全国二卷理科数学高考真题及答案解析

合集下载

2020年高考全国2卷理科数学带答案解析

2020年高考全国2卷理科数学带答案解析

2020年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.12i 12i +=-A.43i 55-- B.43i 55-+ C.34i 55-- D.34i 55-+2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素的个数为A.9 B.8 C.5 D.43.函数2e e ()x xf x x --=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A.4B.3C.2D.05.双曲线22221(0,0)x y a b a b -=>>的离心率为3,则其渐近线方程为A.2y x =±B.3y x =±C.22y x =± D.32y x =± 6.在ABC △中,5cos 25C =,1BC =,5AC =,则AB =A.42 B.30 C.29 D.257.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入A.1i i =+B.2i i =+ C.3i i =+D.4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A.112 B.114 C.115 D.1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为A.15B.56 C.55D.2210.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A.π4 B.π2 C.3π4D.π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++= A.50- B.0 C.2 D.5012.已知1F ,2F 是椭圆22221(0)x y C a b a b +=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A.23 B.12 C.13D.14二、填空题:本题共4小题,每小题5分,共20分。

2024年全国统一高考数学试卷(新高考Ⅱ)正式版含答案解析

2024年全国统一高考数学试卷(新高考Ⅱ)正式版含答案解析

绝密★启用前2024年全国统一高考数学试卷(新高考Ⅱ)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知z=−1−i,则|z|=( )A. 0B. 1C. √ 2D. 22.已知命题p:∀x∈R,|x+1|>1,命题q:∃x>0,x3=x,则( )A. p和q都是真命题B. ¬p和q都是真命题C. p和¬q都是真命题D. ¬p和¬q都是真命题3.已知向量a⃗,b⃗⃗满足:|a⃗|=1,|a⃗⃗+2b⃗⃗|=2,且(b⃗⃗−2a⃗⃗)⊥b⃗⃗,则|b⃗⃗|=( )A. 12B. √ 22C. √ 32D. 14.某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg)并部分整理下表:据表中数据,结论中正确的是( )A. 100块稻田亩产量中位数小于1050kgB. 100块稻田中的亩产量低于1100kg的稻田所占比例超过80%C. 100块稻田亩产量的极差介于200kg至300kg之间D. 100块稻田亩产量的平均值介于900kg至1000kg之间5.已知曲线C:x2+y2=16(y>0),从C上任意一点P向x轴作垂线PP′,P′为垂足,则线段PP′的中点M的轨迹方程为( )A. x 216+y24=1(y>0) B. x216+y28=1(y>0)C. y 216+x24=1(y>0) D. y216+x28=1(y>0)6.设函数f(x)=a(x+1)2−1,g(x)=cosx+2ax(a为常数),当x∈(−1,1)时,曲线y=f(x)与y=g(x)恰有一个交点,则a=( )A. −1B. 12C. 1D. 27.已知正三棱台ABC−A1B1C1的体积为523,AB=6,A1B1=2,则A1A与平面ABC所成角的正切值为( )A. 12B. 1C. 2D. 38.设函数f(x)=(x+a)ln(x+b),若f(x)≥0,则a2+b2的最小值为( )A. 18B. 14C. 12D. 1二、多选题:本题共3小题,共18分。

2024年高考新课标全国Ⅱ卷数学真题卷(含答案与解析)

2024年高考新课标全国Ⅱ卷数学真题卷(含答案与解析)

2024年普通高等学校招生全国统一考试(新课标II 卷)数学本试卷共10页,19小题,满分150分.注意事项:1 .答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3. 填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4. 考试结束后,请将本试卷和答题卡一并上交.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中, 只有一个选项是正确的・请把正确的选项填涂在答题卡相应的位置上.1. 已知z = —1 —i,则()A. 0B. 1C. V2D. 22. 已知命题p : Vx e R , x +11> 1 ;命题 q : > 0 , x 3 = x ,贝I ( )A. p 和q 都是真命题B. ~^P 和q 都是真命题C. p 和「0都是真命题D. F 和「0都是真命题3. 已知向量口,直满足|4 = 1J q + 2,= 2,且— 则料=()A. |B. —C.匝D. 12 2 24. 某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表据表中数据,结论中正确的是()亩产量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)频数612182410A. 100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg至300kg之间D.100块稻田亩产量的平均值介于900kg至1000kg之间5.已知曲线C:x2+y2=16(歹>0),从。

2021年高考理科数学全国2卷-含答案

2021年高考理科数学全国2卷-含答案

2021年高考理科数学全国2卷-含答案20__年普通高等学校招生全国统一考试理科数学(全国2卷) 一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.() A. B. C. D.2.设集合,.若,则() A. B. C. D.3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯() A.1盏 B.3盏 C.5盏 D.9盏 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A. B. C. D. 5.设,满足约束条件,则的最小值是() A. B. C. D. 6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有() A.12种 B.18种C.24种 D.36种 7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则() A.乙可以知道四人的成绩 B.丁可以知道四人的成绩 C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的,则输出的() A.2 B.3 C.4 D.5 9.若双曲线(,)的一条渐近线被圆所截得的弦长为2,则的离心率为()A.2 B. C. D. 10.已知直三棱柱中,,,,则异面直线与所成角的余弦值为()A. B. C. D. 11.若是函数的极值点,则的极小值为() A.B.C.D.1 12.已知是边长为2的等边三角形,P为平面ABC内一点,则的最小值是() A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

2020年全国统一高考数学试卷(理科)(新课标Ⅱ)(含答案解析)

2020年全国统一高考数学试卷(理科)(新课标Ⅱ)(含答案解析)
所以,圆心到直线 的距离为 .
故选:B.
【点睛】
本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.
6.C
【分析】
取 ,可得出数列 是等比数列,求得数列 的通项公式,利用等比数列求和公式可得出关于 的等式,由 可求得 的值.
【详解】
在等式 中,令 ,可得 , ,
所以,数列 是以 为首项,以 为公比的等比数列,则 ,
所以 ,

即 ,解得 ,
所以 .
故选:C
【点晴】
本题主要考查等差数列前n项和有关的计算问题,考查学生数学运算能力,是一道容易题.
5.B
【分析】
由题意可知圆心在第一象限,设圆心的坐标为 ,可得圆的半径为 ,写出圆的标准方程,利用点 在圆上,求得实数 的值,利用点到直线的距离公式可求出圆心到直线 的距离.
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.
23.已知函数 .
(1)当 时,求不等式 的解集;
(2)若 ,求a的取值范围.
参考答案
1.A
【分析】
首先进行并集运算,然后计算补集即可.
【详解】
由题意可得: ,则 .
故选:A.
故选:D.
【点睛】
本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.
3.B
【分析】
算出第二天订单数,除以志愿者每天能完成的订单配货数即可.
【详解】
由题意,第二天新增订单数为 ,
,故至少需要志愿者 名.
故选:B
【点晴】
本题主要考查函数模型的简单应用,属于基础题.

