x x ⎛⎫+≥ ⎪⎝⎭________(0x >);(2)求312(0)4x x x+>的最小值; (3)已知2x >,当x 为何值时,代数式43201036x x ++-有最小值?并求出这个最小值.解析:(1)24xy ,2;(2)6;(3)83x =,最小值为2020 【分析】(1)根据阅读材料可得结论; (2)根据阅读材料介绍的方法即可得出结论;(3)把已知代数式变形为4(36)201636x x -++-,再利用阅读材料介绍的方法即可得出结论.【详解】解:(1)∵0x >,0y >∴22(3)(4)x y +≥23424x y xy ⨯⨯=∵0x > ∴221x x ⎛⎫+≥ ⎪⎝⎭122x x ⨯⨯= 故答案为:24xy ,2(2)∵0x >时,12x ,34x 均为正数,∴31264x x +≥= ∴3124x x+的最小值是6 (3)当2x >时,3x ,36x -,436x -均为正数 ∴43201036x x ++-4(36)2016201636x x =-++≥-2016=2020= 当43636x x -=-时,即8433x =或(舍去)时,有最小值, ∴当83x =时,代数式43201036x x ++-的最小值是2020.【点睛】此题主要考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.25.已知2,3x y a a ==,求23x y a +的值解析:108【分析】首先根据已知条件可得a 2x 、a 3y 的值,然后利用同底数幂的乘法运算法则求出代数式的值.【详解】 解:2,3x y a a ==,∴()()23232323108x y xy a a a +=⨯=⨯=. 【点睛】 本题主要考查了幂的乘方和同底数幂的乘法,利用性质转化为已知条件的形式是解题的关键.26.因式分解:(1)322242a a b ab -+(2)4481x y -解析:(1)22()a a b -;(2)22((3)(3)9)x y x y x y +-+.【分析】(1)先提公因式2a ,再利用完全平方公式进行分解222a ab b -+,即可得出结果;(2)原多项式先利用平方差公式分解为2222(9)(9)x y x y +-,再次利用平方差公式对229x y -进行分解即可.【详解】解:(1)322242a a b ab -+222(2)a a ab b =-+22()a a b =-,(2)4481x y -2222(9)(9)x y x y =+-22(93(3))()x y x y x y =+-+.【点睛】本题考查了因式分解,掌握因式分解的基本方法并能结合多项式的特点准确分解是解题的关键.27.如果2()()41x m x n x x ++=+-.①填空:m n +=______,mn =______.②根据①的结果,求下列代数式的值:(1)225m mn n ++;(2)2()m n -.解析:①4,−1;②(1)13;(2)20【分析】①据多项式乘多项式的运算法则求解即可;②根据完全平方公式计算即可.【详解】①∵(x +m )(x +n )=x 2+(m +n )x +mn =x 2+4x−1,∴m +n =4,mn =−1.故答案为:4,−1;②(1)m 2+5mn +n 2=(m +n )2+3mn =42+3×(−1)=16−3=13;(2)(m−n )2=(m +n )2−4mn =42−4×(−1)=16+4=20.【点睛】本题主要考查了完全平方公式以及多项式乘多项式,熟记相关公式与运算法则是解答本题的关键.28.如图,在长8cm ,宽5cm 的长方形塑料板的四个角剪去4个边长为 cm x 的小正方形,按折痕做一个无盖的长方体盒子,求盒子的容积(塑料板的厚度忽略不计).解析:()32342640cm x x x -+ 【分析】这个盒子的容积=边长为8-2x,5-2x 的长方形的底面积乘高 x ,把相关数值代入即可.【详解】解:由题意,得()()8252x x x --()24016104x x x x =--+()242640x x x =-+3242640x x x =-+,答:盒子的容积是()32342640cm x x x -+.【点睛】本题主要考查单项式乘多项式,多项式乘多项式,解决本题的关键是找到表示长方体容积的等量关系.。
