大跨度桥梁概念设计中的若干问题

大跨度桥梁概念设计中的若干问题
大跨度桥梁概念设计中的若干问题

大跨度桥梁概念设计中的若干问题

同济大学项海帆

摘要概念设计是桥梁设计之魂。由于中国大桥的前期工作过于仓促,对概念设计的重视不够,造成设计布局上的一些缺憾。本文是作者参加多次大桥设计评审会的一些体会,其中包括总体布置和结构构造方面的若干问题,希望能引起总工程师们的重视。

1.引言

进入20世纪末的九十年代,中国桥梁工程界在自主建成上海南浦大桥的鼓舞下出现了全国范围内建造大跨度桥梁的高潮。各地的建设部门都以空前的规模和速度为五纵七横的国家高等级公路网建造了数以百计的大跨度悬索桥、斜拉桥、拱桥和梁式桥以跨越大江大河、深谷,大大改变了中国的交通面貌,取得了令世人瞩目的成就。

然而,在成绩面前我们也要看到过于追求速度造成的仓促上马,使前期工作的准备不足,加上在大跨度桥梁概念设计方面缺少经验和竞争的机制,和建筑师的合作也很不够,因而在众多的设计中还存在创新和美学上的不足和缺憾。

本文是作者多年来参加各种大桥设计评审会对桥梁概念设计的一些学习心得,提出来和同行们一起讨论,以期抛砖引玉,求得共识,为中国桥梁在新世纪中的进步和发展添砖加瓦,并期望中国大桥建设不但在规模上和速度上让世人称羡和惊异,而且在创新设计、先进施工技术和工程质量方面也能赢得国际同行的尊重和赞誉。

2.总体布置方面的问题

2.1关于桥梁主孔跨度的合理性

桥梁主孔跨度是大跨度桥梁最主要的尺度。它决定了桥型的选择。主孔(通航孔)跨度首先要满足桥下通航要求,同时要考虑主墩防船撞的安全。国内的内河航道尚无明确的统一标准,大多采用一桥一议,由交通部水运司根据桥位处航道的具体情况进行论证后作出个案决定。在这一情况下,由于中国水道的护岸工作只限于城市附近的区段,造成航道摆动较大与不夠稳定。加上目前仍有大量小型船只和大型拖驳的撞墩事故发生,使航道部门往往要求采

取增大桥梁主跨,以保证通航的安全。也有业主为了追求“跨度第一”,强行指示采用过大的跨度,这就带来了桥下通航高度和主跨之间比例的失调,反而造成一种压抑感。表1中列出了按满足通航要求所需要的通航净高和净宽的正常比例。

表1 船的尺寸

通航要求 (不减速自由航行) 通航等级 最小吃水时船高 船长L 船宽 净 高 净宽 3.2L 净宽/净高

50000 52m 275m 32m 54m ~ 880m (2X400) 16.3

(7.4)

30000 36m 190m 26m 38m ~ 600m (2X300) 15.8

(7.9)

10000 (30) (160) (24) (32) ~520m (2X260) 16.3

(8.1)

7000 (26) (140) (22) (28) ~ 450m (2X225) 16.1

(8.0)

5000 23m 115m 20m 24m ~ 370m (2X185) 15.4

(7.7)

3000 (15) (90) (15)

(16) ~290m (2X145)

18.1

(9.1) 注:( )内为两个通航孔 由表1可以看出,主跨(双向通航)和通航净高的正常比例约在15~18之间,最大不应超过20;如布置两个通航孔(上下行分开),则主跨和净高比应在10以内。然而,目前国内很多大跨度桥梁都超出了这一比例。由于主跨过份偏大,使斜拉桥桥塔的桥面以上高度和桥面以下高度的比例失调,特别是当选用在桥面标高处收腿的宝石型桥塔时,更显出下腿过矮而不夠挺拔,影响了桥塔造型的美观。

以南京长江二桥为例,该桥主跨达628米,而桥下通航净高受上游南京大桥的限制仅需24米,致使两者的比例为26.2。桥面以上的塔高为150米 (须核实)桥面以上和以下的塔高比达到150/24=6.25,这就造成了宝石型桥塔的矮腿效果(见图1),使斜拉桥在总体上缺少了美感。相比之下,上海南浦大桥和杨浦大桥的宝石型桥塔就有挺拔之感。

图1. 南京长江二桥

2.2立面布置的对称性

按照航道位置布置主航道孔本是十分自然的立面布置原则。然而,有些业主偏爱在水面宽度范围进行对称布置而不顾航道位置,甚至要求通过导流工程和疏浚航道来移动航道,这是很不合理的。

国外大跨度桥梁的立面布置大都是按照航道中心线先确定主孔跨度和位置,而水中的边孔则按实际的水深和地质情况布置成左右不对称(左右边孔大小不同)。如水面较宽,也可以布置成对称的边孔再加上左右长短不同的非通航孔水中引桥,以形成总体上的不对称布孔,并给船舶的航行指明航道偏向水面一侧的实际位置。有时,还可以采用独塔斜拉桥的不对称布置或采用协作体系,以顺应自然,并达到经济布孔的目的。

以广州市江海特大桥的方案设计为例,因业主不合理地要求按水面对称布置,不得不增大主孔跨度至428米,并需要移动航道46.5米以满足通航要求,但因通航孔仍偏向一侧的主墩,增加了船撞的危险性。而且,增大主孔

还不利于全桥的经济性和拱桥的稳定性,同时也增加了施工难度。

图2. 广州市江海大桥立面布置

如改用不对称布置,不但顺应了自然,达到了总体上的经济性和安全性,

而且从美学上看合理的不对称布置也可呈现一种美感。

2.3斜拉桥的边孔尺度

双塔斜拉桥的边孔和中孔之比是一个在总体布置中必须着重考虑的问

题。根据德国Leonhardt教授的早期研究,为了控制尾索的应力变化幅度以保

证其抗疲劳的性能,在尾索中必须储备足够大的恒载内力,使活载引起的正

负内力变化不致造成过大的应力变幅。一个重要的措施就是适当缩短边跨长

度加大尾索的恒载拉力,而且恒载和活载比愈小,边跨和中跨比也应减小。

图3. 梁的刚度对l a/l m和p/g之间关系的影响(k ac=0.4时)

(实线是忽略弯曲刚度的情况,阴影部分是包含弯曲刚度的情况)在锚索中最大应力与最小应力比k ac=0.4的情况下,从图3中可以得出以

下的关系:

桥面活载、活载比p/g 边跨和中跨比La/Lm

钢桥面0.4 0.35-0.39 结合梁桥面0.2 0.40-0.45

PC桥面0.125 0.46-0.5

国内斜拉桥普遍采用在端部设置强大的端横梁并灌注砼加上过渡孔的自

重来提供平衡压重,在梁的外形上就会出现一个突变,影响了美观。在国外

则大都采用长的锚索做成拉力支座。利用锚墩的自重来平衡尾索的上拔力,

并设置连续的过渡孔(Transition span),将伸缩缝移到过渡孔的后端,以优化锚

墩处的构造。

图4.斜拉桥端部的处理

2.4 斜拉桥边跨中的辅助墩布置

关于在边跨中是否设置辅助墩也是初步设计中需要考虑的重要问题。

如果边跨也在水中,往往全桥都采用相同的桥面结构,此时设置辅助墩主要是为了提高悬臂施工阶段的抗风能力,因为平衡双悬臂施工将使摆振的频率随悬臂长度的增大而急剧下降,相应地抗风稳定性也随之下降,同时悬臂端的振幅加大,对施工很不利。在满足边跨的通航要求条件下,可设置一个辅助墩,以便提前固定一侧的悬臂形成稳定性较好的单悬臂施工。

当边跨布置在岸上时,则可以采用混合桥面的方式,即边跨可采用比较经济的PC桥面,并布置若干个岸上边墩,使梁高满足施工阶段简支梁状态的受力要求,并和中跨的梁高协调一致。

边跨中的桥墩可均匀布置(如法国Normandy桥),也可以不均匀布置,即以河跨向岸跨方向逐步递减,以达到美学上的韵律感(如香港昂船洲大桥)。

5(a) 诺曼底桥

5(b) 昂船洲桥

图5. 斜拉桥岸上边跨辅助墩的布置

2.5塔型选择及比例

斜拉桥的桥塔是景观的重要因素,必须十分重视其造型和尺寸的比例,而且后者更为重要。

已建桥梁的塔型可归纳为以下几种:

(1) 平行索面的门式塔和H 型塔(直柱和斜柱)

(2) 斜索面的A 型塔,倒Y 型塔,以及桥面以下收腿形成宝石型

(3) 单索面的独柱塔(香港昂船洲大桥)以及附加斜拉索后改为斜索面的混合宝

石型塔(如香港汀九桥

)

图6 各种斜拉桥塔型

在这些塔型设计中要特别注意以下两个比例:

(1) 桥面以上塔高和塔宽之比H 2/B

(2) 桥面高和全塔高之比 H 1/H

斜拉桥的桥面以上塔高与主跨L 的经济比H 2/L ≈0.2 – 0.25,由于国内大部分桥梁要求6车道的桥面宽度,即B ≥30m ,如希望H 2/B 达到4以上,使塔型有挺拔之感,则主跨L 必须有:

m D B H L 600~48025

.0~2.01225.02.0425.0~2.02==?=> 可见,跨度不足500米的斜拉桥,如桥宽超过30米,H2/B 的比例就不夠好,塔型会显得矮胖而不美观。

