MEMS应讲义用课件
合集下载
第12章 (3)教材配套课件
![第12章 (3)教材配套课件](https://img.taocdn.com/s3/m/93b429a56f1aff00bfd51e21.png)
第12章 MEMS传感器
2. 杨氏模量的尺度效应 体硅材料亦或微米尺度的材料,杨氏模量是一个常量, 而到了纳米尺度,则随着材料尺寸的变化而变化。例如,沿 [100]和 [110]方向的硅纳米板杨氏模量均随着板厚度 的减小而减小,并且减小的趋势随着板厚度的减小越来越明 显。当单晶硅薄到12nm厚时,等效杨氏模量从体硅材料的 170 GPa下降到的53 GPa。当板厚度逐渐增加超过50nm时, 两个方向上的杨氏模量均趋于定值,且都接近体硅材料的值。 纳米陶瓷材料弹性模量的尺度效应研究结果表明:当纳米晶 粒尺寸小于50nm时,纳米陶瓷材料的弹性模量随纳米晶粒 尺寸的减小而下降; 当纳米晶粒尺寸超过50nm以后,纳米 陶瓷材料的弹性模量基本保持不变。
第12章 MEMS传感器 图12.2 MEMS传感器原理图
第12章 MEMS传感器
12.1 MEMS 的技术特点
MEMS具有以下一些特点: (1) 微型化。MEMS 器件最显著的特点是体积微小,从 其尺寸可分为1~10 mm的微小机械,1 μm~1 mm的微机械, 1 nm~1μm的纳米机械。微细加工技术也可分为微米级、亚 微米级和纳米级微细加工等。 (2) 多样化。MEMS 的多样化表现在材料、应用领域以 及工艺等。 (3) 集成化。采用MEMS 工艺,可以把不同功能、不同 敏感方向的多个传感器或执行器集成于一体,形成微传感阵 列、或微执行器阵列,甚至把多种功能的器件集成在一起, 形成复杂的微系统。
第12章 MEMS传感器 图12.1 MEMS原理图
第12章 MEMS传感器
MEMS传感器是利用MEMS工艺将敏感元件和处理电路 集成在一个芯片上的传感器。如图12.2所示。敏感元件功能 与传统传感器相同,区别在于敏感元件是用MEMS工艺实现 的。处理电路是对敏感元件输出的数据进行计算和处理,以 补偿和校正敏感元件特性不理想引入的失真,获得准确的被 测量。MEMS传感器具有体积小、质量轻、响应快、灵敏度 高、易批产、成本低、功耗低、可靠性高、易于集成和实现 智能化等优势。在航天、航空、航海、兵器、机械、化工等 领域,尤其是汽车工业和移动电子产业获得较广泛应用。
MEMS传感器及其应用 ppt课件
![MEMS传感器及其应用 ppt课件](https://img.taocdn.com/s3/m/2f535be1d5bbfd0a795673bd.png)
微机电系统(Microelectromechanical Systems,MEMS)是将微电子技术与机械 工程融合到一起的一种工业技术,它的操 作范围在微米范围内。比它更小的,在纳 米范围的类似的技术被称为纳机电系统。 MEMS(微机电系统)是指集微型传感器、 执行器以及信号处理和控制电路、接口电 路、通信和电源于一体的微型机电系统。
典型的MEMS压力传感器
典型的MEMS压力传感器管芯(die)结构和电原理如 图7所示,左是电原理图,即由电阻应变片组成的惠斯顿 电桥,右是管芯内部结构图。典型的MEMS压力传感器管 芯可以用来生产各种压力传感器产品,如图8所示。 MEMS压力传感器管芯可以与仪表放大器和ADC管芯封装 在一个封装内(MCM),使产品设计师很容易使用这个 高度集成的产品设计最终产品。
MEMS压力传感器