人教版八年级上册数学《第十四章 14.3 因式分解》课后练习(含答案)
八年级上册数学《第十四章14.3因式分解》课后练习一、单选题1.下列各选项中因式分解正确的是()A.B.C.D.2.下列运算不正确的是()A.B.C.D.3.下列各式中,哪项可以使用平方差公式分解因式()A.B.C.D.4.多项式12ab3c+8a3b的公因式是()A.4ab2B.4abc C.2ab2D.4ab5.若,则().A.是完全平方数,还是奇数B.是完全平方数,还是偶数C.不是完全平方数,但是奇数D.不是完全平方数,但是偶数6.设,,则,的大小关系是().A.B.C.D.无法确定二、填空题7.因式分解:______.8.因式分解:﹣x2﹣4y2+4xy=_____.9.若整式(为常数,且)能在有理数范围内分解因式,则的值可以是_____(写一个即可).10.若,则的值为_____.11.因式分解:_____.12.当时,代数式的值是_____.13.满足的整数对,共有______对.三、解答题14.分解因式:(1);(2);(3).15.先化简,再求值:,其中16.解下列各题:(1)分解因式:9a2(x﹣y)+4b2(y﹣x);(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.17.在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的6位数密码就很有必要了.有一种用“因式分解法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2因式分解的结果为(x﹣1)(x+1)(x+2),当x=18时,x﹣1=17,x+1=19,x+2=20,此时可以得到数字密码171920.(1)根据上述方法,当x=21,y=7时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(写出两个)(2)若多项式x3+(m﹣3n)x2﹣nx﹣21因式分解后,利用本题的方法,当x=27时可以得到其中一个密码为242834,求m、n的值.18.阅读材料:把形ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.请根据阅读材料解决下列问题:(1)填空:a2﹣4a+4=.(2)若a2+2a+b2﹣6b+10=0,求a+b的值.(3)若a、b、c分别是△ABC的三边,且a2+4b2+c2﹣2ab﹣6b﹣2c+4=0,试判断△ABC 的形状,并说明理由.19.仔细阅读下面例题,解答问题:例题,已知二次三项式x2-4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2-4x+m=(x+3)(x+n),则x2-4x+m=x2+(n+3)x+3n.∴,解得n=-7,m=-21,∴另一个因式为(x-7),m的值为-21.问题:仿照以上方法解答下面问题:已知二次三项式3x2+5x-m有一个因式是(3x-1),求另一个因式以及m的值.20.阅读下列材料解决问题:将下图一个正方形和三个长方形拼成一个大长方形,观察这四个图形的面积与拼成的大长方形的面积之间的关系.∵用间接法表示大长方形的面积为:,用直接法表示面积为:∴于是我们得到了可以进行因式分解的公式:(1)运用公式将下列多项式分解因式:①,②;(2)如果二次三项式“”中的“”只能填入有理数1,2,3,4,并且填入后的二次三项式能进行因式分解,请你写出所有的二次三项式.答案1.D2.B3.B4.D5.A6.B 7.8.﹣(x﹣2y)29.-110.411.12.13.314.解(1)原式=x4+2x2+1-x2=(x2+1)2-x2=(x2+1+x)(x2+1-x)(2)原式=x3-16x+5x+20=x(x+4)(x-4)+5(x+4)=(x+4)(x2-4x+5).(3)原式=a3+3a2b+3ab2+b3+c3-3abc-3a2b-3ab2=(a+b)3+c3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c2]-3(a+b+c)ab=(a+b+c)[(a+b)2-ac-bc+c2-3ab]=(a+b+c)(a2+b2+c2-ab-bc-ca).15.解:原式.∵,∴原式.16.