《含有一个量词的否定》
1.4.2 含有一个量词的命题的否定
1.4.2含有一个量词的命题的否定学习目标 1.理解含有一个量词的命题的否定的意义.2.会对含有一个量词的命题进行否定.3.掌握全称命题的否定是特称命题,特称命题的否定是全称命题.知识点一全称命题与特称命题的否定思考1写出下列命题的否定:①所有的矩形都是平行四边形;②有些平行四边形是菱形.答案①并非所有的矩形都是平行四边形.②每一个平行四边形都不是菱形.思考2对①的否定能否写成:所有的矩形都不是平行四边形?答案不能.思考3对②的否定能否写成:有些平行四边形不是菱形?答案不能.知识点二含有一个量词的命题p的否定真假性判断对“含有一个量词的命题p的否定”的真假判断一般有两种思路:一是直接判断¬p的真假,二是用p与¬p的真假性相反来判断.类型一全称命题的否定例1写出下列命题的否定,并判断其真假.(1)p:任意n∈Z,则n∈Q;(2)p:等圆的面积相等,周长相等;(3)p:偶数的平方是正数.解(1)¬p:存在n0∈Z,使n0∉Q,这是假命题.(2)¬p:存在等圆,其面积不相等或周长不相等,这是假命题.(3)¬p:存在偶数的平方不是正数,这是真命题.反思与感悟(1)写出全称命题的否定的关键是找出全称命题的全称量词和结论,把全称量词改为存在量词,结论变为否定的形式就得到命题的否定.(2)有些全称命题省略了量词,在这种情况下,千万不要将否定简单的写成“是”或“不是”.跟踪训练1写出下列全称命题的否定:(1)p:所有能被3整除的整数都是奇数;(2)p:对任意x∈Z,x2的个位数字不等于3;(3)p:数列{1,2,3,4,5}中的每一项都是偶数;(4)p:可以被5整除的整数,末位是0.解(1)¬p:存在一个能被3整除的整数不是奇数.(2)¬p:∃x0∈Z,x20的个位数字等于3.(3)¬p:数列{1,2,3,4,5}中至少有一项不是偶数.(4)¬p:存在被5整除的整数,末位不是0.类型二特称命题的否定例2写出下列特称命题的否定:(1)p:∃x0∈R,x20+2x0+2≤0;(2)p:有的三角形是等边三角形;(3)p:有一个素数含三个正因数.解(1)¬p:∀x∈R,x2+2x+2>0.(2)¬p:所有的三角形都不是等边三角形.(3)¬p:每一个素数都不含三个正因数.反思与感悟 与全称命题的否定的写法类似,要写出特称命题的否定,先确定它的存在量词,再确定结论,然后把存在量词改写为全称量词,对结论作出否定就得到特称命题的否定. 跟踪训练2 写出下列命题的否定,并判断其真假: (1)至少有一个实数x 0,使得x 20+2x 0+5=0; (2)存在一个平行四边形,它的对角线互相垂直; (3)存在一个三角形,它的内角和大于180°; (4)存在偶函数为单调函数.解 (1)命题的否定:对任意x ∈R ,都有x 2+2x +5≠0,是真命题.(2)命题的否定:对于任意的平行四边形,它的对角线都不互相垂直,是假命题. (3)命题的否定:对于任意的三角形,它的内角和小于或等于180°,是真命题. (4)命题的否定:所有的偶函数都不是单调函数,是真命题. 类型三 全称命题与特称命题的应用例3 (1)已知命题p :∃x 0∈R ,x 20+2ax 0+a ≤0.若命题p 是假命题,则实数a 的取值范围是________. 答案 (0,1)解析 方法一 若命题p :∃x 0∈R ,x 20+2ax 0+a ≤0是真命题,得Δ=(2a )2-4a ≥0,即a (a -1)≥0, 若命题p 是假命题,则a (a -1)<0,解得0<a <1.方法二 依题意,命题¬p :∀x ∈R ,x 2+2ax +a >0是真命题,得Δ=(2a )2-4a <0,即a (a -1)<0,解得0<a <1.(2)已知命题p (x ):sin x +cos x >m ,q (x ):x 2+mx +1>0.如果对∀x ∈R ,p (x )为假命题且q (x )为真命题,求实数m 的取值范围.解 由于命题p (x ):对∀x ∈R ,sin x +cos x >m 是假命题, 则¬p (x ):∃x 0∈R ,sin x 0+cos x 0≤m 是真命题, 因为sin x +cos x =2sin ⎝⎛⎭⎫x +π4∈[-2,2], 所以m ≥- 2即可.由于q (x ):∀x ∈R ,x 2+mx +1>0为真命题, 即对于∀x ∈R ,x 2+mx +1>0恒成立, 有Δ=m 2-4<0,所以-2<m <2. 依题意,得-2≤m <2.所以实数m 的取值范围是{m |-2≤m <2}.反思与感悟 (1)全称命题的常见题型是“恒成立”问题,全称命题为真时,意味着命题对应的集合中的每一个元素都具有某种性质,所以利用代入可以体现集合中相应元素的具体性质;也可以根据函数等数学知识来解决.(2)特称命题的常见题型是以适合某种条件的结论“存在”“不存在”“是否存在”等语句表述.解答这类问题,一般要先对结论作出肯定存在的假设,然后从肯定的假设出发,结合已知条件进行推理证明,若推出合理的结论,则存在性随之解决;若导致矛盾,则否定了假设.跟踪训练3已知命题p:“∃x0∈R,sin x0<m”,命题q:“∀x∈R,x2+mx+1>0恒成立”,若p∧q是真命题,求实数m的取值范围.解由于p∧q是真命题,则p,q都是真命题.因为“∃x0∈R,sin x0<m”是真命题,所以m>-1.又因为“∀x∈R,x2+mx+1>0恒成立”是真命题,所以Δ=m2-4<0,解得-2<m<2.综上所述,实数m的取值范围是(-1,2).1.设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x∈B,则()A.¬p:∀x∈A,2x∉BB.¬p:∀x∉A,2x∉BC.¬p:∃x0∉A,2x0∈BD.¬p:∃x0∈A,2x0∉B答案D解析根据题意可知命题p:∀x∈A,2x∈B的否定是¬p:∃x0∈A,2x0∉B.2.设命题p:∀x∈R,x2+1>0,则¬p为()A.∃x0∈R,x20+1>0B.∃x0∈R,x20+1≤0C.∃x0∈R,x20+1<0D.∀x∈R,x2+1≤0答案B解析命题p:∀x∈R,x2+1>0,是一个全称命题.∴¬p:∃x0∈R,x20+1≤0.3.下列命题的否定为假命题的是()A.∃x∈R,x2+2x+2≤0B.∀x∈R,lg x<1C.所有能被3整除的整数都是奇数D.∀x∈R,sin2x+cos2x=1解析对于选项A,因为x2+2x+2=(x+1)2+1>0,所以∃x∈R,x2+2x+2≤0是假命题,故其否定为真命题;对于选项B,因为当x>10时,lg x>1,所以∀x∈R,lg x<1是假命题,故其否定为真命题;对于选项C,因为6能被3整除,但6是偶数,所以这是假命题,其否定为真命题;对于选项D,显然成立,因此其否定是假命题.4.“∃x0∈M,p(x0)”的否定为________________.答案∀x∈M,¬p(x)5.