MEMS压力传感器广泛应用于汽车电子:如 TPMS(轮胎压力监测系统)、发动机机油压力传 感器、汽车刹车系统空气压力传感器、汽车发动 机进气歧管压力传感器(TMAP)、柴油机共轨 压力传感器;消费电子,如胎压计、血压计、橱用 秤、健康秤,洗衣机、洗碗机、电冰箱、微波炉、 烤箱、吸尘器用压力传感器、洗衣机、饮水机、 洗碗机、太阳能热水器用液位控制压力传感器;工 业电子,如数字压力表、数字流量表、工业配料 称重等。
1)影像传感器 简单说就是相机镜头,由于只牵涉到微光学与微电子,没有机械 成份在里头,即便加入马达、机械驱动的镜头,这类的机械零件 也过大,不到「微」的地步,所以此属于光电半导体,属于光 学、 光电传感器。 2)亮度传感器
外界并不清楚iPhone4用何种方式感应环境光亮度,而最简单的实现方式 是用一个光敏电阻,或者,iPhone4直接用影像传感器充当亮度侦测,也 是可行。无论如此,此亦不带机械成份,属于光电类传感器,甚至可能 不是微型的,只是一般光学、光电传感器。
第8章(98)教材配套课件
![第8章(98)教材配套课件](https://img.taocdn.com/s3/m/b135bd1dddccda38376baf91.png)
2) 制造材料性能稳定 MEMS的主要材料是硅。硅材料的机械、电子材料性 能优越,强度、硬度和杨氏模量同铁相当,密度和导热性
能类似于铝。
第八章 MEMS 概 述
6
3) 批量生产成本低 MEMS器件适于大批量生产,成本低廉。MEMS能够 采用与半导体制造工艺类似的方法,像超大规模集成电路
芯片一样,一次制成大量完全相同的零部件,制造成本显
局限。除了消除光—电—光(OEO)网络的许多限制之外,
MEMS还有一个重要的优势,就是通过允许对光路外的光
交换进行外部控制,可以独立调节电子和光学参数,以获
得最优的整体性能。
第八章 MEMS 概 述
22
图8-3 二维和三维微反射光开关微结构
第八章 MEMS 概 述
23
5. 航空航天
航空航天领域是MEMS技术大显身手的地方。微型飞
展微型飞行器、战场侦察传感器、智能军用机器人、微惯
性导航系统,以增加武器效能。军用武器装备的小型化是
重要的发展趋势。为了适应这一发展的需要,主要采用的
是MEMS技术制造的传感器和微系统。
第八章 MEMS 概 述
25
8.4 MEMS技术与IC技术的差别
经过几十年的研究与开发,MEMS器件与系统的设计 及制造工艺逐步成熟,但产业化、市场化的MEMS 器件种 类并不多,许多MEMS未能走出实验室,充分发挥其潜在 应用。究其原因,在于MEMS器件是跨多学科的一项综合 技术,与传统的IC 器件有许多差别。
DNA分析、临床诊断、细胞病原体蛋白质分析分离等领域;
在医学中的应用主要为微创、无创治疗、各种内窥镜、药
物定点投送、参数检测等。
第八章 MEMS 概 述
21
《MEMS设计技术》课件
![《MEMS设计技术》课件](https://img.taocdn.com/s3/m/1c44514917fc700abb68a98271fe910ef12dae9b.png)
案例二:MEMS陀螺仪在导航系统中的应用
总结词
MEMS陀螺仪是导航系统中的关键传感 器,具有高精度、小型化和低成本等特 点。
VS
详细描述
MEMS陀螺仪采用微机械加工技术,将陀 螺仪的机械部分和电路部分集成在一个芯 片上,具有体积小、重量轻、成本低等优 点。它能够测量和保持方向信息,广泛应 用于航空、航天、军事等领域。在导航系 统中,MEMS陀螺仪可以提供高精度的角 度信息,用于计算航向、姿态和位置等参 数。
可靠性测试