解:(1)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(2)∵(x+2)(x+4)=x2+6x+8,甲看错了n,∴m=6.∵(x+1)(x+9)=x2+10x+9,乙看错了m,∴n=9,∴x2+mx+n=x2+6x+9=(x+3)2.17.解(1)x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y),当x=21,y=7时,x+y=28,x﹣y=14,∴可以形成的数字密码是:212814、211428;(2)设x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),∵当x=27时可以得到其中一个密码为242834,∴27+p=24,27+q=28,27+r=34,解得,p=﹣3,q=1,r=7,∴x3+(m﹣3n)x2﹣nx﹣21=(x﹣3)(x+1)(x+7),∴x3+(m﹣3n)x2﹣nx﹣21=x3+5x2﹣17x﹣21,∴得,即m的值是56,n的值是17.18.解:,故答案为:;,,,,;为等边三角形,理由如下:,,,,,为等边三角形.19.解:设另一个因式为(x+n),则3x2+5x-m=(3x-1)(x+n),则3x2+5x-m=3x2+(3n-1)x-n,∴,解得n=2,m=2,∴另一个因式为(x+2),m的值为2. 20.解(1)①=;=;(2),。
人教版数学八年级上册:14 整式的乘法与因式分解 专题练习(附答案)
第十四章《整式的乘法与因式分解》专题练习目录专题1幂的运算性质的应用 (1)专题2 整式的运算及化简求值 (2)专题3 完全平方公式的变形 (4)专题4 乘法公式的应用 (5)专题5 因式分解 (6)第十四章整式的乘法与因式分解专题练习专题1幂的运算性质的应用类型1直接利用幂的运算性质进行计算1.计算:(1)a·a4=;(2)(a5)2=;(3)(-a4)3=;(4)(2y2)3=;(5)(ab3)2=;(6)(-a2b3c)3=;(7)(a2)3·a4=;(8)(-3a)2·a3=;(9)(a n b m+4)3=;(10)(-a m)5·a n=.2.计算:(1)(-a2)3+(-a3)2-a2·a3;(2)a·a2·a3+(a3)2-(2a2)3;(3)-(-x2)3·(-x2)2-x·(-x3)3;(4)(-2x2)3+(-3x3)2+(x2)2·x2;(5)(-2x2y)3-(-2x3y)2+6x6y3+2x6y2.类型2逆用幂的运算性质3.已知a x=-2,a y=3.求:(1)a x+y的值;(2)a3x的值;(3)a3x+2y的值.4.计算:0.1252 019×(-82 020).5.已知2a=m,2b=n,3a=p(a,b都是正整数),用含m,n或p的式子表示下列各式:(1)4a+b;(2)6a.专题2整式的运算及化简求值类型1整式的化简1.计算:(1)(-2a2)·(3ab2-5ab3)+8a3b2;(2)(3x-1)(2x+1);(3)(2x+5y)(3x-2y)-2x(x-3y);(4)(x-1)(x2+x+1).2.计算:(1)21x2y4÷3x2y3;(2)(8x3y3z)÷(-2xy2);(3)a 2n +2b 3c÷2a n b 2; (4)-9x 6÷13x 2÷(-x 2).3.计算:(1)(-2a 2b 3)·(-ab)2÷4a 3b 5; (2)(-5a 2b 4c 2)2÷(-ab 2c)3.4.计算:(1)[x(x 2y 2-xy)-y(x 2-x 3y)]÷x 2y ; (2)(23a 4b 7-19a 2b 6)÷(-16ab 3)2. 5.计算:(1)(-76a 3b)·65abc ; (2)(-x)5÷(-x)-2÷(-x)3;(3)6mn 2·(2-13mn 4)+(-12mn 3)2; (4)5x(x 2+2x +1)-(2x +3)(x -5).类型2 直接代入进行化简求值 6.先化简,再求值:(1)(1+x)(1-x)+x(x +2)-1,其中x =12;(2)(a +b)(a -2b)-(a +2b)(a -b),其中a =-2,b =23;(3)(x +7)(x -6)-(x -2)(x +1),其中x =2 0180.(4)(2a +3b)(3a -2b)-5a(b +1)-6a 2,其中a =-12,b =2.类型3 利用整体带入进行化简求值7.