桥下通航净空高度决定了桥面高度H 1,如希望H/H 1达到4以上则主跨

0.25-0.23H 25.0-2.01)-H H (

H 25.02.0H -H 25.0-2.011112==?=≤H L 即 L ≤(12~15)H 1

或 15~121

≤H L H 1=30m, L<15H1=450m

H 1=40m, L< 600m

H 1=50m, L< 750m

H1=60m, L< 900m

前已提到,如南京长江二桥,桥面高度不足30米,主跨达628米,是不合适的,在通航上也是不必要的。过大的跨度使收腿后的桥面下塔柱占塔总高度之比偏小,造成矮腿的不良美学效果。同理,苏通大桥的主跨达1088米,但桥下净空高度不足60米,如采用收腿的宝石型桥塔比例也不够好,改用倒Y型不收腿的塔型就比较美观,是正确的选择。

香港昂船洲大桥主跨1018米,竞赛方案中桥塔如独柱桥塔、A型塔、倒Y型塔都避免了收腿带来的比例失调问题。

除南京二桥外,岳阳洞庭湖大桥,白沙洲大桥和润扬长江大桥辅航道桥也都采用收腿的宝石型桥塔,其桥面以下高度和总塔高的比例都偏小,给人以矮腿之感,影响了桥塔的美学效果。上述各桥都是不合理追求大跨度的结果,只有使通航净高和主跨保持适当的比例,才能得到造型优美的桥塔。

2.6不对称独塔斜拉桥及协作体系

在河流弯道处,主流常偏向一岸,形成不对称的河床断面,此时采用不对称的独塔斜拉桥是比较合适的,如德国莱茵河Flehe桥。浅滩中的边跨可布置成小跨,并采用PC桥面,而河跨则用钢桥面,形成十分经济且便于施工的混合桥面。

图8德国莱茵河Flehe桥

第一座采用协作体系的独塔斜拉桥是美国East Huntington桥。由于河跨一侧的引桥采用多跨连续梁形成,于是利用伸出的悬臂和斜拉桥相对接形成

了协作体系。为了使采用边梁的双索面斜拉桥桥面和采用中央箱梁的连续梁桥面能够平顺对接,必须设置一个过渡段,使桥面构造比较复杂。这是协作体系的一个缺点。

图9美国East Huntington桥

我国宁波招宝山大桥有类似的地形,也采用了带协作体系的独塔斜拉桥和桥面连接构造的过渡段。虽然该桥在斜拉桥悬臂施工中因控制不当,出现了箱梁部分腹板和底板的压溃事故,经拆除和修补损伤区段,并对施工控制方法和预应力布置作了调整后成功地建成了该桥。可见,只要对设计和施工处理得当,这种带协作体系的独塔斜拉桥在特殊的地形条件下还是很合适的。

2.7悬索桥的边跨布置

悬索桥目前都采用竖直双索面的布置(超大跨度悬索桥有可能出现三索面或空间索面的情况)因而相应的塔型变化不大,大都采用门式桥塔,仅横梁的数目不同而已。

主要的问题是在主跨确定后如何按地形条件布置适当的边跨。当边跨要跨越水面而较长时就要悬挂在主缆上形成三跨连续桥面。如桥塔已上岸,则主缆可直接进入锚碇,而用独立的小跨度引桥形成单跨悬索桥。当两岸情况不同,可采用一边有连续边跨桥面,一边独立小跨的不对称布置,甚至采用

部分悬挂、部分独立小跨的特殊布置方式,不要为了构造和计算简单而采用不合理的对称布置。

香港青马大桥

香港青龙大桥

图10 悬索桥的立面布置

3 结构和构造方面的问题

3.1 主梁梁高的合理选择

悬索桥和斜拉桥主梁的梁高选择是概念设计中的重要问题,需要考虑的因素有以下两个方面:

(1) 主桥和引桥主梁高度的协调

大跨度悬索桥或斜拉桥为主桥的立面布置都要配以两岸一定长度的引桥。引桥桥型一般都会选择经济孔径如50~70米的中小跨度连续梁或简支梁,梁高在2.5~3米左右。为了使整个桥梁的桥面有一个统一的侧面高度达到美学上协调一致,主桥的桥面高度应当和引桥的主梁高度相接近,避免较大的跳跃。

(2) 满足大跨度主桥的抗风要求

从抗风稳定性角度看,悬索桥和斜拉桥对主梁高度的要求是不同的。悬索桥大都采用平行的直索面,此时主要依靠主梁梁高提供需要抗扭刚度和相应的扭转频率,因而主梁高度不宜过小。如丹麦大海带桥最后选用4.5米的梁高,主梁的宽高比75

.428≤=h B ,以获得足够的扭频和扭弯频率比。润扬长江大桥采用的梁高偏小,虽可减小侧向风荷载,但因扭频低,使稳定性不足,最后不得不加设中央稳定板的措施以满足抗风要求。大跨度斜拉桥一般都采用斜索

面的布置。此时由于斜索面(结构措施)提供了很好的抗扭能力,主梁梁高可尽量选得小些,通过较大的宽高比以减少风阻和涡振。如选用平行索面甚至中央单索面的斜拉桥,则仍需考虑主梁具有足够的高度和抗扭刚度。当采用分离双箱和中央开槽的断面(气动措施)时,主梁高度又可以选得尽量小些,因为分离箱已提供了足够的气动稳定性。

3.2 桥面结构形式的选择

结合梁桥面是界于P.C.桥面和钢桥面之间的一种中间形式,其每延米的自重约~30T/m,也是界于P.C.桥梁~50t/m和钢桥面~15t/m之间。很自然地,在斜拉桥很大的适用范围(L=200~1000m)中,三种不同桥面应当分别占有各自最经济合理的一段。

(1)P.C.桥面。适用于L=200~500m。

当悬臂长度超过250米,较重的P.C.桥面将暴露其弱点;为减轻自重需要减薄箱梁的壁厚,并由此增大施工阶段的应力水平,加上必需的预压应力以抵抗今后活载的拉应力。如控制不当或施工质量有问题就会发生如宁波招宝山大桥出现的“顾此失彼”的被动局面,甚至导致局部压溃的严重事故。

(2)结合梁桥面。适用于L=400~700m。

结合梁桥面由于覆盖一层预制砼桥面,使桥面的沥青铺装条件和引桥的P.C.梁一致,特别是目前高温地区的钢桥面铺装技术仍存在问题的情况下,选用结合梁可免除后顾之忧。结合梁的钢主梁和横梁组成梁排,制造和安装十分方便,可采用高强螺栓连接,施工便捷,造价也比钢箱梁低廉。在700m以下的斜拉桥中,只要采用斜索面布置,这种开口结合梁已具有足够的抗风能力,如主跨605米的福州闽江大桥所证明的。虽然比钢箱梁重的桥面要付出较大拉索的用钢量和基础的工程量,但综合的经济指标仍比钢箱梁好,是值得考虑的。

(3) 钢箱梁桥面,适用于L=700~1200m。

超过700米的斜拉桥应当选择自重轻的钢桥面。对苏通长江大桥的研究表明,当采用斜索面和六车道的闭口扁箱梁的桥面,其临界风速已超过100米/秒,能够满足世界绝大部分台风多发地区的抗风要求。如斜拉桥的边跨已上岸,则可选用边跨为P.C.桥面、主跨为钢桥面的混合形式,桥梁的刚度和抗风稳定性也将进一步提高。

3.3 拉索类型的选择

现行的拉索类型主要是两种:

(1) 日本首创的热挤平行钢丝拉索。

用电缆技术生产的热挤P.E.索套防腐,拉索端部的锚固则采用钢丝镦头和环氧冷铸的抗疲劳技术。整个拉索在工厂制成成品索运至工地安装。日本大部分斜拉桥(包括主跨890米的多多罗桥)以及中国大部分斜拉桥都采用这种拉索类型。其主要缺点是吨位大的超长索运输和安装不便,而且需要大吨位的张拉千斤顶,塔顶锚固区需要较大的安装和施工空间。

(2) 法国公司首创的平行钢绞线拉索。

用单独防腐的单根钢绞线,排列成平行的拉索。拉索的锚固则采用多孔的夹片群锚。拉索两端的锚固及其防腐系统需要在工地制作是其主要的缺点,但单根的钢铰线安装及张拉方便,且可单根更换。成索后,只要低量程的千斤顶进行总调,需要的施工空间可减少,是欧洲斜拉桥乐于采用的方式。

上述两种拉索类型在两座超千米的斜拉桥(香港昂船洲大桥L=1018米,苏通长江大桥L=1088米)的设计中进行了比较,考虑到平行钢铰索拉索的外层P.E.防腐索套直径比平行钢丝拉索的热挤P.E.索套要大一倍左右使拉索上的风载大大增加,导致在静风载作用下主梁侧向位移和塔顶位移较大,梁内的侧向弯距和剪力也较大的不利情况。最后,两座大桥都选用了平行钢丝拉索方案,同时采取适当措施以克服运输和施工安装中的困难。