进行全面的可靠性测试和评估,确保 MEMS器件的稳定性和可靠性。
06
MEMS设计案例分析
案例一:MEMS压力传感器在汽车中的应用
总结词
汽车压力传感器是MEMS技术的重要应用之一,具有高精度、可靠性和稳定性等特点。
详细描述
汽车压力传感器主要用于监测发动机进气歧管压力、燃油压力、气瓶压力等,以确保发动机正常工作 和提高燃油经济性。MEMS压力传感器采用微型机械加工技术,具有体积小、重量轻、功耗低等优点 ,能够实现高精度、快速响应和长期稳定性。
惯性传感器的设计需要综合考 虑材料、工艺和信号处理等因 素,以确保其性能和可靠性。
化学传感器设计
01
化学传感器是用于检测气体或 液体的化学成分的传感器,其 设计需要考虑选择性、灵敏度 、稳定性等因素。
02
常用的化学传感器类型包括电 化学式、光学式和热导式等, 其工作原理和结构各不相同。
03
化学传感器的设计需要综合考 虑材料、工艺和信号处理等因 素,以确保其性能和可靠性。
MEMS的发展历程与趋势
要点一
总结词
MEMS的发展经历了萌芽期、发展期和成熟期三个阶段, 未来将向更小尺寸、更高精度和智能化方向发展。
MEMS简介3PPT课件
![MEMS简介3PPT课件](https://img.taocdn.com/s3/m/a0ac8ed4cc17552706220821.png)
全球微机电系统市场销售额分析:
✓在全球前30名MEMS公司的榜单中,很多公司受惠于智能手机市场的 蓬勃发展。例如瑞声科技(AAC)凭借MEMS麦克风的强劲增长(2012 年营收增长90%,达到6500万美元),首次挤进全球前30名。 ✓中国驻极体麦克风供应商购买英飞凌(Infineon)的MEMS裸片,然后 自己做封装、测试和销售,并成为苹果iPhone的第二货源。
• 意法半导体于2006 年成为全球首家以200 mm 晶圆生产MEMS 传感 器的厂商;
• IHS iSuppli 的统计数据显示:
a. 2012 年全球MEMS 芯片市场成长约5%,规模达到83 亿美元; b. 意法半导体与博世并列全球第一大MEMS 供应商,其中意法半导体营收年成长率23%
,博世年成长率为8%;
MEMS产业现状 及全球MEMS市场
(1)美国
MEMS的研究在60年代首先从斯坦福大学开始,逐步扩展到佐治亚理 工学院和加利福尼亚大学洛杉矶分校等大学,众多美国大学拥有了 100~150mm晶圆生产线。
(2)法国
法国有关MEMS的研发基地较为集中,主要由国立研究所法国LETI( Laboratoire dElectronique de Technologie de lInformation,电子和信息 技术实验室)承担。
➢ MEMS与CMOS制程技术的整合
➢ 3D 封装技术在异质整合特性下,可进一步整合模拟RF、数字Logic、 Memory、Sensor、混合讯号、MEMS 等各种组件
MEMS产业现状 及全球MEMS市场
MEMS产业现状 及全球MEMS市场
3.2.3 MEMS晶圆代工厂
• 近几年以来美国也有几家规模较小的晶圆代工厂,持续投入资源用 于MEMS晶圆代工;
✓在全球前30名MEMS公司的榜单中,很多公司受惠于智能手机市场的 蓬勃发展。例如瑞声科技(AAC)凭借MEMS麦克风的强劲增长(2012 年营收增长90%,达到6500万美元),首次挤进全球前30名。 ✓中国驻极体麦克风供应商购买英飞凌(Infineon)的MEMS裸片,然后 自己做封装、测试和销售,并成为苹果iPhone的第二货源。
• 意法半导体于2006 年成为全球首家以200 mm 晶圆生产MEMS 传感 器的厂商;
