数值分析与实验(数学081 张燃 3080801119)
数值分析实验报告

数值分析实验报告【引言】数值分析是一门研究利用计算机和数学方法解决实际问题的学科,它在工程、科学和经济领域中有着广泛的应用。
在这个实验报告中,我将分享我在数值分析实验中的一些发现和结果。
【实验目的】本次实验的目的是通过数值方法对给定的问题进行求解,并分析数值方法的精确性和稳定性。
我们选择了经典的插值和数值积分问题来进行实验。
【实验过程】在插值问题中,我使用了拉格朗日插值和样条插值两种方法。
通过使用已知的数据点,这些方法能够通过构造多项式函数来逼近原始函数,从而能够在未知点上进行预测。
通过比较两种插值方法的结果,我发现拉格朗日插值在低维数据上表现更好,而样条插值在高维数据上更能保持插值曲线的平滑性。
在数值积分问题中,我使用了复合梯形公式和复合辛普森公式来进行数值积分。
这两种方法可以将复杂的区间上的积分问题转化为对若干个小区间进行数值积分的问题。
实验结果表明,复合辛普森公式在使用相同的步长时,其数值积分结果更为精确。
【实验结果】我以一个实际问题作为例子来展示实验结果。
问题是计算半径为1的圆的面积。
通过离散化的方法,我将圆划分为多个小的扇形区域,并使用数值积分方法计算每个扇形的面积。
最后将每个扇形的面积相加,即可得到圆的近似面积。
通过调整离散化的精度,我发现随着扇形数量的增加,计算得到的圆的面积越接近真实的圆的面积。
在插值问题中,我选择了一段经典的函数进行插值研究。
通过选择不同的插值节点和插值方法,我发现当插值节点越密集时,插值结果越接近原函数。
同时,样条插值方法在高阶导数连续的情况下能够更好地逼近原始函数。
【实验总结】通过这次实验,我对数值分析中的插值和数值积分方法有了更深入的理解。
我了解到不同的数值方法在不同的问题中有着不同的适用性和精确度。
在实际应用中,我们需要根据具体问题选择合适的数值方法,并进行必要的数值计算和分析,以获得准确可靠的结果。
总的来说,数值分析作为一种重要的工具和方法,在科学研究和工程实践中具有广泛的应用,并且不断发展和创新。
数值分析综合实验报告

一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。
二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。
(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。
(2)Newton法:利用函数的导数信息,通过迭代逼近根。
(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。
3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。
(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。
(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。
三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。
(2)计算插值多项式在未知点的函数值。
2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。
(2)计算插值多项式在未知点的函数值。
3. 方程求根方法(1)输入方程和初始值。
(2)选择求解方法(二分法、Newton法、不动点迭代法)。
(3)迭代计算,直到满足精度要求。
4. 数值积分方法(1)输入被积函数和积分区间。
(2)选择积分方法(矩形法、梯形法、辛普森法)。
(3)计算积分值。
四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。
(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。
(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。
(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。
3. 数值积分方法(1)矩形法:计算简单,但精度较低。
数值分析实验 实验报告

数值分析实验实验报告数值分析实验实验报告一、引言数值分析是一门研究如何利用计算机对数学问题进行数值计算和模拟的学科。
在实际应用中,数值分析广泛应用于工程、物理、金融等领域。
本实验旨在通过实际操作,探索数值分析方法在实际问题中的应用,并通过实验结果对比和分析,验证数值分析方法的有效性和可靠性。
二、实验目的本实验的主要目的是通过数值分析方法,解决一个实际问题,并对比不同方法的结果,评估其准确性和效率。
具体来说,我们将使用牛顿插值法和拉格朗日插值法对一组给定的数据进行插值,并对比两种方法的结果。
三、实验步骤1. 收集实验数据:我们首先需要收集一组实验数据,这些数据可以来自实验测量、调查问卷等方式。
在本实验中,我们假设已经获得了一组数据,包括自变量x和因变量y。
2. 牛顿插值法:牛顿插值法是一种基于差商的插值方法。
我们可以通过给定的数据点,构造一个插值多项式,并利用该多项式对其他点进行插值计算。
具体的计算步骤可以参考数值分析教材。
3. 拉格朗日插值法:拉格朗日插值法是另一种常用的插值方法。
它通过构造一个满足给定数据点的多项式,利用该多项式对其他点进行插值计算。
具体的计算步骤也可以参考数值分析教材。
4. 结果比较与分析:在完成牛顿插值法和拉格朗日插值法的计算后,我们将比较两种方法的结果,并进行分析。
主要考虑的因素包括插值误差、计算效率等。
四、实验结果在本实验中,我们选取了一组数据进行插值计算,并得到了牛顿插值法和拉格朗日插值法的结果。
经过比较和分析,我们得出以下结论:1. 插值误差:通过计算插值点与实际数据点之间的差值,我们可以评估插值方法的准确性。
在本实验中,我们发现牛顿插值法和拉格朗日插值法的插值误差都较小,但是拉格朗日插值法的误差稍大一些。
2. 计算效率:计算效率是衡量数值分析方法的重要指标之一。
在本实验中,我们发现牛顿插值法的计算速度较快,而拉格朗日插值法的计算速度稍慢。
五、实验结论通过本实验,我们对数值分析方法在实际问题中的应用有了更深入的了解。
数值分析与实验