“至多有两个人”的否定为________________.答案至少有三个人解析“至多有两个人”含义是有0人或1人或2人,故“至多有两个人”的否定为“至少有三个人”.对含有一个量词的命题的否定要注意以下问题:(1)确定命题类型,是全称命题还是特称命题.(2)改变量词:把全称量词改为恰当的存在量词;把存在量词改为恰当的全称量词.(3)否定结论:原命题中的“是”“有”“存在”“成立”等改为“不是”“没有”“不存在”“不成立”等.(4)无量词的全称命题要先补回量词再否定.一、选择题1.命题“所有能被2整除的整数都是偶数”的否定是()A.所有不能被2整除的整数都是偶数B.所有能被2整除的整数都不是偶数C.存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数答案D解析原命题为全称命题,其否定应为特称命题,且结论否定.2.命题“有些实数的绝对值是正数”的否定是()A.∀x∈R,|x|>0B.∃x0∈R,|x0|>0C.∀x∈R,|x|≤0D.∃x0∈R,|x0|≤0解析由词语“有些”知原命题为特称命题,故其否定为全称命题,因为命题的否定只否定结论,所以选C.3.命题“存在x∈Z,使x2+2x+m≤0成立”的否定是()A.存在x∈Z,使x2+2x+m>0B.不存在x∈Z,使x2+2x+m>0C.对于任意x∈Z,都有x2+2x+m≤0D.对于任意x∈Z,都有x2+2x+m>0答案D解析特称命题的否定是全称命题.4.已知命题“∀a、b∈R,如果ab>0,则a>0”,则它的否命题是()A.∀a、b∈R,如果ab<0,则a<0B.∀a、b∈R,如果ab≤0,则a≤0C.∃a、b∈R,如果ab<0,则a<0D.∃a、b∈R,如果ab≤0,则a≤0答案B解析条件ab>0的否定为ab≤0;结论a>0的否定为a≤0,故选B.5.下列命题错误的是()A.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”B.若p∧q为假命题,则p、q均为假命题C.命题p:存在x0∈R,使得x20+x0+1<0,则¬p:任意x∈R,都有x2+x+1≥0D.“x>2”是“x2-3x+2>0”的充分不必要条件答案B解析由逆否命题“条件的否定作结论,结论的否定为条件”知A为真命题;p∧q为假命题时,p假或q假,故B错误;由“非”命题的定义知C正确;∵x>2时,x2-3x+2>0成立,x2-3x+2>0时,x<1或x>2,∴D正确.6.已知命题p:∃n∈N,2n>1 000,则¬p为()A.∀n∈N,2n≤1 000B.∀n∈N,2n>1 000C.∃n∈N,2n≤1 000D.∃n∈N,2n>1 000答案A解析特称命题的否定为全称命题,“>”的否定为“≤”.7.下列命题中是假命题的是()A.∃m∈R,使f(x)=(m-1)·xm2-4m+3是幂函数,且在(0,+∞)上单调递减B.∀a >0,函数f (x )=ln 2x +ln x -a 有零点C.∃α、β∈R ,使cos(α+β)=cos α+sin βD.∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数 答案 D解析 ∵f (x )为幂函数,∴m -1=1, ∴m =2,f (x )=x -1,∴f (x )在(0,+∞)上递减,故A 真; ∵y =ln 2x +ln x 的值域为⎣⎡⎭⎫-14,+∞, ∴对∀a >0,方程ln 2x +ln x -a =0有解, 即f (x )有零点,故B 真; 当α=π6,β=2π时,cos(α+β)=cos α+sin β成立,故C 真; 当φ=π2时,f (x )=sin(2x +φ)=cos 2x 为偶函数,故D 为假命题. 二、填空题8.命题“存在x ∈R ,使得x 2+2x +5=0”的否定是______________. 答案 任意x ∈R ,使得x 2+2x +5≠0解析 特称命题的否定是全称命题,将“存在”改为“任意”,“=”改为“≠”. 9.命题“过平面外一点与已知平面平行的直线在同一平面内”的否定为________________________________________________________________________. 答案 过平面外一点与已知平面平行的直线不都在同一平面内 解析 原命题为全称命题,写其否定是要将全称量词改为存在量词.10.已知命题p :m ∈R ,且m +1≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立,若p ∧q 为假命题且p ∨q 为真命题,则m 的取值范围是________________. 答案 m ≤-2或-1<m <2 解析 p :m ≤-1,q :-2<m <2, ∵p ∧q 为假命题且p ∨q 为真命题,∴p 与q 一真一假,当p 假q 真时,-1<m <2, 当p 真q 假时,m ≤-2,∴m 的取值范围是m ≤-2或-1<m <2.11.若“∃x ∈R ,使x 2+ax +1<0”为真命题,则实数a 的取值范围是________________. 答案 a >2或a <-2解析 由于∃x ∈R ,使x 2+ax +1<0,又二次函数f (x )=x 2+ax +1开口向上,故Δ=a 2-4>0,所以a >2或a <-2. 三、解答题12.写出下列命题的否定并判断真假:(1)不论m 取何实数,方程x 2+x -m =0必有实数根; (2)所有末位数字是0或5的整数都能被5整除; (3)某些梯形的对角线互相平分; (4)被8整除的数能被4整除.解 (1)这一命题可以表述为p :“对所有的实数m ,方程x 2+x -m =0都有实数根”,其否定是¬p :“存在实数m ,使得x 2+x -m =0没有实数根”,注意到当Δ=1+4m <0,即m <-14时,一元二次方程没有实数根,因此¬p 是真命题. (2)命题的否定是:存在末位数字是0或5的整数不能被5整除,是假命题. (3)命题的否定:任一个梯形的对角线都不互相平分,是真命题. (4)命题的否定:存在一个数能被8整除,但不能被4整除,是假命题. 13.若“∃x 0∈⎣⎡⎦⎤0,π2,sin x 0+3cos x 0<m ”为假命题,求实数m 的取值范围. 解 令f (x )=sin x +3cos x =2sin ⎝⎛⎭⎫x +π3, x ∈⎣⎡⎦⎤0,π2,可知f (x )在⎣⎡⎦⎤0,π6上为增函数, 在⎝⎛⎦⎤π6,π2上为减函数,由于f (0)=3,f ⎝⎛⎭⎫π2=1, 所以1≤f (x )≤2,由于“∃x 0∈⎣⎡⎦⎤0,π2, sin x 0+3cos x 0<m ”为假命题,则其否定“∀x ∈⎣⎡⎦⎤0,π2,sin x +3cos x ≥m ”为真命题, 所以m ≤f (x )min =1,即m ≤1.。
2020高中新教材数学---含有一个量词的命题的否定
(4)s:某些平行四边形是菱形.