• IHS iSuppli 的统计数据显示:
a. 2012 年全球MEMS 芯片市场成长约5%,规模达到83 亿美元; b. 意法半导体与博世并列全球第一大MEMS 供应商,其中意法半导体营收年成长率23%
,博世年成长率为8%;
MEMS产业现状 及全球MEMS市场
(1)美国
MEMS的研究在60年代首先从斯坦福大学开始,逐步扩展到佐治亚理 工学院和加利福尼亚大学洛杉矶分校等大学,众多美国大学拥有了 100~150mm晶圆生产线。
(2)法国
法国有关MEMS的研发基地较为集中,主要由国立研究所法国LETI( Laboratoire dElectronique de Technologie de lInformation,电子和信息 技术实验室)承担。
➢ MEMS与CMOS制程技术的整合
➢ 3D 封装技术在异质整合特性下,可进一步整合模拟RF、数字Logic、 Memory、Sensor、混合讯号、MEMS 等各种组件
MEMS产业现状 及全球MEMS市场
MEMS产业现状 及全球MEMS市场
3.2.3 MEMS晶圆代工厂
• 近几年以来美国也有几家规模较小的晶圆代工厂,持续投入资源用 于MEMS晶圆代工;
MEMS加速度传感器PPT课件
![MEMS加速度传感器PPT课件](https://img.taocdn.com/s3/m/86c3df3526284b73f242336c1eb91a37f0113262.png)
G. rLoOuGpO3
压阻式加速度传感器
工艺流程
(d)在两面涂上光刻胶作为 湿法刻蚀的梁结构 (e)去除光刻胶以后两面重 新被氧化生成SiO2,随后再 EVG-100覆盖 (f)利用剩下的光刻胶进行刻 蚀然后移除光刻胶
G. rLoOuGpO3
压阻式加速度传感器
工艺流程
(g)等刻蚀完成,对 称梁结构形成
MLOEGMOS
传感器技术
加速度传感器
.
目录
1
简述加速度传感器
2
电阻式加速度传感器
3
电容式加速度传感器
4
其他类型加速度传感器
G. rLoOuGpO3
篇前语
❖ MEMS是什么?加速度传感器与MEMS什么关 系?
▪ 微机电系统(MEMS, Micro-ElectroMechanical System),也叫做微电子机械系统
目前广泛应用制备光学加速度计的
光波导式 迈克尔逊、马赫—曾德等干涉仪的
核心部件都包含3 dB耦合器。
微谐振式
谐振式加速度传感器是一种典型的 微机械惯性器件,基本工作原理是 利用振梁的力频特性,通过检测谐 振频率变化量获取输入的加速度。
热对流式
微型热对流加速度计是利用封闭空 气囊内的自由热对流对加速度敏感 性。两个温度传感器对称地在有气 体的腔体两侧,中间有一个热源。
•加速度传感器中的分类
加速度传感器的原理随其应用而不同,有压阻式,电容式,压 电式,谐振式、伺服式等。
G. rLoOuGpO3
压阻式加速度传感器
压阻式压阻式器件是最早微型化和商业化的一类加速度传感器。基于世界领先的 MEMS硅微加工技术,压阻式加速度传感器具有体积小、低功耗等特点,易于集 成在各种模拟和数字电路中,广泛应用于汽车碰撞实验、测试仪器、设备振动监 测等领域。
压阻式加速度传感器
工艺流程
(d)在两面涂上光刻胶作为 湿法刻蚀的梁结构 (e)去除光刻胶以后两面重 新被氧化生成SiO2,随后再 EVG-100覆盖 (f)利用剩下的光刻胶进行刻 蚀然后移除光刻胶
G. rLoOuGpO3
压阻式加速度传感器
工艺流程
(g)等刻蚀完成,对 称梁结构形成
MLOEGMOS
传感器技术
加速度传感器
.