3.4 塔梁连接构造及缓冲器布置

大跨度斜拉桥的塔梁连接构造可以考虑两种方式:

(1)整体式节点(Monolithic Joint):塔梁固结在一起,如桥塔为砼结构,则桥面也最好采用P.C.桥面,构造上比较方便;如中跨为钢桥面,则两种桥面的对接点要移向中跨一侧,如法国Normandy桥所采用的。

(2)开放式节点(Open Joint):塔梁之间可自由地相对运动,此时要设置缓冲器以限制桥面纵向的飘移,但又能在缓慢温度变化时的自由活动。塔梁连接处宜采用钢桥面以方便构造。如边跨为P.C.桥面,则两种桥面的对接点要放在边跨一侧。如日本多多罗桥所采用的。

香港昂船洲大桥对塔梁连接构造问题专门进行了详细的比较和讨论。最终将方案竞争时采用的整体式节点修改为开放式节点并加设缓冲器。其优点是:

(1)降低因温度变化引起的约束内力

(2)降低悬臂拼装过程中因侧向荷载引起桥塔中的扭矩

然而,当采用开放式节点后也带来了以下新的问题:

(1)在侧向风载作用下,塔中的侧向弯矩增加,塔顶侧的位移加大

(2)塔中扭矩消失,但边跨中各墩的弯距增加

(3)整体刚度降低,反映在侧向和扭转频率也有所减小

(4)安装缓冲器增加了费用,而且要注意节点处的桥面对桥塔的相对转动将使缓冲器的工作条件不利

通过权衡得失,最后设计者选用了风载较小的平行钢丝拉索,以降低因改用开放式节点带来的不利影响。

同样,苏通长江大桥也采用桥面自由飘浮的开放式节点,并加设缓冲器,同时改用平行钢丝拉索的方案,也是合理的选择。

4小结

大跨度桥梁的概念设计是桥梁工程前期工作(工可和初步设计阶段)中的一个十分重要的环节,它决定了桥梁的总体布置和主要构造的格局,对桥梁的美学价值、结构安全性能、可施工性以及经济指标,甚至建成后的耐久性、可养护性、可检查性等都有决定性的影响。也可以说,概念设计是桥梁设计之魂。由于中国大桥设计的前期工作时间过短,对概念设计的重视不够,加上业主的不适当干预又难以避免,就造成了设计中的一些缺憾和不合理的布局,希望能引起总工程师们的重视。

参考文献

[1] 项海帆:21世纪世界桥梁工程的展望,土木工程学报,33(3),1-6,2000

[2] 项海帆:中国桥梁建设的成就和不足,第一届全国公路科技创新高层论坛论文集,

综合卷第一卷,p.23-38,2002年,公路学报,2002

[3] 项海帆:世界桥梁发展中的主要技术创新,广西交通科技,2003

大跨度桥梁的抗震设计

1、概述 大跨度桥梁与中等跨径相比,因结构的空间性与复杂性,地震反应比较复杂,高阶振型的影响比较明显。目前大跨度桥梁的抗震设计还没有一个统一标准,国内规范没有对大跨度桥梁进行详细规定,抗震计算比较复杂。本文主要介绍了京津城际某大跨预应力混凝土连续梁墩身、基础部分的抗震计算。根据W铁路工程抗震设计规范(修订)》,运用midas有限元程序,采用反应谱分析方法计算地震力,以便为抗震设计提供依据。 本桥桥面系为无碴桥面预应力混凝土连续箱梁,其横截面为单箱单室截面,选取桥跨 (40+64+40) m的预应力混凝土连续梁作为计算模型。混凝土采用C50,梁底下缘按二次抛物 线变化;采双线圆端型桥墩,3号墩为制动墩,边墩简支梁固定支座设在4号墩。 图2 (a)边墩墩身尺寸图2 (b)主墩墩身尺寸 2、动态反应分析 (一)有限元模型建立

结构分析的第一步就是建立模型,模型建立的正确与否,简化的模型是否能反映结构真实的受力情况,直接影响计算结果的正确性。本算例运用桥梁有限元计算软件Midas civil建立全桥动力模型,模型中主梁、桥墩、承台均采用空间梁单元进行模拟,梁墩之间采用刚性连接释放约束模拟,承台底采用一般弹性支承模拟,将地基及桩基础对结构的作用简化成纵横向转动弹簧施加在承台底,平动刚度以刚性考虑。 转动弹簧计算参数列表 表1转动弹簧计算参数(讥:二…;.一) 图3计算模型 ㈡抗震验算荷载的选取 连续梁全联质量和桥墩、承台质量通过定义结构自重向X、Y,Z方向转化。边跨简支梁质量,采用施加集中质量单元实现,纵桥向集中施加在4墩墩顶,质量大小为一跨简支梁的质 量和二期恒载质量之和;横桥向施加在两边墩墩顶,质量取一跨简支梁的质量和二期恒载质量之和的一半。全梁二期恒载184KN/m 活载取ZK列车活载进行验算,根据w铁路工程抗震设计规范(修订)》要求,对于I、n级铁路,应分别按有车、无车进行计算,当桥上有车时,顺桥向不计活载引起的地震力,横桥向只计50%舌荷载引起的地震力,作用点在轨顶以上2m处。需要分别对桥梁顺桥向及横桥向进行单独验算。 验算荷载列表 表2验算荷载(KN

桥梁概念设计与分析理论

桥梁概念设计与分析理论 一:桥梁属性与结构形式 1.1桥梁的属性 科学:分析实验 桥梁工程{ 技术:研发应用 艺术:创造美学 1.2 桥梁结构的分类 用途:人行桥,公路桥,铁路桥,公铁两用桥,城市桥,管道桥,明渠桥 材料:石桥,木桥,钢桥,混凝土桥,预应力混凝土桥(主跨90米,在中小跨度范围内已占绝对有优势,在大跨度范围内它正在同钢桥展开激烈竞争。它主要承重结构用预应力钢筋混凝土结构的桥梁。附加预应力混凝土:预应力混凝土,为了弥补混凝土过早出现裂缝的现象,在构件使用(加载)以前,预先给混凝土一个预压力,即在混凝土的受拉区内,用人工加力的方法,将钢筋进行张拉,利用钢筋的回缩力,使混凝土受拉区预先受压力。这种储存下来的预加压力,当构件承受由外荷载产生拉力时,首先抵消受拉区混凝土中的预压力,然后随荷载增加,才使混凝土受拉,这就限制了混凝土的伸长,延缓或不使裂缝出现,这就叫做预应力混凝土。)钢——混凝土组合结构桥 结构形式:梁桥拱桥斜拉桥悬索桥组合桥斜拉—悬

索协作体系 规模跨径:小桥(8~30米) 中桥(30~100) 大桥(100~1000) 特大桥(大于1000) 1.3桥梁结构形式与合理跨度范围 (1)梁桥 简支梁桥的跨度一般不超过70M,最有竞争力的跨度范围50M以下 等截面连续桥梁的合理跨度范围在30~110M,优势跨度范围50~80 变截面连续桥梁或连续钢结构桥的合理跨度50~350M,最有竞争力的跨度范围100~300M (2)~ (3)拱桥合理跨度范围600M以下,最有竞争力40~450M (4)系杆拱桥合理40~800M 最有竞争力150~1200M (5)斜拉桥合理80~1500M 最有竞争力150~1200M (6)悬索桥合理200以上,500以上最有竞争力 二:桥梁设计准则 2.1 桥梁设计的基本目标 安全实用经济美观 2.2安全性和试用性 (1)承载能力极限状态 1 结构或构件达到材料极限强度

桥梁抗震构造措施

桥梁抗震构造措施 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

桥梁抗震的构造要求有哪些 1.对简支梁,连续梁等梁式体系,必须设置阻止梁墩横桥向相对位移的构造,阻止梁的横向位移。 ??? 2.对悬臂梁和T型刚构除采取上述措施外,还应采取阻止上部结构与上部结构之间出现横向相对位移的构造措施。 ??? 3.对活动支座,均应采取限制其位移、防止其歪斜的措施。 ??? 4.对简支梁应采取措施防止地震中落梁,如采用螺栓连接,钢夹板连接,以及将基础置于可液化层一定深度等措施。 ??? 5.对于桩式墩和柱式墩,桩(柱)与盖梁,承台联接处的配筋不应少于桩或柱身的最大配筋。 ??? 6.对于砖石混凝土墩台,应考虑提高墩台帽与墩台本身以及基础连接处,截面突变处的抗剪强度。 ??? 7.桥台胸墙应予加强。在胸墙与梁端部之间,宜填充缓冲材料,如沥青、油毛毡等。 ??? 8.砖石、混凝土墩台和拱圈的最低砂浆强度等级应按现行《公路桥涵设计规范》的要求提高一级使用。 ??? 9.不论为梁式桥、拱桥尽量避免在不稳定的河岸修建,并应合理布置桥孔,避免将墩台布设于在地震时可能滑动的岸坡上的突变处。 ??? 10.大跨径拱桥的主拱圈,宜采用抗扭刚度较大整体性较好的断面型式,如箱形拱,板拱等。当主拱圈采用组合断面时,应加强组合截面的连接 强度,对双曲拱桥应加强肋波间的连接。 ??? 11.大跨径拱桥不宜采用二铰和三铰拱。当小跨径拱桥采用二铰板拱时,应采取防止落拱构造措施。 ??? 12.砖石、混凝土腹拱的拱上建筑,除靠近墩台的腹拱采用三铰或二铰外,其余铰拱宜采用连续结构。 ??? 13.拱桥宜尽量减轻拱上建筑的重量。 ??? 14.刚性地基烈度为9度时,或非刚性地基烈度为7度时的单孔及连拱桥与端腹孔,均应采取防止落拱构造,包括加长拱座斜面,设置防落牛腿以 及将主拱钢筋伸入墩台帽内。 桥梁结构抗震措施 【提要:措施,抗震,结构,桥梁,】 桥梁结构抗震措施 为防止或减轻震害,提高结构抗震能力,对结构构造所作的改善和加强处理,通常称为抗震措施。各国的工程结构抗震规范对此都有明确的规定。对于桥梁结构,这些措施可归纳为:①对结构抗震的薄弱环节在构造上予以加强;②对结构各部加强整体联结;③对梁式桥,要在墩台上设置防止落梁的纵、横向挡块,以及上部结构之间的连接件;④加强桥梁支座的锚固;⑤加强墩台及基础结构的整体性,增强配筋,提高结构的延性;⑥对桥位处的不良土质应采取必要的