先化简,再求值:(2+a)(2-a)+a(a -5b)+3a 5b 3÷(-a 2b)2,其中ab =-12.8.若x2+4x-4=0,求3(x-1)(x-3)-6(x+1)(x-1)的值.专题3 完全平方公式的变形教材母题:已知a +b =5,ab =3,求a 2+b 2的值.解:∵a +b =5,ab =3,∴(a +b)2=25,即a 2+2ab +b 2=25. ∴a 2+b 2=25-2ab =25-6=19.【变式1】若a +b =3,a 2+b 2=7,则ab =( )A .2B .1C .-2D .-1【变式2】已知实数a ,b 满足a +b =2,ab =34,则a -b =( )A .1B .-52C .±1D .±52【变式3】已知a 2+b 2=13,(a -b)2=1,则(a +b)2= .【变式4】阅读下列材料并解答后面的问题:利用完全平方公式(a±b)2=a 2±2ab +b 2,通过配方可对a 2+b 2进行适当的变形,如a 2+b 2=(a +b)2-2ab 或a 2+b 2=(a -b)2+2ab.(1)若|x -y -5|+(xy -6)2=0,则x 2+y 2的值为 ; (2)已知a -b =2,ab =3,求a 4+b 4的值. 解题技巧:(1)a 2+b 2的变形:(1)a 2+b 2=(a +b)2-2ab ;(2)a 2+b 2=(a -b)2+2ab ;(3)a 2+b 2=12[(a +b)2+(a -b)2].(2)ab 的变形:(1)ab =12[(a +b)2-(a 2+b 2)];(2)ab =12[(a 2+b 2)-(a -b)2];(3)ab =14[(a +b)2-(a -b)2].(3)(a±b)2的变形:(1)(a +b)2=(a -b)2+4ab ; (2)(a -b)2=(a +b)2-4ab.练习:1.已知a ,b 都是正数,a -b =1,ab =2,则a +b =( )A .-3B .3C .±3D .92.已知x 2+y 2=25,x +y =7.(1)求xy 的值; (2)若y >x ,求x -y 的值.3.已知(m -53)(m -47)=24,求(m -53)2+(m -47)2的值.4.(1)请同学们观察用硬纸片拼成的图形(如图),根据图形的面积关系,写出一个代数恒等式;(2)根据(1)题中的等量关系,解决如下问题: ①若m +n =8,mn =12,求m -n 的值;②已知(2m +n)2=13,(2m -n)2=5,请利用上述等式求mn.专题4乘法公式的应用类型1直接运用乘法公式计算求值1.计算:(1)(2x+5y)2;(2)(3m-n)(-3m-n);(3)(x+2y)(x2-4y2)(x-2y);(4)(3x-2y)2(3x+2y)2.2.先化简,再求值:(1)(3+x)(3-x)+(x+1)2,其中x=2;(2)(2m+1)(2m-1)-(m-1)2+(2m)3÷(-8m),其中m满足m2+m-2=0;(3)(x+2y)2-(x-2y)2-(x+2y)(x-2y)-4y2,其中x=-2,y=1 2.类型2 运用乘法公式进行简便计算 3.用简便方法计算:(1)2 0192-2 018×2 020; (2)50120×491920;(3)2012-401; (4)(2+1)(22+1)(24+1)+1.专题5 因式分解类型1 运用提公因式法因式分解 1.分解因式:(1)3ab 2+a 2b = ; (2)2a 2-4a = ;(3)m(5-m)+2(m -5)= ; (4)5x(x -2y)3-20y(2y -x)3= . 类型2 运用公式法因式分解 2.分解因式:(1)4x 2-25= ; (2)a 2+4a +4= . 3.因式分解:(1)(2x+3)2-(x-1)2;(2)(x-1)2-6(x-1)+9.类型3先提公因式后运用公式法因式分解4.分解因式:(1)x2y-9y=;(2)ax3-axy2=.5.因式分解:(1)-4x3+8x2-4x;(2)3m(2x-y)2-3mn2.类型5运用特殊方法因式分解方法1十字相乘法阅读理解:由多项式乘法:(x+p)(x+q)=x2+(p+q)x+pq,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(p+q)x+pq=(x+p)(x+q),示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).