全国2卷理科数学与答案

全国2卷理科数学与答案

普通高等学校招生全国统一考试(Ⅱ卷)逐题解析欧阳学文理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

【题目1】(·新课标全国Ⅱ卷理1)1.()A. B. C. D.【命题意图】本题主要考查复数的四则运算及共轭复数的概念,意在考查学生的运算能力.【解析】解法一:常规解法解法二:对十法可以拆成两组分式数,运算的结果应为形式,(分子十字相乘,分母为底层数字平方和),(分子对位之积差,分母为底层数字平方和).解法三:分离常数法解法四:参数法,解得故【知识拓展】复数属于新课标必考点,考复数的四则运算的年份较多,复数考点有五:1.复数的几何意义();2.复数的四则运算;3.复数的相等的充要条件;4.复数的分类及共轭复数;5.复数的模【题目2】(·新课标全国Ⅱ卷理2)2.设集合,.若,则()A. B. C. D.【命题意图】本题主要考查一元二次方程的解法及集合的基本运算,以考查考生的运算能力为目的.【解析】解法一:常规解法∵∴1是方程的一个根,即,∴故解法二:韦达定理法∵∴1是方程的一个根,∴ 利用伟大定理可知:,解得:,故解法三:排除法∵集合中的元素必是方程方程的根,∴,从四个选项A﹑B﹑C﹑D看只有C选项满足题意.【知识拓展】集合属于新课标必考点,属于函数范畴,常与解方程﹑求定义域和值域﹑数集意义相结合,集合考点有二:1.集合间的基本关系;2.集合的基本运算.【题目3】(·新课标全国Ⅱ卷理3)3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏 B.3盏 C.5盏 D.9盏【命题意图】本题主要考查等比数列通向公式及其前项和,以考查考生的运算能力为主目的.【解析】解法一:常规解法一座7层塔共挂了381盏灯,即;相邻两层中的下一层灯数是上一层灯数的2倍,即,塔的顶层为;由等比前项和可知:,解得.解法二:边界效应等比数列为递增数列,则有,∴,解得,∴.【知识拓展】数列属于高考必考考点,一般占10分或12分,即两道小题或一道大题,其中必有一道小题属于基础题,一道中档偏上题或压轴题,大题在17题出现,属于基础题型,高考所占分值较大,在高中教学中列为重点讲解内容,也是大部分学生的难点,主要是平时教学题型难度严重偏离高考考试难度,以及研究题型偏离命题方向,希望能引起注意;考试主线非常明晰,1.等差数列通向公式及其前项和;2. 等比数列通向公式及其前项和.【题目4】(·新课标全国Ⅱ卷理4)4.如图,网格纸上小正方形的边长为1,学科&网粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()A .B .C .D .【命题意图】本题主要考查简单几何体三视图及体积,以考查考生的空间想象能力为主目的.【解析】解法一:常规解法从三视图可知:一个圆柱被一截面截取一部分而剩余的部分,具体图像如下:切割前圆柱切割中切割后几何体从上图可以清晰的可出剩余几何体形状,该几何体的体积分成两部分,部分图如下:从左图可知:剩下的体积分上下两部分阴影的体积,下面阴影的体积为,,,∴;上面阴影的体积是上面部分体积的一半,即,与的比为高的比(同底),即,,故总体积.第二种体积求法:,其余同上,故总体积.【知识拓展】三视图属于高考必考点,几乎年年考三视图,题型一般有五方面,1.求体积;2.求面积(表面积,侧面积等);3.求棱长;4.视图本质考查(推断视图,展开图,空间直角坐标系视图);5.视图与球体综合联立,其中前三个方面考的较多.【题目5】(·新课标全国Ⅱ卷理5)5.设,满足约束条件,则的最小值是()A. B. C. D.【命题意图】本题主要考查线性规划问题,以考查考生数形结合的数学思想方法运用为目的, 属于过渡中档题.【解析】解法一:常规解法 根据约束条件画出可行域(图中阴影部分), 作直线,平移直线,将直线平移到点处最小,点的坐标为,将点的坐标代到目标函数, 可得,即.解法二:直接求法对于封闭的可行域,我们可以直接求三条直线的交点,代入目标函数中,三个数种选其最小的 为最小值即可,点的坐标为,点的坐标为,点的坐标为,所求值分 别为﹑﹑,故,.解法三:隔板法首先 看约束条件方程的斜率 约束条件方程的斜率分别为﹑﹑;y = 32x +3y 3=02x 3y +3=0其次排序按照坐标系位置排序﹑﹑;再次看目标函数的斜率和前的系数看目标函数的斜率和前的系数分别为﹑;最后画初始位置,跳格,找到最小值点目标函数的斜率在之间,即为初始位置,前的系数为正,则按逆时针旋转,第一格为最大值点,即,第二个格为最小值点,即,只需解斜率为和这两条线的交点即可,其实就是点,点的坐标为,将点的坐标代到目标函数,可得,即.【知识拓展】线性规划属于不等式范围,是高考必考考点,常考查数学的数形结合能力,一般变化只在两个方向变化,1.约束条件的变化;2.目标函数的变化;约束条件变化从封闭程度方面变化,目标函数则从方程的几何意义上变化,但此题型属于高考热点题型(已知封闭的约束条件,求已知的二元一次方程目标函数),此题型属于过渡中档题,只需多积累各题型解决的方法即可.【题目6】(·新课标全国Ⅱ卷理6)6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种【命题意图】本题主要考查基本计数原理的应用,以考查考生的逻辑分析能力和运算求解能力为主.【解析】解法一:分组分配之分人首先分组将三人分成两组,一组为三个人,有种可能,另外一组从三人在选调一人,有种可能;其次排序两组前后在排序,在对位找工作即可,有种可能;共计有36种可能.解法二:分组分配之分工作工作分成三份有种可能,在把三组工作分给3个人有可能,共计有36种可能.解法三:分组分配之人与工作互动先让先个人个完成一项工作,有种可能,剩下的一项工作在有3人中一人完成有种可能,但由两项工作人数相同,所以要除以,共计有36种可能.解法四:占位法其中必有一个完成两项工作,选出此人,让其先占位,即有中可能;剩下的两项工作由剩下的两个人去完成,即有种可能,按分步计数原理求得结果为36种可能.解法五:隔板法和环桌排列首先让其环桌排列,在插两个隔板,有种可能,在分配给3人工作有种可能,按分步计数原理求得结果为36种可能.【知识拓展】计数原理属于必考考点,常考题型有1.排列组合;2.二项式定理,几乎二者是隔一年或隔两年交互出题,排列组合这种排序问题常考,已经属于高考常态,利用二项式定理求某一项的系数或求奇偶项和也已经属于高考常态,尤其是利用二项式定理求某一项的系数更为突出.【题目7】(·新课标全国Ⅱ卷理7)7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,学科&网给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩 B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩【命题意图】本题考查推理与证明的有关知识,考查考生推理论证能力.【解析】解法一:假设法甲看乙﹑丙成绩,甲不知道自己的成绩,那么乙﹑丙成绩中有一人为优,一人为良;乙已经知道自己的成绩要么良,要么优,丙同样也是,当乙看到丙的成绩,一定知道自己的成绩,但是丙一定不知道自己的成绩;而丁同学也知道自己的成绩要么良,要么优,只有看到甲的成绩,才能判断自己的成绩,丁同学也一定知道自己的成绩,故只有乙﹑丁两位同学知道自己的成绩.解法二:选项代入法当我们不知道如何下手,则从选项入手,一一假定成立,来验证我们的假设是否成立,略【知识拓展】推理与证明近两年属于热点考题,的第15题(理)﹑第16题(文),今年的理(7)﹑文(9),属于创新题,突出新颖,但题的难度不大,需要考生冷静的思考,抓住主要知识要点,从而能够快速做题,属于中档题.【题目8】(·新课标全国Ⅱ卷理8)8.执行右面的程序框图,如果输入的,则输出的()A.2 B.3 C.4 D.5【命题意图】本题考查程序框图的知识,意在考查考生对循环结构的理解与应用.【解析】解法一:常规解法∵,,,,,∴ 执行第一次循环:﹑﹑;执行第二次循环:﹑﹑;执行第三次循环:﹑﹑;执行第四次循环:﹑﹑;执行第五次循环:﹑﹑;执行第五次循环:﹑﹑;当时,终止循环,输出,故输出值为3.解法二:数列法,,裂项相消可得;执行第一次循环:﹑﹑,当时,即可终止,,即,故输出值为3.【题目9】(·新课标全国Ⅱ卷理9)9.若双曲线(,)的一条渐近线被圆所截得的弦长为2,则的离心率为()A.2 B. C. D.【命题意图】主要考查双曲线的性质及直线与圆的位置关系,意在考查考生的转化与化归思想.【解析】解法一:常规解法根据双曲线的标准方程可求得渐近线方程为,根据直线与圆的位置关系可求得圆心到渐进线的距离为,∴ 圆心到渐近线的距离为,即,解得.解法二:待定系数法设渐进线的方程为,根据直线与圆的位置关系可求得圆心到渐进线的距离为,∴ 圆心到渐近线的距离为,即,解得;由于渐近线的斜率与离心率关系为,解得.解法三:几何法从题意可知:,为等边三角形,所以一条渐近线的倾斜较为,由于,可得,渐近线的斜率与离心率关系为,解得.解法四:坐标系转化法根据圆的直角坐标系方程:,可得极坐标方程,由可得极角,从上图可知:渐近线的倾斜角与圆的极坐标方程中的极角相等,所以,渐近线的斜率与离心率关系为,解得.解法五:参数法之直线参数方程如上图,根据双曲线的标准方程可求得渐近线方程为,可以表示点的坐标为,∵,∴点的坐标为,代入圆方程中,解得.【知识拓展】双曲线已成为高考必考的圆锥曲线内容(理科),一般与三角形﹑直线与圆﹑向量相结合,属于中档偏上的题,但随着二卷回归基础的趋势,圆锥曲线小题虽然处于中档题偏上位置,但难度逐年下降.【题目10】(·新课标全国Ⅱ卷理10)10.已知直三棱柱中,,,,则异面直线与所成角的余弦值为()A. B. C. D.【命题意图】本题考查立体几何中的异面直线角度的求解,意在考查考生的空间想象能力【解析】解法一:常规解法在边﹑﹑﹑上分别取中点﹑﹑﹑,并相互连接.由三角形中位线定理和平行线平移功能,异面直线和所成的夹角为或其补角,通过几何关系求得,,,利用余弦定理可求得异面直线和所成的夹角余弦值为.解法二:补形通过补形之后可知:或其补角为异面直线和所成的角,通过几何关系可知:,,,由勾股定理或余弦定理可得异面直线和所成的夹角余弦值为.解法三:建系建立如左图的空间直角坐标系,,,,∴,∴解法四:投影平移三垂线定理设异面直线和所成的夹角为利用三垂线定理可知:异面直线和所成的夹角余弦值为.【知识拓展】立体几何位置关系中角度问题一直是理科的热点问题,也是高频考点,证明的方法大体有两个方向:1.几何法;2.建系;几何法步骤简洁,但不易想到;建系容易想到,但计算量偏大,平时复习应注意各方法优势和不足,做到胸有成竹,方能事半功倍.【题目11】(·新课标全国Ⅱ卷理11)11.若是函数的极值点,则的极小值为()A. B. C. D.1【命题意图】本题主要考查导数的极值概念及其极大值与极小值判定条件,意在考查考生的运算求解能力.【解析】解法一:常规解法∵∴ 导函数∵∴∴导函数令,∴,当变化时,,随变化情况如下表:++0 0极大值极小值从上表可知:极小值为.【知识拓展】导数是高考重点考查的对象,极值点的问题是非常重要考点之一,大题﹑小题都会考查,属于压轴题,但难度在逐年降低.【题目12】(·新课标全国Ⅱ卷理12)12.已知是边长为2的等边三角形,P为平面ABC内一点,则的最小值是()A. B. C. D.【命题意图】本题主要考查等边三角形的性质及平面向量的线性运算﹑数量积,意在考查考生转化与化归思想和运算求解能力【解析】解法一:建系法,连接,,,∴∴∴,∴∴最小值为解法二:均值法∵,∴由上图可知:;两边平方可得∵,∴∴,∴最小值为解法三:配凑法∵∴∴最小值为【知识拓展】三角形与向量结合的题属于高考经典题,一般在压轴题出现,解决此类问题的通法就是建系法,比较直接,易想,但有时计算量偏大.二、填空题:本题共4小题,每小题5分,共20分。