桥梁工程复习题(带答案)

一、单项选择题 1 ?如果按结构基本体系分类,则斜拉桥属于( A 、梁式桥 B 、刚架桥 2 ?下列跨径中,哪个用于桥梁结构的力学计算? A 、标准跨径 B 、净跨径 3?梁式桥的标准跨径是指( C )。 A 、相邻两个桥墩(台)之间的净距 C 、相邻两个桥墩中线之间的距离 4?下列哪个跨径反映了桥梁的泄洪能力?( A 、标准跨径 B 、净跨径 C 、悬索桥 D 、组合体系桥 ( D ) C 、总跨径 D 、计算跨径 B 、相邻两个支座中心之间的距离 D 、梁的长度 C ) C 、总跨径 D 、计算跨径 5 ?桥梁两个桥台侧墙或八字墙后端点之间的距离称为( C )。 A 、桥梁净跨径 B 、桥梁总跨径 C 、桥梁全长 6 ?桥梁总长是指(A ) D )。 D 、桥梁跨径

A、桥梁两桥台台背前缘间的距离 B、桥梁结构两支点间的距离

C、桥梁两个桥台侧墙尾端间的距离 D、各孔净跨径的总和 7?桥梁的建筑高度是指(A )。 A、桥面与桥跨结构最低边缘的高差 B、桥面与墩底之间的高差 C桥面与地面线之间的高差D、桥面与基础底面之间的高差8?某路线上有一座5孔30米的连续梁桥,根据规模大小分类,该桥属于( D )。 A、特大桥 B、大桥 C、中桥 D、小桥9?根据作用的分类标准,下列哪些属于永久作用?(C ) ①土侧压力②温度作用③汽车撞击作用④混凝土徐变⑤汽车制动力 ⑥基础变位作用⑦支座摩阻力 A、①②④ B、⑤⑥⑦ C、①④⑥ D、③④⑤10?根据作用的分类标准,下列哪些属于可变作用?(B ) ①土侧压力②温度作用③汽车撞击作用④混凝土徐变⑤汽车制动力 ⑥基础变位作用⑦支座摩阻力 A、①④⑥ B、②⑤⑦ C、③⑤⑦ D、②③⑤

大跨度桥梁抗震设计要点探讨 吕诗良

大跨度桥梁抗震设计要点探讨吕诗良 发表时间:2018-03-06T13:53:16.243Z 来源:《建筑学研究前沿》2017年第29期作者:吕诗良[导读] 大跨度桥梁工程已成为一种发展趋势,与普通桥梁相比,大跨度桥梁的抗震设计要求更高,因此必须高度重视这项工作。天津市市政工程设计研究院海南海口 570203 摘要:我国属于地震多发的国家之一,地震构造基本是断裂剧烈的活动构造,具有频度大、震源浅以及强度大的特点。为了保障人民生命与财产的安全及公路桥梁设施的完好,更好地发挥公路运输在抗震中的作用,对大跨度桥梁抗震设计提出了更高的要求,在桥梁设计上必须要对抗震设计部分加以重视,严格按照工程抗震规范,强调延性抗震和隔振设计。提高我国大跨度桥梁的抗震设计水平,推动大跨 度桥梁的建设,不断提高人民的生活质量。关键词:大跨度桥梁;抗震设计;实用方法;思考 1 引言 近几年,我国地震灾害的发生越发频繁,地震灾害对整个社会经济的发展以及人民的生命财产安全都造成了严重危害,为了满足当今时代社会的发展对交通运输的需求,大跨度桥梁工程已成为一种发展趋势,与普通桥梁相比,大跨度桥梁的抗震设计要求更高,因此必须高度重视这项工作。 2 地震对大跨度桥梁带来的影响及原因分析若想有效提高大跨度桥梁的抗震性能,首先需要做的就是充分掌握和了解地震时桥梁易产生破坏的位置及损害原因,并提前制定针对性的解决策略将其处理,只有这样才能综合提高大跨度桥梁的抗震水平。根据以往地震的相关调查数据来看,大跨度桥梁地震还是存在着一定规律,具体包括以下几点:①大跨度桥梁上部分结构的损害。一般来说,大跨度桥梁上部分结构遭到损害的情况是非常常见的,主要分为以下三种类型:即为移位损害、自身损害及碰撞损害等;②桥梁支座损害。由于在以往传统的桥梁设计中,对桥梁支座并没有加入抗震元素,再加上地震发生时存在一些材料和结构上的问题,都会致使桥梁支座发生变形或是其他影响,从而对桥梁自身结构也会产生一定不利影响;③地基损害。地基往往作为大跨度桥梁的基础支撑性环节,其一旦遭到地震液化,就会逐渐失去其支撑作用,极有可能导致落梁情况出现。如果地基较为软弱,也会受到液化影响逐渐失去其应有效果,致使地基上方物体发生下沉或是倾斜情况,这对桥梁的整个结构非常不利;④大跨度桥梁下部分结构的损害。根据实际情况来看,大多数大跨度桥梁的下部分结构都较为软弱,一旦地震级别过大,下部分结构根本无法抵抗,在其发生损害的基础上影响到整个桥梁结构;⑤桥梁自身结构存在一定不合理性,导致桥梁连接处的接缝存在空隙,这样一来地震发生时空隙就会成为地震的重要突破,从而对整个桥梁结构带来危害。 3 大跨度桥梁抗震设计原则分析3.1 桥梁结构选择原则通常在桥梁进行结构选择时,需要充分考虑到各方面可能带来的因素,如地势地形、建设规模、抗震经验及技术水平等,进而选择合理化的桥梁墩台实现抗震设计。同时相关工作人员还应尽可能选择有利形势的抗震结构,以最大限度降低上部实际结构。除此之外,大跨度桥梁应尽可能做到简单便捷、刚度分配均匀,且有效采用各种经济合理、技术水平先进的结构体系。 3.2 规则性和整体性原则具有较强整体性原则不但能为桥梁设计建设提供广阔的发展空间,还能有效防止地震灾害对结构构件造成损害。同时在桥梁结构体系中存在的刚度分布不均匀现象又被称为不规则情况,这对桥梁整体结构的抗震性能提高非常不利,因而在进行抗震设计时一定要遵循规则性原则。 4 抗震设计 4.1 隔震支座法根据相关调查数据显示可知,隔震支座法可以说是防震应用中最为广泛的方法之一,其主要是指通过桥梁结构柔性程度的增加而有效降低地震所带来的反应,具体落实步骤就是将隔、减震支座安装在桥梁桥体和墩台的连接位置,合理利用各种新材料来实现桥梁柔性增加的最终目的。该种抗震方法的应用存在较多理论实践支持,并且根据大多数的研究分析结论可知,地震所带来的真实反映与大跨度桥梁连接结构是存在紧密联系的,不但能最大限度减少墩台所受到的地震影响力,还能有效增强大跨度桥梁的抗震性能,从而为人们的生命财产安全提供保障。 4.2 有效发挥桥墩延性优势若想有效增强大跨度桥梁的抗震水平,桥梁桥墩自身存在的延性可以说是一重大突破点,如在地震发生时,桥梁自身各结构存在的稳定延性会产生弹塑性变形,长时间影响下桥梁结构周期就会延长并有效分散地震力量。由此可知,通过大跨度桥梁其自身的延性特征,将地震所带来的巨大力量在塑性变形的影响下渐渐分散,这是桥梁抗震设计中最有效的实用方法之一。除此之外,桥梁延性的抗震设计还可以根据弹性反应来对塑性变形程度展开准确计算,按照地震等级进行合理修正,尽量增强桥梁的抗震能力。尤其需要注意的是在进行桥梁抗震规范设计时,综合系数就是对塑性变形程度的一个准确反映,因而我们可以根据综合系数来判断桥梁的抗震水平。 4.3 积极引进先进化的抗震设计方法根据相关调查情况来看,在以往传统的大跨度桥梁抗震设计中,具体采用方法就是使用“蛮力”。换句话说,就是以增强桥梁实际强度和延性方式来提高其抗震性能,需要自身力量远远超过地震力量,但往往这种方法在实际应用中的抗震效果和地震影响是无法预知的,如果存在两个未知因素,非常有可能出现与人们期望相反的结果,致使桥梁遭到巨大损害,这是非常普遍的现象。同时目前越来越多的新型化桥梁设计开始纷纷采用钢筋混凝土结构,这与传统混凝土结构存在的最大不同之处就是具有良好的先进优势,不但承载力远远超过钢筋混凝土,是其一倍以上,而且具有较强的延性、抗剪性能,进而对抗震水平的提高非常有利。除此之外,新型钢筋混凝土结构还能有效吸收来自地震的能量,将地震危害降到最低,这样不但能全面增强桥梁结构的安全可靠性能,还能实现节省材料、成本的最终目的,这可以说是最佳的抗震实用方法之一。 4.4 抗震结构设计