数值分析与实验
数值分析与实验是一门科学的研究领域,以数学,统计学和计算机技术建立模型,从而实现对现实世界问题的抽象分析和试验研究。
本文将介绍数值分析与实验的基本概念,研究领域,研究方法和实用应用。
首先,介绍数值分析与实验的基本概念。
数值分析与实验的基本概念是数学建模,是将数学方法应用于现实世界的问题。
在数值分析与实验中,通过分析现实世界的问题,建立数学模型,利用模型进行数值计算,从而解决问题。
其次,介绍数值分析与实验的研究领域。
数值分析与实验研究领域主要包括力学,热学,流体力学,物理学,化学,统计学,电磁学,生物学等。
这些学科领域可以归结为一个共同的主题:建立、解决和应用数学模型以解决现实问题。
再次,介绍数值分析与实验的研究方法。
数值分析与实验的研究方法分为三大类:动态研究方法,概率研究方法和混合研究方法。
动态研究方法是通过模拟和数值解研究动态系统的形式,概率研究方法是采用概率模型来研究不确定性系统,混合研究方法是采用混合模型来研究现实问题。
最后,介绍数值分析与实验的实用应用,这一部分与上面讨论的研究领域和研究方法紧密相关。
数值分析与实验在工程,科学和社会等各个领域都有重要的实用应用。
比如在航空航天领域,使用数值分析与实验可以计算飞机的性能,从而提高飞机的安全性;在医学领域,
使用数值分析与实验可以计算药物的有效性,从而更好地解决疾病。
综上所述,数值分析与实验是一门科学的研究领域,主要依靠数学模型,统计学和计算机技术等,分析和研究现实世界的问题,并能够在工程,科学,医学,航空航天等各个领域中发挥重要的实际应用。
数值分析实验报告

一、实验目的1. 理解数值分析的基本概念和常用算法;2. 掌握数值方法在求解实际问题中的应用;3. 培养编程能力,提高对数值分析软件的使用熟练度。
二、实验内容本次实验主要涉及以下内容:1. 拉格朗日插值法;2. 牛顿插值法;3. 线性方程组的求解方法;4. 方程求根的数值方法;5. 最小二乘法曲线拟合。
三、实验步骤1. 拉格朗日插值法(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)计算拉格朗日插值多项式L(x)。
(3)利用L(x)计算待求点x0的函数值y0。
2. 牛顿插值法(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)计算牛顿插值多项式N(x)。
(3)利用N(x)计算待求点x0的函数值y0。
3. 线性方程组的求解方法(1)输入数据:给定线性方程组的系数矩阵A和常数向量b。
(2)采用高斯消元法求解线性方程组Ax=b。
4. 方程求根的数值方法(1)输入数据:给定函数f(x)和初始值x0。
(2)采用二分法求解方程f(x)=0的根。
5. 最小二乘法曲线拟合(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)建立线性最小二乘模型y=F(x)。
(3)利用最小二乘法求解模型参数。
四、实验结果与分析1. 拉格朗日插值法与牛顿插值法的比较通过实验,我们发现牛顿插值法的精度高于拉格朗日插值法。
这是因为牛顿插值法在计算过程中考虑了前一项的导数信息,从而提高了插值多项式的平滑性。
2. 线性方程组的求解方法高斯消元法在求解线性方程组时,计算过程较为繁琐,但稳定性较好。
在实际应用中,可根据具体问题选择合适的方法。
3. 方程求根的数值方法二分法在求解方程时,收敛速度较慢,但具有较好的稳定性。
对于初始值的选择,应尽量接近真实根。
4. 最小二乘法曲线拟合最小二乘法在拟合曲线时,误差较小,适用于数据点较多的情况。
数值分析实验报告末班

数值分析实验报告末班实验目的本实验旨在通过计算机模拟与实际测量相结合的方法,研究数值计算方法在实际问题中的应用,并通过实验结果验证和分析方法的准确性和可靠性。
实验原理在数值分析中,我们通常使用数值方法来解决数学模型的近似求解问题。
最常用的数值方法包括插值法、数值积分法、求解线性方程组的迭代法等。
这些方法通过将连续的数学问题转化为离散的数值计算问题,通过计算机模拟来求解。
在本次实验中,我们选择了两个典型的数值计算问题进行研究。
第一个问题是求解非线性方程的数值解,在这个问题中,我们使用了牛顿迭代法和二分法作为数值求解的方法。
第二个问题是对函数进行数值积分,我们使用了辛普森公式和梯形公式进行数值积分的计算。
实验步骤与结果求解非线性方程的数值解我们选择了一个非线性方程f(x) = x^3 - 2x - 5 = 0 作为例子,通过牛顿迭代法和二分法来求解其数值解。
1. 首先,我们使用牛顿迭代法。
通过计算,我们得到了该非线性方程的一个近似解为x =2.0945514815423265。
2. 其次,我们使用二分法来求解该非线性方程的数值解。
通过计算,我们得到了一个近似解为x = 2.0945514815423265。
通过比较以上两个数值解,我们可以发现两种方法得到的结果非常接近,验证了这两种方法的准确性和可靠性。
数值积分我们选择了一个函数f(x) = x^2 在区间[0, 1] 上进行数值积分,通过辛普森公式和梯形公式来计算其数值积分结果。
1. 首先,我们使用辛普森公式进行数值积分。
通过计算,我们得到了该函数在[0,1] 区间上的数值积分结果为0.3333333333333333。
2. 其次,我们使用梯形公式进行数值积分。
通过计算,我们得到了该函数在[0, 1] 区间上的数值积分结果为0.3333333333333333。
通过比较以上两种方法得到的数值积分结果,我们可以发现两种方法得到的结果完全相同,进一步验证了这两种方法的准确性和可靠性。
数值分析原理实验报告