2020高考全国2-理数含全部答案

2020高考全国2-理数含全部答案

2020年全国统一高考数学试卷(理科)(全国新课标II)_`选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U =-2, -1, 0, 1, 2, 3}, A = -1, 0, 1}, B = 1, 2},则C u(AUB)=A.-2,3}【答案】:AB.-2, 2,3}C.-2, -1, 0, 3}【解析】:·:AUB={-1,0,1,2},:.Cu(AUB)={-2,3} 2.若a为第四象限角,则A.cos2a > 0B.cos2a < 0C.sin2a > 0【答案】:D【解析】:,..·冗-—+2k 冗<戊<2k 冗,...-7l+4k 冗<2a<4k7l.2 :. 2a 是第三或四象限角,...sin2a <0 D.-2, -1, 0, 2, 3}<D. sin2a<03.在新冠肺炎疫情防控期间,某超市开通网上销信业务,每天能完成1200份订单的配货,由于订单星大幅增加,导致订单积斥.为解决困难,许多志愿者踊跃报名参加配货工作已知该超市某日积压500份订单未配货,预计第二天新订单是1600份的概率为0.05志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单配货的概率不小于0.95,则至少需要志愿者A. 10名B..18名C. 24名D. 32名【答案】:R【解析l ;因为公司可以完成配货1200份订单,则至少需要志愿者为1600 + 500-1200 = 18名so4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇形面形石板(不含天心石)A.3699块B.3474块C.3402块'\_、(...D.3339块。

最新2022年高考全国2卷理数试题(解析版)-打印

最新2022年高考全国2卷理数试题(解析版)-打印

最新2022年高考全国2卷理数试题(解析版)-打印改写后】18.一个三棱锥的底面是一个俯视图,高为3.求该几何体的体积。

解析:该几何体是一个三棱锥,底面是一个俯视图,高为3.所以,它的体积为V=1/3×底面积×高=1/3×6×3×3=9.12.一个等轴双曲线C的中心在原点,焦点在x轴上,与抛物线y=2x²的准线交于A、B两点,AB=4√3.那么C的实轴长为多少?解析:设C:x²/4-y²/a²=1与y的准线l:x=-4交于A(-4,2)、B(-4,-2/3)两点。

则a²=16-4/9=128/9,实轴长为2a=8/3.9.函数f(x)=sin(ωx+π)在区间(0,π)上单调递减。

那么ω的取值范围是多少?解析:由f(x)=sin(ωx+π),得ωx+π∈[π/2,3π/2],即ωx∈[0,π]。

因为在区间(0,π)上f(x)单调递减,所以ω应该满足ω≤π/π=1,又因为sin(ωx+π)是偶函数,所以ω应该满足ω≥0,综上可知ω∈[0,1]。

10.函数f(x)=ln(x+1)-x的图像大致是什么样子?解析:令g(x)=ln(1+x)-x,则g'(x)=-1/(1+x)-1),所以g(x)在(-1,0)上单调递减,在(0,+∞)上单调递增,且g(0)=0.因此,f(x)=g(x+1)在(-1,0)上单调递减,在(0,+∞)上单调递增,且f(0)=0.由此可知,f(x)的图像大致是一条过点(0,0)的单峰函数。

11.一个三棱锥S-ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2√3.那么此棱锥的体积是多少?解析:由△ABC是边长为1的正三角形可知,△ABC的外接圆半径R=√3/3.又因为S-ABC的所有顶点都在球O的表面上,所以点S到面ABC的距离为2R=2√3/3.因此,此棱锥的体积为V=1/3×S△ABC×2R=1/3×(1/2×1×(√3/2))×(2√3/3)=1/9.12.设点P在曲线y=1/(1+x)上,点Q在曲线y=x^2上,且PQ过第一象限的点(1,1)。

高考全国卷数学理科试题及答案详解

高考全国卷数学理科试题及答案详解

2021年普通高等学校招生全国统一考试数学(全国新课标卷II)第一卷一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 1.(2021课标全国Ⅱ,理1)集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},那么M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}2.(2021课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,那么z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2021课标全国Ⅱ,理3)等比数列{a n }的前n 项与为S n .S 3=a 2+10a 1,a 5=9,那么a 1=( ).A .13B .13-C .19D .19-4.(2021课标全国Ⅱ,理4)m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l α,l β,那么( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2021课标全国Ⅱ,理5)(1+ax )(1+x )5的展开式中x 2的系数为5,那么a =( ).A .-4B .-3C .-2D .-16.(2021课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ).A .1111+2310+++B .1111+2!3!10!+++C .1111+2311+++ D .1111+2!3!11!+++7.(2021课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,那么得到的正视图可以为( ).8.(2021课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,那么( ).A .c >b >aB .b >c >aC .a >c >bD .a >b >c 9.(2021课标全国Ⅱ,理9)a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥⎧⎪+≤⎨⎪≥(-)⎩假设z =2x+y 的最小值为1,那么a =( ).A .14B .12 C .1 D .210.(2021课标全国Ⅱ,理10)函数f (x )=x 3+ax 2+bx +c ,以下结论中错误的选项是( ).A .∃x0∈R ,f(x0)=0B .函数y =f(x)的图像是中心对称图形C .假设x0是f(x)的极小值点,那么f(x)在区间(-∞,x0)单调递减D .假设x0是f(x)的极值点,那么f′(x0)=011.(2021课标全国Ⅱ,理11)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,假设以MF 为直径的圆过点(0,2),那么C 的方程为( ).A .y2=4x 或y2=8xB .y2=2x 或y2=8xC .y2=4x 或y2=16xD .y2=2x 或y2=16x12.(2021课标全国Ⅱ,理12)点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两局部,那么b 的取值范围是( ).A .(0,1) B.112⎛⎫ ⎪ ⎪⎝⎭ C.113⎛⎤- ⎥ ⎝⎦ D .11,32⎡⎫⎪⎢⎣⎭ 第二卷本卷包括必考题与选考题两局部,第13题~第21题为必考题,每个试题考生都必须做答。

全国二卷理科数学高考真题及详解(全word版)

全国二卷理科数学高考真题及详解(全word版)

2021年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。

考试完毕后,将本试卷和答题卡一并交回。

考前须知:1.答题前,考生先将自己的XX、XX填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:此题共12小题,每题5分,共60分。

在每题给出的四个选项中,只有一项为哪一项符合题目要求的。

1.3i1 iA.12i B.12i C.2i D.2i2.设集合A 1,2,4,Bx24xm0 ,假设A B 1,那么BA.1,3 B..1,0 C.1,3 D.1,53.我国古代数学名著?算法统宗?中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?〞意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,那么塔的顶层共有灯A.1盏B.3盏C.5盏D.9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一局部后所得,那么该几何体的体积为A.90B.63C.42D.362x 3y 3 ,05.设x、y满足约束条件2x 3y 3 ,那么z 2xy的最小值是0y 3,0A.15 B.9 C.1 D.96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,那么不同的安排方式共有A.12种B.18种C.24种D.36种理科数学试题第1页〔共4页〕7.甲、乙、丙、丁四位同学一起去向教师询问成语竞猜的成绩.教师说:你们四人中有 2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,那么 A .乙可以知道四人的成绩B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的a1,那么输出的S 开场A .2B .3 输入aC .4S=0,K=1 D .5 K6 否 是S=S+a K a=-a K=K+1 输出S开场.假设双曲线C:x2y 2 1(a0,b0)的一条渐近线被圆 (x 2) 2y 24 所截得的弦9 a 2 b 2长为2,那么C 的离心率为A . 2 . 3 . 2D . 2 3B C310.直三棱柱ABCA 1B 1C 1中,ABC120 , AB2,BC CC 1 1,那么异面直线AB 1与BC 1所成角的余弦值为A .3B .15C .10D .3255311.假设x2是函数f(x)(x 2ax 1)e x1的极值点,那么f(x)的极小值为A .1B .2e 3C .5e 3D .112.ABC 是边长为2的等边三角形,P 为平面ABC 内一点,那么PA(PB PC)的 最小值是A .2B . 3C . 4D . 1 2 3二、填空题:此题共 4小题,每题5分,共20分。