桥涵设计原则(完整版)

桥涵设计原则

目录 1总体原则 (3) 1.1设计技术标准(各项目具体规定) (3) 1.2注意事项 (3) 1.3制图要求 (4) 1.4材料要求 (7) 1.5工作分解 (8) 2 上部构造 (9) 2.1预应力预制拼装结构 (9) 2.2钢筋砼现浇整体箱梁结构 (11) 2.3预应力砼现浇整体箱梁结构 (14) 3 下部结构设计原则 (18) 3.1尺寸构造 (18) 3.2配筋要求 (19) 3.3下部计算 (21) 4 桥梁附属结构 (21) 4.1 桥面铺装 (21) 4.2 桥面排水 (22) 4.3 伸缩缝 (22) 4.4 防撞设施 (22) 4.5 防抛落网 (23) 4.6 桥梁支座及支座垫石 (23) 4.7 搭板 (25) 4.8 锥坡 (25) 4.9 声测管 (26) 5 小型构造(通道、涵洞、倒虹吸、渡槽) (26) 5.1通道 (26) 5.2涵洞 (27) 5.3倒虹吸 (27) 5.4渡槽 (28) 5.5其他管线保护 (28) 6拼宽桥涵 (28) 6.1桥梁 (28) 6.2涵洞、通道 (28)

1总体原则 本设计原则仅适用于跨径≤40m的桥梁结构,跨径>40m的桥梁结构应作单独研究。 1.1设计技术标准(各项目具体规定,本节所列为东北绕项目) 1.设计行车速度:120km/h 2.设计汽车荷载等级:公路—Ⅰ级。 3.桥面净宽:全宽3 4.5m(新建),0.5(墙式护栏)+1 5.25(行车道)+1.15(内侧护栏)+0.7/2(中分带); 4.设计洪水频率:特大桥1/300,其它1/100。 5.地震:地震发生概率按:50年10% 地震报告分析地震动峰值加速度系数为0.15(七度),地震设防等级八级 6.环境类别为Ⅰ类。 1.2注意事项 设计人员在开始设计之前应仔细核实以下数据,确认无误后方可开始设计,具体内容如下: 1.核实桥梁表中的桥梁中心桩号、航(河)道中心桩号、被交道中心桩号、跨径布置是否与路线数据文件保持一致;核实交角(与通航河流、被交路或管线);核实控制点坐标(迎水坡脚、老路中、侧分带等)。 2.核实设计洪水位、通航标准(Max/Min通航水位、净宽、净高)、规划大堤标准(堤顶高程、堤顶宽度、坡率、平台宽度、堤顶是否预留通道)、洪水位高程转换、航道中心线位置。根据上述控制点高程,核实纵面是否满足要求。 3.核实被交道的实测标高、实测断面、规划断面(净宽、净高)、路面是否有加铺要求?同时核查被交道路是否存在超高、曲线半径情况。根据上述控制点高程,在充分考虑被交道路的超高、横坡、桥墩盖梁尺寸、桥墩距行车道边缘距离等要求,核查主线上跨桥、支线上跨桥的桥面高程。 4.核实地面线与地形图是否基本一致。 5.核实地质资料(钻孔位置、孔深、地质参数)。 6.核查改移沟渠、改移道路的布置尺寸;明确改河方案、退堤方案。 7.挖方路段时,应注意路桥结合部的边坡坡率控制,注意检查桥跨布置及基础埋深适合性,路-桥设计人员应互相提醒。 8.核查通道、涵洞及泵站等设置是否符合所签协议的基本要求。

大跨度桥梁设计复习题答案讲解

《大跨度桥梁设计》复习题 1.拱桥的受力特点? 拱桥按照是否对墩台产生水平推力,可分为有推力拱桥和无推力拱桥,有推力拱桥的主要承重构件是主拱肋(圈),受压为主;无推力拱桥也成为系杆拱桥,是梁—拱组合体系桥,其主要承重构件是拱肋与系杆,拱肋受压,系杆受压。拱脚处有水平推力,从而使拱主要受压,与梁桥比使拱内弯矩分布大为改变(减小)。 2.中承式拱桥的行车道位于拱肋的中部,桥面系(行车道、人行道、栏杆等)一部分用吊杆悬挂在拱肋下,一部分用钢架立柱支承在拱肋上。 3.简支梁和连续梁桥可自由收缩,收缩使结构只发生变形,但不产生内力;固定梁、连续刚构桥等超静定结构,混凝土收缩产生变形和内力。 4.大跨径混凝土连续梁桥采用悬臂施工法施工的过程中,墩梁临时固结,主梁从墩顶向两边同时对称分段浇筑或拼装,直至合龙;合龙之前,结构受力呈T构状态,属静定结构,梁的受力与悬臂梁相同。 5.大跨径桥梁按结构体系分类? 梁桥、拱桥、悬索桥、斜拉桥、及其他组合体系桥。 6.公路桥梁的车道荷载由哪两种荷载组成,当计算剪力效应时,集中荷载标准值应乘以什么系数? 车道荷载由均布荷载和集中荷载组成。 公路1级车道荷载的均布荷载标准值为q=10.5KN/m,集中荷载标准值为P kk按以下规定选取:桥涵计算跨径≤5m时,P=180 KN;桥涵计算跨径≥50m时,P=360 KN;桥涵计算跨径介kk于上述跨径之间时,采用直线内插法求得:P=(4l+160)KN。计算剪力效应时,上述集中荷载标准值应乘以k系数1.2. 公路2级车道荷载的均布荷载标准值q,集中荷载标准值P,为公路1级车道荷载的0.75倍。kk 车道荷载的均布荷载标准值应满布于使结构产生最不利荷载效应的同号影响线上,集中荷载标准值只有一个,作用于相应影响线的峰值处。 7.连续梁桥施工方法主要分为两大类:整体施工法和分段施工法。中小跨度桥梁施工方法主要采用整体施工法,包括满堂支架法、预制拼装法;大跨度桥梁主要采用分段施工法,包括悬臂施工法、逐跨施工法、顶推施工法、 转体施工法。桥梁分段施工有三种基本形式:纵向分段、横向分段(又称装配式桥梁施工,主要用于中小跨径桥)、竖向分层施工(用于组合桥梁施工,也用于大跨拱桥主拱肋的现浇或安装)。 8.悬浮体系斜拉桥的特点? 塔墩固结,塔梁分离,主梁除两端支承于桥台处,全部用斜拉索吊起,其结构形式相当于在单跨