3.已知命题“对于任意x∈R,x2+ax+1≥0”是假命题,求实数a的取值范围.
B组
已知m∈R,命题p:对任意x∈[0,1],不等式2x-2≥m2-3m恒成立;命题q:存在x∈[-1,1],使得m≤ax成立.
(1)若p为真命题,求m的取值范围;
(3)从特称命题的否定看,是对“量词”和“p(x)”同时否定.()
2.指出下列命题的形式,写出下列命题的否定:
(1)所有的矩形都是平行四边形;
(2)每一个素数都是奇数;
(3)∀x∈R,x2-2x+1≥0.
3.判断下列命题的真假,并写出这些命题的否定:
(1)三角形的内角和为180°;
(2)每个二次函数的图像都开口向下;
(3)任何一ห้องสมุดไป่ตู้平行四边形的对边都平行;
(4)负数的平方是正数.
[合作探究·攻重难]
例1、判断下列命题的真假,并写出它们的否定.
(1)对任意x∈R,x3-x2+1≤0;
(2)所有能被5整除的整数都是奇数;
(3)对任意的x∈Q, x2+ x+1是有理数.
例2、若命题“∃x∈R,使得x2+(a-1)x+1≤0”为假命题,则实数a的取值范围是________.
全称命题的否定是__________命题,“∀x∈M,p(x)”的否定为______________________________.
2.存在性命题的否定
存在性命题的否定是________命题,“∃x∈M,p(x)”的否定为“___________________________________”.
(2)当a=1时,p且q为假命题,p或q为真命题,求m的取值范围.
1.4.3含有一个量词的命题的否定
例2:
写出下列特称命题的否定:
(1)p: 存在一对实数,使2x+3y+3>0成立; (2)p: 有些三角形不是等腰三角形; (3)p: 有一个素数含三个正因数.
(1) ┐p:所有的实数都使得2x+3y+3≤0成立; (2) ┐p:所有的三角形都是等腰 三角形; (3) ┐p:所有的素数都不含有三个因数.
命
全称命题
题
特称命题
表 述
(1)所有x A, p(x)成立.
(1)存在x0 A,使p(x0 )成立.
(2)对一切x A, p(x)成立. (2)至少有一个x0 A,使p(x0 )
(3)对每一个x A, p(x)成立. 成立.
方 (4)任选一个x A,使p(x) 法 成立.
(3)对有些x0 A,使p(x0 )成立. (4)对某个x0 A,使p(x0 )成立.
探究一:
写出下列命题的否定:
(1)所有的矩形都是平行四边形; (2)每一个素数都是奇数; (3)x∈R, x2-2x+1≥0.
(1)并非所有的矩形都是平行四边形; 即 存在矩形不是平行四边形;
(2)并非每一个素数都是奇数;
即 存在素数不是奇数; (3)并非所有的x ∈ R,x2-2x+1≥0.
即 x0 ∈ R,x02-2x0+1<0.
一般地 , 对于含有一个量词的全称命题的 否定 , 有下面的结论:
结论一:
全称命题p : x ∈M,p ( x), 它的否定┐p : x0 ∈M, ┐p ( x0 ).
例1:
写出下列全称命题的否定:
(1)p:所有自然数的平方是正数; (2)p:所有可以被5整除的整数,末位 数字都是0; (3)p:每一个四边形的四个顶点共圆.
含有一个量词的命题的否定教案 (1)
含有一个量词的命题的否定教学目标:利用日常生活中的例子和数学的命题介绍对量词命题的否定,使学生进一步理解全称量词、存在量词的作用.教学重点:全称量词与存在量词命题间的转化;教学难点:隐蔽性否定命题的确定;教学过程:一、引入数学命题中出现“全部”、“所有”、“一切”、“任何”、“任意”、“每一个”等与“存在着”、“有”、“有些”、“某个”、“至少有一个”等的词语,在逻辑中分别称为全称量词与存在性量词(用符号分别记为“ ∀”与“∃”来表示);由这样的量词构成的命题分别称为全称命题与存在性命题。
在全称命题与存在性命题的逻辑关系中,,p q p q ∨∧都容易判断,但它们的否定形式是我们困惑的症结所在。
问题1:指出下列命题的形式,写出下列命题的否定。
(1)所有的矩形都是平行四边形;(2)每一个素数都是奇数;(3)∀x ∈R ,x 2-2x+1≥0分析:(1)∀∈x M,p(x),否定:存在一个矩形不是平行四边形;∃∈⌝x M,p(x)(2)∀∈x M,p(x),否定:存在一个素数不是奇数;∃∈⌝x M,p(x)(3)∀∈x M,p(x),否定:∃x ∈R ,x 2-2x+1<0;∃∈⌝x M,p(x)这些命题和它们的否定在形式上有什么变化?结论:从命题形式上看,这三个全称命题的否定都变成了存在性命题.问题2:写出命题的否定(1)p :∃ x ∈R ,x 2+2x +2≤0;(2)p :有的三角形是等边三角形;(3)p :有些函数没有反函数;(4)p :存在一个四边形,它的对角线互相垂直且平分;分析:(1)∀ x ∈R ,x 2+2x+2>0;(2)任何三角形都不是等边三角形;(3)任何函数都有反函数;(4)对于所有的四边形,它的对角线不可能互相垂直或平分;从集合的运算观点剖析:()U U U A B A B =,()U U U A B A B = 二1.全称命题、存在性命题的否定一般地,全称命题P :∀ x ∈M,有P (x )成立;其否定命题┓P 为:∃x ∈M,使P (x )不成立。
含有一个量词的命题的否定