高考新课标Ⅱ卷理数试题解析(正式版)(解析版)

高考新课标Ⅱ卷理数试题解析(正式版)(解析版)

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-, (B )(13)-,(C )(1,)∞+ (D )(3)∞--,【答案】A考点:复数的几何意义(2)已知集合{1,23}A =,,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =(A ){1}(B ){12},(C ){0123},,, (D ){10123}-,,,, 【答案】C 【解析】试题分析:集合{|12,}{0,1}B x x x =-<<∈=Z ,而{1,2,3}A =,所以{0,1,2,3}A B =,故选C.考点:集合的运算.(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m =(A )-8(B )-6(C )6(D )8【答案】D 【解析】试题分析:(4,2)m +=-a b ,由()⊥a +b b 得43(2)(2)0m ⨯+-⨯-=,解得8m =,故选D. 考点:平面向量的坐标运算、数量积.(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a=(A )43- (B )34-(C )3(D )2【答案】A考点:圆的方程、点到直线的距离公式.(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A)24(B)18(C)12(D)9【答案】B【解析】试题分析:由题意,小明从街道的E处出发到F处最短路径的条数为6,再从F处到G处最短路径的条数为⨯=,故选B.3,则小明到老年公寓可以选择的最短路径条数为6318考点:计数原理、组合.(6)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A)20π(B)24π(C)28π(D)32π【答案】C考点:三视图,空间几何体的表面积 (7)若将函数y =2sin2x 的图像向左平移12π个单位长度,则平移后图像的对称轴为 (A )x =26k ππ-(k ∈Z ) (B )x =26k ππ+(k ∈Z )(C )x =212k ππ-(k ∈Z )(D )x =212k ππ+(k ∈Z )【答案】B 【解析】试题分析:由题意,将函数2sin 2y x =的图像向左平移12π个单位长度得函数2sin 2()2sin(2)126y x x ππ=+=+的图像,则平移后函数图像的对称轴为2,62x k k Z πππ+=+∈,即,62k x k Z ππ=+∈,故选B. 考点:三角函数图像的变换与对称性.(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输 出的s =(A )7 (B )12 (C )17(D )34 【答案】C考点:程序框图,直到型循环结构. (9)若cos(4π–α)=53,则sin2α= (A )725(B )15(C )–15(D )–725【答案】D 【解析】试题分析:2237cos 22cos 12144525ππαα⎡⎤⎛⎫⎛⎫⎛⎫-=--=⋅-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,且cos 2cos 2sin 242ππααα⎡⎤⎛⎫⎡⎤-=-=⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,故选D.考点:三角恒等变换.(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 (A )4n m(B )2n m(C )4mn(D )2mn【答案】C 【解析】试题分析:利用几何概型,圆形的面积和正方形的面积比为224S R mS R nπ==圆正方形,所以4m n π=.选C.考点:几何概型.(11)已知F 1,F 2是双曲线E :22221x y a b -=的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为 (A )2(B )32(C )3(D )2【答案】A考点:双曲线的几何性质、离心率(12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m【答案】B 【解析】试题分析:由于()()2f x f x -+=,不妨设()1f x x =+,其图像与函数111x y x x+==+的图像的交点为()()1,2,1,0-,故12122x x y y +++=,故选B. 考点:函数的图像与性质第II 卷本卷包括必考题和选考题两部分。

2020年高考全国卷Ⅱ数学(理)试卷(含解析)

2020年高考全国卷Ⅱ数学(理)试卷(含解析)

