基于噪声不确定度的能量检测研究
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
II
烟 台 大 学 硕 士 学 位 论 文
optimal rule, while Majority rule performs the best performance with the increases of network users. However, when noise uncertainty is low at low SNR, OR rule is much better than the other two rules, Majority rule gains the best performance in much large networks. Finally, OR rule always performs the best no matter how many users in the cognitive radio networks when noise uncertainty is moderate or much higher at low SNR. Our research is very helpful and meaningful for selecting the proper hard fusion rule in practical cognitive radio networks. Keywords: Cognitive Radio, Spectrum Sensing, Noise Uncertainty, Energy Detection, Hard fusion, Cognitive Network
论文作者签名: 日期: 年
导师签名: 月 日
烟 台 大 学 硕 士 学 位 论 文
摘要
随着无线技术的迅速发展,频谱资源供需矛盾越来越大。现在可用的无线频谱 基本饱和,而已经被授权的频段使用率却很低。 认知无线电技术的出现可以有效的解决现存无线频带的利用率低的问题。认知 无线电技术主要采用见缝扎针的观点来实现对空闲频带的再利用。其中频谱感知是 认知无线电网络检测授权信号是否存在的关键技术。近年来能量检测由于其普遍性 和比较低的复杂度,在频谱感知技术中被广泛应用。但是,噪声功率水平随时间变 化(噪声不确定度)会严重的影响频谱感知的性能,尤其对能量检测产生恶劣的影 响。为了克服噪声不确定度,已经提出了一些感知算法,但是查阅调研发现基于噪 声不确定度的硬融合性能的研究基本还是空白。 在文章中,首先采用平均功率为检测统计量描述了噪声功率不确定度的模型, 然后推导了功率检测表达式及基于噪声不确定度的平均检测概率和虚警概率的完整 表达式,并分析了不同信道下的感知性能。在文章里,我们研究了三种常用的硬融 合规则(OR 准则,AND 准则和 Majority 准则) ,主要分析了在不同信道下不同检测 环境时的三种准则的性能比较和最优准则的选择。 文章主要分析讨论了低 SNR 和高 信噪比两种不同情况,各种硬融合准则的比较和选取。 大量的仿真结果可以看到:在 AWGN 信道,信噪比比较高时,不论大网络还是 小网络,Majority 在三种硬融合准则中都表现出了最优的检测性能。当信噪比比较 小时,为了能达到需要的检测性能,在小网络中,OR 准则性能比较好,随着合作用 户数的增多, AND 准则越来越具有优势,在大网络中, AND 准则是最优的。在 Rayleigh 信道,信噪比较大时:中等以上噪声不确定度时,用户数少时,OR 准则性 能最好;随着用户数的增大,Majority 性能显著变好,明显优于其他两种准则。低 信噪比:噪声不确定度较低时,合作网络为小网络时,OR 准则的性能最好;随着合 作网络的用户数增多,Majority 准则的性能优于其他两种融合准则。对于中等以上 的噪声不确定度,不论是大网络还是小网络,相比于 AND 准则和 Majority 准则, OR 准则都表现出比较好的性能。 因此, 该项研究对设计实际的认知网络具有重要意 义。 关键词:认知无线电,频谱感知,噪声不确定度,能量检测,硬融合
本人完全了解烟台大学关于收集、保存、使用学位论文的规定,即: 按照学校要求提交学位论文的印刷本和电子版本; 学校有权保存学位论文的印刷本和电子版,并提供目录检索与阅览服务; 学校可以采用影印、缩印、数字化或其它复制手段保存论文; 在非保密的论文范围内,学校可以公布论文的部分或全部内容。
(保密论文在解密后遵守此规定)
I
烟 台 大 学 硕 士 学 位 论 文
Abstract
With the development of wireless communications technology, there have been a severely unbalance between spectrum resources and spectrum utility. The spectrum bands that can be used come to saturation, while many spectrum bands which have been distributed are not used efficiently. It is widely accepted that the emergence of cognitive radio will improve the utilization efficiency of the existing radio spectrum. The main idea of cognitive radio technology is “See seam needling”, which is adopted to reuse the distributed spectrum resource. Spectrum sensing is one of the critical technologies in cognitive radio networks for primary user detection, and energy detection is widely used for spectrum sensing due to its generality and low complexity. However, noise power level variety with time, which is also called noise uncertainty, degrades the sensing performance of energy detection severely. Although several spectrum sensing methods are proposed to overcome the influence of noise uncertainty, according to the latest survey, no results on sensing performance comparison of hard fusion rules under noise uncertainty has been reported. In the paper, we adopt average power as the decision statistic and illustrate the system model of the noise power uncertainty firstly. Then we derive the closed formed expressions for the average probabilities of detection and false alarm under noise uncertainty, and discuss the sensing