含有一个量词的命题的否定作者:曹胜才来源:《高中生学习·高二文综版》2015年第02期从命题形式上看,全称命题的否定是特称命题,特称命题的否定是全称命题,该内容常与命题的真假性判断结合考查. 对含有一个量词的命题的否定首先得弄清以下几点:(1)弄清命题是全称命题还是特称命题,是正确写出命题的否定的前提. (2)注意命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定. (3)“[p或q]”的否定为:“[¬ p]且[¬ q]”;“[p]且[q]”的否定为:“[¬ p]或[¬ q]”. (4)要判断“[¬ p]”命题的真假,可以直接判断,也可以判断“[p]”的真假,因为[p]与[¬ p]的真假相反.含有一个量词的命题的否定例1 ;命题“所有不能被2整除的整数都是奇数”的否定是( ; )A. 所有能被2整除的整数都是奇数B. 所有不能被2整除的整数都不是奇数C. 存在一个能被2整除的整数是奇数D. 存在一个不能被2整除的整数不是奇数解析 ;否定全称命题和特称命题时,一定要改写量词,全称量词改写为存在量词,存在量词改写为全称量词,二是要否定结论.答案 ;D例2 ;“[∃x∈A,x2-2x-3>0]”的否定为( ; )A. [∀x∈A,x2-2x-3<0]B. [∀x∉A,x2-2x-3≤0]C. [∀x∈A,x2-2x-3>0]D. [∀x∈A,x2-2x-3≤0]解析 ;特称命题的否定为全称命题,故“[∃x∈A,][x2-2x-3>0]”的否定为:“[∀x∈A,x2-2x][-3≤0]”.答案 ;D点拨 ;(1)对全(特)称命题进行否定的方法:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,并且改变量词或符号(全称量词[⇔]特称量词);②找到[p(x)]并否定. (2)“否命题”与“命题的否定”的区别.“否命题”与“命题的否定”不是同一概念,否命题是对原命题“若[p]则[q]”的否定,既否定其条件,又否定其结论,它们之间没有真假关系. 而“命题[p]的否定”即“[¬p]”是否定命题中的结论,它们之间真假相反.如:例2中不要错选成B.与含一个量词的命题的否定有关的参数取值范围问题例3 ;已知命题“[∃x∈R,x2+2ax+1<0]”是假命题,则实数[a]的取值范围是( ; )A. [(-∞,-1)]B. [(1,+∞)]C. [(-∞,-1)⋃(1,+∞)]D. [-1,1]解析 ;由题意知,原命题的否定:[∀x∈R,x2+2ax+1][≥0]为真命题,即Δ[=4a2-4≤0],[∴-1≤a≤1].答案 ;D例4 ;已知命题[p]:[∀x∈0,1,a≥ex],命题[q]:“[∃x0∈R,x02+4x0+a=0]”,命题“[p∧q]”是假命题,则实数[a]的取值范围是( ; )A. [-∞,4]B. [(-∞,1)⋃(4,+∞)]C. [(-∞,e)⋃(4,+∞)]D. [1,+∞]解析 ;当[p]为真命题时,[a≥e].当[q]为真命题时,[x2+4x+a=0]有解,则[Δ=16-4a≥0,][∴a≤4].法一:[p∧q]的否定为真命题,即[¬ p∨¬q]为真命题,[∴a]的取值范围是[(-∞,e)⋃(4,+∞)].法二:若[p∧q]为真命题时,[e≤a≤4],[∴]“[p∧q]”为假命题时,[a<e或a>4].点拨 ;(1)[p,q]为真命题时,分别求出相应参数的范围;(2)用补集思想,求出[¬p],[¬q]对应的参数范围;(3)由复合命题真假转化为集合基本运算综合得参数范围.全称命题中的全称量词表明给定范围内所有对象都具备某一性质,无一例外,而特称命题中的存在量词却表明给定范围内的对象,有例外,两者正好构成了相反意义的表述,所以全称命题的否定是特称命题,特称命题的否定是全称命题.常见量词的否定[词语\&词语的否定\&词语\&词语的否定\&等于\&不等于\&至多一个\&至少两个\&大于\&不大于(即小于或等于)\&至少一个\&一个也没有\&小于\&不小于(即大于或等于)\&任意\&某个\&是\&不是\&所有的\&某些\&都是\&不都是(与“都不是”区别开)\&一定\&不一定\&]练习1. 命题“所有奇数的立方都是奇数”的否定是( ; )A. 所有奇数的立方都不是奇数B. 不存在一个奇数,它的立方是偶数C. 存在一个奇数,它的立方是偶数D. 不存在一个奇数,它的立方是奇数2. 设[x∈Z],集合[A]是奇数集,集合[B]是偶数集,若命题[p:∀x∈A,2x∈B],则( ; )A. [¬ p:∀x∈A,2x∉B]B. [¬ p:∀x∉A,2x∉B]C. [¬ p:∃x∉A,2x∉B]D. [¬ p:∃x∈A,2x∉B]3. 在一次跳伞训练中,甲、已两位学员各跳一次.设命题[p]是“甲降落在指定范围”,[q]是“乙降落在指定范围”,则命题:“至少有一位学员没有降落在指定范围”可表示为( ; )A. [(¬p)∨(¬q)] ; ;B. [p∨(¬q)]C. [(¬p)∧(¬q)] ;D. [p∧q]4. 已知“命题[p:∃x∈R],使得[ax2+2x+1<0]成立”为真命题,则实数[a]满足( ; )A. [0,1] ;B. [(-∞,1)]C. [1,+∞] ;D. [-∞,1]5. 已知[f(x)=3sinx-πx,]命题[p:∀x∈(0,π2),f(x)<0,]则( ; )A. [p]是真命题,[¬p:∀x∈(0,π2),f(x)>0]B. [p]是真命题,[¬p:∃x0∈(0,π2),f(x0)≥0]C. [p]是假命题,[¬p:∀x∈(0,π2),f(x)≥0]D. [p]是假命题,[¬p:∃x0∈(0,π2),f(x0)≥0]6. 已知命题[p1]存在[x∈R],使得[x2+x+1<0]成立;[p2]对任意[x∈1,2],[x2-1≥0.] 以下命题为真命题的是( ; )A. [¬p1∧¬p2] ;B. [p1∨¬p2]C. [¬p1∧p2] ; ;D. [p1∧p2]参考答案1. C ;全称命题的否定,改变量词为“存在一个”,然后否定结论即可.2. D ;全称命题的否定,注意符号变化,不要错选C.3. A ;复合命题的否定,“至少有一位学员没有降落在指定范围内”的否定是“都降落在指定范围”即“[p∧q]”的否定.4. B ;注意讨论,若[a=0]时,符合题意;若[a≠0],则[△=4-4a>0]即[a<1].5. B ;[f(x)=3cosx-π<0],[f(x)在(0,π2)]上是减函数,[f(x)<f(0)],[而f(0)=0],[∴]命题为真命题,又全称命题的否定是特称命题.6. ;C ;由题意知[p1]为假命题,[p2]为真命题.。