2020年高考全国卷Ⅱ数学(理)试卷一、选择题1.已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则∁U(A∪B)=()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}2.若α为第四象限角,则()A.cos2α>0B.cos2α<0C.sin2α>0D.sin2α<03.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天新订单是1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为()A.√55B.2√55C.3√55D.4√556.数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+⋯+a k+10=215−25,则k=()A.2B.3C.4D.57.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A.EB.FC.GD.H8.设O为坐标原点,直线x=a与双曲线C:x 2a −y2b=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.329.设函数f(x)=ln|2x+1|−ln|2x−1|,则f(x)()A.是偶函数,且(12,+∞)在单调递增B.是奇函数,且(−12,12)在单调递减C.是偶函数,且(−∞,−12)在单调递增D.是奇函数,且(−∞,−12)在单调递减10.已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.√3B.32C.1 D.√3211.若2x−2y<3−x−3−y,则()A.ln(y−x+1)>0B.ln(y−x+1)<0C.ln|x−y|>0D.ln|x−y|<012.0−1周期序列在通信技术中有着重要应用.若序列a1a2⋯a n⋯满足a i∈{0,1}(i=1,2,⋯),且存在正整数m,使得a i+m=a i(i=1, 2, ⋯)成立,则称其为0−1周期序列,并称满足a i+m=a i(i=1, 2, ⋯)的最小正整数m为这个序列的周期.对于周期为m的0−1序列a1a2⋯a n⋯,C(k)=1m ∑a i m i=1a 1+k (k =1, 2, ⋯, m −1)是描述其性质的重要指标.下列周期为5的0−1序列中,满足C (k )≤15(k =1,2,3,4)的序列是( )A.11010⋯B.11011⋯C.10001⋯D.11001⋯二、填空题13.已知单位向量a →,b →的夹角为45∘,ka →−b →与a →垂直,则k =________.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名学生,则不同的安排方法有________种.15.设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=√3+i ,则|z 1−z 2|=________.16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下列命题中所有真命题的序号是________.①p 1∧p 4;②p 1∧p 2;③¬p 2∨p 3;④¬p 3∨¬p 4.三、解答题17.△ABC 中,sin 2A −sin 2B −sin 2C =sinBsinC .(1)求A ;(2)若BC =3,求△ABC 周长的最大值.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,⋯,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑x i20i=1=60,∑y i 20i=1=1200,∑(x i −x ¯)220i=1=80,∑(y i −y ¯)220i=1=9000,∑(x i −x ¯)20i=1(y i −y ¯)=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,⋯,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物短盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数:r =∑(x −x ¯)n (y −y ¯)√∑(x i −x )2n i=1∑(y i −y )2n i=1,√2≈1.414.19已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合.C 1的中心与C 2的顶点重合,过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点.且|CD|=43|AB|.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点.若|MF|=5,求C 1与C 2的标准方程.20.如图已知三棱柱ABC −A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥面EB1C1F.(2)设O为△A1B1C1的中心,若AO//面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.21.已知函数f(x)=sin2xsin2x.(1)讨论f(x)在(0,π)上的单调性;(2)证明:|f(x)|≤3√38;(3)证明:sin2xsin22xsin24x⋯sin22n x≤3n4n.22.已知曲线C1,C2的参数方程分别为C1:{x=4cos2θ,y=4sin2θ(B为参数),{x=t+1t,y=t−1t(t为参数).(1)(2)以坐标原点为极点,α轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.(1)将C1,C2的参数方程化为普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.23.已知函数f(x)=|x−a2|+|x−2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.2020年高考全国卷Ⅱ数学(理)试卷一、选择1.已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则∁U(A∪B)=()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}【解答】解:由题意可知(A∪B)={−1,0,1,2},故∁U(A∪B)={−2,3}.故选A.2.若α为第四象限角,则()A.cos2α>0B.cos2α<0C.sin2α>0D.sin2α<0【解答】解:∵α为第四象限角,+2kπ<α<2kπ,∴−π2∴−π+4kπ<2α<4kπ,∴2α是第三或第四象限角,∴当2α在第三象限时,cos2α<0,当2α在第四象限时,cos2α>0,故A,B错误;无论2α在第三还是在第四象限,都有sin2α<0.故选D.3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天新订单是1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名【解答】解:因为公司可以完成配货1200份订单,则至少需要志愿者为:1600+500−1200=18名.50故选B.4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块【解答】解:设每一层有n环,由题可知从内到外每环之间构成等差数列,公差d=9,a1=9.由等差数列性质知S n,S2n−S n,S3n−S2n成等差数列,且(S3n−S2n)−(S2n−S n)=n2d,则9n2=729,解得n=9,则三层共有扇形面石板为S3n=S27=27a1+27×262×9=3402块.故选C.5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为()A.√55B.2√55C.3√55D.4√55【解答】解:设圆心为(a,a),则半径为a,圆过点(2,1),则(a−2)2+(a−1)2=a2,解得a=1或a=5,所以圆心坐标为(1,1)或(5,5),圆心到直线的距离都是d=√5=2√55.故选B.6.数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+⋯+a k+10=215−25,则k=()A.2B.3C.4D.5【解答】解:a m+n=a m a n,取m=1,则a1+n=a1a n.又a1=2,所以a n+1a n=2,所以{a n}是首项,公比均为2等比数列,则a n=2n,所以a k+1+a k+2+⋯+a k+10=2k+1(1−210)1−2=2k+1⋅210−2k+1=215−25,解得k=4.故选C7.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A.EB.FC.GD.H【解答】解:该几何体是两个长方体拼接而成,如图所示,显然所求点对应的为E点.故选A.8.设O为坐标原点,直线x=a与双曲线C:x 2a −y2b=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.32【解答】解:双曲线C:x 2a2−y2b2=1(a>0,b>0)的两条渐近线分别为y=±bax,则容易得到|DE|=2b,则S△ODE=ab=8.又因为c2=a2+b2≥2ab=16,即c≥4,焦距2c≥8.故选B.9.设函数f(x)=ln|2x+1|−ln|2x−1|,则f(x)()A.是偶函数,且(12,+∞)在单调递增B.是奇函数,且(−12,12)在单调递减C.是偶函数,且(−∞,−12)在单调递增D.是奇函数,且(−∞,−12)在单调递减【解答】解:函数f(−x)=ln|−2x+1|−ln|−2x−1|=ln|1−2x|−ln|2x+1|=−f(x),∴f(x)为奇函数.当x∈(12,∞,)时,f(x)=ln(2x+1)−ln(2x−1)=ln2x+12x−1=ln(1+22x−1),单调递减;当x∈(−12,12)时,f(x)=ln(2x+1)−ln(1−2x),单调递增;当x∈(−∞,−12)时,f(x)=ln(−2x−1)−ln(1−2x)=ln2x+12x−1=ln(1+22x−1),单调递减.故选D.10.已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.√3B.32C.1 D.√32【解答】解:设ABC的外接圆圆心为O1,记OO1=d,圆O1的半径为r,球O半径为R,等边三角形△ABC的边长为a,则S△ABC=√34a2=9√34,可得a=3,所以r=√3=√3.由题知球O的表面积为16π,则R=2,由R2=r2+d2,易得d=1,即O到平面ABC的距离为1.故选C.11.若2x−2y<3−x−3−y,则()A.ln(y−x+1)>0B.ln(y−x+1)<0C.ln|x−y|>0D.ln|x−y|<0【解答】解:2x−3−x<2y−3−y,设f(x)=2x−3−x,则f′(x)=2x ln2+3−x ln3>0,∴函数f(x)在R上单调递增,∵f(x)<f(y),所以x<y,则y−x+1>1,∴ln(y−x+1)>0.故选A.12.0−1周期序列在通信技术中有着重要应用.若序列a1a2⋯a n⋯满足a i∈{0,1}(i=1,2,⋯),且存在正整数m,使得a i+m=a i(i=1, 2, ⋯)成立,则称其为0−1周期序列,并称满足a i+m=a i(i=1, 2, ⋯)的最小正整数m为这个序列的周期.对于周期为m的0−1序列a1a2⋯a n⋯,C(k)=1 m ∑a imi=1a1+k(k=1, 2, ⋯, m−1)是描述其性质的重要指标.下列周期为5的0−1序列中,满足C(k)≤15(k=1,2,3,4)的序列是()A.11010⋯B.11011⋯C.10001⋯D.11001⋯【解答】解:对于A选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+0)=15,C(2)=15∑a i5i=1a i+2=15(0+1+0+1+0)−25>15,不满足,排除;对于B 选项,C (1)=15∑a i 5i=1a i+1=15(1+0+0+1+1)=35>15,不满足,排除;对于C 选项,C (1)=15∑a i 5i=1a i+1=15(0+0+0+0+1)=15,C (2)=15∑a i 5i=1a i+2=15(0+0+0+0+0)=0,C (3)=15∑a i 5i=1a i+3=15(0+0+0+0+0)=0,C (4)=15∑a i 5i=1a i+4=15(1+0+0+0+0)=15,满足;对于D 选项,C (1)=15∑a i 5i=1a i+1=15(1+0+0+0+1)=25>0,不满足,排除.故选C .二、填空题已知单位向量a →,b →的夹角为45∘,ka →−b →与a →垂直,则k =________.【解答】解:∵单位向量a →、b →的夹角为45∘,a →−b →与a →垂直,∴(ka →−b →)⋅a →=k −√22=0, ∴k =√22. 故答案为:√22.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名学生,则不同的安排方法有________种.【解答】解:由题意可得,不同的安排方法有C 42A 33=36种.故答案为:36.设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=√3+i ,则|z 1−z 2|=________.【解答】解:由题设z 1=a +bi ,则z 2=(√3−a)+(1−b )i ,故|z 1|2=a 2+b 2=4,|z2|2=(√3−a)2+(1−b)2=a2+b2−2√3a−2b+4=4,则|z1−z2|2=(2a−√3)2+(2b−1)2=4a2+4b2−4√3a+4b+4=2(a2+b2)+2(a2+b2−2√3a−2b)+4=2×4+4=12,故|z1−z2|=2√3.故答案为:2√3.设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.则下列命题中所有真命题的序号是________.①p1∧p4;②p1∧p2;③¬p2∨p3;④¬p3∨¬p4.【解答】解:对于p1:可设l1与l2相交,所得平面为α.若l3与l1相交,则交点A必在α内,同理,与l2交点B在α内,故直线AB在α内,即l3在α内,故p1为真命题.对于p2:过空间中任意三点,若三点共线,可形成无数多平面,故p2为假命题.对于p3:空间中两条直线的位置关系有相交、平行、异面,故p3为假命题.对于p4:若m⊥α,则m垂直于平面α内的所有直线,故m⊥l,故p4为真命题.综上可知:p1∧p4为真命题,¬p2∨p3为真命题,¬p3∨¬p4为真命题.故答案为:①③④.三、解答题△ABC中,sin2A−sin2B−sin2C=sinBsinC.(1)求A;(2)若BC=3,求△ABC周长的最大值.【解答】解:(1)在△ABC 中,设内角A,B,C 的对边分别为a,b,c ,∵sin 2A −sin 2B −sin 2C =sinBsinC ,由正弦定理得,a 2−b 2−c 2=bc ,即b 2+c 2−a 2=−bc ,由余弦定理得,cosA =b 2+c 2−a 22bc =−12.∵0<A <π,∴A =2π3. (2)由(1)知A =2π3,因为BC =3,即a =3,由余弦定理得,a 2=b 2+c 2−2bccosA ,∴9=b 2+c 2+bc =(b +c )2−bc ,由基本不等式√bc ≤b+c 2知bc ≤(b+c )24, 结合上式得9=(b +c )2−bc ≥34(b +c )2,(b +c )2≤12,∴b +c ≤2√3,当且仅当b =c =√3时取等号,∴△ABC 周长的最大值为3+2√3.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,⋯,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑x i20i=1=60,∑y i 20i=1=1200,∑(x i −x ¯)220i=1=80,∑(y i −y ¯)220i=1=9000,∑(x i −x ¯)20i=1(y i −y ¯)=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,⋯,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物短盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数:r=∑(x−x¯)n(y−y¯)√∑(xi−x)2ni=1∑(y i−y)2ni=1,√2≈1.414.【解答】解:(1)由题意可知,1个样区这种野生动物数量的平均数=120020=60,故这种野生动物数量的估计值=60×200=12000;(2)由参考公式得,r=∑(x i−x¯)ni=1(y i−y¯)√∑(xi−x)2ni=1∑(y i−y)2ni=1=√80×9000=6√2≈0.94;(3)由题意可知,各地块间植物短盖面积差异很大,因此在调查时,先确定该地区各地块间植物短盖面积大小并且由小到大排序,每十个分为一组,采用系统抽样的方法抽取20个地块作为样区进行样本统计.已知椭圆C1:x2a2+y2b2=1(a>b>0)的右焦点F与抛物线C2的焦点重合.C1的中心与C2的顶点重合,过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点.且|CD|=43|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点.若|MF|=5,求C1与C2的标准方程.【解答】解:(1)F为C1的焦点且AB⊥x轴,∴F(c,0),|AB|=2b2a,设C2的标准方程为y2=2px(p>0),∵F为C2的焦点且AB⊥x轴,∴F(p2,0).由抛物线的定义可得,|CD|=2p.∵|CD|=43|AB|.C1与C2焦点重合,∴{c=p2,2p=43×2b2a,消去p得:4c=8b 23a,∴3ac=2b2,∴3ac=2a2−2c2,设C1的离心率为e,则2e2+3e−2=0,∴e=12或e=−2(舍),故C1的离心率为12.(2)由(1)知a=2c,b=√3c,p=2c.∴C1:x24c2+y23c2=1,C2:y2=4cx,联立两曲线方程,消去y得3x2+16cx−12c2=0,∴(3x−2c)(x+6c)=0,∴x=23c或x=−6c(舍),从而|MF|=x+p2=23c+c=53c=5,∴c=3,∴C1与C2的标准方程分别为x 2+y2=1,y2=12x.如图已知三棱柱ABC−A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥面EB1C1F.(2)设O为△A1B1C1的中心,若AO//面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.【解答】(1)证明:∵M,N分别为BC,B1C1的中点,底面为正三角形,∴B1N=BM,四边形BB1NM为矩形,A1N⊥B1C1,∴BB1//MN,而AA1//BB1,MN⊥B1C1∴AA1//MN,又∵MN∩A1N=N,∴面A1AMN⊥面EB1C1F.(2)∵三棱柱上下底面平行,平面EB1C1F与上下底面分别交于B1C1,∴EF//B1C1//BC.∵AO//面EB1C1F,AO⊂面AMNA1,面AMNA1∩面EB1C1F=PN,∴AO//PN,四边形APNO为平行四边形,而O为正三角形的中心,AO=AB,∴A1N=3ON,AM=3AP,PN=BC=B1C1=3EF.由(1)知直线B1E在平面A1AMN内的投影为PN直线B1E与平面A1AMN所成角即为等腰梯形EFC1B1中B1E与PN所成角在等腰梯形EFC1B1中,令EF=1,过E作EH⊥B1C1于H,则PN=B1C1=EH=3,B1H=1,B1E=√10,sin∠B1EH=B1HB1E =√1010.已知函数f(x)=sin2xsin2x.(1)讨论f(x)在(0,π)上的单调性;(2)证明:|f(x)|≤3√38;(3)证明:sin2xsin22xsin24x⋯sin22n x≤3n4n.【解答】(1)解:∵f (x )=2sin 3xcosx ,∴f ′(x )=2sin 2x (3cos 2x −sin 2x )=−8sin 2xsin (x +π3)sin (x −π3).当x ∈(0,π3)时,f ′(x )>0, f (x )单调递增;当x ∈(π3,2π3)时,f ′(x )<0, f (x )单调递减; 当x ∈(2π3,π)时,f ′(x )>0, f (x )单调递增;(2)证明:由f (x )=2sin 3xcosx 得,f (x )为R 上的奇函数. f 2(x )=4sin 6xcos 2x=4(1−cos 2x )3cos 2x=4(1−cos 2x )3×3cos 2x ≤43×((3−3cos 2x+3cos 2x)4)4=(34)3.当1−cos 2x =3cos 2x ,即cosx =±12时等号成立,故|f (x )|≤3√38. (3)证明:由(2)知:sin 2xsin2x ≤3√38=(34)32; sin 22xsin4x ≤3√38=(34)32; sin 222xsin23x ≤3√38=(34)32;⋯; sin 22n−1xsin2n x ≤3√38=(34)32, ∴sin 2xsin 32xsin 34x ⋯sin 32n−1xsin 22n x ≤(34)3n 2,∴sin 3xsin 32xsin 34x ⋯sin 32n−1xsin 32n x =sinx(sin 2xsin 32xsin 34x ⋯sin 32n−1xsin 22n x)sin2n x ≤(34)3n 2, ∴sin 2xsin 22xsin 24x ⋯sin 22n x ≤3n 4n .已知曲线C 1,C 2的参数方程分别为C 1:{x =4cos 2θ,y =4sin 2θ(B 为参数),{x =t +1t ,y =t −1t (t 为参数).(1)(2)以坐标原点为极点,α轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【解答】11已知函数f (x )=|x −a 2|+|x −2a +1|.(1)当a =2时,求不等式f (x )≥4的解集;(2)若f (x )≥4,求a 的取值范围.【解答】解:(1)当a =2时,f (x )={7−2x ,x ≤3,1,3<x ≤4,2x −7,x >4.因此,不等式f (x )≥4的解集为{x|x ≤32或x ≥112}.(2)因为f (x )=|x −a 2|+|x −2a +1|≥|a 2−2a +1|=(a −1)2, 故当(a −1)2≥4,即|a −1|≥2时,f (x )≥4,所以当a ≥3或a ≤−1时,f (x )≥4;当−1<a <3时,f (a 2)=|a 2−2a +1|=(a −1)2<4. 所以a 的取值范围是(−∞,−1]∪[3,+∞).。