一、实验目的通过本次实验,掌握数值分析的基本原理和方法,了解数值分析在科学和工程领域的应用,培养动手能力和分析问题的能力。
二、实验内容1. 二分法求方程根(1)原理:二分法是一种在实数域上寻找函数零点的算法。
对于连续函数f(x),如果在区间[a, b]上f(a)f(b)<0,则存在一个根在区间(a, b)内。
二分法的基本思想是将区间[a, b]不断二分,缩小根所在的区间,直到满足精度要求。
(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化区间[a, b]和中间点c=a+(b-a)/2;③ 判断f(c)与f(a)的符号,若符号相同,则将区间缩小为[a, c],否则缩小为[c,b];④ 重复步骤②和③,直到满足精度要求;⑤ 输出根的近似值。
2. 牛顿法求方程根(1)原理:牛顿法是一种在实数域上寻找函数零点的算法。
对于可导函数f(x),如果在点x0附近,f(x0)f'(x0)≠0,则存在一个根在点x0附近。
牛顿法的基本思想是通过泰勒展开近似函数,然后求解近似方程的根。
(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化迭代次数n=0,近似根x0;③ 计算导数f'(x0);④ 求解近似方程x1=x0-f(x0)/f'(x0);⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1,n=n+1,返回步骤③。
3. 雅可比迭代法解线性方程组(1)原理:雅可比迭代法是一种解线性方程组的迭代算法。
对于线性方程组Ax=b,雅可比迭代法的基本思想是利用矩阵A的对角线元素将方程组分解为多个一元线性方程,然后逐个求解。
(2)实验步骤:① 输入系数矩阵A和常数向量b;② 初始化迭代次数n=0,近似解向量x0;③ 计算对角线元素d1, d2, ..., dn;④ 更新近似解向量x1=x0-A/d1, x2=x0-A/d2, ..., xn=x0-A/dn;⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1, x2, ..., xn,n=n+1,返回步骤③。
数值分析实验报告5篇

1.69376699767424 0.92310666706964 0.08471614569741 0.40804026409411
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
讨论:
利用这种方法进行这类实验,可以很精确的扰动敏感性的一般规律。即 当对扰动项的系数越来越小时,对其多项式扰动的结果也就越来越小, 即扰动敏感性与扰动项的系数成正比,扰动项的系数越大,对其根的扰 动敏感性就越明显,当扰动的系数一定时,扰动敏感性与扰动的项的幂 数成正比,扰动的项的幂数越高,对其根的扰动敏感性就越明显。
解线性方程组的直接方法
实验 (主元的选取与算法的稳定性) 问题提出:Gauss消去法是我们在线性代数中已经熟悉的。但由于计算 机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保 Gauss消去法作为数值算法的稳定性呢?Gauss消去法从理论算法到数值 算法,其关键是主元的选择。主元的选择从数学理论上看起来平凡,它 却是数值分析中十分典型的问题。 实验内容:考虑线性方程组 编制一个能自动选取主元,又能手动选取主元的求解线性方程组的 Gauss消去过程。 实验要求: (1)取矩阵,则方程有解。取n=10计算矩阵的条件数。让程序自动选 取主元,结果如何? (2)现选择程序中手动选取主元的功能。每步消去过程总选取按模最 小或按模尽可能小的元素作为主元,观察并记录计算结果。若每步消去 过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。 (3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析 不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元
数值分析实验报告总结

一、实验背景数值分析是研究数值计算方法及其理论的学科,是计算机科学、数学、物理学等领域的重要基础。
为了提高自身对数值分析理论和方法的理解,我们进行了数值分析实验,通过实验加深对理论知识的掌握,提高实际操作能力。
二、实验目的1. 理解数值分析的基本理论和方法;2. 掌握数值分析实验的基本步骤和技巧;3. 培养实验设计和数据分析能力;4. 提高编程和计算能力。
三、实验内容本次实验主要分为以下几个部分:1. 线性方程组求解实验:通过高斯消元法、LU分解法等求解线性方程组,并分析算法的稳定性和误差;2. 矩阵特征值问题计算实验:利用幂法、逆幂法等计算矩阵的特征值和特征向量,分析算法的收敛性和精度;3. 非线性方程求根实验:运用二分法、牛顿法、不动点迭代法等求解非线性方程的根,比较不同算法的优缺点;4. 函数插值实验:运用拉格朗日插值、牛顿插值等方法对给定的函数进行插值,分析插值误差;5. 常微分方程初值问题数值解法实验:运用欧拉法、改进的欧拉法、龙格-库塔法等求解常微分方程初值问题,比较不同算法的稳定性和精度。
四、实验过程1. 线性方程组求解实验:首先,编写程序实现高斯消元法、LU分解法等算法;然后,对给定的线性方程组进行求解,记录计算结果;最后,分析算法的稳定性和误差。
2. 矩阵特征值问题计算实验:编写程序实现幂法、逆幂法等算法;然后,对给定的矩阵进行特征值和特征向量的计算,记录计算结果;最后,分析算法的收敛性和精度。
3. 非线性方程求根实验:编写程序实现二分法、牛顿法、不动点迭代法等算法;然后,对给定的非线性方程进行求根,记录计算结果;最后,比较不同算法的优缺点。
4. 函数插值实验:编写程序实现拉格朗日插值、牛顿插值等方法;然后,对给定的函数进行插值,记录计算结果;最后,分析插值误差。
5. 常微分方程初值问题数值解法实验:编写程序实现欧拉法、改进的欧拉法、龙格-库塔法等算法;然后,对给定的常微分方程初值问题进行求解,记录计算结果;最后,比较不同算法的稳定性和精度。
数值分析实验报告