performance under different conditions. Except considering the impact of the fading effect is a major factor, we also studied the shadow effect based on the noise uncertainty, deduced the closed form of the expression and the performance analysis. We mainly study the performance of the three kinds of well known hard fusion rules (OR, AND and Majority) over AWGN and Rayleigh channels, and identify the best rule in different conditions. In the paper, we mainly discussed the different SNR and different signals (real signal, complex signal). Extensive simulations indicate that in AWGN channels, when SNR is much higher, whether the network is big or small,Majority rule is the optimal rule of the three rules. When noise uncertainty is low, to obtain the desire performance, OR rule performs the best performance. With the increase of cooperative users’ number, AND rule has much more advantage than OR and Majority rules, AND rule performs the best in large scale network. Moreover, in Rayleigh channels the conclusion is different from in AWGN channels. When noise uncertainty is moderate or much higher at high SNR, OR rule is the
本人郑重声明: 所呈交的学位论文,是本人在导师的指导下,独立进行研究工作 所取得的成果。除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经 发表或撰写过的作品或成果。对本文的研究做出重要贡献的个人和集体,均已在文中 以明确方式标明。本声明的法律结果由本人承担。
论文作Βιβλιοθήκη Baidu签名:
日期:
年
月
日
学位论文使用授权说明
学号: 200906307001
分类号: TN911
硕 士 学 位 论 文
基于噪声不确定度的能量检测研究
研 究 生 姓 名 :李 粉 指 导 教 师:刘云学 学 科 门 类:工学 专 业 名 称:信号与信息处理 论文提交日期: 2012 年 04 月
烟台大学学位论文原创性声明和使用授权说明
原创性声明
III
烟 台 大 学 硕 士 学 位 论 文
目录
摘要 .................................................................. I Abstract ............................................................. II 1 绪论 ................................................................ 1
烟 台 大 学 硕 士 学 位 论 文
optimal rule, while Majority rule performs the best performance with the increases of network users. However, when noise uncertainty is low at low SNR, OR rule is much better than the other two rules, Majority rule gains the best performance in much large networks. Finally, OR rule always performs the best no matter how many users in the cognitive radio networks when noise uncertainty is moderate or much higher at low SNR. Our research is very helpful and meaningful for selecting the proper hard fusion rule in practical cognitive radio networks. Keywords: Cognitive Radio, Spectrum Sensing, Noise Uncertainty, Energy Detection, Hard fusion, Cognitive Network
论文作者签名: 日期: 年
导师签名: 月 日
烟 台 大 学 硕 士 学 位 论 文
摘要
随着无线技术的迅速发展,频谱资源供需矛盾越来越大。现在可用的无线频谱 基本饱和,而已经被授权的频段使用率却很低。 认知无线电技术的出现可以有效的解决现存无线频带的利用率低的问题。认知 无线电技术主要采用见缝扎针的观点来实现对空闲频带的再利用。其中频谱感知是 认知无线电网络检测授权信号是否存在的关键技术。近年来能量检测由于其普遍性 和比较低的复杂度,在频谱感知技术中被广泛应用。但是,噪声功率水平随时间变 化(噪声不确定度)会严重的影响频谱感知的性能,尤其对能量检测产生恶劣的影 响。为了克服噪声不确定度,已经提出了一些感知算法,但是查阅调研发现基于噪 声不确定度的硬融合性能的研究基本还是空白。 在文章中,首先采用平均功率为检测统计量描述了噪声功率不确定度的模型, 然后推导了功率检测表达式及基于噪声不确定度的平均检测概率和虚警概率的完整 表达式,并分析了不同信道下的感知性能。在文章里,我们研究了三种常用的硬融 合规则(OR 准则,AND 准则和 Majority 准则) ,主要分析了在不同信道下不同检测 环境时的三种准则的性能比较和最优准则的选择。 文章主要分析讨论了低 SNR 和高 信噪比两种不同情况,各种硬融合准则的比较和选取。 大量的仿真结果可以看到:在 AWGN 信道,信噪比比较高时,不论大网络还是 小网络,Majority 在三种硬融合准则中都表现出了最优的检测性能。当信噪比比较 小时,为了能达到需要的检测性能,在小网络中,OR 准则性能比较好,随着合作用 户数的增多, AND 准则越来越具有优势,在大网络中, AND 准则是最优的。在 Rayleigh 信道,信噪比较大时:中等以上噪声不确定度时,用户数少时,OR 准则性 能最好;随着用户数的增大,Majority 性能显著变好,明显优于其他两种准则。低 信噪比:噪声不确定度较低时,合作网络为小网络时,OR 准则的性能最好;随着合 作网络的用户数增多,Majority 准则的性能优于其他两种融合准则。对于中等以上 的噪声不确定度,不论是大网络还是小网络,相比于 AND 准则和 Majority 准则, OR 准则都表现出比较好的性能。 因此, 该项研究对设计实际的认知网络具有重要意 义。 关键词:认知无线电,频谱感知,噪声不确定度,能量检测,硬融合