2022年新高考全国Ⅱ卷数学真题及参考答案

2022年新高考全国Ⅱ卷数学真题及参考答案

一、选择题1. 已知函数f(x) = x^2 2x + 1,求f(x)的极值。

答案:f(x)的极值为0。

2. 若等差数列{an}的前n项和为Sn,且Sn = 2n^2 3n,求公差d。

答案:d = 4。

3. 设圆C的方程为(x 1)^2 + (y 2)^2 = 4,求圆C的半径。

答案:半径为2。

4. 若随机变量X服从正态分布N(0, 1),求P(X < 0)。

答案:P(X < 0) = 0.5。

5. 已知等比数列{bn}的前n项和为Tn,且Tn = 2^n 1,求公比q。

答案:q = 2。

二、填空题1. 已知函数g(x) = x^3 3x,求g(x)的导数。

答案:g'(x) = 3x^2 3。

2. 若等差数列{cn}的前n项和为Sn,且Sn = 3n^2 + 2n,求首项c1。

答案:c1 = 5。

3. 已知圆C的方程为(x 1)^2 + (y 2)^2 = 4,求圆心坐标。

答案:圆心坐标为(1, 2)。

4. 若随机变量Y服从二项分布B(n, p),且P(Y = 2) = 3P(Y = 1),求n和p。

答案:n = 3,p = 1/2。

5. 已知等比数列{dn}的前n项和为Tn,且Tn = 2^n 1,求首项d1。

答案:d1 = 1。

三、解答题1. 已知函数h(x) = (x 1)^2,求h(x)的单调区间。

答案:h(x)的单调递增区间为(∞, 1),单调递减区间为(1, +∞)。

2. 若等差数列{en}的前n项和为Sn,且Sn = 3n^2 2n,求公差d。

答案:d = 6。

3. 已知圆C的方程为(x 1)^2 + (y 2)^2 = 4,求圆C与x轴的交点坐标。

答案:交点坐标为(1, 0)。

4. 若随机变量Z服从泊松分布P(λ),且P(Z = 1) = P(Z = 2),求λ。

答案:λ = 2。

5. 已知等比数列{fn}的前n项和为Tn,且Tn = 2^n 1,求公比q。

答案:q = 2。

2020年高考全国II卷理科数学试题(含解析)

2020年高考全国II卷理科数学试题(含解析)

2020年全国统一高考数学试卷(理科)(全国新课标Ⅱ)一、选择题1.已知集合{2,1,0,1,2,3}U =--,{1,0,1}A =-,{1,2}B =,则()U C A B ⋃=( ) A.{2,3}- B.{2,2,3}-C.{2,1,0,3}--D.{2,1,0,2,3}--【答案】A 【解析】∵{1,0,1,2}AB =-,∴ (){2,3}UC A B ⋃=-.2.若α为第四象限角,则( ) A.cos20α> B.cos20α<C.sin 20α>D.sin 20α<【答案】D 【解析】∵22()2k k k Z ππαπ-+<<∈,∴424()k k k Z ππαπ-+<<∈,∴2α是第三象限角或第四象限角,∴sin 20α<.3.在新冠肺炎疫情期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。