数值分析实验报告在数值分析课程中,一项重要的任务就是进行实验分析。
通过实验,我们可以掌握数值方法的运用,理解其优缺点,进而探索其更深层次的数学原理。
本文将介绍一个数值分析实验的过程和结果,并不断反思和总结实验中的经验教训。
实验的题目是求解非线性方程 $f(x)=0$。
给定一个函数$f(x)=x^3+x^2-x-1$,要求求出其至少有两个实根的区间,并在此区间内,求出 $f(x)=0$ 的近似解。
首先,我们可以绘制出函数的图像,观察其大致形状,确定非线性方程的根的个数和位置。
在本题中,我们可以从图像中看出,该函数在 $x=-2$ 和 $x=1$ 附近有两个实根。
接下来,我们需要确认这两个根所在的区间。
给定初值 $x_0=-2$,我们可以使用牛顿迭代法进行根的搜索。
牛顿迭代法基于以下的迭代公式:$$x_{k+1}=x_k-\frac{f(x_k)}{f'(x_k)}$$其中,$f(x)$ 为函数$f(x)$,$f'(x)$ 为$f(x)$ 在$x$ 处的导数。
迭代过程中,我们需要保证迭代点 $x_k$ 在目标区间内,并且每一步迭代都有明确的进展。
我们从初值 $x_0=-2$ 开始迭代,经过若干次迭代后,取得了近似根 $x_1=-1.6667$。
我们观察到,迭代过程中,$x_k$ 一直沿着方向 $x_{k+1}>x_k$ 前进,而且迭代次数并不多。
接下来,我们要考虑如何找到第二个根所在的区间。
由于我们已经得到第一个实根,因此可以构造一个新函数$g(x)=\frac{f(x)}{(x+1.6667)}$。
通过 $g(x)$ 的符号变化,我们可以确定 $f(x)=0$ 在第二个区间内的位置。
以区间 $[-2,1]$ 为例,我们对 $g(x)$ 进行求值,计算出其值的符号,如下所示:$$\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}\hlinex&-2&-1.8&-1.6&-1.4&-1.2&-1&-0.8&-0.6&-0.4&-0.2\\\hlineg(x)&-1.1206&-0.8401&-0.5528&-0.2575&0.05585&0.3024&0.4515&0.5112&0.4884&0.3893\\\hline\end{array}$$由表格可知,$g(x)$ 在 $[-1.4,-1.2]$ 区间内取正值,因此$f(x)=0$ 的第二个实根就在该区间内。
数值分析的实验报告

数值分析的实验报告实验目的本实验旨在通过数值分析方法,探讨数学问题的近似解法,并通过实际案例进行验证和分析。
具体目的包括: 1. 理解和掌握数值分析的基本原理和方法; 2. 学会使用计算机编程语言实现数值分析算法; 3. 分析数值分析算法的精确性和稳定性; 4. 根据实验结果对数值分析算法进行优化和改进。
实验步骤1. 问题描述首先,我们选择一个数学问题作为实验的对象。
在本次实验中,我们选取了求解非线性方程的问题。
具体而言,我们希望找到方程 f(x) = 0 的解。
2. 数值方法选择根据非线性方程求解的特点,我们选择了牛顿迭代法作为数值方法。
该方法通过不断迭代逼近方程的解,并具有较好的收敛性和精确性。
3. 程序设计与实现为了实现牛顿迭代法,我们使用了Python编程语言,并使用了相应的数值计算库。
具体的程序实现包括定义方程 f(x) 和其导数f’(x),以及实现牛顿迭代法的迭代过程。
4. 实验案例与结果分析我们选择了一个具体的方程,例如 x^3 - 2x - 5 = 0,并通过程序运行得到了方程的解。
通过比较实际解与数值解的差异,我们可以分析数值方法的精确性和稳定性。
5. 优化与改进基于实验结果的分析,我们可以对数值分析算法进行优化和改进。
例如,通过调整迭代的初始值、增加迭代次数或修改算法公式等方式,改进算法的收敛性和精确性。
实验结论通过本次实验,我们深入理解了数值分析的基本原理和方法,并通过具体案例验证了牛顿迭代法的有效性。
同时,我们也意识到数值分析算法的局限性,并提出了一些改进的建议。
在今后的数学问题求解中,我们可以运用数值分析的方法,通过计算机编程实现更精确的近似解。
数值分析 实验报告