目录
1
简述加速度传感器
2
电阻式加速度传感器
3
电容式加速度传感器
4
其他类型加速度传感器
G. rLoOuGpO3
篇前语
❖ MEMS是什么?加速度传感器与MEMS什么关 系?
▪ 微机电系统(MEMS, Micro-ElectroMechanical System),也叫做微电子机械系统
目前广泛应用制备光学加速度计的
光波导式 迈克尔逊、马赫—曾德等干涉仪的
核心部件都包含3 dB耦合器。
微谐振式
谐振式加速度传感器是一种典型的 微机械惯性器件,基本工作原理是 利用振梁的力频特性,通过检测谐 振频率变化量获取输入的加速度。
热对流式
微型热对流加速度计是利用封闭空 气囊内的自由热对流对加速度敏感 性。两个温度传感器对称地在有气 体的腔体两侧,中间有一个热源。
•加速度传感器中的分类
加速度传感器的原理随其应用而不同,有压阻式,电容式,压 电式,谐振式、伺服式等。
G. rLoOuGpO3
压阻式加速度传感器
压阻式压阻式器件是最早微型化和商业化的一类加速度传感器。基于世界领先的 MEMS硅微加工技术,压阻式加速度传感器具有体积小、低功耗等特点,易于集 成在各种模拟和数字电路中,广泛应用于汽车碰撞实验、测试仪器、设备振动监 测等领域。
第十五章MEMS传感器讲述课件
![第十五章MEMS传感器讲述课件](https://img.taocdn.com/s3/m/aaa229512379168884868762caaedd3383c4b595.png)
感谢您的观看
THANKS
应用范围
体微加工技术适用于制造 一些特殊类型的MEMS传 感器,如流体传感器、生 物传感器等。
键合与封装技术
定义
键合与封装技术是将MEMS传感 器与外部电路和保护壳体进行连
接和封装的过程。
工艺流程
键合与封装技术包括芯片粘接、引 线键合、密封填充等步骤,以确保 MEMS传感器能够在实际应用中稳 定工作。
。
集成化
MEMS传感器通常与其 他电子器件集成在一起 ,形成一个完整的系统
。
高精度
MEMS传感器的精度非 常高,能够实现高精度
的测量。
低功耗
MEMS传感器的功耗非 常低,能够延长设备的
续航时间。
材料选择
单晶硅
单晶硅是MEMS传感器的主要材料之一,具 有高强度、高刚度和良好的热稳定性。
多晶硅
多晶硅材料具有较好的塑性和韧性,适合用 于制造柔性MEMS传感器。
未来发展趋势
01
新材料应用
随着新材料的发展,MEMS传 感器的性能将得到进一步提升 。
02
智能化
未来MEMS传感器将更加智能 化,能够自适应调整参数以提 高性能。
03
网络化
随着物联网技术的发展, MEMS传感器将更加网络化, 实现远程监控和管理。
04
个性化与定制化
随着需求的多样化,MEMS传 感器的设计和应用将更加个性 化与定制化。
分辨率与精度
分辨率
分辨率是指传感器能够检测到的 最小输入信号变化量。分辨率越 高,传感器能够检测到的信号变 化越细微。
精度
精度是指传感器测量结果的准确 性。高精度的传感器能够提供更 接近真实值的测量结果。
《MEMS技术及其应用》课件
![《MEMS技术及其应用》课件](https://img.taocdn.com/s3/m/4d62d158fe00bed5b9f3f90f76c66137ee064faa.png)
MEMS技术及其应用
欢迎来到《MEMS技术及其应用》PPT课件,我们将介绍MEMS技术的基本原 理和应用领域,以及其未来发展趋势。
什么是MEMS技术