本人完全了解烟台大学关于收集、保存、使用学位论文的规定,即: 按照学校要求提交学位论文的印刷本和电子版本; 学校有权保存学位论文的印刷本和电子版,并提供目录检索与阅览服务; 学校可以采用影印、缩印、数字化或其它复制手段保存论文; 在非保密的论文范围内,学校可以公布论文的部分或全部内容。
(保密论文在解密后遵守此规定)
I
烟 台 大 学 硕 士 学 位 论 文
Abstract
With the development of wireless communications technology, there have been a severely unbalance between spectrum resources and spectrum utility. The spectrum bands that can be used come to saturation, while many spectrum bands which have been distributed are not used efficiently. It is widely accepted that the emergence of cognitive radio will improve the utilization efficiency of the existing radio spectrum. The main idea of cognitive radio technology is “See seam needling”, which is adopted to reuse the distributed spectrum resource. Spectrum sensing is one of the critical technologies in cognitive radio networks for primary user detection, and energy detection is widely used for spectrum sensing due to its generality and low complexity. However, noise power level variety with time, which is also called noise uncertainty, degrades the sensing performance of energy detection severely. Although several spectrum sensing methods are proposed to overcome the influence of noise uncertainty, according to the latest survey, no results on sensing performance comparison of hard fusion rules under noise uncertainty has been reported. In the paper, we adopt average power as the decision statistic and illustrate the system model of the noise power uncertainty firstly. Then we derive the closed formed expressions for the average probabilities of detection and false alarm under noise uncertainty, and discuss the sensing performance under different conditions. Except considering the impact of the fading effect is a major factor, we also studied the shadow effect based on the noise uncertainty, deduced the closed form of the expression and the performance analysis. We mainly study the performance of the three kinds of well known hard fusion rules (OR, AND and Majority) over AWGN and Rayleigh channels, and identify the best rule in different conditions. In the paper, we mainly discussed the different SNR and different signals (real signal, complex signal). Extensive simulations indicate that in AWGN channels, when SNR is much higher, whether the network is big or small,Majority rule is the optimal rule of the three rules. When noise uncertainty is low, to obtain the desire performance, OR rule performs the best performance. With the increase of cooperative users’ number, AND rule has much more advantage than OR and Majority rules, AND rule performs the best in large scale network. Moreover, in Rayleigh channels the conclusion is different from in AWGN channels. When noise uncertainty is moderate or much higher at high SNR, OR rule is the
本人郑重声明: 所呈交的学位论文,是本人在导师的指导下,独立进行研究工作 所取得的成果。除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经 发表或撰写过的作品或成果。对本文的研究做出重要贡献的个人和集体,均已在文中 以明确方式标明。本声明的法律结果由本人承担。
论文作Βιβλιοθήκη Baidu签名:
日期:
年
月
日
学位论文使用授权说明
学号: 200906307001
分类号: TN911
硕 士 学 位 论 文
基于噪声不确定度的能量检测研究
研 究 生 姓 名 :李 粉 指 导 教 师:刘云学 学 科 门 类:工学 专 业 名 称:信号与信息处理 论文提交日期: 2012 年 04 月
烟台大学学位论文原创性声明和使用授权说明
原创性声明
III
烟 台 大 学 硕 士 学 位 论 文
目录
摘要 .................................................................. I Abstract ............................................................. II 1 绪论 ................................................................ 1