已知该超市某日积压500份订单未配货,预计第二天新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A.10名 B.18名 C.24名 D.32名 【答案】B【解析】因为公司可以完成配货1200份订单,则至少需要志愿者为160050012001850+-=名.4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,己知每层环数相同,且下层比中层多729块,则三层共有扇形面形石板(不含天心石)( ) A.3699块B.3474块C.3402块D.3339块【答案】C【解析】设每一层有n 环,由题可知从内到外每环之间构成等差数列,公差9d =,19a =,由等差数列性质知n S ,2n n S S -,32n n S S -成等差数列,且2322()()n n n n S S S S n d ---=,则29729n =,得9n =,则三层共有扇形面石板为3271272627934022n S S a ⨯==+⨯=块. 5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.【答案】B【解析】设圆心为(,)a a ,则半径为a ,圆过点(2,1),则222(2)(1)a a a -+-=,解得1a =或5a =,所以圆心坐标为(1,1)或(5,5),圆心到直线的距离都是5d =. 6.数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k =( )A.2B.3C.4D.5【答案】C【解析】取1m =,则11n n a a a +=,又12a =,所以12n na a +=,所以{}n a 是首项为2,公比为2的等比数列,则2nn a =,所以11011115512102(12)222212k k k k k k a a a ++++++-+++==-=--,得4k =.7.右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A.EB.FC.GD.H【答案】A【解析】该几何体是两个长方体拼接而成,如图所示,显然选A.8.设O 为坐标原点,直线x a =与双曲线2222:1x yC a b-=(0,0)a b >>的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为( ) A.4 B.8 C.16 D.32 【答案】B【解析】双曲线2222:1x y C a b -=(0,0)a b >>的两条渐近线分别为b y x a =±,则容易得到||2DE b =,则8ODE S ab ∆==,222216c a b ab =+≥=,当且仅当a b ==号成立,所以min 4c =,焦距min (2)8c =.9.设函数()ln |21|ln |21|f x x x =+--,则()f x ( )A. 是偶函数,且在1(,)2+∞单调递增B.是奇函数,且在11(,)22-单调递减C. 是偶函数,且在1(,)2-∞-单调递增D.是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】函数()ln |21|ln |21|ln |21|ln |21|()f x x x x x f x -=-+---=--+=-,则()f x 为奇函数,故排除A 、C ;当11(,)22x ∈-时,()ln(21)ln(12)f x x x =+--,根据函数单调性的性质可判断()f x 在11(,)22-上单调递增,故排除B ;当1(,)2x ∈-∞-时,212()ln(21)ln(12)lnln(1)2121x f x x x x x +=----==+--,根据复合函数单调性可判断()f x 在1(,)2-∞-上单调递减,故D 正确.10.已知ABC ∆的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为( )B.32C.1【答案】C【解析】设ABC ∆的外接圆圆心为1O ,记1OO d =,圆1O 的半径为r ,球O 半径为R ,等边三角形ABC ∆的边长为a ,则2ABC S ∆==,可得3a =,于是r ==,由题知球O 的表面积为16π,则2R =,由222R r d =+易得1d =,即O 到平面ABC 的距离为1.11.若2233x y x y ---<-,则( ) A.ln(1)0y x -+> B.ln(1)0y x -+< C.ln ||0x y -> D.ln ||0x y -<【答案】A【解析】2323x x y y---<-,设()23x x f x -=-,则()2ln 23ln30x xf x -'=+>,所以函数()f x 在R 上单调递增,因为()()f x f y <,所以x y <,则11y x -+>,ln(1)0y x -+>,选A.12.01-周期序列在通信技术中有着重要应用,若序列12......n a a a 满足{}10,1(1,2,...)a i ∈=,且存在正整数m ,使得(1,2,...)i m i a a i +==成立,则称其为01-周期序列,并称满足(1,2,...)i m i a a i +== 的最小正整数m 为这个序列的周期,对于周期为m的01-序列12......n a a a ,11()(1,2,...,1)mi i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的01-序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A. 11010... B.11011... C. 10001... D.11001... 【答案】C【解析】对于A 选项:511111(1)(10000)555i i i C a a +===++++=∑,5211121(2)(01010)5555i i i C a a +===++++=>∑,不满足,排除;对于B 选项,5111131(1)(10011)5555i i i C a a +===++++=>∑,不满足,排除;对于C 选项,511111(1)(00001)555i i i C a a +===++++=∑,52111(2)(00000)055i i i C a a +===++++=∑,53111(3)(00000)055i i i C a a +===++++=∑,541111(4)(10000)555i i i C a a +===++++=∑,满足;对于D 选项,5111121(1)(10001)5555i i i C a a +===++++=>∑,不满足,排除;故选C 。

2021年普通高等学校招生全国统一考试数学试题理(全国卷2,含解析)

2021年普通高等学校招生全国统一考试数学试题理(全国卷2,含解析)

2021年普通高等学校招生全国统一考试数学试题理(全国卷2)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A. B. C. D.【答案】D【解析】分析:按照复数除法法则化简复数,即得结果.详解:选D.点睛:本题考查复数除法法则,考查学生大体运算能力.2. 已知集合,则中元素的个数为A. 9B. 8C. 5D. 4【答案】A【解析】分析:按照列举法,肯定圆及其内部整点个数.详解:,当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.3. 函数的图像大致为A. AB. BC. CD. D【答案】B【解析】分析:通过研究函数奇偶性和单调性,肯定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的概念域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的转变趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的周而复始.4. 已知向量,知足,,则A. 4B. 3C. 2D. 0【答案】B【解析】分析:按照向量模的性质和向量乘法得结果.详解:因为所以选B.点睛:向量加减乘:5. 双曲线的离心率为,则其渐近线方程为A. B. C. D.【答案】A【解析】分析:按照离心率得a,c关系,进而得a,b关系,再按照双曲线方程求渐近线方程,得结果. 详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.6. 在中,,,,则A. B. C. D.【答案】A【解析】分析:先按照二倍角余弦公式求cosC,再按照余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要按照正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.7. 为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B【解析】分析:按照程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.点睛:算法与流程图的考查,偏重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和仍是求项.8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的功效.哥德巴赫猜想是“每一个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.【答案】C【解析】分析:先肯定不超过30的素数,再肯定两个不同的数的和等于30的取法,最后按照古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方式,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.点睛:古典概型中大体事件数的探求方式: (1)列举法. (2)树状图法:适合于较为复杂的问题中的大体事件的探求.对于大体事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素大体事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数量较多的题目.9. 在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.【答案】C【解析】分析:先成立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再按照向量夹角与线线角相等或互补关系求结果.详解:以D为坐标原点,DA,DC,DD1为x,y,z轴成立空间直角坐标系,则,所以,因为,所以异面直线与所成角的余弦值为,选C.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建得当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.10. 若在是减函数,则的最大值是A. B. C. D.【答案】A【解析】分析:先肯定三角函数单调减区间,再按照集合包括关系肯定的最大值详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1). (2)周期 (3)由求对称轴, (4)由求增区间;由求减区间.11. 已知是概念域为的奇函数,知足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】分析:先按照奇函数性质和对称性肯定函数周期,再按照周期和对应函数值求结果.详解:因为是概念域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数概念域内求解.12. 已知,是椭圆的左,右核心,是的左极点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D.【答案】D【解析】分析:先按照条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再按照的关系消掉取得的关系式,而成立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、填空题:本题共4小题,每小题5分,共20分。

2022年全国统一高考数学卷(新高考2卷)含答案解析(原卷版)

2022年全国统一高考数学卷(新高考2卷)含答案解析(原卷版)

……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2022年普通高等学校招生全国统一考试(新高考2卷)数学副标题学校:___________姓名:___________班级:___________考号:___________题号 一 二 三 四 总分 得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项)1. 已知集合A ={−1,1,2,4},B ={x||x −1|≤1},则A ∩B =( ) A. {−1,2}B. {1,2}C. {1,4}D. {−1,4}2. (2+ 2i)(1−2i)=( ) A. −2+4iB. −2−4iC. 6+2iD. 6−2i3. 中国的古建筑不仅是挡风遮雨的住处,更是美学和哲学的体现.如图是某古建筑物的剖面图,AA′,BB′,CC′,DD′是桁,DD 1,CC 1,BB 1,AA 1是脊,OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的脊步的比分别为DD 1OD 1=0.5,CC 1DC 1=k 1,BB1CB 1=k 2,AA 1BA 1=k 3,若k 1,k 2,k 3是公差为0.1的等差数列,直线OA 的斜率为0.725,则k 3=( )A. 0.75B. 0.8C. 0.85D. 0.94. 已知向量a ⃗ =(3,4),b ⃗ =(1,0),c ⃗ =a ⃗ +t b ⃗ ,若<a ⃗ ,c ⃗ >=<b ⃗ ,c ⃗ >,则实数t =( )A. −6B. −5C. 5D. 65. 甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有( )A. 12种B. 24种C. 36种D. 48种6. 若sin(α+β)+cos(α+β)=2√2cos(α+π4)sinβ,则( ) A. tan(α+β)=−1 B. tan(α+β)=1 C. tan(α−β)=−1D. tan(α−β)=17. 已知正三棱台的高为1,上下底面的边长分别为3√3和4√3,其顶点都在同一球面上,则该球的表面积为( )A. 100πB. 128πC. 144πD. 192π8. 若函数f(x)的定义域为R ,且f(x +y)+f(x −y)=f(x)f(y),f(1)=1,则∑f 22k=1(k)=( )A. −3B. −2C. 0D. 1二、多选题(本大题共4小题,共20.0分。

2019年全国统一高考数学试卷(理科)以及答案解析(全国2卷)

2019年全国统一高考数学试卷(理科)以及答案解析(全国2卷)

2019年全国统一高考数学试卷(理科)以及答案解析(全国2卷)1.设集合A={x|x^2-5x+6>0},B={x|x-1<0},则A∩B=()A。

(-∞,1) B。

(-2,1) C。

(-3,-1) D。

(3,+∞)解析:将x^2-5x+6=0化为(x-2)(x-3)>0,得到x∈(-∞,2)∪(3,+∞),将x-1<0化为x<1,得到B={x|x<1},所以A∩B=(-∞,1)。