MEMS技术是微电子机械系统(Micro-Electro-Mechanical Systems)的简称。它是一种将微尺寸机械系统、电子 元器件和集成电路技术结合在一起的技术。 MEMS技术的发展历程经历了多年的研究和创新,目前已在许多领域得到广泛应用。 MEMS技术主要应用于传感器、执行器、生物医学、无线通信等领域,为现代科技带来了巨大的进步。
MEMS执行器的应用
MEMS执行器是一种能够通过控制电信号产生机械运动的微小器件,具有高精 度和高响应速度的特点。
MEMS执行器在光学、声学、微流控等领域发挥着重要作用,例如光学开关、 喷墨打印头和微型马达等。
MEMS执行器的典型应用还包括振动马达、微型阀门和微钳等,为各种微机电 系统提供动力和控制。
MEMS感器的应用
MEMS传感器是一种能够转换感知参数为电信号的微小器件,具有体积小、功 耗低和高灵敏度的特点。
MEMS传感器广泛应用于汽车、智能手机、医疗设备等领域,为实时监测、精 确测量和智能控制提供了关键支持。
典型的MEMS传感器应用包括加速度计、陀螺仪、压力传感器等,在自动驾驶、 健康监测等方面具有重要作用。
MEMS技术未来发展趋势
MEMS技术未来的发展方向包括更小尺寸、更低功耗、更高性能、更多功能的 微型器件和系统。
MEMS技术在人工智能、物联网、无人驾驶等领域具有极大的应用前景,将为 社会带来更多便利和创新。
随着MEMS技术的进一步发展,我们可以期待更多智能、高效和可靠的微型设 备的出现。
MEMS技术的基本原理
MEMS技术利用微纳加工艺制造微小的机械结构,并将其与电子元器件集成在一起,形成复杂的功能器件。
欢迎来到《MEMS技术及其应用》PPT课件,我们将介绍MEMS技术的基本原 理和应用领域,以及其未来发展趋势。
什么是MEMS技术
MEMS技术是微电子机械系统(Micro-Electro-Mechanical Systems)的简称。它是一种将微尺寸机械系统、电子 元器件和集成电路技术结合在一起的技术。 MEMS技术的发展历程经历了多年的研究和创新,目前已在许多领域得到广泛应用。 MEMS技术主要应用于传感器、执行器、生物医学、无线通信等领域,为现代科技带来了巨大的进步。
MEMS执行器的应用
MEMS执行器是一种能够通过控制电信号产生机械运动的微小器件,具有高精 度和高响应速度的特点。
MEMS执行器在光学、声学、微流控等领域发挥着重要作用,例如光学开关、 喷墨打印头和微型马达等。
MEMS执行器的典型应用还包括振动马达、微型阀门和微钳等,为各种微机电 系统提供动力和控制。
MEMS感器的应用
MEMS传感器是一种能够转换感知参数为电信号的微小器件,具有体积小、功 耗低和高灵敏度的特点。
MEMS传感器广泛应用于汽车、智能手机、医疗设备等领域,为实时监测、精 确测量和智能控制提供了关键支持。
典型的MEMS传感器应用包括加速度计、陀螺仪、压力传感器等,在自动驾驶、 健康监测等方面具有重要作用。
MEMS技术未来发展趋势
MEMS技术未来的发展方向包括更小尺寸、更低功耗、更高性能、更多功能的 微型器件和系统。
MEMS技术在人工智能、物联网、无人驾驶等领域具有极大的应用前景,将为 社会带来更多便利和创新。
随着MEMS技术的进一步发展,我们可以期待更多智能、高效和可靠的微型设 备的出现。
MEMS技术的基本原理
MEMS技术利用微纳加工艺制造微小的机械结构,并将其与电子元器件集成在一起,形成复杂的功能器件。
《MEMS微电感》课件
![《MEMS微电感》课件](https://img.taocdn.com/s3/m/7fbd9a9948649b6648d7c1c708a1284ac85005d0.png)
应用领域
01
通信领域
用于无线通信、卫星通信、雷达等高频信号处理系统。