问题解决:分解因式:(1)x2+5x+4=;(2)x2-6x+8=;(3)x2+2x-3=;(4)x2-6x-7=.拓展训练:分解因式:(1)2x2+3x+1=;(2)3x2-5x+2=.方法2分组分解法【阅读材料】分解因式:mx+nx+my+ny=(mx+nx)+(my+ny)=x(m+n)+y(m+n)=(m+n)(x+y).以上分解因式的方法称为分组分解法.对于四项多项式的分组,可以是“二、二分组(如此例)”,也可以是“三、一(或一、三)分组”.根据以上阅读材料解决问题:【跟着学】分解因式:a3-b3+a2b-ab2=(a3+)-(b3+)=a2( )-(a+b)=(a+b)=.【我也可以】分解因式:4x2-2x-y2-y.拓展训练:已知a,b,c为△ABC的三边,若a2+b2+2c2-2ac-2bc=0,试判断△ABC 的形状.参考答案:专题1幂的运算性质的应用1.(1)a5;(2)a10;(3)-a12;(4)8y6;(5)a2b6;(6)-a6b9c3;(7)a10;(8)9a5;(9)a3n b3m+12;(10)-a5m+n.2.(1)(-a2)3+(-a3)2-a2·a3;解:原式=-a6+a6-a5=-a5.(2)a·a2·a3+(a3)2-(2a2)3;解:原式=a6+a6-8a6=-6a6.(3)-(-x2)3·(-x2)2-x·(-x3)3;解:原式=x6·x4+x10=2x10.(4)(-2x2)3+(-3x3)2+(x2)2·x2;解:原式=-8x6+9x6+x6=2x6.(5)(-2x2y)3-(-2x3y)2+6x6y3+2x6y2.解:原式=-8x6y3-4x6y2+6x6y3+2x6y2=-2x6y3-2x6y2.3.解:(1)a x+y=a x·a y=-2×3=-6.(2)a3x=(a x)3=(-2)3=-8.(3)a3x+2y=(a3x)·(a2y)=(a x)3·(a y)2=(-2)3·32=-8×9=-72.4.解:原式=(18)2 019×(-82 019×8) =(18)2 019×(-82 019)×8 =-(18×8)2 019×8 =-1×8=-8.5.解:(1)4a +b =4a ·4b=(22)a ·(22)b=(2a )2·(2b )2=m 2n 2.(2)6a =(2×3)a=2a ×3a=mp.专题2 整式的运算及化简求值1.(1)(-2a 2)·(3ab 2-5ab 3)+8a 3b 2;解:原式=-6a 3b 2+10a 3b 3+8a 3b 2=2a 3b 2+10a 3b 3.(2)(3x -1)(2x +1);解:原式=6x 2+3x -2x -1=6x 2+x -1.(3)(2x +5y)(3x -2y)-2x(x -3y);解:原式=6x 2+11xy -10y 2-2x 2+6xy=4x 2+17xy -10y 2.(4)(x -1)(x 2+x +1).解:原式=x 3+x 2+x -x 2-x -1=x 3-1.2.(1)21x 2y 4÷3x 2y 3;解:原式=(21÷3)·x 2-2·y 4-3=7y.(2)(8x 3y 3z)÷(-2xy 2);解:原式=[8÷(-2)]·(x 3÷x)·(y 3÷y 2)·z=-4x 2yz.(3)a 2n +2b 3c÷2a n b 2;解:原式=(1÷2)·(a 2n +2÷a n )·(b 3÷b 2)·c=12a n +2bc. (4)-9x 6÷13x 2÷(-x 2). 解:原式=[-9÷13÷(-1)]·(x 6÷x 2÷x 2)=27x 2.3.(1)(-2a 2b 3)·(-ab)2÷4a 3b 5;解:原式=(-2a 2b 3)·a 2b 2÷4a 3b 5=(-2a 4b 5)÷4a 3b 5=-12a.(2)(-5a 2b 4c 2)2÷(-ab 2c)3.解:原式=25a 4b 8c 4÷(-a 3b 6c 3)=-25ab 2c.4.(1)[x(x 2y 2-xy)-y(x 2-x 3y)]÷x 2y ;解:原式=(x 3y 2-x 2y -x 2y +x 3y 2)÷x 2y=(2x 3y 2-2x 2y)÷x 2y=2xy -2.(2)(23a 4b 7-19a 2b 6)÷(-16ab 3)2.