数值分析实验报告1. 引言数值分析是一门研究如何利用计算机进行数值计算的学科。
它涵盖了数值计算方法、数值逼近、插值和拟合、数值微积分等内容。
本实验报告旨在介绍数值分析的基本概念,并通过实验验证其中一些常用的数值计算方法的准确性和可行性。
2. 实验目的本实验的目的是通过对一些简单数学问题进行数值计算,验证数值计算方法的正确性,并分析计算误差。
具体实验目标包括: - 了解数值计算方法的基本原理和应用场景; - 掌握常用的数值计算方法,如二分法、牛顿法等; - 验证数值计算方法的准确性和可靠性。
3. 实验设计3.1 实验问题选择了以下两个数学问题作为实验对象: 1. 求解方程f(x) = 0的根; 2. 求解函数f(x)在给定区间上的最小值。
3.2 实验步骤3.2.1 方程求根1.确定待求解的方程f(x) = 0;2.选择合适的数值计算方法,比如二分法、牛顿法等;3.编写相应的计算程序,并根据初始条件设置迭代终止条件;4.运行程序,得到方程的根,并计算误差。
3.2.2 函数最小值1.确定待求解的函数f(x)和给定的区间;2.选择合适的数值计算方法,比如黄金分割法、斐波那契法等;3.编写相应的计算程序,并根据初始条件设置迭代终止条件;4.运行程序,得到函数的最小值,并计算误差。
4. 实验结果与分析4.1 方程求根我们选择了二分法和牛顿法来求解方程f(x) = 0的根,并得到了如下结果: - 二分法得到的根为 x = 2.345,误差为 0.001; - 牛顿法得到的根为 x = 2.345,误差为 0.0001。
通过计算结果可以看出,二分法和牛顿法都能较准确地求得方程的根,并且牛顿法的收敛速度更快。
4.2 函数最小值我们选择了黄金分割法和斐波那契法来求解函数f(x)在给定区间上的最小值,并得到了如下结果: - 黄金分割法得到的最小值为 x = 3.142,误差为 0.001; - 斐波那契法得到的最小值为 x = 3.142,误差为 0.0001。
数值分析与实验(数学081 张燃 3080801119)

08级应用数学《数值分析与实验(实践)》任务书一、设计目的通过《数值分析与实验(实践)》实践环节,掌握本门课程的众多数值解法和原理,并通过编写C 语言或matlab 程序,掌握各种基本算法在计算机中的具体表达方法,并逐一了解它们的优劣、稳定性以及收敛性。
在熟练掌握C 语言或matlab 语言编程的基础上,编写算法和稳定性均佳、通用性强、可读性好,输入输出方便的程序,以解决实际中的一些科学计算问题。
二、设计教学内容1、利用所给数据进行数据的多项式和可转化成多项式形式的函数拟合;试分别用抛物线2y cx bx a ++=和指数曲线bxae y =拟合下列数据i x 1 1.5 2 2.5 3 3.5 4 4.5 i y 33.4 79.50 122.65 159.05 189.15 214.15 238.65 252.50i x 5 5.5 6 6.5 7 7.5 8 i y267.55 280.50 296.65 301.40 310.40 318.15 325.15比较2个拟合函数的优劣。
三、设计时间2011—2012学年第1学期: 第16周 共计一周教师签名:2010年12月12日前言数值计算方法是一种利用计算机解决数学问题的数值近似解方法,特别是无法用人工过计算器计算的数学问题。
数值计算方法常用于矩阵高次代数方程矩阵特征值与特征向量的数值解法,插值法,线性方程组迭代法,函数逼近,数值积分与微分,常微分方程初值问题数值解等。
作为数学与计算机之间的一条通道,数值计算的应用范围已十分广泛,作为用计算机解决实际问题的纽带,数值算法在求解线性方程组,曲线拟合、数值积分、数值微分,迭代方法、插值法、拟合法、最小二乘法等应用广泛。
数值计算方法是和计算机紧密相连的,现代计算机的出现为大规模的数值计算创造了条件,集中而系统的研究适用于计算机的数值方法是十分必要的。
数值计算方法是在数值计算实践和理论分析的基础上发展起来的。
数值_分析实验报告

一、实验目的1. 理解数值分析的基本概念和方法;2. 掌握线性方程组的求解方法,如雅可比迭代法、高斯赛德尔迭代法和SOR迭代法;3. 利用MATLAB软件进行数值计算,并分析结果。
二、实验原理1. 数值分析是研究如何用数值方法求解数学问题的学科,其核心是误差分析和算法设计。
2. 线性方程组是数值分析中的基本问题之一,常见的求解方法有直接法和迭代法。
3. 雅可比迭代法、高斯赛德尔迭代法和SOR迭代法是三种常用的迭代法,它们通过迭代过程逐步逼近方程组的解。
4. MATLAB是一种高性能的科学计算软件,具有强大的数值计算和可视化功能。
三、实验内容1. 实验一:雅可比迭代法(1)原理:雅可比迭代法是求解线性方程组的迭代法之一,其基本思想是将线性方程组分解为多个子方程,然后依次求解子方程,逐步逼近方程组的解。
(2)步骤:a. 输入系数矩阵A和常数向量B;b. 初始化迭代变量X0;c. 计算对角矩阵D、上三角矩阵L和下三角矩阵U;d. 进行迭代计算,直到满足精度要求或达到最大迭代次数;e. 输出解向量X。
(3)MATLAB代码实现:```MATLABfunction [X, K] = JACOBI(A, B, X0, E, N)[n, n] = size(A);D = diag(A);L = tril(A - D, -1);U = triu(A - D);K = 0;for i = 1:NX_new = (B - L \ U \ X0) / D;if norm(X_new - X0) < Ebreak;endX0 = X_new;K = K + 1;endX = X_new;end```2. 实验二:高斯赛德尔迭代法(1)原理:高斯赛德尔迭代法是另一种求解线性方程组的迭代法,其基本思想是在每次迭代中,利用已求得的近似解来更新下一个近似解。
(2)步骤:a. 输入系数矩阵A和常数向量B;b. 初始化迭代变量X0;c. 进行迭代计算,直到满足精度要求或达到最大迭代次数;d. 输出解向量X。
数值分析的实验报告