常用逻辑用语含有一个量词的命题的否定
在日常生活中,我们常常需要对这些命题进行否定。如“不是所有的猫都喜欢吃 鱼”、“不是所有人都喜欢运动”、“不是有些人喜欢吃甜食”等等。这些否定 命题中,量词不变,但是否定的内容变了。
在法律和医学中的应用
法律中的否定
在法律中,否定命题的应用非常广泛。如“不得侵犯他人的 人身权利”、“不得盗窃他人财物”、“不得伪造证件”等 等。这些命题中都包含着量词,如“不得”、“可以”。
命题
命题是一个判断(陈述)的语义表达,它可以被证实为真或 假。
命题的否定的定义与性质
命题的否定
命题的否定是在原命题的基础上,对其结论进行否定,即原命题为真,其否 定为假;原命题为假,其否定为真。
命题否定的性质
命题的否定具有唯一性,即对于任何一个命题,其否定只有一个。
常用逻辑用语与命题否定的关系
关系
02
关注逻辑学的新进展:随着逻辑学的发展,对于含有一个量词的命题的否定的 研究也在不断深入。需要关注逻辑学的新进展,以便了解最新的研究成果和研 究趋势。
03
研究实际应用:研究含有一个量词的命题的否定不仅是为了理论上的探讨,还 为了解决实际应用中的问题。因此,需要结合实际应用场景,研究和解决具体 问题。
04
命题否定与逻辑关系
命题否定与逻辑运算符的关系
命题否定与逻辑运算符的关联
命题否定是一种逻辑否定与逻辑运算符的差异
命题否定只对一个命题进行操作,而逻辑运算符可以对多个命题进行操作。
命题否定与逻辑推理的关系
命题否定与逻辑推理的关联
数学命题的否定
数学命题的否定是指以原命题的否定的真假为依据,即 若原命题为真则其否命题为假,若原命题为假则其否命 题为真。
在日常思维中的应用
1.4.3 含有一个量词的 命题的否定 全称命题-高中数学选修2-1教案
1.4.3含有一个量词的命题的否定【教学内容分析】“含有一个量词的命题的否定”选自数学人教A版选修2-1第一章第四节的内容,它包括两块内容:一是含有一个全称量词的命题的否定,二是含有一个存在量词的命题的否定。
本节课是学生在老师的带领下,通过探究理解含有一个量词的命题与它们的否定在形式上的变化规律,并且会正确地对含有一个量词的命题进行否定。
在教学中使学生体会从具体到一般的认知过程,培养学生抽象、概括的能力,通过学生的合作探究,培养培养他们的良好的思维品质。
【学情分析】本节内容是数学选修2-1第一章的最后一节内容,学习对象为高二年级学生,他们在前面已经学习了全称量词与存在量词的定义,以及否命题和一般命题的否定。
所以本节课在此基础上,也是学生对命题的否定的再认识,学生能够知道含有一个量词的命题的否定方法和前面学习的一般命题的否定方法有部分区别。
同时学好本节课也是为了让学生对否命题与命题的否定能够区分开。
【教学目标】1.知识与技能目标:理解全称命题的否定是特称命题,特称命题的否定是全称命题;2.过程与方法目标:通过探究实例,能够归纳出含一个量词的命题与它们的否定在形式上的变化规律;3.情感态度价值观:通过本节课的学习,培养学生的辨析能力以及良好的思维品质。
【教学重难点】重点:理解全称命题的否定是特称命题,特称命题的否定是全称命题;难点:正确地对含有一个量词的命题进行否定。
【设计思路】本节课是针对于高二年级的教学内容,“含有一个量词的命题的否定”即是含有全称量词或者存在量词的命题的否定。
学生通过探究实例,老师进行引导归纳出全称命题的否定变成了特称命题,在这一过程当中,量词进行改变,条件不变,结论进行否定。
其次学生通过类比全称命题的否定是特称命题,自行归纳得出特称命题的否定是全称命题,在这一过程当中,还是量词进行改变,条件不变,结论否定。
所以通过对比形式变化,可以得出:含有一个量词的命题的否定即是:量词改变,结论否定。
含一个量词的命题的否定
这些命题和它们的否定在形式上有什么变化?
2021/10/10
3
从命题形式上看,这三个全称命题的否定都 变成了特称命题.
一般地,对于含有一个量词的全称命题的否 定,有下面的结论:
全称命题p: xM,p(x)
它的否定 p : x0∈M, ﹁p(x0)
全称命题的否定是特称命题.
2021/10/10
4
例1 写出下列全称命题的否定: (1) p: 所有能被3整除的整数都是奇数; (2) p: 每一个四边形的四个顶点共圆; (3) p: 对任意x∈Z, x2的个位数字不等于3.
2021/10/10
11
例3. 写出下列命题的否定: (1) 若x2>4,则 x>2; (2) 若m≥0,则 x2+x-m=0有实数根; (3) 可以被5整除的整数,末位是0; (4) 被8整除的数能被4整除; (5) 若一个四边形是正方形,则它的四条边相等.
解:(1)原命题完整表述:对任意的实数x,若x2>4,则x>2.
解:(1) ¬p:存在一个能被3整除的整数不是奇数.
(2) ¬p:存在一个四边形,它的四个顶点不共圆.
(3) ¬p:
x0
Z,
x
2 0
的个位数字等于3.
【说明】否定时,不能只是简单的否定结论, 全称命题的否定变成特称命题.