解:原式=(23a 4b 7-19a 2b 6)÷136a 2b 6=23a 4b 7÷136a 2b 6-19a 2b 6÷136a 2b 6=24a 2b -4.5.(1)(-76a 3b)·65abc ;解:原式=-75a 3+1b 1+1c=-75a 4b 2c.(2)(-x)5÷(-x)-2÷(-x)3;解:原式=(-x)5-(-2)-3=(-x)4=x 4.(3)6mn 2·(2-13mn 4)+(-12mn 3)2; 解:原式=12mn 2-2m 2n 6+14m 2n 6 =12mn 2-74m 2n 6. (4)5x(x 2+2x +1)-(2x +3)(x -5).解:原式=5x 3+10x 2+5x -(2x 2-7x -15)=5x 3+10x 2+5x -2x 2+7x +15=5x 3+8x 2+12x +15.6.(1)(1+x)(1-x)+x(x +2)-1,其中x =12; 解:原式=1-x +x -x 2+x 2+2x -1=2x.当x =12时,原式=2×12=1. (2)(a +b)(a -2b)-(a +2b)(a -b),其中a =-2,b =23; 解:原式=a 2-ab -2b 2-(a 2+ab -2b 2)=a 2-ab -2b 2-a 2-ab +2b 2=-2ab.当a =-2,b =23时,原式=(-2)×(-2)×23=83. (3)(x +7)(x -6)-(x -2)(x +1),其中x =2 0180.解:原式=x 2-6x +7x -42-x 2-x +2x +2=2x -40. 由题意知x =1.原式=2-40=-38.(4)(2a +3b)(3a -2b)-5a(b +1)-6a 2,其中a =-12,b =2. 解:原式=6a 2+5ab -6b 2-5ab -5a -6a 2=-6b 2-5a.当a =-12,b =2时, 原式=-6×22-5×(-12) =-24+52=-2112. 7.解:原式=4-2a +2a -a 2+a 2-5ab +3a 5b 3÷a 4b 2=4-2ab.当ab =-12时,原式=4-2×(-12)=5. 8.解:原式=3x 2-12x +9-6x 2+6=-3x 2-12x +15=-3(x 2+4x)+15.∵x 2+4x -4=0,∴x 2+4x =4.∴原式=-3×4+15=3.专题3完全平方公式的变形【变式1】B【变式2】C【变式3】25.【变式4】(1)37;(2)解:a2+b2=(a-b)2+2ab=4+6=10,a4+b4=(a2+b2)2-2a2b2=102-2×32=82. 1.B2.解:(1)xy=12[(x+y)2-(x2+y2)]=12×(72-25)=12.(2)(x-y)2=(x+y)2-4xy=72-4×12=1.∵y>x,∴x-y<0.∴x-y=-1.3.解:(m-53)2+(m-47)2=[(m-53)-(m-47)]2+2(m-53)(m-47)=(-6)2+48=84.4.解:(1)(a+b)2-(a-b)2=4ab.(2)①∵(m-n)2=(m+n)2-4mn=82-4×12=16,∴m-n=4或-4.②∵(2m+n)2-(2m-n)2=4×(2m·n)=8mn,∴8mn=13-5=8.∴mn=1.专题4乘法公式的应用1.(1)(2x+5y)2;解:原式=4x2+20xy+25y2.(2)(3m-n)(-3m-n);解:原式=n2-9m2.(3)(x+2y)(x2-4y2)(x-2y);解:原式=[(x+2y)(x-2y)](x2-4y2)=(x2-4y2)(x2-4y2)=x4-8x2y2+16y4.(4)(3x-2y)2(3x+2y)2.解:原式=[(3x-2y)(3x+2y)]2=(9x2-4y2)2=81x4-72x2y2+16y4.2.(1)(3+x)(3-x)+(x+1)2,其中x=2;解:原式=9-x2+x2+2x+1=2x+10.当x=2时,原式=2×2+10=14.(2)(2m+1)(2m-1)-(m-1)2+(2m)3÷(-8m),其中m满足m2+m-2=0;解:原式=4m2-1-(m2-2m+1)+8m3÷(-8m)=4m2-1-m2+2m-1-m2=2m2+2m-2=2(m2+m-1).∵m2+m-2=0,∴m2+m=2.∴原式=2×(2-1)=2.