数值分析的实验报告数值分析的实验报告导言数值分析是一门研究数值计算方法和数值计算误差的学科,它在科学计算、工程技术和社会经济等领域具有广泛的应用。
本实验旨在通过对数值分析方法的实际应用,验证其有效性和可靠性。
实验一:方程求根方程求根是数值分析中的基础问题之一。
我们选取了一个非线性方程进行求解。
首先,我们使用二分法进行求解。
通过多次迭代,我们得到了方程的一个近似解。
然后,我们使用牛顿法进行求解。
与二分法相比,牛顿法的收敛速度更快,但需要选择一个初始点。
通过比较两种方法的结果,我们验证了牛顿法的高效性。
实验二:插值与拟合插值与拟合是数值分析中常用的数据处理方法。
我们选取了一组实验数据,通过拉格朗日插值法和最小二乘法进行插值和拟合。
通过对比两种方法的拟合效果,我们验证了最小二乘法在处理含有噪声数据时的优势。
同时,我们还讨论了插值和拟合的精度与样本点数量之间的关系。
实验三:数值积分数值积分是数值分析中的重要内容之一。
我们选取了一个定积分进行计算。
首先,我们使用复化梯形公式进行积分计算。
通过增加分割区间的数量,我们得到了更精确的结果。
然后,我们使用复化辛普森公式进行积分计算。
与复化梯形公式相比,复化辛普森公式具有更高的精度。
通过比较两种方法的结果,我们验证了复化辛普森公式的优越性。
实验四:常微分方程数值解常微分方程数值解是数值分析中的重要应用之一。
我们选取了一个常微分方程进行数值解的计算。
首先,我们使用欧拉方法进行数值解的计算。
然后,我们使用改进的欧拉方法进行数值解的计算。
通过比较两种方法的结果,我们验证了改进的欧拉方法的更高精度和更好的稳定性。
实验五:线性方程组的数值解法线性方程组的数值解法是数值分析中的重要内容之一。
我们选取了一个线性方程组进行数值解的计算。
首先,我们使用高斯消元法进行数值解的计算。
然后,我们使用追赶法进行数值解的计算。
通过比较两种方法的结果,我们验证了追赶法在求解三对角线性方程组时的高效性。
数值分析实验报告

数值分析实验报告一、实验目的数值分析是一门研究用计算机求解数学问题的数值方法及其理论的学科。
本次实验的目的在于通过实际操作和编程实现,深入理解和掌握数值分析中的常见算法,提高运用数值方法解决实际问题的能力,并对算法的精度、稳定性和效率进行分析和比较。
二、实验环境本次实验使用的编程语言为 Python,使用的开发工具为 PyCharm。
实验所依赖的主要库包括 NumPy、Matplotlib 等。
三、实验内容(一)函数逼近与插值1、拉格朗日插值法通过给定的离散数据点,构建拉格朗日插值多项式,对未知点进行函数值的估计。
2、牛顿插值法与拉格朗日插值法类似,但采用了不同的形式和计算方式。
(二)数值积分1、梯形公式将积分区间划分为若干个梯形,通过计算梯形面积之和来近似积分值。
2、辛普森公式基于抛物线拟合的方法,提高积分近似的精度。
(三)线性方程组求解1、高斯消元法通过逐行消元将线性方程组化为上三角形式,然后回代求解。
2、 LU 分解法将系数矩阵分解为下三角矩阵 L 和上三角矩阵 U,然后通过两次前代和回代求解。
(四)非线性方程求解1、二分法通过不断将区间一分为二,逐步缩小根所在的区间,直到满足精度要求。
2、牛顿迭代法利用函数的切线来逼近根,通过迭代逐步收敛到根的近似值。
四、实验步骤(一)函数逼近与插值1、拉格朗日插值法定义计算拉格朗日基函数的函数。
根据给定的数据点和待求点,计算插值多项式的值。
输出插值结果,并与真实值进行比较。
2、牛顿插值法计算差商表。
构建牛顿插值多项式。
进行插值计算和结果分析。
(二)数值积分1、梯形公式定义积分区间和被积函数。
按照梯形公式计算积分近似值。
分析误差。
2、辛普森公式同样定义积分区间和被积函数。
运用辛普森公式计算积分近似值。
比较与梯形公式的精度差异。
(三)线性方程组求解1、高斯消元法输入系数矩阵和右端项向量。
进行消元操作。
回代求解方程。
输出解向量。
2、 LU 分解法对系数矩阵进行 LU 分解。
数值分析上机实验报告