桥梁抗震设计及加固技术

桥梁抗震设计及加固技术浅析 杨立国 (山东科技大学,山东青岛266590) 摘要:地震是我国多发的地质灾害现象,我国地震灾害分布的范围比较大,地震具有强度大、频率高的特点,公路桥梁往往在地震中出现损坏,给救灾工作带来了困难。针对我国汶川地震等近年来地震的情况,我国公路桥梁的抗震加固工作需要进一步加强,文章对我国公路桥梁抗震加固工作的现状进行了分析,探讨了抗震加固技术的应用,为我国公路桥梁提高到足够的抗震强度提供一些思路。 关键词:地震灾害抗震设计;加固技术 引言:随着我国城市化进程加快,作为城市基础设施之一的公路交通其重要性越来越突出。同时,我国处于地震多发地带,尤其是近几年不断发生各种等级的地震。在地震发生时,不仅会有大量的地面建筑物及各种设施遭到破坏或倒塌,大量人员伤亡,而且还会严重造成交通中断。若作为抗震救灾生命线工程之一的公路交通(尤其是铁路桥梁、城市高架、公路桥梁等公路工程的咽喉要道)受到较大损坏,将会给后续救助工作造成极大的困难。此外,目前我国公路行业现采用的抗震设防标准是《公路桥梁抗震设计细则》(JTJ/TB02-01-2008),公路桥梁抗震设计细则》(JTJ/TB02-01-2008)较《公路工程抗震设计规范》(JTJ004-89)在设计思想、安全设防标准、设计方法、设计程序和构造细节等诸多方面均有很大的变化和深入。 1 桥梁与抗震 我国处于世界两大地震带——环太平洋地震带和亚欧地震带之间,是一个强震多发国家,汶川、玉树地震表明强烈地震将引发长期的社会政治、经济问题,并带来难以慰籍的感情创伤。在抗震救灾中,公路交通运输网更是抢救人民生命财产和尽快恢复生产、重建家园、减轻次生灾害的重要环节,所以公路桥梁是生命系统工程中的重要组成部分,公路桥梁抵抗震害的能力是桥梁设计中重点关注的问题之一。桥梁震害中获得的经验和知识是推动桥梁抗震设计的原动力,1971年美国san fernand地震(6.6级)、1989年美国北加州的lonm pfieta地震(7.1级)、1995年日本阪神大地震(7.2级)、2008年汶川大地震(8.0级)等影响巨大的地震引起了工程界的重视和广泛探讨。随着建筑物与地震反应关系的研究深入,桥梁抗震设计理论得到了提高与拓展,2008年我国公路桥梁设计规范由《公路桥梁抗震设计细则》(JTJ/TB02-01-2008)替代原来的《公路工程抗震设计规范)(JTJ004-89),是我国桥梁设计的一大进步,根据历次大地震的调查研究,公路桥梁的地震破坏主要形式总结归纳如下:(1)桥梁上部结构受水平力作用滑落(汶川百花大桥落梁);(2)桥墩塑性铰的抗弯、抗剪强度不足,导致桥墩破坏(日本阪神大量墩柱破坏);(3)桥墩、桩基础钢筋的连接及锚固性能不足,导致桥墩破坏(最为常见); (4)桥梁支座等连接部位破坏(最为常见)。常规桥梁抗震设计首先应是抗震构造措施,根据汶川地震相关调查表明干线公路桥梁由于采用了合理的抗震构造措施,结构安全富裕较多,震后其破坏远小于地方道路桥梁。抗震构造措施是总结桥梁震害经验的基础上提出的设计原则,事实表明抗震构造措施可以起到有效减轻震害作用,而所耗费的工程代价往往较低。 2 桥梁设计与抗震措施 2.1 防止落梁的措施 《公路桥梁抗震设计细则》指出上部结构主梁的支承长度a≥70+0.5L(L为梁的计算跨径,L 单位为m,a单位为cm),该取值沿用自日本抗震设计规范,多数设计者认为规范取值较为保守,比上一代规范《公路工程抗震设计规范(JTJ004-89))有较大提高(a≥50+l)。这里需指出该种认识属于误区,当“长桥高墩”时应在规范基础上给予更多的安全富余。例如:都汶高速公路庙子坪岷江大桥第10跨(跨径50m、墩高70m)。虽然盖梁宽度高达3.0m(根据《桥梁

桥梁工程考试题与答案

桥梁工程一 一、单项选择题(只有一个选项正确,共10道小题) 1. 桥梁按体系划分可分为梁桥、拱桥、悬索桥、组合体系桥。 2. 桥梁的建筑高度是指桥面与桥跨结构最低边缘的高差。 3. 公路桥梁总长是指桥梁两个桥台侧墙尾端间的距离。 4. 下列桥梁中不属于组合体系桥梁的结合梁桥。 5. 以公路40m简支梁桥为例,①标准跨径、②计算跨径、③梁长这三个数据间数值对比关系正确的是①>③>②。 6. 以铁路48m简支梁桥为例,①标准跨径、②计算跨径、③梁长这三个数据间数值对比关系正确的是①=②<③。 7. 桥梁设计中除了需要的相关力学、数学等基础知识外,设计必须依据的资料是设计技术规范。 8. 我国桥梁设计程序可分为前期工作及设计阶段,设计阶段按“三阶段设计”进行,即初步设计、技术设计与施工设计。 9. 下列哪一个选项不属于桥梁总体规划设计的基本内容桥型选定。 二.判断题(判断正误,共6道小题) 10. 常规桥梁在进行孔跨布置工作中不需要重点考虑的因素为桥址处气候条件。 11. 斜腿刚构桥是梁式桥的一种形式。(×) 12. 悬索桥是跨越能力最大的桥型。(√) 13. 桥梁设计初步阶段包括完成施工详图、施工组织设计和施工预算。(×) 14. 桥位的选择是在服从路线总方向的前提下进行的。(×) 15. 一般来说,桥的跨径越大,总造价越高,施工却越容易。(×)

16. 公路桥梁的总长一般是根据水文计算来确定的。(√) 三、主观题(共3道小题) 17. 请归纳桥上可以通行的交通物包括哪些(不少于三种)?请总结桥梁的跨越对象包括哪些(不少于三种)? 参考答案: 桥梁可以实现不同的交通物跨越障碍。 最基本的交通物有:汽车、火车、行人等。其它的还包括:管线(管线桥)、轮船(运河桥)、飞机(航站桥)等。 桥梁跨越的对象包括:河流、山谷、道路、铁路、其它桥梁等。 18. 请给出按结构体系划分的桥梁结构形式分类情况,并回答各类桥梁的主要受力特征。 参考答案: 桥梁按结构体系可以分为:梁桥、拱桥、悬索桥、组合体系桥梁。 梁桥是主要以主梁受弯来承受荷载;拱桥主要是以拱圈受压来承受荷载;悬索桥主要是以大缆受拉来承受荷载;组合体系桥梁则是有多种受力构件按不同受力特征组合在一起共同承受荷载。 19. 请简述桥梁设计的基本原则包括哪些内容? 参考答案: 桥梁的基本设计原则包括:安全、适用、经济和美观。 桥梁的安全既包括桥上车辆、行人的安全,也包括桥梁本身的安全。

桥梁设计的基本原则

1、桥梁的基本组成部分:桥跨结构、支座系统、桥墩、桥台、基础。上部结构:桥面系、承重结构、联结部件。下部结构:桥墩、桥台、基础,上下部之间采用支座联结。 2、桥面构造:行车道铺装、排水防水系统、人行道、缘石、栏杆、护栏、照明灯具、伸缩缝 3、桥梁按受力分为:梁式桥、拱式桥、吊桥、钢架桥,按跨径分为:特大桥、大桥、中桥、小桥、涵洞。单孔跨径大于150m及多孔跨径总和大于1000m的为特大桥 4、支座按变形方式分为:固定支座、单向活动支座、多向活动支座 5、桥梁永久作用:结构重力、预加力、土的重力、土侧压力、混凝土收缩 6、梁式桥按截面形式分为:板桥、矩形桥、T形桥、箱形桥 7、简支梁桥的施工方法有哪些:就地现浇法、预制安装法 8、连续钢架桥施工方法:整体施工法、悬臂施工法、移动模架施工法、顶堆施工法 9、桥涵上的作用按照随时间的变化分为:可变作用、永久作用、偶然作用 10、桥梁的可变作用包括:汽车荷载、汽车荷载冲击力、离心力、汽车制动力、汽车引起的土侧压力

桥梁设计的基本原则:应符合技术先进、安全可靠、适用耐久、经济合理的要求外,还应按照美观和有利环保的原则进行设计,并考虑因地制宜、就地取材、便于施工和养护等因素 2、桥梁受到的作用:自重、附加恒载、交通荷载、自然因素 3、桥梁设计步骤:标准、桥型、布置、主要尺寸、确定施工方案、配筋、验算、细节设计 4、桥面为什么要进行排水和防水?排水和防水的主要措施是什么? 积水不利交通,影响耐久性。措施:纵横坡、泄水管、排水系统、桥面铺装防水功能,防排结合形成桥面防水系统 5、伸缩缝的主要功能与要求是什么? 作用:为了保证桥跨结构在气温变化、活载作用、混凝土收缩与徐变影响下按静力图式自由地变形。要求:1)能保证结构温度变化所引起的伸缩变形2)车辆驶过时,应平顺、不打滑、无突跳和过大的噪声与振动3)具有安全排水防水的构造 6、箱形截面受力特点:箱形截面具有良好的抗弯和抗扭特性,箱形截面的顶板和底板是结构提供抗弯能力的主要部位,箱梁腹板主要承受结构的弯曲剪应力以及扭转剪应力引起的主拉应力。 8、桥梁有哪些基本类型?按照结构体系分类,各种类型的受力特点是什么? 答:梁桥、拱桥、斜拉桥、悬索桥。按结构体系划分,有梁式桥、拱桥、钢架桥、缆索承重桥(即悬索桥、斜拉桥)等四种基本体系。梁式桥:梁作为承重结构是以它的抗弯能力来承受荷载的。拱桥:主要承重结构是拱肋或拱圈,以承压为主。刚架桥:由于梁与柱的刚性连接,梁因柱的抗弯刚度而得到卸载作用,整个体系是压弯构件,也是有推力的结构。缆索桥:它是以承压的塔、受拉的索与承弯的梁体组合起来的一种结构体系 9、预应力混凝土简支梁与钢筋混凝土简支梁相比有何优点? 答:钢筋混凝土构件的最大缺点是抗裂性能差。当应力达到较高值时,构件裂缝宽度将过大而无法满足使用要求,因此在普通钢筋混凝土结构中不能充分发挥采用高强度材料的作用。为了满足变形和裂缝控制的要求,则需增加构件的截面尺寸和用钢量,这既不经济也不合理,因为构件的自重也增加了。预应力混凝土是改善构件抗裂性能的有效途径。在混凝土构件承受外荷载之前对其受拉区预先施加压应力,就成为预应力混凝土结构。预压应力可以部分或全部抵消外荷载产生的拉应力,因而可推迟甚至避免裂缝的出现 10、桥梁的基本组成部分有哪些?各组成部分的作用如何? 答:有五大件和五小件组成。具体有桥跨结构、支座系统、桥墩、桥台、基础、桥面铺装、排水防水系统、栏杆、伸缩缝和灯光照明。桥跨结构是线路遇到障碍时,跨越这类障碍的主要承载结构。支座系统式支承上部结构并传递荷载于桥梁墩台上,应满足上部结构在荷载、温度或其他因素所预计的位移功能。桥墩是支承两侧桥跨上部结构的建筑物。桥台位于河道两岸,一端与路堤相接防止路堤滑塌,另一端支承桥跨上部结构。基础保证墩台安全并将荷载传至地基的结构部分。桥面铺装、排水防水系统、栏杆、伸缩缝、灯光照明与桥梁的服务功能有关。