02
能源领域
用于微型电源、储能系统等。
03
生物医学领域
用于生物传感器、医学诊断和治疗等。
02 MEMS微电感的设计与制造
设计流程
A
需求分析
明确MEMS微电感的应用场景和性能要求,如 工作频率、Q值、尺寸等。
原理图设计
根据需求,设计MEMS微电感的原理图, 包括结构、形状、尺寸等。
B
C
仿真优化
利用仿真软件对设计的MEMS微电感进行性 能分析和优化,提高性能参数。
版图绘制
将原理图转化为制版图,为后续制造提供依 据。
D
材料选择
01
02
03
材料类型
选择适合MEMS微电感制 造的材料,如单晶硅、多 晶硅、氮化硅等。
材料纯度
确保所选材料的纯度,以 满足MEMS微电感的性能 要求。
材料特性
《MEMS微电感》 PPT课件
目录
• MEMS微电感简介 • MEMS微电感的设计与制造 • MEMS微电感的性能测试与评估 • MEMS微电感的发展趋势与挑战 • MEMS微电感的应用案例
01 MEMS微电感简介
定义与特性
定义
MEMS微电感是指利用微电子机械系 统(MEMS)技术制作的微型电感器 。
案例二:MEMS传感器
总结词
MEMS传感器是利用微电感技术实现传感器功能的重要应用,具有高精度、高可靠性、低功耗等优点 。
详细描述
MEMS传感器利用微电感作为敏感元件,可以感知温度、压力、磁场、加速度等物理量,广泛应用于 汽车、医疗、航空航天等领域。MEMS传感器的精度和可靠性高,能够提供准确的测量数据,并且具 有低功耗的特点,能够延长设备的续航时间。
MEMS传感器技术 ppt课件
![MEMS传感器技术 ppt课件](https://img.taocdn.com/s3/m/e71a852feff9aef8941e0653.png)
几种常见的MEMS传感器
微机械位移控制器
微机械位移控制器的主要应用是计算机 硬盘的磁头定位系统, 硬盘的磁道密度很 快将达到0. 25μm/ 道,此时对应的移动定 位精度是0. 025μm ,这时解决磁头移动控 制的办法是在现有位置控制系统上附加 一个微机械次级控制系统。
MEMS的基本介绍
MEMS(微机电系统),同时也是一门技术, 是在一个硅基板上,微米范围内集成了 微型传感器、执行器以及信号处理和控 制电路、接口电路、通信和电源于一体 的微型机电系统的高新技术。
MEMS的基本介绍
MEMS又是一种产业,采用ME空微电子器件、电 力电子器件等在航空、航天、汽车、农 业、生物医学、环境监控、军事以及几 乎人们所接触到的所有领域中都有着十 分广阔的应用前景。
MEMS的基本分类
MEMS一般可以以其核心元件分为两类: 传感型MEMS、致动型MEMS。
传感型MEMS
能量供给
输入信号
微传感元件
传输单元
输出信号
致动型MEMS
能量供给
输出动作
微致动元件
传输单元
几种常见的MEMS传感器
微压力传感器
微机械压力传感器是最早开始研制的微机械产 品,也是微机械技术中最成熟、最早开始产业化 的产品。从信号检测方式来看, 微压力传感器 可分为压阻式和电容式两类, 分别以体微机械 加工技术和牺牲层技术为主制造;从敏感膜结构 来看,微压力传感器可分为圆形、方形、矩形、 E 形等多种结构。
MEMS的加工方法
微机械加工方法LIGA 微机械加工方法LIGA以德国为代表,LIGA~IY法 是指采用同步x射线深层光刻、注塑复制和微 电铸制模等主要工艺步骤组成的一种综合性微 机械加工技术。LIGA技术首先采用同步X射线 光刻技术光刻出所要生产的图形,然后采用电 铸的方法加工出与光刻图形相反的金属模具撮 后采用微塑注来制备微机械结构。