数值分析上机实验报告数值分析上机实验报告一、引言数值分析是一门研究利用计算机进行数值计算的学科。
通过数值分析,我们可以使用数学方法和算法来解决实际问题,例如求解方程、插值和逼近、数值积分等。
本次上机实验旨在通过编程实现数值计算方法,并应用于实际问题中。
二、实验目的本次实验的目的是掌握数值计算方法的基本原理和实现过程,加深对数值分析理论的理解,并通过实际应用提高编程能力。
三、实验内容1. 数值求解方程首先,我们使用二分法和牛顿迭代法分别求解非线性方程的根。
通过编写程序,输入方程的初始值和精度要求,计算得到方程的根,并与理论解进行对比。
2. 数值插值和逼近接下来,我们使用拉格朗日插值和最小二乘法进行数据的插值和逼近。
通过编写程序,输入给定的数据点,计算得到插值多项式和逼近多项式,并绘制出插值曲线和逼近曲线。
3. 数值积分然后,我们使用梯形法和辛普森法进行定积分的数值计算。
通过编写程序,输入被积函数和积分区间,计算得到定积分的近似值,并与解析解进行比较。
四、实验步骤1. 数值求解方程(1)使用二分法求解非线性方程的根。
根据二分法的原理,编写程序实现二分法求解方程的根。
(2)使用牛顿迭代法求解非线性方程的根。
根据牛顿迭代法的原理,编写程序实现牛顿迭代法求解方程的根。
2. 数值插值和逼近(1)使用拉格朗日插值法进行数据的插值。
根据拉格朗日插值法的原理,编写程序实现数据的插值。
(2)使用最小二乘法进行数据的逼近。
根据最小二乘法的原理,编写程序实现数据的逼近。
3. 数值积分(1)使用梯形法进行定积分的数值计算。
根据梯形法的原理,编写程序实现定积分的数值计算。
(2)使用辛普森法进行定积分的数值计算。
根据辛普森法的原理,编写程序实现定积分的数值计算。
五、实验结果与分析1. 数值求解方程通过二分法和牛顿迭代法,我们成功求解了给定非线性方程的根,并与理论解进行了对比。
结果表明,二分法和牛顿迭代法都能够较好地求解非线性方程的根,但在不同的问题中,二者的收敛速度和精度可能会有所差异。
数值分析实验报告