《桥梁工程》考试试题

桥梁工程复试习题大全 第一章 一、填空题 1、桥梁通常由()、()、()和()四个基本部分组成。上部结构、下部结构、支座、附属设施 2、桥梁的承重结构和桥面系组成桥梁的()结构;桥墩、桥台及其基础组成桥梁的()结构;桥头路堤、锥形护坡、护岸组成桥梁的()结构。上部、下部、附属 7、按行车道的位置,桥梁可分为()、()和()。上承式桥、中承式桥、下承式桥 8、按桥梁全长和跨径不同,桥梁可分()、()、()、()和涵洞。特大桥、大桥、中桥、小桥 二、选择题 1、设计洪水位上相邻两个桥墩之间的净距是()跨径。A A、净跨径 B、计算跨径 C、标准跨径 D、总跨径 4、拱桥中,两相邻拱脚截面形心点之间的水平距离称为()跨径。B A、净跨径 B、计算跨径 C、标准跨径 D、总跨径 6、在结构功能方面,桥台不同于桥墩的地方是()。B A、传递荷载 B、抵御路堤的土压力 C、调节水流 D、支承上部构造 第二章 一、填空题 1、在桥梁设计中要考虑很多要求,其中最基本有()、()、()、()、()及环境保护和可持续发展等六个要求。答案:使用上的要求、经济上的要求、设计上的要求、施工上的要求、美观上的要求 2、我国桥梁的设计程序一般采用两阶段设计,即()阶段和()阶段。初步设计、施工图设计 3、桥梁纵断面的设计主要包括总跨径的确定、()、()、()以及基础的埋置深度。 桥梁的分孔、桥面标高、桥上和桥头引道的纵坡 4、最经济的桥梁跨径是使()和()的总造价最低的跨径。上部结构、下部结构 6、公路桥涵设计的基本要求之一是:整个桥梁结构及其各部分构件在制造、安装和使用过程中应具有足够的()、()、()和耐久性。强度、刚度、稳定性 7、为了桥面排水的需要,桥面应设置从桥面中央倾向两侧的至的(),人行道宜设置向()倾斜的横坡。1.5、3、1 二、选择题 4、经济因素是进行桥型选择时必须考虑的(B)。A、独立因素B、主要因素C、限制因素D、特殊因素 5当通航跨径小于经济跨径时,应按(D)布置桥孔。A、通航跨径B、标准跨径C、计算跨径D、经济跨径 第三章

匝道桥设计原则共5页

公路桥梁通用图 《互通内匝道桥8.5m、10.5m、12m、15.5m桥宽n×25m、n×30m(n=3、 4、5)预应力钢筋混凝土连续箱梁上部结构通用图》编制 设计原则 中国中铁二院工程集团有限公司 交通设计研究院 二OO八年 公路桥梁通用图 《互通内匝道桥8.5m、10.5m、12m、15.5m桥宽n×25m、n×30m(n=3、 4、5)预应力钢筋混凝土连续箱梁上部结构通用图》编制 设计原则 设计负责人: 室(所)技术负责人: 处总工程师: 院总工程师: 中国中铁二院工程集团有限公司

交通设计研究院 二OO八年 一、设计依据 1、根据领导对“匝道桥8.5m、10.5m、12m、15.5m桥宽n×25m、n ×30m(n=3、4、5)预应力钢筋混凝土连续箱梁通用图立项申请” 的批复意见,开展公路桥梁通用图设计,编制本设计原则。 2、有关规范: 交通部部颁标准《公路工程技术标准》JTG B01-2019 交通部部颁标准《公路桥涵设计通用规范》JTG D60-2019 交通部部颁标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2019 3、充分收集交通院及其他设计单位设计图作为本次通用图编制参考。 二、设计内容 匝道桥8.5m、10.5m、12m、15.5m桥宽n×25m、n×30m(n=3、4、5)预应力钢筋混凝土连续箱梁上部结构通用图。 三.主要技术标准及参数 (一).技术标准 1.荷载等级:公路—I级,城—A级 2.公路等级:高速公路、一级公路、城市快速路 (二).主要参数: 1)混凝土 预应力钢筋混凝土连续箱梁梁体采用C50混凝土。

桥梁设计创新

桥梁设计创新 一、创新的思路 创新就是桥梁发展的动力,就是桥梁建筑艺术的灵魂,没有创新的艺术犹如一潭死水,没有一点活力,日复一日,终究会越来越腐朽。同时,创新也必须以实践为基础,也需要用理论来指导。作为设计人员,如何在设计中寻求创新,同时在创新的同时也能实现结构的合理呢? 1、设计人员应具有创新的意识,必须意识到创新的重要性与必要性。同时应具有创新的能力,掌握一定的创新技巧,要勇于突破定势思维,打破传统观念与经验的束缚,充分发挥主观能动性与想象力,不迷 信权威,发展广泛的兴趣。创造力并不就是在任何情况下都能自发地表现出来的,必须通过创新的素质教育与训练才能获得开发与提高。 2、设计人员应以本专业的基础知识为核心,建立起创造发明的“游击区”。使专业基础知识与其她知识相互渗透,共同结合成一个网络式整体结构。还应开发智能因素,包括培养精确的观察力,提高记忆力,培养注意力、想象力与操作能力。除了创造力之外,创造性人才还应具备创造精神与创造人格。创造精神主要包括有好奇心、探究兴趣、求知欲、对新事物的敏感、对真知的执着追求,勇于发现、发明、革新,有开拓进取、百折不挠的精神,这就是一个人创造的灵魂与动力;创造人格主要包括创造责任感、使命感、事业心、执着的爱、顽强的意志与毅力,能经受挫折、失败的良好心态,以及坚韧顽强的性格,这就是创造出成果的根本保证。 3、桥梁设计中的创新必须以结构受力合理为基础,以满足功能要

求为前提。力就是创新应考虑的主导因素。因此,设计人员应掌握好力学知识,桥梁结构必须能明确反应力流,使力的传递途径一目了然。 4、由于美学具有相对性,人类审美观念就是会发生变化的,桥梁美学设计实践应与人们不断变化的美学观念同步,创新不能脱离人类审美观念。桥梁设计人员应该对人们美学观念的变化具有敏锐的洞察力,美学观念的变化就是微妙的,因此应不断以新的眼光观察这些微妙的变化,不能墨守成规,从这些微妙的变化中预测出美学观念的发展趋势,作为未来设计创新的依据。 5、要努力推进新材料与新工艺的发展,不断改进力学分析方法,提高分析技能、分析速度与准确度,在掌握好力学知识与分析手段的前提下,运用各种创新手段,充分发挥人的想象力与创造力,争取不断 创造出结构更合理、更先进、更美观的桥梁形式以适应不断变化的美学观念。最后,还要注意总结前人的设计经验与教训,“前事不忘,后事之师”,学习前人并不就是照抄照搬别人的劳动成果,也不就是纯粹学习已经过时的结构形式,而就是学习前辈在当时历史条件下的创新精神与创新方法。 二、创新的基本技法 1、组合法 组合法,就是一种以综合分析为基础,并按照一定的原理或规则对现有事物或系统进行有效的综合,从而获得新事物、新系统的创造方法。 组合法的内在原理很复杂,形式也多种多样。组合法在具体应用