(3)(x+2y)2-(x-2y)2-(x+2y)(x-2y)-4y2,其中x=-2,y=1 2.解:原式=(x2+4xy+4y2)-(x2-4xy+4y2)-(x2-4y2)-4y2=x2+4xy+4y2-x2+4xy-4y2-x2+4y2-4y2=-x2+8xy.当x =-2,y =12时, 原式=-(-2)2+8×(-2)×12=-12. 3.(1)2 0192-2 018×2 020;解:原式=2 0192-(2 019-1)×(2 019+1) =2 0192-(2 0192-1)=1.(2)50120×491920; 解:原式=(50+120)×(50-120) =502-(120)2 =2 500-1400=2 499399400. (3)2012-401;解:原式=(200+1)2-401=2002+2×200×1+12-401=40 000.(4)(2+1)(22+1)(24+1)+1.解:原式=(2-1)(2+1)(22+1)(24+1)+1 =(22-1)(22+1)(24+1)+1=(24-1)(24+1)+1=28-1+1=256.专题5因式分解1.(1)ab(3b+a);(2)2a(a-2);(3)(m-2)(5-m);(4)5(x-2y)3(x+4y).2.分解因式:(1)4x2-25=(2x+5)(2x-5);(2)a2+4a+4=(a+2)2.3.(1)(2x+3)2-(x-1)2;解:原式=(2x+3+x-1)(2x+3-x+1)=(3x+2)(x+4).(2)(x-1)2-6(x-1)+9.解:原式=(x-4)2.4.(1)y(x+3)(x-3);(2)ax(x+y)(x-y).5.(1)-4x3+8x2-4x;解:原式=-4x(x2-2x+1)=-4x(x-1)2.(2)3m(2x-y)2-3mn2.解:原式=3m(2x-y+n)(2x-y-n).类型5方法1十字相乘法(1)(x+1)(x+4);(2)(x-2)(x-4);(3)(x+3)(x-1);(4)(x-7)(x+1).拓展训练:(1)(2x+1)(x+1);(2)(x-1)(3x-2).方法2分组分解法【跟着学】a3-b3+a2b-ab2=(a3+a2b)-(b3+ab2)=a2(a+b)-b2(a+b)=(a2-b2)(a+b)=(a-b)(a+b)2.【我也可以】解:原式=(4x2-y2)-(2x+y)=(2x-y)(2x+y)-(2x+y)=(2x+y)(2x-y-1).拓展训练:解:∵a2+b2+2c2-2ac-2bc=0,∴a2+c2-2ac+b2+c2-2bc=0,即(a-c)2+(b-c)2=0.∴a-c=0且b-c=0,即a=c且b=c.∴a=b=c.∴△ABC是等边三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解同步练习
一、选择题:
1.若 (2x)n- 81 = (4x2+9)(2x+3)(2x - 3),那么 n 的值是()A.2 B . 4 C.6 D.8
2.若 9x2- 12xy+m 是两数和的平方式,那么m 的值是()
A.2y2 .
4y 2 .±
2
D
.± 2
B C 4y 16y
3.把多项式 a4- 2a2b2+b4因式分解的结果为()A.a2(a2 - 2b2)+b4B.(a2- b2)2
C.(a- b)4D.(a+b)2(a- b)2
4.把 (a+b)2 - 4(a2- b2)+4(a- b)2分解因式为()A.( 3a- b)2B. (3b+a)2
C.(3b- a)2D. ( 3a+b)2
5.计算: (- 1
)2001+(-
1
)2000的结果为()2 2
A.(- 1 ) 2003 B. - (- 1 ) 2001
2 2
C.1
D.-
1 2 2
6.已知 x, y 为任意有理数,记M = x 2+y2,N = 2xy,则 M 与 N 的大小关系为()
A.M>N B.M≥N C.M≤N D.不能确定
7.对于任何整数 m,多项式 ( 4m+5)2- 9 都能()
A.被 8 整除B.被 m 整除
C.被 (m- 1)整除D.被 (2n- 1)整除
8.将 - 3x2n- 6x n分解因式,结果是()
A.- 3x n(x n+2)B.- 3(x2n+2x n)
C.- 3x n(x2+2)D.3(- x2n- 2x n)
9.下列变形中,是正确的因式分解的是()
A.