2021/10/10
5
探究
写出下列命题的否定
1)有些实数的绝对值是正数; x0∈M, p(x0)
2)某 些 平 行 四 边 形 是 菱 形 ; x0∈M, p(x0)
3) x0∈R, x02+1<0
否定:
x0∈M, p(x0)
1)所有实数的绝对值都不是正数; xM,p(x)
§1.4.3含有一个量词的命题的否定
§ 1.4.3含有一个量词的命题的否定学习目标: 了解含有一个量词的命题与它们的否定在形式上的变化规律。
难点:正确地对含有一个量词的命题进行否定。
预习导航:认真阅读教材,完成导学案上的预习导航,并将不懂知识进行标注。
1、复习回顾:全称命题:特称命题:2、判断全称命题和特称命题真假的方法:3、命题的否定与否命题有什么区别?4、命题“一个数的末位数字是0,则它可以被5整除”的否命题和命题的否定分别是什么?5、判断下列命题是全称命题还是特称命题,你能写出下列命题的否定吗?(1)所有的矩形都是平行四边形;(2)每一个素数都是奇数;(3)∀x∈R, x2-2x+1≥0;(4)有些实数的绝对值是正数;(5)某些平行四边形是菱形;(6)∃x0∈R, x2+1<0.全称命题p: ∀x∈M,p(x),它的否定﹁p: 。
否定的方法“一改量词二否结论”.练习1、命题“所有能被3整除的整数都是奇数”的否定是()A.所有能被3整除的整数都不是奇数B.不存在一个奇数,它不能被3整除C.存在一个奇数,它不能被3整除D.不存在一个奇数,它能被3整除例1 写出下列全称命题的否定:(1)p:所有能被3整除的整数都是奇数;(2)p:每一个四边形的四个顶点共圆;(3)p:对任意x∈Z,x2的个位数字不等于3. 探究2、省略全称量词的全称命题的否定:例2、设命题p:“平行四边形是矩形” (1) p是真命题还是假命题?(2)请写出命题p的否定形式;并判断真假。
探究3、特称命题的否定:特称命题p:∃x∈M,p(x),它的否定﹁p: 。
否定的方法“1改量词 2否结论”。
说明:全称命题的否定是特称命题。
特称命题的否定是全称命题。
在具体操作中就是从命题P把全称性的量词改成特称性的量词,特称性的量词改成全称性的量词,并把量词作用范围进行否定。
即须遵循下面法则:否定全称得特称,否定特称得全称,否定肯定得否定,否定否定得肯定.练习2、命题“存在一个三角形,内角和不等于180o”的否定为()A.存在一个三角形,内角和等于180oB.所有三角形,内角和都等于180oC.所有三角形,内角和都不等于180oD.很多三角形,内角和不等于180o例3、写出下列特称命题的否定:(1)p:∃ x∈R,x2+2x+2≤0;(2)p:有的三角形是等边三角形;(3)p:有一个素数含有三个正因数.例4、写出下列命题的否定,并判断其真假:(1)p:任意两个等边三角形都是相似的;(2)p:∃x0∈R, x02+2x0+2=0.课堂练习:1. 命题“存在x∈ R,2x0 ≤0”的否定是()(A)不存在x∈R, 2x0 >0 (B)存在x∈R, 2x0≥ 0(C)对任意的x∈R, 2x≤ 0 (D)对任意的x∈R, 2x >02. 已知命题p:∀x∈R ,sin x≤ 1,则()A.┐ p:∃x∈R ,sin x≥ 1; B.┐ p:∀x∈R ,sin x≥ 1;C.┐ p:∃x∈R ,sin x >1; D.┐ p:∀x∈R ,sin x >1.3. 命题“所有自然数的平方都是正数”的否定为()A.所有自然数的平方都不是正数B.有的自然数的平方是正数C.至少有一个自然数的平方是正数D.至少有一个自然数的平方不是正数二.小结:1:一般地,全称命题 P:∀ x∈M,有P(x)成立;其否定命题┓P为:∃x。
含有一个量词的命题的否定 课件
『规律总结』 1.一般地,写含有一个量词的命题的否定,首先要明确这个 命题是全称命题还是特称命题,并找到量词及相应结论,然后把命题中的全称 量词改成存在量词,存在量词改成全称量词,同时否定结论.
2.对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完 整形式,再依据规则来写出命题的否定.
所以 m≥(12)x2,x2∈[0,2] 所以 m≥(12)0,即 m≥1. [辨析] 错误的根本原因是恒成立问题等价转化中产生错误,实际上∃x2∈ [0,2],m≥(12)x2,只需 m 大于或等于(12)x2 在[0,2]上的最小值即可. [正解] 因为 x1∈[-1,3],所以 f(x1)∈[0,9],又因为对∀x1∈[-1,3],∃x2 ∈[0,2],使得 f(x1)≥g(x2),即∃x2∈[0,2],g(x2)≤0,即(12)x2-m≤0,所以 m≥(12)x2, m≥(12)2,即 m≥14.
命题方向1 ⇨全称命题、特称命题的否定
写出下列命题的否定. (1)p:∃x∈R ,x2+2x+2≤0; (2)p:有的三角形是等边三角形; (3)p:所有能被 3 整除的整数是奇数; (4)p:每一个四边形的四个顶点共圆.
[规范解答] (1)¬p:∀x∈R,x2+2x+2>0. (2)¬p:所有的三角形都不是等边三角形. (3)¬p:存在一个能被3整除的整数不是奇数. (4)¬p:存在一个四边形的四个顶点不共圆.
命题方向2 ⇨利用全称命题与特称命题求参数的取值范围
写出下列命题的否定. (1)可以被 5 整除的数,末位是 0; (2)能被 3 整除的数,也能被 4 整除. [思路分析] (1)(2)中均为省略了全称量词的全称命题,书写其否定时,要补 全量词,不能只否定结论,不否定量词. [规范解答] (1)省略了全称量词“任何一个”,命题的否定为:有些可以被 5 整除的数,末位不是 0. (2)省略了全称量词“所有”,命题的否定为:存在一个能被 3 整除的数,不 能被 4 整除.
第一章 1.4.3含有一个量词的命题的否定
填一填·知识要点、记下疑难点
1.4.3
1.全称命题的否定:
本 讲 栏 目 开 关
全称命题 p:∀x∈M,p(x), 它的否定綈 p:∃x0∈M,綈 p(x0). 2.特称命题的否定: 特称命题 p:∃x0∈M,p(x0), 它的否定綈 p: ∀x∈M,綈 p(x). 3.全称命题的否定是 特称 命题. 特定命题的否定是 全称 命题.
p≥1或p≤-1, 2 即 p≥3或p≤-3. 2
3 ∴p≥ 或 p≤-3. 2
3 故 p 的取值范围是-3<p< . 2
研一研·问题探究、课堂更高效
小结
1.4.3
通常对于“至多”“至少”的命题,应采用逆向思维
的方法处理,先考虑命题的否定,求出相应的集合,再求集 合的补集,可避免繁杂的运算. 跟踪训练 3 已知下列三个方程:(1)x2+4ax-4a+3=0;
本 讲 栏 目 开 关
(2)p:若 an=-2n+10,则∃N,使 Sn<0.