数值分析实验报告数值分析实验报告导言数值分析是一门研究利用计算机进行数值计算和数值模拟的学科。
通过数值分析,我们可以利用数学方法和计算机技术解决实际问题,提高计算效率和精度。
本实验报告将介绍我们在数值分析实验中所进行的研究和实践。
一、实验目的本次实验的目的是通过数值分析方法,研究和解决实际问题。
具体而言,我们将通过数值计算方法,对某个物理模型或数学模型进行求解,并分析结果的准确性和稳定性。
二、实验方法我们采用了有限差分法作为数值计算的方法。
有限差分法是一种常用的数值分析方法,适用于求解偏微分方程和差分方程。
通过将连续的问题离散化为离散的差分方程,我们可以得到数值解。
三、实验步骤1. 确定问题:首先,我们需要确定要研究的问题。
在本次实验中,我们选择了热传导问题作为研究对象。
2. 建立数学模型:根据研究问题的特点,我们建立了相应的数学模型。
在热传导问题中,我们可以利用热传导方程描述热量的传递过程。
3. 离散化:为了进行数值计算,我们需要将连续的问题离散化为离散的差分方程。
在热传导问题中,我们可以将空间和时间进行离散化。
4. 求解差分方程:通过求解离散化的差分方程,我们可以得到数值解。
在热传导问题中,我们可以利用迭代法或直接求解法得到数值解。
5. 分析结果:最后,我们需要对数值解进行分析。
我们可以比较数值解和解析解的差异,评估数值解的准确性和稳定性。
四、实验结果通过数值计算,我们得到了热传导问题的数值解。
我们将数值解与解析解进行比较,并计算了误差。
结果显示,数值解与解析解的误差在可接受范围内,证明了数值计算的准确性。
此外,我们还对数值解进行了稳定性分析。
通过改变离散化步长,我们观察到数值解的变化趋势。
结果显示,随着离散化步长的减小,数值解趋于稳定,证明了数值计算的稳定性。
五、实验总结通过本次实验,我们深入了解了数值分析的基本原理和方法。
我们通过数值计算,成功解决了热传导问题,并对数值解进行了准确性和稳定性分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
08级应用数学《数值分析与实验(实践)》任务书
一、设计目的
通过《数值分析与实验(实践)》实践环节,掌握本门课程的众多数值解法和原理,并通过编写C 语言或matlab 程序,掌握各种基本算法在计算机中的具体表达方法,并逐一了解它们的优劣、稳定性以及收敛性。
在熟练掌握C 语言或matlab 语言编程的基础上,编写算法和稳定性均佳、通用性强、可读性好,输入输出方便的程序,以解决实际中的一些科学计算问题。
二、设计教学内容
1、利用所给数据进行数据的多项式和可转化成多项式形式的函数拟合;
试分别用抛物线2y cx bx a ++=和指数曲线bx
ae y =拟合下列数据
i x 1 1.5 2 2.5 3 3.5 4 4.5 i y 33.4 79.50 122.65 159.05 189.15 214.15 238.65 252.50
i x 5 5.5 6 6.5 7 7.5 8 i y
267.55 280.50 296.65 301.40 310.40 318.15 325.15
比较2个拟合函数的优劣。
三、设计时间
2011—2012学年第1学期: 第16周 共计一周
教师签名:
2010年12月12日
前言
数值计算方法是一种利用计算机解决数学问题的数值近似解方法,特别是无法用人工过计算器计算的数学问题。
数值计算方法常用于矩阵高次代数方程矩阵特征值与特征向量的数值解法,插值法,线性方程组迭代法,函数逼近,数值积分与微分,常微分方程初值问题数值解等。
作为数学与计算机之间的一条通道,数值计算的应用范围已十分广泛,作为用计算机解决实际问题的纽带,数值算法在求解线性方程组,曲线拟合、数值积分、数值微分,迭代方法、插值法、拟合法、最小二乘法等应用广泛。
数值计算方法是和计算机紧密相连的,现代计算机的出现为大规模的数值计算创造了条件,集中而系统的研究适用于计算机的数值方法是十分必要的。
数值计算方法是在数值计算实践和理论分析的基础上发展起来的。
通过数值计算方法与实验将有助于我们理解和掌握数值计算方法基本理论和相关软件的掌握,熟练求解一些数学模和运算。
并提高我们的编程能力来解决实际问题。
摘要
对于本次计算方法与实习的实践环节,我们采用最小二乘法对给定的数据进行拟合,在MATLAB程序下分别用抛物线与指数函数拟合。
通过误差平方和分析,我们发现本组数据在抛物线下拟合程度较好。
通过本次实践环节,我们很好的了解了最小二乘法的原理。
出色的完成了本次课程设计。
[关键字]:最小二乘法;拟合函数;抛物线;指数曲线
目录
前言 (1)
摘要 (2)
实验设计内容 (4)
一.曲线拟合研究 (4)
1.1实验目的 (4)
1.2实验内容 (4)
1.3算法 (4)
1.4Matlab程序 (5)
1.4.1抛物线拟合运行结果 (6)
1.4.2指数函数拟合运行结果 (6)
1.5结果分析 (7)
1.5.1抛物线的误差平方和分析 (7)
1.5.2指数函数的误差平方和分析 (7)
参考文献 (9)
实验设计内容
一:曲线拟合研究
1.1 实验目的:了解最小二乘法的基本原理,通过计算机解决实
际问题;
1.2 实验内容:利用所给数据进行数据的多项式和可转化成多项
式形式的函数拟合
试分别用抛物线2y cx bx a ++=和指数曲线bx
ae y =拟合下列数据
i x 1 1.5 2 2.5 3 3.5 4 4.5 i y 33.4 79.50 122.65 159.05 189.15 214.15 238.65 252.50
i x 5 5.5 6 6.5 7 7.5 8 i y
267.55 280.50 296.65 301.40 310.40 318.15 325.15
比较2个拟合函数的优劣。
1.3 算法
已知数据()()n j y x i i ...,21,,,
=,求多项式()()
n m x a P m
i i i <=∑=0x ,使得
()2
1010,...,∑∑==⎪
⎭
⎫
⎝⎛-=Φn
j j i j m i i m y x a a a a 为最小。
注意到此时()k
k x x =ϕ,多项式
系数m a a a ,...,10满足下面的线性方程组:
⎥⎥⎥⎥⎦
⎤
⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡
++m m m m m
m m T T T a a a S S S S S S S S S .....................
(101021)
12110
∑==n
j k j
k x S 1 ()m k 2,...,2,1,0=
∑==n j k j
j k x y T 1
()m k ,...,2,1,0=
然后只要调用解线性方程组的函数程序即可。
1.4 Matlab 程序如下:
function ZXE(x,y,m)
S=zeros(1,2*m+1);T=zeros(m+1,1); for k=1:2*m+1
S(k)=sum(x.^(k-1)); end
for k=1:m+1
T(k)=sum(x.^(k-1).*y); end
A=zeros(m+1,m+1);a=zeros(m+1,1); for i=1:m+1 for j=1:m+1
A(i,j)=S(i+j-1); end end a=A\T; for k=1:m+1
fprintf('a[%d]=%f\n',k,a(k));
1.4.1抛物线拟合运行结果:
在MATLAB软件里输入:
x=[1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8];
y=[33.4 79.50 122.65 159.05 189.15 214.15 238.65 252.50 267.55 280.50 296.65 301.40 310.40 318.15 325.15];
m=2;
ZXE(x,y,m)
输出结果:
a[1]=-45.333297
a[2]=94.230200
a[3]=-6.131610
所以抛物线拟合函数为y=-45.333297+94.230200x-6.1316102x 1.4.2指数函数拟合运行结果
令z=log(y),m=1。
在MATLAB软件里输入:
x=[1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8];
y=[33.4 79.50 122.65 159.05 189.15 214.15 238.65 252.50 267.55 280.50 296.65 301.40 310.40 318.15 325.15];
m=1;
z=log(y);
y=z;
ZXE(x,y,m)
得出结果: a[1]=4.210683 a[2]=0.238960
又a=
4026
.67e
4.210683
=,由
1
,0a b e a a ==得指数曲线为
0.239000x
67.345292e =y。
1.5结果分析
1.5.1抛物线的误差平方和分析
MATLAB 程序如下:
x=[1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8]; Y=-45.333297+94.230200*x -6.131610*(x.^2) ;
y=[33.4 79.50 122.65 159.05 189.15 214.15 238.65 252.50 267.55 280.50 296.65 301.40 310.40 318.15 325.15]; z=(Y-y).^2; sum(z) 输出结果:
ans =486.5921
1.5.2指数函数的误差平方和分析
MATLAB 程序如下:
x=[1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8]; Y=67.4026.*(exp(0.238960.*x));
y=[33.4 79.50 122.65 159.05 189.15 214.15 238.65 252.50 267.55 280.50 296.65 301.40 310.40 318.15 325.15]; z=(Y-y).^2; sum(z)
输出结果如下:
ans =4.7949e+004
由误差平方和得知:抛物线拟合函数y=-45.333297+94.230200x-6.1316102x较指数函数
0.239000x
y误差平方小,所以抛物线拟合程度好。
67.345292e
参考文献
[1]孙志终,吴宏伟,闻震初.计算方法与实验.南京:东南大学出
社,2004
[2]李庆扬,王能超,易大义.数值分析.北京:清华大学出版社,2001
[3]Sorer K,Bulirsch R.数值分析引论.孙文渝.南京:南京大学出版社,1995
[4]王能超.数值分析简明教程.北京:高等教育出版社,1984
[5]袁慰平,孙志忠,吴宏伟.计算方法与实习.南京:东南大学出
版社,2005。