桥梁抗震构造措施

桥梁抗震的构造要求有哪些? 1.对简支梁,连续梁等梁式体系,必须设置阻止梁墩横桥向相对位移的构造,阻止梁的横向位移。 2.对悬臂梁和T型刚构除采取上述措施外,还应采取阻止上部结构与上部结构之间出现横向相对位移的构造措施。 3.对活动支座,均应采取限制其位移、防止其歪斜的措施。 4.对简支梁应采取措施防止地震中落梁,如采用螺栓连接,钢夹板连接,以及将基础置于可液化层一定深度等措施。 5.对于桩式墩和柱式墩,桩(柱)与盖梁,承台联接处的配筋不应少于桩或柱身的最大配筋。 6.对于砖石混凝土墩台,应考虑提高墩台帽与墩台本身以及基础连接处,截面突变处的抗剪强度。 7.桥台胸墙应予加强。在胸墙与梁端部之间,宜填充缓冲材料,如沥青、油毛毡等。 8.砖石、混凝土墩台和拱圈的最低砂浆强度等级应按现行《公路桥涵设计规范》的要求提高一级使用。 9.不论为梁式桥、拱桥尽量避免在不稳定的河岸修建,并应合理布置桥孔,避免将墩台布设于在地震时可能滑动的岸坡上的突变处。 10.大跨径拱桥的主拱圈,宜采用抗扭刚度较大整体性较好的断面型式,如箱形拱,板拱等。当主拱圈采用组合断面时,应加强组合截面的连接强度,对双曲拱桥应加强肋波间的连接。 11.大跨径拱桥不宜采用二铰和三铰拱。当小跨径拱桥采用二铰板拱时,应采取防止落拱构造措施。 12.砖石、混凝土腹拱的拱上建筑,除靠近墩台的腹拱采用三铰或二铰外,其余铰拱宜采用连续结构。 13.拱桥宜尽量减轻拱上建筑的重量。 14.刚性地基烈度为9度时,或非刚性地基烈度为7度时的单孔及连拱桥与端腹孔,均应采取防止落拱构造,包括加长拱座斜面,设置防落牛腿以及将主拱钢筋伸入墩台帽内。 桥梁结构抗震措施 【提要:措施,抗震,结构,桥梁,】 桥梁结构抗震措施 为防止或减轻震害,提高结构抗震能力,对结构构造所作的改善和加强处理,通常称为抗震措施。各国的工程结构抗震规范对此都有明确的规定。对于桥梁结构,这些措施可归纳为:①对结构抗震的薄弱环节在构造上予以加强;②对结构各部加强整体联结;③对梁式桥,要在墩台上设置防止落梁的纵、横向挡块,以及上部结构之间的连接件;④加强桥梁支座的锚固;⑤加强墩台及基础结构的整体性,增强配筋,提高结构的延性;⑥对桥位处的不良土质应采取必要的土层加固措施;⑦须特别重视施工质量,如施工接缝处的强度保证等;⑧在重要的大桥上,必要时需采用减震消能装置,如橡胶垫块,特制的消能支座等。

大跨度桥梁抗震设计方法

大跨度桥梁抗震设计方法 发表时间:2018-05-22T10:44:07.397Z 来源:《基层建设》2018年第6期作者:赵明剑王斌 [导读] 摘要:地震灾害的发生往往造成房屋倒塌、道路中断、桥梁破坏、人员伤亡等严重破坏,产生的次生破坏造成的经济损失更是巨大。 潍坊市市政工程设计研究院有限公司山东省潍坊市 261061 摘要:地震灾害的发生往往造成房屋倒塌、道路中断、桥梁破坏、人员伤亡等严重破坏,产生的次生破坏造成的经济损失更是巨大。以目前科技水平而言,地震尚无准确预测和控制手段;而地震的发生又是不可避免的,而我国又处于世界上两个最活跃的地震带上,因此在大垮度桥梁结构设计中研究抗震分析对地震灾害的预防是有十分重要的意义。本文主要对大跨度桥梁抗震设计方法进行了总结,着重于工程的实际可操作性和细节的处理。 关键词:大跨度;桥梁抗震;设计方法 抗震设计在大跨度桥梁建设过程中是非常重要的一个环节,抗震设计的合理与否对桥梁的整体抗震性能有着决定的作用。所以,在抗震设计过程中,要善于总结相关经验,分析各种震害特点,不断加深对地震机理的认识和研究,结合建设桥梁的实际功能特点,努力探究大跨度桥梁的抗震设计方法,并应用桥梁抗震加固技术,进一步提高桥梁的抗震性能,以减轻或避免震害。 1大跨度桥梁抗震设计状况 与中等跨度桥梁相比,大跨度桥梁的地震反应相对比较复杂,所以其抗震设计的难度也不断增大。例如高阶振型的影响较大,同时还要对多点激振、行波效应等进行充分的考虑。对于大跨度桥梁的抗震设计,具有一定的复杂性、系统性和综合性。大跨度桥梁的反应存在多变性,因此,导致抗震设计也是多样性。在当前的桥梁设计规范和规定中,很多内容是针对中等桥梁制定的,而对于大跨度桥梁的抗震方面,尚属于发展的前期阶段,很多问题需要得到全面、积极的解决。JTJ004-89《公路工程抗震设计规范》规定地震烈度7度以上地区的新建桥梁都必须设计抗震设防,在桥梁抗震设计中普遍采用“小震不坏、中震可修、大震不倒”的分类设防原则。 2在地震中桥梁较易产生破坏的位置及其原因 2.1上部结构的震害 桥梁的上部结构在地震中出现损坏是比较常见的损坏主要有三种类型:分别是碰撞损坏、移位损坏和自身损坏。由于上部结构承受自身重力荷载和使用荷载,设计时按照弹性设计,在抗震设计中通常也设计为较强的环节。因此地震中上部结构基本上可以保持弹性。上部结构由于自身强度不足引起的破坏仅仅是局部的。就一般而言,上部结构的损伤引起桥梁倒塌的可能性不大。与主梁破坏相比之下,上部结构中支座破坏却是较为常见。上部结构的地震惯性力主要是通过支座传递到下部结构上,当支座传递的荷载超过支座的设计强度时就有可能产生支座破坏,即地震过程中,桥梁支座将承受很大的剪力和变形,当剪力超锚栓的强度后,描栓破坏,或者支座变位超过活动支座的允许值,使得桥梁倾斜或者支座错位。支座一旦发生破坏,梁体无约束活动节点处的位移极有可能超出支座长度范围,发生落梁破坏或者由于支座失效后,主梁横向震动时,抗震挡块设置不甚合理没能够有效的防止落梁发生。 2.2地基 地基土(如饱和粉细纱和饱和粘沙土)的地震液化影响,同样加大了地震位移的影响,进而放大了结构的振动反应,使落梁的可能性增大。当采用排架桩基础时,则使桩基的承载力降低,从而造成与地震反应无关的过大的竖向和横向位移,而简支梁桥对此尤为明显。另外,由于地基软弱,地震时当部分地基液化失效后引起了结构物的整体倾斜,下沉等严重变形,进而导致结构物的破坏,震害较重。 2.3墩柱破坏 墩柱是桥梁抗侧向力的主要构件,因此墩柱的破坏是最普遍的。墩柱破坏的主要表现形式有:弯曲强度不足、弯曲延性不足、纵筋搭接区的抗弯能力以及剪切强度不足等。墩柱的破坏往往引起一系列的连锁反应,如落梁、整个结构的倒塌等。而落梁对墩台侧壁的撞击又对下部结构造成新的破坏。 3大跨度桥梁的抗震设计方法 大跨度桥梁的抗震设计,具有实践性的要求,严格按照桥梁周围的环境及自身需求,规划抗震的方案。分析大跨度桥梁的抗震设计,如下: 3.1概念设计 大跨度桥梁工程中,涉及到锚固、索结构等多项技术,先要规划出大跨度桥梁的抗震设计,再安排抗震加固措施。概念设计在大跨度抗震中,有利于提高结构抗震的水平,决定了桥梁抗震的水平。概念设计与抗震计算,同属于大跨度桥梁抗震设计中的措施,而概念设计,起到关键性的作用,其可根据大跨度桥梁各部分的关系,设计出抗震的措施,促使桥梁抗震具有可实施的特性,而且概念设计还能评估大跨度桥梁对地震的评估能力,致力于设计出优质的抗震结构,设计人员可以根据概念设计,灵活的更改抗震设计的方式,促使抗震设计更加符合大跨度桥梁的实际情况。 3.2延性抗震设计 首先,结构延性定义:表示结构从屈服到破坏的后期变形能力,是结构能量耗散能力的主要度量。 其次,延性抗震设计的分类:a)上部、基础弹性,墩柱延性设计;b)墩柱、基础弹性,上部结构延性(钢桥);c)墩柱、基础、上部结构弹性,支座弹缩性――减隔震设计(在后节中介绍) 最后,墩柱结构构造措施:墩柱潜在塑性铰区域内加密箍筋的配置:a)加密区的长度:弯曲方向截面宽度的1.0倍,超过最大弯矩80%的范围;b)加密箍筋的最大间距:10cm或6ds或b/4;c)箍筋的直径不应小于:10mm;d)螺旋式箍筋的接头必须采用对接,矩形箍筋应有135度的弯钩,并深入核心混凝土之内6cm以上;e)加密区箍筋肢距:25cm;f)墩柱的纵筋应尽可能延伸至盖梁或承台的另一侧面,塑性铰加密区域的箍筋应该延续到盖梁和承台内,延伸到盖梁和承台的距离不应小于墩柱长边尺寸的1/2,并不小于50cm。 3.3桥梁减、隔震设计 减、隔震技术是简便、经济、先进的工程抗震手段。减、隔震装置是通过增大结构主要振型的周期使其落在地震能量较少的范围内或增大结构的能量耗散能力来达到减小结构地震反应的目的。在进行抗震设计时,要根据结构特点和场地地震波的频率特性,通过选用合适的减隔震装置、相应参数以及设置方案,合理分配结构的受力和变形。一方面,应将重点放在提高吸收能量能力从而增大阻尼和分散地震

相关文档
最新文档