解 (1)綈 p:∀x>1,x2-2x-3≠0.(假)
(2)綈 p:若 an=-2n+10,则∀n∈N,Sn≥0.(假)
研一研·问题探究、课堂更高效
探究点三 例3 特称命题、全称命题的综合应用
1.4.3
已知函数 f(x)=4x2-2(p-2)x-2p2-p+1 在区间[-1,1]
对含有一个量词的命题的否定要注意以下问题:
本 讲 栏 目 开 关
(1)确定命题类型,是全称命题还是特称命题. (2)改变量词:把全称量词改为恰当的存在量词;把存在量词 改为恰当的全称量词. (3)否定结论: 原命题中的“是”“有”“存在”“成立”等 改为“不是”“没有”“不存在”“不成立”等. (4)无量词的全称命题要先补回量词再否定.
含有一个量词的命题的否定(整理)
“特称命题”是指含有“存在量词”的命题。
小结
含有一个量词的命题的否定 一般地,我们有:
“x M , p( x)”的否定为“ x M , p( x)” , “x M , p( x)”的否定为“ x M , p( x)”。
即“全称肯定”的否定是“特称否定” ,另外“全称否定”的定是“特称肯定”. 反过来也一样.
p:“所有的平行四边形是矩形” 假命题
¬p:“不是所有的平行四边形是矩形” 也就是说“存在至少一个平行四边形它不是矩形”
所以,¬p : “存在平行四边形不是矩形”真命题
情景二
对于下列命题:
想一想?
所有的人都喝水; 2 存在有理数,使 x 2 0; 对所有实数都有 | a | 0 。
命题(3)的否定为“并非对所 有的实数 a,都有 a 0” , 即“存在实数 a,使 a 0” .
探究
写出下列命题的否定
1)所有的矩形都是平行四边形; x M,p(x)
2)每一个素数都是奇数; 2 3)x R, x 2 x 1 0 否定:
2)存在一个素数不是奇数;
这些命题和它们的否定在形式上有什么变化?
从形式看,特称命题的否定都变成了全称命题. 含有一个量词的特称命题的否定,有下面的结论
特称命题 p : x M,p(x) 它的否定
p : x M,p(x)
例2 写 出下列特称 命题 的否定: 1)p:x R,x2 +2x+3 0;
2)p:有的三角形是等边三角形;
含有存在量词的命题,叫做特称命题
复习回顾
判断全称命题和特称命题真假
要判定全称命题“ x∈M, p(x) ”是真命题,需要对集合M中 每个元素x, 证明p(x)成立;如果在集合M中找到一个元素x0,使 得p(x0)不成立,那么这个全称命题就是假命题
2022年精品 《含有一个量词的命题的否定》教学优秀教案1
课题:含有一个量词的命题的否认
1.教学任务分析:
(1)通过探究数学中的一些实例,使学生归纳总结出含有一个量词的命题的含义与它们的否认在形式上的变化规律。
在探究的过程中,教师应引导学生根据全称量词和存在量词的含义,用简洁、自然的语言表叙含有一个量词的命题的否认,而不是机械地在原先的命题前加“非〞“并非〞“不〞等得到它的否认。
这样便于学生通过观察,归纳总结出含有一个量词的命题与它们的否认在形式上的变化规律。
(2)通过例题和习题的教学,使学生能够根据含有一个量词的命题与它们的否认在形式上的变化规律,正确地对含有一个量词的命题进行否认。
(3)通过师生互动,问题探究,判别一些全称命题和特称命题,从而能够进行正确的否认。
(4)使学生体会从具体到一般的认识过程,培养学生抽象、概括的能力。
2.教学重点:
通过探究,了解含有一个量词的命题与它们的否认在形式上的变化规律,会正确地对含有一个量词的命题进行否认。
3.教学难点:
正确地对含有一个量词的命题进行否认。
4.教学方法:
探究法
5教学手段:
多媒体辅助教学
6教学根本流程:
〔1〕回忆旧知:命题的否认,量词,全称命题和特称命题,引入课题
〔2〕探究全称命题和它的否认在形式上的变化
〔3〕介绍含有一个全称量词的命题的否认
〔4〕探究特称命题和它的否认在形式上的变化
〔5〕探究特称命题和它的否认在形式上的变化
7.教学情境设计:。
《含有一个量词的命题的否定》 说课稿
《含有一个量词的命题的否定》说课稿尊敬的各位评委、老师们:大家好!今天我说课的内容是《含有一个量词的命题的否定》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析本节课是高中数学选修2-1 第一章第四节的内容。
在前面的学习中,学生已经掌握了全称量词和存在量词的概念以及全称命题和特称命题的形式。
本节课在此基础上,进一步研究含有一个量词的命题的否定,这不仅是对前面知识的深化和拓展,也为后续学习逻辑推理和证明打下坚实的基础。
教材通过具体的例子,引导学生观察、分析、归纳,总结出含有一个量词的命题的否定的规律和方法,体现了从特殊到一般的数学思想。
二、学情分析学生在之前的学习中已经对全称量词和存在量词有了一定的认识,但对于命题的否定还处于较为模糊的阶段。
在学习过程中,学生可能会在理解和运用命题的否定规则时出现困难,容易混淆全称命题和特称命题的否定形式。
因此,在教学中要注重引导学生通过实例进行分析和比较,加深对概念的理解和掌握。
三、教学目标1、知识与技能目标(1)理解含有一个量词的命题的否定的概念。
(2)掌握全称命题和特称命题的否定形式,并能正确地写出它们的否定。
(3)能够运用含有一个量词的命题的否定解决一些简单的数学问题。
2、过程与方法目标(1)通过具体例子的分析和探究,培养学生观察、分析、归纳和逻辑推理的能力。
(2)让学生经历从特殊到一般、从具体到抽象的思维过程,体会数学思想方法的应用。
3、情感态度与价值观目标(1)通过自主探究和合作交流,激发学生的学习兴趣和求知欲,培养学生勇于探索的精神。
(2)让学生在解决问题的过程中,体验成功的喜悦,增强学习数学的信心。
四、教学重难点1、教学重点(1)全称命题和特称命题的否定形式。
(2)正确写出含有一个量词的命题的否定,并判断其真假。
2、教学难点理解全称命题和特称命题的否定形式的本质,以及在实际应用中灵活运用命题的否定解决问题。
1.4.3含有一个量词的命题的否定(李用2)
假 假
(2) ㄱq:存在一个正方形不是矩形;
例题
例2 :写出下列全称命题的否定:
(1)p:所有能被3整除的整数都是奇数;
(2)p:每一个四边形的四个顶点共圆;
(3)p:对任意x∈Z, x² 的个位数字不等于3.