2 16 2 4
)( 0.03m-
4
) 0.09m - 49 n = ( 0.03m+ 7 7
B.x 2- 10 = x2- 9- 1 = (x+3)(x - 3)- 1
C.x4 - x2 = (x2+x)(x 2- x)
D.(x+a)2- (x- a)2 = 4ax
10.多项式 (x+y- z)(x- y+z)- (y+z- x)(z - x- y)的公因式是()A.x+y - zB.x- y+zC.y+z- x D.不存在
11.已知 x 为任意有理数,则多项式x- 1- 1 2
的值()x
4
A.一定为负数
B.不可能为正数
C.一定为正数
D.可能为正数或负数或零
二、解答题:
分解因式:
(1)(ab+b)2- (a+b)2
(2)(a2- x2)2- 4ax(x- a)2
(3)7x n+1- 14x n+7x n- 1(n 为不小于 1 的整数 )
参考答案:
一、选择题:
1.B 说明:右边进行整式乘法后得
16x 4 4
,所以 n 应为 ,
- 81 = (2x) - 81 4
答案为 B .
2.B
说明:因为 9x 2- 12xy+m 是两数和的平方式, 所以可设 9x 2- 12xy+m
2
,则有 9x 2- 12xy+m = a
2
2
2 2,即 a 2
, , 2
2 = (ax+by)
x +2abxy+b y
= 9 2ab = - 12 b y = m ;
2
2 2 2 ,答案 得到 a = 3,b = - 2;或 a = - 3, b = 2;此时 b = 4,因此, m = b y = 4y 为 B .
3.D
4 2 2 4
2
2 2
,再运用两数
说明:先运用 完全平方公式, a - 2a b +b = (a - b )
和的平方公式,两数分别是 a 2
、- b 2
,则有 (a 2
- b 2)2
= (a+b)2
(a- b)2
,在这里,注意因式分解要分解到不能分解为止;答案为 D .
4.C
说明: (a+b)2- 4(a 2- b 2)+4(a- b)2 = (a+b)2- 2(a+b)[2(a- b)]+[2(a - b)] 2 =
[a+b- 2(a- b)]2 = (3b- a)2;所以答案为 C .
5.B
说明:(- 1
)
2001
+(- 1 )2000 = (- 1 )2000[( - 1 )+1] = ( 1
)
2000
?
1
= ( 1 )2001
2 2
2
2
2
2
2
= - (- 1
)2001,所以答案为 B .
2
6.B
说明:因为 M - N = x 2 +y 2- 2xy = (x - y)2≥0,所以 M ≥N.
2
7.A 说明: ( 4m+5) - 9 = ( 4m+5+3)( 4m+5- 3) = ( 4m+8)( 4m+2) =
8.A
9.D 2
2
16
n 2 =
说明:选项 A ,0.09 = 0.3 ,则 0.09m -
49
( 0.3m+ 4 n)( 0.3m- 4
n),所以 A 错;选项 B 的右边不是乘积的形式;选项
C 右
7
7
2
2
2
边 (x +x)(x - x)可继续分解为 x (x+1)(x - 1);所以答案为 D .
10. A
说明:本题的关键是符号的变化: z- x- y = - (x+y- z),而
x-y+z ≠ y+z-x ,同时 x -y+z ≠-(y+z- x),所以公因式为 x+y- z .
11.B
说明: x- 1- 1
x 2
= - (1- x+ 1
x 2
) = - (1- 1
x)2
≤0,即多项式 x - 1- 1
x 2
4
4
2
4
的值为非正数,正确答案应该是 B .
二、解答题:
(1) 答案: a(b- 1)(ab+2b+a)
说明: (ab+b)2 - (a+b)2 = (ab+b+a+b)(ab+b- a- b) = (ab+2b+a)(ab- a) = a(b- 1)(ab+2b+a).
(2) 答案: (x - a)4
说明: (a2- x2)2- 4ax(x- a)2
=[(a+x)(a- x)] 2- 4ax(x- a)2
=(a+x)2(a- x) 2- 4ax(x- a)2
=(x- a)2[(a+x) 2- 4ax]
=(x- a)2(a2+2ax+x2- 4ax)
=(x- a)2(x- a)2 = (x- a)4.
(3) 答案: 7x n- 1 (x- 1)2
说明:原式= 7x n- 1 ?x2- 7x n- 1 ?2x+7x n- 1 = 7x n - 1(x2- 2x+1) = 7x n- 1(x- 1)2.。