2.设z=-3+2i,则在复平面内对应的点位于()A。

第一象限 B。

第二象限 C。

第三象限 D。

第四象限解析:实部为-3,虚部为2,所以该点位于第二象限。

3.已知|z-3|=2,|z+(3+ti)|=1,则|z|=()A。

-3 B。

-2 C。

2 D。

3解析:将|z-3|=2化为|z-3|^2=4,得到(z-3)(z-3*)=4,其中z*为z的共轭复数,将|z+(3+ti)|=1化为|z+(3+ti)|^2=1,得到(z+(3+ti))(z*+(3-ti))=1,将z展开得到z=x+yi,代入两式,化简得到x^2+y^2-6x+4=0和x^2+(y+t)^2=4,联立两式,解得x=1,y=-2-t,代入|z|^2=x^2+y^2,得到|z|=2.4.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就。

实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系。

为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行。

L2点是平衡点,位于地月连线的延长线上。

设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:M1M2/(M1+M2)(R+r)^2=G(M1+M2)/r^2.设α=GM2/R^2,由于α的值很小,因此在近似计算中α≈3α^3,则r的近似值为()A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年全国高考理科数学试题全国卷2一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1、已知z=(m+3)+(m –1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A .(–3,1) B .(–1,3) C .(1,+∞) D .(–∞,–3) 2、已知集合A={1,2,3},B={x|(x+1)(x –2)<0,x ∈Z},则A ∪B=( ) A .{1} B .{1,2} C .{0,1,2,3} D .{–1,0,1,2,3} 3、已知向量a =(1,m),b =(3,–2),且(a +b )⊥b ,则m=( ) A .–8 B .–6 C .6 D .8 ?4、圆x 2+y 2–2x –8y+13=0的圆心到直线ax+y –1=0的距离为1,则a=( )A .–43B .–34 C . 3 D .25、如下左1图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A .24B .18C .12D .96、上左2图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( ) A .20π B .24π C .28π D .32π7、若将函数y=2sin2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为( )"A .x=kπ2–π6(k ∈Z)B .x=kπ2+π6(k ∈Z)C .x=kπ2–π12(k ∈Z)D .x=kπ2+π12(k ∈Z)8、中国古代有计算多项式值的秦九韶算法,上左3图是实现该算法的程序框图。

执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s=( )A .7B .12C .17D .34 9、若cos(π4–α)=35,则sin2α= ( )10、从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A .4n m B .2n m C .4m n D .2m n11、已知F 1、F 2是双曲线E :x 2a 2–y 2b 2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( ) -A . 2B .32 C .3 D .212、已知函数f(x)(x ∈R)满足f(–x)=2–f(x),若函数y=x+1x 与y=f(x)图像的交点为(x 1,y 1),(x 2,y 2),...(x m ,y m ),则1()miii x y =+=∑( )A .0B .mC .2mD .4m 二、填空题:本大题共4小题,每小题5分13、△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cosA=45,cosC=513,a=1,则b=___________. 14、α、β是两个平面,m ,n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β。

(2)如果m ⊥α,n ∥α,那么m ⊥n 。

(3)如果α∥β,m ⊂α,那么m ∥β。

{(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等。

其中正确的命题有____________________(填写所有正确命题的编号)。

15、有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是____________.16、若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b=__________. 三、解答题:解答应写出文字说明,证明过程或演算步骤。

17、(本题满分12分)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28。

记b n =[lga n ],其中[x]表示不超过x 的最大整数,如[]=0,[lg99]=1. (1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.^、18、(本题满分12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数 0 1 2 3 4 ≥5 !保费a2a/一年内出险次数0 1 2 3 4 ≥5 概率¥0. 05(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;((3)求续保人本年度的平均保费与基本保费的比值.19、(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E 、F 分别在AD 、CD 上,AE=CF=54,EF 交BD 于点H .将△DEF 沿EF 折到△D'EF 位置,OD'=10. (1)证明:D'H ⊥平面ABCD ; (2)求二面角B –D'A –C 的正弦值.20、(本小题满分12分)已知椭圆E :x 2t +y 23=1的焦点在X 轴上,A 是E 的左顶点,斜率为k(k>0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . :(1)当t=4,|AM|=|AN|时,求△AMN 的面积; (2)当2|AM|=|AN|时,求k 的取值范围.21、(本小题满分12分)(1)讨论函数f(x)=x –2x+2e x 的单调性,并证明当x>0时,(x –2)e x +x+2>0;(2)证明:当a ∈[0,1)时,函数g(x)=e x –ax –ax 2(x>0)有最小值。

设g(x)的最小值为h(a),求函数h(a)的值域.!请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22、(本小题满分10分)[选修4–1:几何证明选讲]如图,在正方形ABCD 中,E 、G 分别在边DA ,DC 上(不与端点重合),且DE=DG ,过D 点作DF ⊥CE ,垂足为F . (1) 证明:B ,C ,G ,F 四点共圆;(2)若AB=1,E 为DA 的中点,求四边形BCGF 的面积.*23、(本小题满分10分)[选修4–4:坐标系与参数方程]在直角坐标系xOy 中,圆C 的方程为(x+6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎨⎧x=tcosαy=tsinα(t 为参数),l 与C 交于A ,B 两点,|AB|=10,求l 的斜率.24、(本小题满分10分)[选修4–5:不等式选讲]已知函数f(x)=|x –12|+|x+12|,M 为不等式f(x)<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a+b|<|1+ab|.#/$参考答案1、解析:∴m+3>0,m –1<0,∴–3<m<1,故选A .2、解析:B={x|(x+1)(x –2)<0,x ∈Z}={x|–1<x<2,x ∈Z},∴B={0,1},∴A ∪B={0,1,2,3},故选C .3、解析: 向量a +b =(4,m –2),∵(a +b )⊥b ,∴(a +b )·b =10–2(m –2)=0,解得m=8,故选D .)4、解析:圆x 2+y 2–2x –8y+13=0化为标准方程为:(x –1)2+(y –4)2=4,故圆心为(1,4),d=|a+4–1|a 2+1=1,解得a=–43,故选A .5、解析一:E→F 有6种走法,F→G 有3种走法,由乘法原理知,共6×3=18种走法,故选B .解析二:由题意,小明从街道的E 处出发到F 处最短有C 条路,再从F 处到G 处最短共有C 条路,则小明到老年公寓可以选择的最短路径条数为C·C=18条,故选B 。

6、解析:几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h . "由图得r=2,c=2πr=4π,由勾股定理得:l =22+(23)2=4,S 表=πr 2+ch+12c l =4π+16π+8π=28π,故选C .7、解析:由题意,将函数y=2sin2x 的图像向左平移π12个单位得y=2sin2(x+π12)=2sin(2x+π6),则平移后函数的对称轴为2x+π6=π2+kπ,k ∈Z ,即x=π6+kπ2,k ∈Z ,故选B 。

8、解析:第一次运算:s=0×2+2=2,第二次运算:s=2×2+2=6,第三次运算:s=6×2+5=17,故选C .9、解析:∵cos(π4–α)=35,sin2α=cos(π2–2α)=2cos 2(π4–α)–1=725,故选D . 解法二:对cos(π4–α)=35展开后直接平方 .解法三:换元法10、解析:由题意得:(x i ,y i )(i=1,2,3,...,n)在如图所示方格中,而平方和小于1的点均在如图的阴影中由几何概型概率计算公式知π/41=m n ,∴π=4mn ,故选C .11、解析: 离心率e=F 1F 2MF 2–MF 1,由正弦定理得e=F 1F 2MF 2–MF 1=sinMsinF 1–sinF 2=2231–13=2.故选A .12、解析:由f(–x)=2–f(x)得f(x)关于(0,1)对称,而y=x+1x =1+1x 也关于(0,1)对称, …∴对于每一组对称点x i +x'i =0,y i +y'i =2, ∴()111022m m mi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .13、解析:∵cosA=45,cosC=513,sinA=35,sinC=1213,∴sinB=sin(A+C)=sinAcosC+cosAsinC=6365, 由正弦定理:b sinB =a sinA ,解得b=2113.14、解析:对于①,m ⊥n ,m ⊥α,n ∥β,则α,β的位置关系无法确定,故错误;对于②,因为//n α,所以过直线n 作平面γ与平面β相交于直线c ,则n ∥c ,因为m ⊥α,∴m ⊥c ,∴m ⊥n ,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故正确的有②③④. …15、解析:由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足;若丙(1,3),则乙(2,3),甲(1,2)不满足;故甲(1,3),16、解析:y=lnx+2的切线为:y=1x 1·x+lnx 1+1(设切点横坐标为x 1)y=ln(x+1)的切线为:y=1x 2+1·x+ln(x 2+1)–x2x 2+1,∴⎩⎨⎧1x 1=1x 2+1lnx 1+1=ln(x 2+1)–x 2x 2+1解得x 1=12,x 2=–12。

相关文档
最新文档