答:(1)ㄱp:存在一个能被3整除的整数不是奇数;
(2)ㄱp:存在一个四边形,它的四个顶点不共圆; (3)ㄱp: ∃x0∈Z, x0² 的个位数字等于3.
探究二:特称命题的否定
课本25页:写出下列命题的否定:
(1)有些实数的绝对值是正数;
(2)有些平行四边形是菱形;
(3) ∃x0∈R, x0² +1<0.
这些命题和它们的否定在形式上
有什么变化?
以上三个命题都是特称命题,即具有形式 “∃x ∈M, p(x )”其中命题(1)的否定是“不 存在一个实数,它的绝对值是正数”,也就是说,
解析: (1)为全称命题. (2)为特称命题. (3)不是命题. (4)为全称命题. (5)为特称命题.
将下列命题用量词符号“∀”或“∃”表 示,并判断真假. (1)实数的平方是非负数; (2)整数中1最小; (3) 方程 ax2 + 2x + 1 = 0(a<1) 至少存在一个负根; (4)对于某些实数x,有2x+1>0; (5)若直线l垂直于平面α内任一直线,则l⊥α.
[解题过程]
π (1)特称命题. α=2时, tan α 不存在, 所以,
特称命题“有一个实数 α,tan α 无意义”是真命题. (2)不是命题. (3)含有全称量词,所以该命题是全称命题,又任何一个 圆的圆心到切线的距离都等于半径, 所以,全称命题“所有圆的圆心到其切线的距离都等于 半径”是真命题.
1.4.3含有一个量词的命题的否定课件人教新课标
探究二:
写出下列命题的否定:
经过视察,我们发现,以上三个特称命题的否定都 可以用全称命题表示.
因此,上述命题的否定为:
一般地,对于含有一个量词的特称命题的否定, 有下面的结论:
例4: 写出下列特称命题的否定:
解答
练习
写出下列特称命题的否定: (1)存在一个三角形,它的内角和小于180o; (2)存在一个四边形没有外接圆.
全称命题
(3)存在有理数x,使x2-2=0;
特称命题
(4)对所有实数a,都有|a|≥0.
全称命题
新课导入
1. 经过前几节课的学习,想想命题的否定与否命题的区分? 否命题:否定条件也否定结论。 命题的否定:对一个命题全盘否定。
2.判断下列命题是全称命题还是特称命题,你能写出下 列命题的否定吗?
(1)所有的矩形都是平行四边形; (2)每一个素数都是奇数;
5.命题“有的实数没有立方根”的否定为:__真___命题. (填“真”、“假”)
6.写出下列命题的否定:
作业:P26页 习题1.4第3题。 谢谢大家!
3.命题“存在一个三角形,内角和不等于180o”的否定为( B )
A.存在一个三角形,内角和等于180o ; B.所有三角形,内角和都等于180o ; C.所有三角形,内角和都不等于180o ; D.很多三角形,内角和不等于180o 。
4.命题“乌鸦都是黑色的”的否定为:
至少有一个乌鸦不是黑色的
所以,上述命题的否定为:
一般地 , 对于含有一个量词的全称 命题的否定 , 有下面的结论:
例3: 写出下列全称命题的否定:
解答
练习
写出下列全称命题的否定: (1)每条直线在y轴上都有截距; (2)每个二次函数的图像都与x轴相交.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
否定:
(1) 存在一个矩形不是平行四边形;
(2) 存在一个素数不是奇数;
(3) x0R,x
2 0
-2x0+1<0.
否定:
(1) 存在一个矩形不是平行四边形;
(2) 存在一个素数不是奇数;
(3) x0R,x
2 0
-2x0+1<0.
从形式上发现:全称命题的否定都变
成特称命题
否定:
(1) 存在一个矩形不是平行四边形;
2. 写出下列命题的否定: (1) 有些三角形是直角三角形; (2) 有的梯形是等腰梯形; (3) 存在一个实数,它的绝对值
不是正数.
***作业*** 习题1.4 A组,B组
于3
例题:写出下列全称命题的否定 1. p:所有能被3整除的整数都是奇数 2. p:每一个四边形的四个顶点共圆 3. p:对任意xZ,x2的个位数字不等
于3 1. p: 存在一个能被3整除的整数不
是奇数 2. p: 存在一个四边形,它的四个顶
点不共圆 3. p:xZ,x2的个位数字等于3
探究二 写出下列命题的否定: 1. 有些实数的绝对值是正数 2. 某些平行四边形是菱形 3. xR,x2+1<0
特称命题的否定是全称命题.
例题:写出下列存在性命题的否定 1. p:xR,x02+2x0+20 2. p:有的三角形是等边三角形 3. p:有的素数含有三个正因数
命题的否定:1. p:xR,x2+2x+2>0 2. p: 所有的三角形都不是等边三
角形 3. p: 每个素数都不含有三个正因
数.
***练习*** 1. 写出下列命题的否定: (1) nZ,nQ; (2) 任意素数都是奇数; (3) 每个指数函数都是单调函数.
(2) 存在一个素数不是奇数;
(3) x0R,x
2 0
-2x0+1<0.
从形式上发现:全称命题的否定都变
成特称命题
结论:一般地,对于含有一个量词的
全称命题的否定,全称命题p:xM,
p(x),它的否定p:xR,p(x)
全称命题的否定是特称命题
例题:写出下列全称命题的否定 1. p:所有能被3整除的整数都是奇数 2. p:每一个四边形的四个顶点共圆 3. p:对任意xZ,x2的个位数字不等
探究二 写出下列命题的否定: 1. 有些实数的绝对值是正数 2. 某些平行四边形是菱形 3. xR,x2+1<0
否定:1. 所有实数的绝对值都不是正数 2. 每一个平行四边形都不是菱形 3. xR,x2+10
结论:一般地,对于含有一个量词 的特称命题的否定, 特称命题p:xM,p(x) 它的否定p:xR,p(x)
***复习*** 1. 全称量词:
全称命题:xM,p(x) 读作:对任意x属于M,有p(x)成立 2. 存在量词: 特称命题:xR,p(x) 读作:存在一个x属于M,使p(x)成立
***新课*** 探究一 写出下列命题的否定:
(1) 所有的矩形都是平行四边形; (2) 每个素数都是奇数; (3) xR,x2-2x+10. 这些命题和它们的否定在形式上有 什么变化?